
Review Article

CaloChallenge 2022: A Community Challenge for

Fast Calorimeter Simulation

“Calorimeter Simulation”, generated via midjourney, 2022

Claudius Krause1,2 (main editor) ,

Michele Faucci Giannelli3,4 (editor) ,

Gregor Kasieczka5 (editor) , Benjamin Nachman6 (editor) ,

Dalila Salamani7 (editor) , David Shih8 (editor) ,

Anna Zaborowska7 (editor) ,

Oz Amram9 , Kerstin Borras10,11 , Matthew R. Buckley8 ,

Erik Buhmann5 , Thorsten Buss5,10 ,

Renato Paulo Da Costa Cardoso7, Anthony L. Caterini12 ,

Nadezda Chernyavskaya7 , Federico A.G. Corchia13,14 ,

Jesse C. Cresswell12 , Sascha Diefenbacher6 ,

Etienne Dreyer15 , Vijay Ekambaram16, Engin Eren10 ,

Florian Ernst2,7 , Luigi Favaro2 , Matteo Franchini13,14 ,

Frank Gaede10 , Eilam Gross15 , Shih-Chieh Hsu17 ,

Kristina Jaruskova7, Benno Käch5,10 , Jayant Kalagnanam18,

Raghav Kansal9,19 , Taewoo Kim12 , Dmitrii Kobylianskii15 ,

Anatolii Korol10 , William Korcari5 , Dirk Krücker10 ,

ar
X

iv
:2

41
0.

21
61

1v
1

 [
cs

.L
G

]
 2

8
O

ct
 2

02
4

https://www.midjourney.com/home/
https://orcid.org/0000-0003-0924-3036
https://orcid.org/0000-0003-3731-820X
https://orcid.org/0000-0003-3457-2755
https://orcid.org/0000-0003-1024-0932
https://orcid.org/0000-0002-8780-5885
https://orcid.org/0000-0003-3408-3871
https://orcid.org/0000-0001-6210-1921
https://orcid.org/0000-0002-3765-3123
https://orcid.org/0000-0003-1111-249X
https://orcid.org/0000-0003-1109-3460
https://orcid.org/0000-0002-4805-3721
https://orcid.org/0000-0002-1717-2138
https://orcid.org/0000-0002-0758-9562
https://orcid.org/0000-0002-2264-2229
https://orcid.org/0000-0002-1788-3204
https://orcid.org/0000-0002-9284-8804
https://orcid.org/0000-0003-4308-6804
https://orcid.org/0000-0001-8955-9510
https://orcid.org/0000-0002-6371-5252
https://orcid.org/0009-0008-9363-6345
https://orcid.org/0000-0003-2421-7100
https://orcid.org/0000-0002-4554-252X
https://orcid.org/0000-0002-7055-9200
https://orcid.org/0000-0003-1244-9350
https://orcid.org/0000-0001-6214-8500
https://orcid.org/0000-0002-1194-2306
https://orcid.org/0000-0003-2445-1060
https://orcid.org/0009-0007-2691-4301
https://orcid.org/0009-0002-0070-5900
https://orcid.org/0000-0002-2569-1771
https://orcid.org/0000-0001-8017-5502
https://orcid.org/0000-0003-1610-8844

CaloChallenge Results 2

Katja Krüger10, Marco Letizia20,21 , Shu Li22,23,24 ,

Qibin Liu22,23,24 , Xiulong Liu17 , Gabriel Loaiza-Ganem12 ,

Thandikire Madula25 , Peter McKeown7,10 ,

Isabell-A. Melzer-Pellmann10 , Vinicius Mikuni6 ,

Nam Nguyen18, Ayodele Ore2 , Sofia Palacios Schweitzer2 ,

Ian Pang8 , Kevin Pedro9 , Tilman Plehn2 ,

Witold Pokorski7 , Huilin Qu7 , Piyush Raikwar7,

John A. Raine26 , Humberto Reyes-Gonzalez21,27,28 ,

Lorenzo Rinaldi13,14 , Brendan Leigh Ross12 ,

Moritz A.W. Scham10,11,29 , Simon Schnake10,11 ,

Chase Shimmin30 , Eli Shlizerman17 ,

Nathalie Soybelman15 , Mudhakar Srivatsa18,

Kalliopi Tsolaki7, Sofia Vallecorsa7, Kyongmin Yeo18,

Rui Zhang31,32

1 Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences

(OeAW), Dominikanerbastei 16, A-1010 Vienna, Austria

E-mail: Claudius.Krause@oeaw.ac.at
2 Institut für Theoretische Physik, Universität Heidelberg, Germany
3 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tor Vergata, Roma,

00133, Italy
4 Department of Microtechnology and Nanoscience, Chalmers University of

Technology, 41296 Gothenburg, Sweden
5 Institut für Experimentalphysik, Universität Hamburg, Germany
6 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
7 CERN, Espl. des Particules 1, 1211 Meyrin, Switzerland
8 NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway,

NJ 08854, USA
9 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
10 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
11 III. Physikalisches Institut A, RWTH Aachen University, Germany
12 Layer 6 AI, Toronto, Canada
13 Department of Physics and Astronomy, Alma Mater Studiorum - University of

Bologna, 6/2, Viale Carlo Berti Pichat, I-40127 Bologna, Italy
14 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bologna, 6/2, Viale Carlo

Berti Pichat, I-40127 Bologna, Italy
15 Weizmann Institute of Science, Rehovot, Israel
16 IBM Research, India
17 University of Washington, Seattle, WA 98195, USA
18 IBM T. J. Watson Research Center, Yorktown Heights, NY USA
19 California Institute of Technology, Pasadena, CA 91125, USA
20 MaLGa–DIBRIS, University of Genova, Genova, Italy
21 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Genova, Italy
22 Tsung-Dao Lee Institute (TDLI), Shanghai Jiao Tong University, Shanghai

201210, China
23 Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key

Laboratory for Particle Physics and Cosmology (SKLPPC), Shanghai Jiao Tong

University, Shanghai 200240, China

https://orcid.org/0000-0001-9641-4352
https://orcid.org/0000-0001-7879-3272
https://orcid.org/0000-0001-5248-4391
https://orcid.org/0000-0001-8697-1489
https://orcid.org/0009-0005-6767-2148
https://orcid.org/0000-0001-7689-8628
https://orcid.org/0009-0006-9722-2233
https://orcid.org/0000-0001-7707-919X
https://orcid.org/0000-0002-1579-2421
https://orcid.org/0000-0001-6925-3565
https://orcid.org/0009-0004-0296-7204
https://orcid.org/0000-0002-8225-7269
https://orcid.org/0000-0003-2260-9151
https://orcid.org/0000-0001-5660-7790
https://orcid.org/0009-0007-9910-414X
https://orcid.org/0000-0002-0250-8655
https://orcid.org/0000-0002-5987-4648
https://orcid.org/0000-0003-3283-5208
https://orcid.org/0000-0001-9608-9940
https://orcid.org/0000-0003-0670-2225
https://orcid.org/0000-0001-9494-2151
https://orcid.org/0000-0003-3409-6584
https://orcid.org/0000-0002-2228-2251
https://orcid.org/0000-0002-3136-4531
https://orcid.org/0000-0003-0209-0858
https://orcid.org/0000-0002-8265-474X
https://ror.org/01js2sh04
https://ror.org/04xfq0f34

CaloChallenge Results 3

24 Institute of Nuclear and Particle Physics, School of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
25 University College London (UCL), London, WC1E 6BT, UK
26 Département de Physique Nucléaire et Corpusculaire, University of Geneva, 1211

Geneva, Switzerland
27 Department of Physics, University of Genova, Genova, Italy
28 Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen

University, 52074 Aachen, Germany
29 Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
30 Yale University, New Haven, CT 06520, USA
31 Department of Physics, Nanjing University, Nanjing 210093, China
32 Department of Physics, University of Wisconsin Madison, Wisconsin 53706, USA

Abstract. We present the results of the “Fast Calorimeter Simulation Challenge

2022” — the CaloChallenge. We study state-of-the-art generative models on four

calorimeter shower datasets of increasing dimensionality, ranging from a few hundred

voxels to a few tens of thousand voxels. The 31 individual submissions span a wide

range of current popular generative architectures, including Variational AutoEncoders

(VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion

models, and models based on Conditional Flow Matching. We compare all submissions

in terms of quality of generated calorimeter showers, as well as shower generation time

and model size. To assess the quality we use a broad range of different metrics including

differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of

binary classifiers, and the log-posterior of a multiclass classifier. The results of the

CaloChallenge provide the most complete and comprehensive survey of cutting-edge

approaches to calorimeter fast simulation to date. In addition, our work provides a

uniquely detailed perspective on the important problem of how to evaluate generative

models. As such, the results presented here should be applicable for other domains

that use generative AI and require fast and faithful generation of samples in a large

phase space.

Report Numbers: HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43

Submitted to: Rep. Prog. Phys.

https://ror.org/02nv7yv05

CONTENTS 4

Contents

1 Introduction 6

2 Datasets 9

2.1 Dataset 1 Photons and Pions . 10

2.2 Datasets 2 and 3 . 11

3 GAN-based Submissions 13

3.1 CaloShowerGAN . 13

3.2 Matching Deep Mean-field Attentive (MDMA) GAN 16

3.3 BoloGAN . 18

3.4 DeepTree . 20

4 Normalizing Flow-based Submissions 24

4.1 L2LFlows . 25

4.2 (inductive) CaloFlow . 28

4.3 CaloINN . 31

4.4 SuperCalo . 33

4.5 CaloPointFlow . 34

5 Diffusion-based Submissions 37

5.1 CaloDiffusion with GLaM . 38

5.2 CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter

Simulation . 39

5.3 Score-based Generative Models for Calorimeter Shower Simulation 41

5.4 CaloGraph . 42

5.5 Diffusion Transformer . 44

6 VAE-based Submissions 46

6.1 Latent Generative Models for Calo Simulation with VQ-VAE 47

6.2 CaloMan: Fast Generation of Calorimeter Showers with Density

Estimation on Learned Manifolds . 50

6.3 DNN CaloSim . 55

6.4 Geant4 Transformer . 56

6.5 CaloVAE+INN . 59

6.6 CaloLatent: Score-based Generative Modeling in the Latent Space for

Calorimeter Shower Generation . 62

7 Conditional Flow Matching-based Submissions 64

7.1 CaloDREAM: Vision Transformer CFM 65

7.2 CaloForest . 67

CONTENTS 5

8 Introduction to metrics 71

8.1 High-level Features (Histograms) . 71

8.2 Correlations . 72

8.3 Classifier-based Metrics. 72

8.4 Computer Science-inspired Metrics . 75

8.5 Manifold-based Metrics . 76

8.6 Generation Timings . 77

8.7 Memory Requirements . 78

9 Results: Individual Metrics 78

9.1 Preprocessing . 79

9.2 Dataset 1, Photons (ds 1 – γ) . 79

9.3 Dataset 1, Pions (ds 1 – π+) . 88

9.4 Dataset 2, Electrons (ds 2) . 96

9.5 Dataset 3, Electrons (ds 3) . 106

10 Results: Correlations Between Metrics 114

10.1 Metric Comparison . 115

10.2 Pareto Fronts . 124

11 Conclusions and Outlook 128

11.1 Overall Physics Results . 129

11.2 Take-aways of the CaloChallenge beyond Detector Simulation 131

11.3 Outlook to the Future . 132

A Histograms of high-level features 135

A.1 Dataset 1, Photons (ds 1 – γ) . 135

A.2 Dataset 1, Pions (ds 1 – π+) . 139

A.3 Dataset 2, Electrons (ds 2) . 143

A.4 Dataset 3, Electrons (ds 3) . 152

B Consistency check of the multiclass classifier 161

C Numerical Results in Tables 168

C.1 Dataset 1, Photons (ds 1 – γ) . 168

C.2 Dataset 1, Pions (ds 1 – π+) . 174

C.3 Dataset 2, Electrons (ds 2) . 177

C.4 Dataset 3, Electrons (ds 3) . 186

D Generation time vs. number of parameters 192

References 194

INTRODUCTION 6

1. Introduction

At the Large Hadron Collider (LHC) and countless other particle or nuclear physics

facilities, we aim to study Nature at the most fundamental level, searching for answers

to questions such as the nature of dark matter and dark energy, the baryon-anti-baryon

asymmetry in the universe, and the mass and hierarchy of neutrinos, which are all not

explained in the Standard Model. Simulations based on first principles provide a crucial

bridge between theory and experiment and are at the core of the successful physics

program of these facilities. With the increasing amount of data that the LHC will

generate in the upcoming runs, the amount of simulated events required for accurate

and sensitive analyses will grow steadily, and with it the computational resources needed

to generate them. In figure 1, we see the projected CPU needs of the two general

purpose experiments, ATLAS [1] and CMS [2], with similar challenges standing in front

of other experiments, e.g. LHCb [3]. The largest fraction of the CPU consumption

goes into simulation and within that, into the simulation of the detector responses and

especially the calorimeters. These detectors are particularly challenging due to the

need to track many secondary particles produced in extensive showers that result from

particles stopping inside dense materials. State-of-the-art physics-based simulations use

Geant4 [4, 5, 6] and are a major computational bottleneck, forecast to overwhelm the

computing budget of existing and future experiments.

Without significant research and development of new simulation techniques and

algorithms, the data collection will significantly outpace the Monte Carlo production

capabilities of the experiments which in turn will limit the precision of many

measurements as they will be limited by the statistics of the Monte Carlo simulation.

Maintaining the current MC-to-data ratio is therefore a high priority for the LHC

experiments. A possible mitigation can be achieved by replacing the expensive

calorimeter simulations with faster alternatives. Such faster calorimeter simulation

techniques [7, 8, 9, 10, 11], which are usually called “fast simulation”, typically rely

on parametrized responses of the calorimeter, tailored to specific types of incoming

particles. By employing these parametrizations, effectively bypassing the intricate

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

Figure 1: Projected CPU requirements. Left: For ATLAS [1]. Right: For CMS [2]

INTRODUCTION 7

shower development process carried out by Geant4, the simulation of an event is

significantly sped up. However, these models usually lack the high fidelity that is

required by the precision measurements carried out by the LHC experiments.

A possible alternative solution is provided by the immense progress in computer

science, machine learning, and especially generative AI in the past two decades. Deep

generative models (DGMs) learn, implicitly or explicitly, the distribution of (simulated)

data from a given sample and then generate new data according to this distribution.

Continuous research with impressive progress over nearly a decade [12] has shown

that these models have the potential to become fast and faithful alternatives for

detector simulation, as was summarized in a recent review on DGMs for calorimeter

simulation [13]. For that reason, such models also started to be included in the fast

simulation packages of the experiments [9, 14] in recent years.

Motivated by the aim of spurring the further development and benchmarking of fast

and high-fidelity calorimeter shower generation using deep learning methods, the Fast

Calorimeter Simulation Challenge (“CaloChallenge”) was initiated in early 2022. It is

modeled after two previous, highly successful data challenges in HEP — the top tagging

community challenge [15] and the LHC Olympics 2020 anomaly detection challenge [16].

In the CaloChallenge, participants were tasked with training their favorite

generative model on the provided calorimeter shower datasets, learning to sample from

the conditional probability distribution p(I|Einc), where I are the voxel energy deposits

and Einc is the incident energy. The particle and nuclear physics communities have been

developing fast simulation methods for some time, and the goal of this challenge was to

accelerate and expand on these efforts, while offering common benchmarks with which

to assess the strengths and weaknesses of the new approaches, and a common evaluation

pipeline for fair comparison.

This is the community paper summarizing the outcome of the CaloChallenge.

Over 60 participants contributed to the development of 31 different DGMs (some close

variants or distillations of each other, 23 of them completely distinct) for fast calorimeter

simulation, making use of cutting-edge techniques in generative modeling with deep

learning, including GANs, VAEs, normalizing flows, diffusion models, and conditional

flow-matching models. Table 1 gives an overview of the presented models and links the

corresponding code repositories.

Many submissions were presented at ML4Jets 2022 at Rutgers [17], ML4Jets 2023

in Hamburg [18], and the CaloChallenge Workshop in Frascati [19]. They have been

published in separate research articles, either in peer-reviewed journals or in machine

learning conferences. A small subset of the submissions have been compared previously

in [20], independent of this study here and without submitted samples, but with

retrained models based on code repositories instead.

The document is structured as follows: in Section 2, we describe the calorimeter

datasets that we provided. Then, we introduce the individual approaches, grouped

by their main generative architecture: Generative Adversarial Networks (GANs) in

Section 3, Normalizing Flows (NFs) in Section 4, Diffusion Models in Section 5,

INTRODUCTION 8

Table 1: Models submitted to the CaloChallange.

Approach Model Code
Dataset

Section
1 – γ 1 – π 2 3

GAN

CaloShowerGAN [21] [22] ✓ ✓ 3.1

MDMA [23, 24] [25] ✓ ✓ 3.2

BoloGAN [26] [27] ✓ ✓ 3.3

DeepTree [28, 29] [30] ✓ 3.4

NF

L2LFlows [31, 32] [33] ✓ ✓ 4.1

CaloFlow [34, 35] [36, 37] ✓ ✓ ✓ ✓ 4.2

CaloINN [38] [39] ✓ ✓ ✓ 4.3

SuperCalo [40] [41] ✓ 4.4

CaloPointFlow [42] [43] ✓ ✓ 4.5

Diffusion

CaloDiffusion [44] [45] ✓ ✓ ✓ ✓ 5.1

CaloClouds [46, 47] [48, 49] ✓ 5.2

CaloScore [50, 51] [52, 53] ✓ ✓ ✓ 5.3

CaloGraph [54] [55] ✓ ✓ 5.4

CaloDiT [56] [57] ✓ 5.5

VAE

Calo-VQ [58] [59] ✓ ✓ ✓ ✓ 6.1

CaloMan [60] [61] ✓ ✓ 6.2

DNNCaloSim [62, 63] [64] ✓ 6.3

Geant4-Transformer [65] [66] ✓ 6.4

CaloVAE+INN [38] [39] ✓ ✓ ✓ ✓ 6.5

CaloLatent [67] [68] ✓ 6.6

CFM
CaloDREAM [69] [70] ✓ ✓ 7.1

CaloForest [71] [72] ✓ ✓ 7.2

Variational Autoencoders (VAEs) in Section 6, and Conditional Flow Matching Models

(CFMs) in Section 7. Section 8 introduces the metrics which we employ to compare

the submissions. We then show our results, where we first focus on the scores of the

individual metrics in Section 9 and then look at the correlations and Pareto fronts in

Section 10. On the one hand, this sheds light on interesting trade-offs, while on the

other hand, it tells us about the metrics themselves. We summarize and present an

outlook in Section 11. In the appendices, we collect additional reference plots as well as

tables with the detailed numbers that are presented in the figures of Sections 9 and 10.

DATASETS 9

2. Datasets

The challenge offers three datasets, ranging in difficulty from easy through medium to

hard. The difficulty is set by the dimensionality of the calorimeter showers, i.e. the

number layers and the number of voxels in each layer.

Each dataset has the same general format. The detector geometry consists of

concentric cylinders with particles propagating along the z-axis. The detector is

segmented along the z-axis into Nz discrete layers. Each layer has Nr bins along the

radial direction and Nα bins in the angle α. The number of layers and bins in r and α

is summarized in table 2. The coordinates ∆ϕ and ∆η correspond to the x and y axis

of the cylindrical coordinates. Figure 2 shows a 3-dimensional view of a geometry with

3 layers, with each layer having 3 bins in the radial direction and 6 bins in the angular

direction. The right image shows the front view of the geometry, as seen along the z

axis.

Figure 2: Schematic view of the voxelization in all datasets. Along the direction of the

incoming particle (z), the volume is segmented in Nz layers. Each layer has Nr radial

and Nα angular bins. Left: 3-dimensional view. Right: Front view.

Each CaloChallenge dataset comes as one or more .hdf5 files that were written

with python’s h5py package [73] using gzip compression. Within each file, there are

two hdf5-datasets: incident energies has the shape (num events, 1) and contains

the energy of the incoming particle in MeV; showers has the shape (num events,

num voxels) and stores the energy deposited in showers, where the energy depositions

of each voxel (in MeV) are flattened. The mapping of array index to voxel location is

done in the order (radial bins, angular bins, layer), so the first entries correspond to the

radial bins of the first angular slice in the first layer. Then, the radial bins of the next

angular slice of the first layer follow, and so on.

For every dataset in the CaloChallenge, there is one dataset file to be used for

training the generative models and a second one for the evaluation (both by the

DATASETS 10

Table 2: Voxelization of layers in each dataset. We show Nr×Nα and the total number

of voxels, Ni, per layer. For datasets 1: a “–” indicates that this layer is not in the

dataset, as the numbering is based on the ATLAS detector definitions [9].

Layer
0 1 2 3 . . . 12 13 14 . . . 44 total

Number

ds 1 – γ
8× 1 16× 10 19× 10 5× 1

–
5× 1

– – – – 368
= 8 = 160 = 190 = 5 = 5

ds 1 – π+ 8× 1 10× 10 10× 10 5× 1
–

15× 10 16× 10 10× 1
– – 533

= 8 = 100 = 100 = 5 = 150 = 160 = 10

ds 2 9× 16 = 144 6480

ds 3 18× 50 = 900 40 500

Table 3: Number of samples available per incident energy for each of the training and

evaluation datasets for dataset 1 – γ and dataset 1 – π+.

Einc 256 MeV – 131 GeV 262 GeV 524 GeV 1.04 TeV 2.1 TeV 4.2 TeV total

ds 1 – γ 10 000 per energy 10 000 5000 3000 2000 1000 121 000

ds 1 – π+ 10 000 per energy 9800 5000 3000 2000 1000 120 800

individual collaborations and by us). For dataset 3, we split the training and evaluation

data each into two separate files to have more manageable files sizes.

2.1. Dataset 1 Photons and Pions

Dataset 1 can be downloaded from [74, 75]. It is based on the ATLAS open datasets [76]

and contains the simulation of single photons and single charged pions generated at

the surface of the ATLAS calorimeter system and pointing back to the center of the

detector. The interaction of the particles in the calorimeters was simulated with the

official ATLAS software, which is based on Geant4, using a special configuration in

which detailed hits were produced and noise from electronics and cross-talk was not

included; this allows modeling perfect showers that can be injected in the simulation

chain before these effects occur, making it more realistic. These samples were used to

train the GANs presented in the AtlFast3 paper [9] and the FastCaloGAN note [26].

Initially, only one dataset for the pion sample was available. Later, a second,

independent dataset was provided by ATLAS, so we updated the Zenodo and all

trainings and evaluations were done with two independent training and evaluation

datasets [75]. There are four datasets, two for photons and two for charged pions.

Each dataset contains the voxelized shower information obtained from single particles

in the range 0.2 < |η| < 0.25; therefore the particles impact the detector with an angle.

For each particle, there are 15 incident energies from 256 MeV up to 4 TeV produced

DATASETS 11

in powers of two. 10 000 events are available in each sample except for those at higher

energies having lower statistics, see table 3. The number of radial and angular bins

varies from layer to layer and is also different for photons and pions, resulting in 368

voxels for photons (called “ds 1 – γ” throughout) and 533 for pions (called “ds 1 – π+”

throughout), see table 2.

In the results section, a 1 MeV threshold is applied to all voxels to eliminate the low

energy tail that affects some of the models but has no physics impact. This assessment is

based on how the energy deposited in the calorimeter is transformed and calibrated into

reconstructed objects (i.e. photons or jets) using clusters built from the calorimeters’

cells [77]. ATLAS calorimeters are segmented in cells to increase the granularity and

improve the spatial reconstruction of showers, and this segmentation is reproduced in

the simulation. The cells have rectangular shapes that are easier to construct, hence

they do not match the cylindrical voxel geometry described above. This required an

additional step in the AtlFast3 simulation in which the energy from the voxels was

reassigned to the actual calorimeter cells. In the offline reconstruction, ATLAS uses

topological clusters that are started (seeded) from cells having at least 4 times the

noise; they are subsequently grown to include neighboring cells with energy twice the

noise level, and then they are finalized with any cell adjacent to the cluster that is

above the noise threshold. The lowest cell noise in the layers considered in the datasets

is about 10 MeV for layer 1 with other layers having up to 50 MeV. Therefore, a chosen

1 MeV threshold in the voxels’ energy is reasonable even when taking into account the

fact that multiple voxels could map to the same cell; this only occurs in the core of the

shower where most of the energy is deposited and therefore the threshold cut will not

take place, i.e. all masked voxels are peripheral voxels that actually map to multiple

cells, further diluting the energy associated to each cell.

2.2. Datasets 2 and 3

Datasets 2 and 3 have been simulated with the Par04 [78] example of Geant4. The

geometry used in the Par04 example is an idealised calorimeter, with concentric cylinders

of alternating absorber and active materials. A draft of its layout is presented in figure 3.

Both datasets were simulated for the same detector which consists of 90 physical layers,

with each layer composed of 1.4 mm of tungsten (W) as an absorber and 0.3 mm of

silicon (Si) as active material. The inner radius of this calorimeter is 800 mm and its

depth is 153 mm.

Particle showers are generated by electrons that enter the detector perpendicularly

to the detector’s cylinders’ axis, as depicted in figure 3’s upper electron. Datasets with

different, varying incident angles, like the second electron in figure 3 pointing to the

lower right, were also published but go beyond the scope of this challenge [79].

The Par04 example of Geant4 writes out only energy deposited in the active

material, so it must be corrected for the deposits in the absorber. A simple scaling

factor has been derived from the simulation, f = 1/0.033, uniform for all energies and

DATASETS 12

e−

e−

Figure 3: The Par04 detector [78] consists of concentric cylinders of absorber (red)

and active material (blue). The energy deposited by incident particles is recorded in a

cylindrical readout (black).

cells of the detector. It means that on average 3.3% of particle’s energy is registered

in the detector. The Par04 simulation has an energy threshold below which cell energy

is not stored (to reduce the file size). It is chosen to a very low value of 0.5 keV,

which translates to 15.15 keV after the energy scaling. We also apply this cutoff to all

submissions before the final evaluation.

The particle entrance position and direction determine the position (0,0,0) and

orientation (z-axis) of the cylindrical readout, like the one shown in figure 2. The

size of each readout voxel is ∆r × ∆φ × ∆z and unlike for dataset 1, both datasets

2 and 3 have the same number of voxels in each of the Nz layers. Also the number

of voxels along z-axis is the same in datasets 2 and 3, but they differ in terms of

segmentation in radius (r) and angle (α). The size along z-axis is equal to ∆z = 3.4 mm

which corresponds to two physical layers (W-Si-W-Si). Taking into account only the

absorber’s value of radiation length (X0(W) = 3.504 mm [80]) it makes the size along z-

axis approximately ∆z = 2 ·1.4 mm/3.504 mm = 0.8X0. In radius, the size of the voxels

is 4.65 mm for dataset 2 and 2.325 mm for dataset 3, which in approximation, taking

only the Moliére radius of the absorber, is ∆r = 4.65 mm/9.327 mm = 0.5RM for dataset

2 and ∆r = 2.325 mm/9.327 mm = 0.25RM for dataset 3. The angular segmentation

consists of 16 voxels for dataset 2 (∆φ = 2π/16 ≈ 0.393 rad) and 50 voxels for dataset

3 (∆φ = 2π/50 ≈ 0.126 rad).

The total number of voxels for dataset 2 is Nz×Nr×Nα = 45× 9× 16 = 6480 and

GAN-BASED SUBMISSIONS 13

for dataset 3 it is Nz ×Nr ×Nα = 45× 18× 50 = 40500, see table 2.

Files can be downloaded from [81] and [82] for dataset 2 and 3 respectively.

Dataset 2 consists of two files (one for training and one for evaluation) with 100 000

showers of electrons each with energies sampled from a log-uniform distribution ranging

from 1 GeV to 1 TeV. Dataset 3 contains showers of electrons sampled from the same

incident energy distribution. Due to the size, there are 4 files with 50 000 showers each.

One half of the available sample should be used in training, with the remaining half

used as a reference file in evaluation.

3. GAN-based Submissions

Generative Adversarial Networks (GANs) [83] are one of the earliest types of deep

generative models and reached fame by being able to produce photorealistic images [84].

A GAN consists of two networks, a generator and a critic‡. They are trained

adversarially in a game where the generator produces fake samples that the discriminator

tries to distinguish from real samples. On the upside, GANs are very flexible, as

their only hard requirement is finding two networks that map to the correct space.

Furthermore, GANs are typically very fast compared to other generative models and can

produce samples with high fidelity. On the downside, their training is unstable, and they

are difficult to optimize. For this reason, several improvements were proposed, e.g. the

Wasserstein GAN [85, 86]. CaloGAN [12, 87] was the first tool that demonstrated the

feasibility of using a deep generative model to perform a fast calorimeter simulation.

GANs are also the first model to be used in production, as FastCaloGAN [88, 26] was

deployed as part of AtlFast3 [9] and used by the ATLAS experiment to produce several

billion events.

3.1. CaloShowerGAN

By Michele Faucci Giannelli and Rui Zhang, with figures and tables referring to these

approaches as CaloShowerGAN [21], CaloShower2GAN [21], CaloShower3GAN [21] and

code being available at [22].

Introduction Building on the success of FastCaloGAN, CaloShowerGAN [21] is designed

to have a similar interface so that the ATLAS collaboration could easily integrate

it. However, CaloShowerGAN significantly diverges from FastCaloGAN in the internal

structure of the tool and achieves a significant improvement in reproducing both photons

and pions. This is realized through a new pre-processing of the training data by further

optimizing the model architecture and hyperparameters.

‡ Also called discriminator, if the cross entropy loss is used.

GAN-BASED SUBMISSIONS 14

Architecture For example, CaloShower3GAN employs three GANs for the parametriza-

tion of the photons in different energy ranges; this is motivated by how the energy is

deposited in the different layers of the calorimeter as a function of the primary parti-

cle energy. The energy thresholds to define low, medium and high energy ranges are

4 GeV and 262 GeV, whereas CaloShower2GAN merges the medium and high energy

ranges. Only one GAN is used for the pions in all three versions as the nature of the

hadronic interaction allows even low-energy pions to interact in the deeper layers of the

calorimeter.

The GAN architecture (see figure 4) was significantly optimized for this challenge,

details on the optimization process are described in CaloShowerGAN [21]. The optimal

hyperparameters used in the photon and pion GANs are shown in table 4.

Preprocessing Several normalization steps are used to simplify the training of the

GANs. The first normalization is based on the kinetic energy of the particles as done in

FastCaloGAN and other tools. This normalization procedure allows standardizing all

values within the input vector to a similar order of magnitude for all input momenta,

eliminating the significant difference between the momenta of the samples. In this way,

the GAN can focus on reproducing the shape of the showers rather than its absolute

value.

CaloShowerGAN employs additional normalization for layer-specific energy and total

energy. This information improves the training because the networks do not have

to extract it from the data as it is explicitly provided; thus the GANs can focus on

learning correlations and shapes improving the overall performance. Details on the

implementation of this normalization can be found in [21].

The condition label is also transformed to a normalized range of [0, 1] using the

following equation:

Ê =
log Ekin

Emin

log Emax

Emin

. (1)

Here Emin (Emax) is the minimum (maximum) kinetic energy of the incoming particle

in the training data.

Training The batch size used for training the GANs is 1024 and the training runs

for a total of 106 iterations. Due to the adversarial nature of GAN training, the final

iteration does not necessarily yield the best outcome, therefore the GANs are evaluated

at intervals of 103 iterations. This is a compromise between the time required for

evaluation and the speed of learning of the GANs.

The evaluation is inspired by the methodology used in FastCaloGAN using the

total energy distribution for all energies as a figure of merit. The χ2 value for each

GAN model is computed between the binned distributions of the Geant4 sample and

generated sample by the model and then normalized by the number of degrees of freedom

GAN-BASED SUBMISSIONS 15

Dense N4
Activation ReLU

Spectral normalisation

Condition

Dense N5
Activation ReLU

Spectral normalisation

Dense N6
Activation ReLU

Spectral normalisation

Dense Nvoxel
Batch normalisation

Activation

Dense N3
Batch normalisation

Activation

Dense N2
Batch normalisation

Activation

Dense N1
Batch normalisation

Activation

Noise N0
∼ N(0.5,0.5)

Generator Discriminator

Kinetic
energy

Real
samples

Fake
samples

Figure 4: Architecture of CaloShowerGAN.

used in each distribution (χ2/NDF). The model that gives the lowest χ2/NDF among

the saved iterations is considered the best and is used in the challenge.

GAN-BASED SUBMISSIONS 16

Table 4: Optimal hyperparameter values for the photon and pion in CaloShowerGAN.

Hyperparameter Photon Pion

Latent space size 100 200

Generator size (N1, N2, N3) 100, 200, 400 200, 400, 800

Discriminator size (N4, N5, N6) 368, 368, 368 800, 400, 200

Generator optimizer Adam [89] Adam [89]

Learning rate 1× 10−4 1× 10−4

β1 0.5 0.5

β2 0.999 0.999

Discriminator optimizer Adam [89] Adam [89]

Learning rate 1× 10−4 1× 10−4

β1 0.5 0.5

β2 0.999 0.999

Batch size 1024 1024

D/G ratio 8 5

λ 3 20

Activation (generator) Swish ReLU

Activation (discriminator) ReLU ReLU

Neuron weight initialization (generator) Glorot Normal He Uniform

Neuron weight initialization (discriminator) He Uniform He Uniform

Trainable parameters (generator, discriminator) 261k, 408k 871k, 829k

3.2. Matching Deep Mean-field Attentive (MDMA) GAN

By Benno Käch, Dirk Krücker, Isabell Melzer-Pellmann, Moritz Scham, and Simon

Schnake, with figures and tables referring to this approach as MDMA [23, 24] and code

being available at [25].

Introduction The MDMA [23, 24] was first applied to the JetNet-150 [90] datasets,

yielding state-of-the-art results not relying on kinematic inputs to the generative model.

The model is designed to work on a point cloud (PC) representation of its input. As

such, the calorimeter data is first preprocessed to convert the hits to a point cloud,

where the coordinates of each point are given by (E, z, α,R) of every hit in the detector.

This representation is especially efficient as the granularity of the detector grows and

there are a large number of empty cells, thus only dataset 2 and 3 were considered for

this model.

Architecture The generator and critic consist of the same main building blocks, which

use a cross-attention-based information aggregation mechanism. As there is a large

GAN-BASED SUBMISSIONS 17

number of hits on average (e.g. ∼ 1600) the quadratic computational scaling of self-

attention is not feasible. Therefore, a synthetic “mean-field” x̄ is introduced, initially

set as the mean of all points in a cloud, acting as an intermediary for information

exchange between points. First, the mean-field is updated via cross-attention (i.e. the

Query Q in the attention aggregation is the embedded mean-field x̄, whereas the Key

K and Value V are an embedding of the hits in the detector). Then, the mean-field

is further processed with a fully-connected layer, additionally using the number of hits

as an input and a gated linear unit is applied to an embedding of the incoming energy

and the mean-field. Finally, the mean-field is concatenated to every hit and a point-

wise layer is applied. This aggregation is permutation-equivariant since cross-attention

itself is permutation-equivariant and all the other aggregations are independent of the

other points in the cloud. The difference between the generator and the critic is only

in the final layer. For the critic a 2-layer deep neural network (DNN) is applied to

obtain a score for every shower, whereas for the generator the output is mapped down

to 4 dimensions, corresponding to the energy and index of the cell. A schematic for

the minimal building block is shown in figure 5. The input for the generator is noise

sampled from a normal distribution with dimensions four times the number of hits per

shower.

Training During training, showers of similar length are grouped together to form

batches and padded to the same length. Padded points have no influence on the

output. The model is trained as a Wasserstein GAN [86] with gradient penalty [91]

to regularize. Additionally, weight normalized linear layers [92] are employed in the

critic. To enhance the convergence of the generator, an L2-loss between the mean of the

mean-field in the final layer of the critic for real and generated jets is calculated and

minimized (hence the name mean-field matching). To enforce the conditioning with the

incoming energy, the generator also minimizes an L2-loss between the detector responses

for real and generated showers. During training, the condition of real showers are given

to the generator allowing the matching for the L2-loss. The showers are post-processed

by rotating the shower by a random angle. This alleviates the suboptimal coordinate

choice, which does not respect the periodicity in the angular coordinate. Note that

since point clouds are generated, not only the incoming energy of the incoming particle

is supplied as a condition, but also the number of hits in the shower needs to be supplied.

For this study they were taken from the validation set — in practice one would need

another model to sample the probability mass function p(n|E).

GAN-BASED SUBMISSIONS 18

Figure 5: Main building block of the MDMA architecture. The calorimeter is represented

as a point cloud, where every point xi is a hit in the detector and x̄ is the artificial

mean-field. First, the points are mapped to a higher dimensional latent space, where

after normalization cross-attention is calculated between the mean-field and the other

points. Then the conditional information for the shower (i.e. the incident energy Einc

and the number of hits n) are introduced with a fully-connected (FC) layer and a gated

linear unit (GLU). Finally, the updated mean-field is concatenated to the other points

and a point-wise layer is used to update the points independently on each other. This

architecture yields permutation-equivariance and scales linearly with the number of hits

in the computational complexity.

3.3. BoloGAN

By Federico Andrea Guillaume Corchia, Matteo Franchini, and Lorenzo Rinaldi, with

figures and tables referring to this approach as BoloGAN [26] and code being available

at [27].

Introduction BoloGAN [26] is a GAN-based calorimeter simulation tool derived

and evolved from FastCaloGAN, a fast simulation tool developed in the ATLAS

Collaboration at CERN [26, 9].

Architecture The tool uses the Wasserstein GAN [86] with a gradient penalty (WGAN-

GP) term [91] in the loss function of the discriminator, providing good performance and

GAN-BASED SUBMISSIONS 19

training stability, and conditioning onto the kinetic energy of the particle (conditional

WGAN-GP). The conditional WGAN-GP is implemented in TensorFlow 2.0 [93]. The

generator and the discriminator both employ three hidden layers, the generator being

preceded by a latent space of 100 values and having the output layer with as size the

number of voxels for the specific particle type and pseudorapidity interval; the last layer

of the discriminator has one single output node. The general scheme is shown in figure 6.

BoloGAN WGAN-GP hyperparameters are set as shown in table 5, depending on particle

type and on energy. These hyperparameters and the general architecture correspond

to a trade-off between modeling performance and time required to train the GANs:

the program is, in fact, intended to have the possibility to train multiple GANs at the

same time, useful for modeling different particle types and pseudorapidity layers with

accuracy. The GAN is trained first on a single energy point, then the other energy points

are progressively added to training starting from the ones closest in energy to the initial

sample. Conditioning is applied, as mentioned, onto the kinetic energy of the particle

and the energy in each voxel is normalized by the true energy of the sample, so that

all energy samples are scaled to the same values and training can focus on the shape of

the total energy (which is the figure of merit, as shall be shown in the continuation).

Truth energies used as labels for conditioning are also normalized to the highest energy,

in this way all values are in the (0,1] range.

Dense Dense Dense Dense

DenseDenseDense

Generator
Output

Data

Latent Space
(100)

Conditioning
on Energy

Generator

Discriminator

Dense
(with single

output node)

Discriminator
Output

Figure 6: Architecture of BoloGAN.

Training We performed training for 1 million epochs with a TensorFlow checkpoint

saved every 1000 epochs. This granularity allows for monitoring improvement in training

without having to save too many checkpoints, which would hamper speed and disk

GAN-BASED SUBMISSIONS 20

Parameter Pions Low En. Photons High En. Photons

Latent Space 100 100 100

Generator Nodes Output Shape 200, 400, 800, 533† 100, 200, 400, 368† 50, 100, 200, 368†

Discriminator Nodes Output Shape 800, 400, 200, 1 368†, 368†, 368†, 1 368†, 368†, 368†, 1

Activation Function ReLU ReLU Swish

Optimizer Adam [89] Adam [89] Adam [89]

Learning Rate 10−4 10−4 10−4

Discriminator/Generator Training Ratio 5 8 8

Beta 0.5 0.5 0.5

Lambda 10 3 3

Batch Size 512 1024 1024

Used Batch Normalization Layer No Yes Yes

Table 5: BoloGAN WGAN-GP hyperparameters. Low (high) energy photons are those

up to (above) 4.096 GeV. Values marked with † are equal to the number of voxels in

the corresponding case.

space. Because of the interplay between the generator and the discriminator, the final

epoch is not necessarily the best one, also considering that there may be an unfavorable

fluctuation in training. For this reason, a χ2 between the reference sample and the

one simulated by the GAN, evaluated over the sum of the energy in all voxels (which

corresponds to the total energy deposited into the calorimeter by the particle), is used

to choose the best GAN iteration. The iteration with the lowest χ2 is considered the

final choice to perform simulation activities. The total energy for each possible incident

energy value was chosen as it is easy to define while it is difficult to reproduce. For every

checkpoint, 10k events are generated per incident energy value and the χ2 between the

reference sample and the GAN-simulated one is calculated; the total χ2 for a checkpoint

is the sum of the χ2 for the individual incident energy values and the checkpoint with

the lowest total χ2 is finally chosen as the best GAN iteration.

The program is currently able to simulate calorimeter showers for photons,

electrons, and pions between 256 MeV and 4 TeV over the full detector acceptance.

For the CaloChallenge, the tool was applied to Dataset 1 for both photons and pions.

For pions one single GAN for all energy values has been trained, while for photons two

GANs have been trained, one for low energies (i.e. up to 4.096 GeV) and the other one

for high energies (above 4.096 GeV).

3.4. DeepTree

By Moritz A.W. Scham, Benno Käch, Simon Schnake, Dirk Krücker, and Kerstin

Borras, with figures and tables referring to this approach as DeepTree [28, 29] and

code being available at [30].

GAN-BASED SUBMISSIONS 21

Introduction DeepTree [28, 29] is a point cloud (PC)-based GAN model, that uses a

tree-like structure for upscaling PCs in the generator and for downscaling them in the

critic. A calorimeter shower can be converted to a PC by taking the coordinates and the

energy of the hits as points in an unordered set. Representing calorimeter showers as

PCs instead of voxels separates the hits from the detector geometry. This offers multiple

advantages: PCs are well-suited for handling sparsity in calorimeter data and they are

very efficient if only a fraction of cells contain hits. Their adaptability to irregular

calorimeter geometries makes PCs a versatile choice for various detector configurations.

Lastly, the generator architecture developed for one calorimeter using PCs can be easily

transferred to different calorimeter types. On the downside, this independence of the

detector geometry also means that the model needs to learn the geometry of the detector

from the dataset. In a postprocessing step, the generated points must be assigned to the

individual cells of the calorimeter. Since the PC-based model does not know the detector

geometry, several points may be generated and assigned to the same calorimeter cell.

To obtain a unique output for each cell, these points must be combined in some way.

Designing a PC-based model that yields a varying number of points (cardinality) by

itself is challenging. Here, the cardinality is sampled from the dataset and provided to

the model. Because dataset 1 (3) yields a too low (high) cardinality, this model targets

dataset 2.

Generator The generator of this GAN constructs PCs by starting with a random vector

as the root of a tree and then attaching one level of leaves after the other. The output

of the generator is the last level of the tree.

Branching Layer Starting with the root node, a Branching Layer (figure 7) takes

the current leaves from the tree, maps each leaf to a given number of nodes ni and

attaches these nodes as new leaves to the tree. Then further Branching Layers are

applied until the desired number
∏

i ni of nodes is reached. For these projections,

multiple deep feed-forward neural networks (DNNs) are used. With each Layer, the

number of nodes increases (1 · 2 · 3 · 4 · 5 · 5 · 10 = 6000) and the number of features

decreases (64, 25, 15, 10, 8, 6, 4). The cardinality c is sampled from the evaluation set

and only the first c points produced by the generator are used.

Ancestor MPL In between the branching layers, a Message Passing Layer (MPL)

is applied to this tree-structured graph. The edges in the graph are constructed so that

each node receives messages from each of its ancestors as well as itself. As a message-

passing algorithm, GINConv [94, 95] is chosen. For GINConv, the messages are the

features of the source node (here: the ancestor). These messages are aggregated by

summing over all messages addressed to the target node. These aggregates are added

to the target node (scaled with a learnable weight) and passed through an DNN. The

nodes are then updated with the output of the DNNs plus, as a residual connection, the

nodes themselves.

GAN-BASED SUBMISSIONS 22

Level 2

Branching

DNN

Dim. Red.

DNN

Level 0

Level 1

Concat

Condition

Global Feature Concat

Split

For each leaf

+

Level 1 → Level 2

Figure 7: The Branching Layer of the DeepTree generator, as described in section 3.4.

In this example, the nodes of the 2nd level of the tree are produced and attached as the

new leaves. With the nodes from level 1 (dark green / orange) as parents, the children

in level 2 (blue+green / red+yellow) are generated independently: The condition and

a vector representing the state of all points and are appended to the parent. The result

is mapped by a branching DNN to the size of the parent times the number of branches.

After splitting up the vectors into the new children, the parent is added to each of them.

With the new children added as leaves to the tree, all the levels of the tree are stacked

up and passed through a dimensionality reduction DNN.

In addition, the generator contains layers that condition the MPLs and the

branching layers with a vector representing the current state of the leaves in the tree. For

this, the leaves are passed separately through a first DNN, then summed up and passed

through a second DNN. The DNNs of the generator consist of 3 hidden layers of 100

nodes without bias. The first two hidden layers are followed by a batch normalization [96]

layer and LeakyReLU activation with a negative slope of 0.1.

Critic The critic, shown in figure 8, aims to reduce the size of the PC iteratively. This

is achieved by a pooling operation called Bipartite Pool. It constructs a bipartite graph

that densely connects the input PC to a fixed number of trainable nodes and applies an

MPL to this graph. As an MPL, Gatv2Conv [97] is used with 16 attention heads. Before

each pooling, the points are processed by an embedding layer consisting of an DNN and

a Central Node Update layer (CNU) with a residual connection. The CNU transforms

input points separately with an DNN, aggregates them with multiple methods (“multi-

aggregation”), and maps the points back to their original dimension with another DNN.

This multi-aggregation is a concatenation of sum, maximum, cardinality, and width.

The width is computed as mean absolute deviation from the mean 1
n

∑
i |xi− x̄|. Three

“subcritics” are applied to different levels of pooling and the input PC. Each subcritic

GAN-BASED SUBMISSIONS 23

Input
Bipartite

Pool

Subcritic Subcritic

Embedding Embedding

Bipartite Pool

�ixed number

of trainable

nodes

dense

connections

variable

size

input

Subcritic

Bipartite

Pool

Central Node Update

DNN DNN

DNN

Concat

Embedding

DNN CNU

+

Subcritic

CNU CNU

+

DNN

Concat

Output

Figure 8: The DeepTree critic, as described in section 3.4.

uses two CNUs with a residual connection, followed by the multi-aggregation. The

aggregated vector is passed through an DNN to produce a single output. Contrary to

the generator, the DNNs of the critic use a dropout of 0.5 and spectral normalization,

except for the DNN inside each embedding layer, which use batch normalization. All

three subcritics are trained simultaneously, and their losses are added.

Preprocessing and Postprocessing The showers on the grid are converted to PCs by

taking the r, α and z indices, as well as the energy of each cell with an energy deposition.

Uniform noise (0,1) is then added to these indices to make the distribution continuous

(reversible by a floor operation). These values are then scaled to the interval [0, 1],

transformed with a logit function (inverse function: expit) and finally normalized (mean

→ 0 and standard deviation → 1). The energy of the hits is scaled with a Box-Cox

transformation with normal scaling (PowerTransformer in [98]). For evaluation and

generation, these transformations are inverted.

As conditional variables, the shower energy Egen, the average hit energy Ē, and the

cardinality c are sampled from the evaluation set and provided to both the generator

and the critic. § Egen and Ē are first transformed with a Box-Cox transformation with

normal scaling. The cardinality c undergoes the same transformations as the cell indices,

§ This setup could introduce a bias in the evaluation. However, this does not impose a major restriction

on the model, as producing two conditional variables is typically manageable and could be supported

by an auxiliary NF in the future. In most practical cases, particularly when aiming to replace Geant4,

the energy would be provided as input, allowing for controlled generation of showers.

NORMALIZING FLOW-BASED SUBMISSIONS 24

but instead of normal scaling, a quantile transformation (QuantileTransformer in [98])

is applied.

As the generator is not directly aware of the calorimeter cells, it may produce multiple

hits for a single calorimeter cell. This is especially true for events with a very high

cardinality. Simply summing the hits in each cell would lead to a low cardinality and

points containing very high energies. To mitigate this effect, an algorithm∥ is employed,

that moves hits from “overcrowded” cells, to empty, neighboring cells (in r/α/z). Since

hits of higher energy are more important, it tries to move the hits in the cells in order of

energy, skipping the highest energy hit. In case there are not enough empty neighboring

cells are available, the remaining hits are summed up. Due to this technique, the

maximum cardinality that the generator produces goes from ≈ 3500 to ≈ 4600 (dataset:

maximum ≈ 5300 of 6000 total cells).

As an additional postprocessing step, the generated PCs are shifted by a random value

in α, resulting in a uniform α distribution.

4. Normalizing Flow-based Submissions

A normalizing flow models a complex density by applying a sequence of transformations

to a simpler base distribution, thereby constructing a flexible distribution over

continuous random variables. The objective of the normalizing flow is to learn a bijective

transformation T between two spaces. Initially, a vector x is sampled from an intricate

and generally unknown probability density px(x). We define T as the transformation

x = T (u), where u ∼ pu(u) is a simple base distribution that is known and for which

one can calculate the likelihood and sample from efficiently. Both T and pu(u) can have

parameters.

The transformation T must be invertible, and both T and T−1 must be

differentiable. Such transformations are categorized as diffeomorphisms. The density

px(x) is then well-defined and can be constructed by a change of variables

px(x) = pu(T
−1(x)) |det JT (u)| , (2)

where JT (u) is the Jacobian of T . Diffeomorphisms are notable for their composability,

which allows us to construct T from multiple smaller, invertible, and differentiable

transformations T = TK ◦ . . .◦T1, where each Tk maps zk−1 to zk. Assuming z0 = u and

zK = x, the transformations sequentially modify the distribution, illustrated in figure 9.

Normalizing flows offer two operational pathways: the inverse path, which is utilized

for density estimation and transformation optimization, and the forward path, which

functions as a generative model. In the inverse direction, samples from the complex

distribution px(x) are mapped to the base distribution pu(u), optimizing the process,

typically by maximizing the likelihood (or minimizing the negative log-likelihood).

Conversely, the forward path initiates with sampling from the base distribution pu(u)

and maps these samples to the data space represented by px(x). The designation of

∥ Available on PyPI: https://pypi.org/project/caloutils/

https://pypi.org/project/caloutils/

NORMALIZING FLOW-BASED SUBMISSIONS 25

x ∼ px(x)

x

zk ∼ pk(zk)

zk

u ∼ pu(u)

uzk−1 z1... ...
T1(u)

T−1
1 (z1)

Tk(zk−1)

T−1
k (zk)

Figure 9: Visualization of a Normalizing Flow.

directions as inverse or forward is arbitrary. The flow is easily extended to conditional

distributions px(x | c) by including the conditional information c in each transformation

in T .

The requirement of an efficient computation of the log-likelihood is addressed

by specific design choices of the network architecture which make the Jacobian

determinant in (2) tractable [99, 100, 101]. Two common approaches are autoregressive

flows [102, 103] and coupling-based flows [104, 105, 106]. Autoregressive flows have

a fast and a slow direction of evaluation. When density estimation is fast, they are

called “Masked Autoregressive Flows” (MAFs) [102], when sampling is fast, they are

called “Inverse Autoregressive Flows” (IAFs) [103], with the autoregressive property

being realized by masked neural networks called MADE (from “Masked Autoencoder

for Distribution Estimation”) blocks [107] in both cases. For further details and a review

of common architectures for building these normalizing flows, please refer to the works

by Kobyzev et al. [99] and Papamakarios et al. [100], from which the notation has been

adapted.

4.1. L2LFlows

By Thorsten Buss, Sascha Diefenbacher, Frank Gaede, Gregor Kasieczka, Claudius

Krause, and David Shih, with figures and tables referring to these approaches as

L2LFlows-MAF [31, 32] and conv. L2LFlows [32] and code being available at [33].

Introduction Following [108, 31, 35], we split the task of learning the distribution of

showers into smaller pieces: A single Energy Distribution Flow and multiple Causal

Flows. The Energy Distribution Flow (EDF) learns the distribution of layer energies

(i.e., the total energies deposited in a layer) conditioned on the incident energy. One of

the Causal Flows (CFs) is trained for each of the 45 layers in the calorimeter, learning

the shower shape conditioned on the incident energy, the layer energy in that particular

layer, and the shower shapes of the previous layers. Conditioning on the output of

previous flows is necessary to ensure consistency among the layers. Since we need

the earlier flows’ output as conditional input for the later flows, during generation,

NORMALIZING FLOW-BASED SUBMISSIONS 26

Einc

energy flow

flow
 1

flow
 2

flow
 45

shower

Figure 10: Diagram illustrating the overall architecture of L2LFlows. Arrows directed

at flows illustrate the conditional input of the flow. Arrows coming from flows illustrate

what the flow generates.

we first draw samples from the Energy Distribution Flow and then sequentially draw

samples from the causal flows. In this sense, it is an auto-regressive model. Figure 10

illustrates the generation process starting from the incident energy Einc and ending with

a generated shower.

Energy Distribution Flow The task of the Energy Distribution Flow is to learn the

distribution of layer energies conditioned on the incident energy

p(E1, . . . , EN |Einc) (3)

where E1 to EN denote the layer energies. The architecture used is up to

hyperparameters the one published in [31]. It is a MAF [102] consisting of 6 MADE

blocks [107] with rational quadratic splines (RQS) [109]. We apply fixed permutations

that are randomly initialized between these MADE blocks.

Similar to CaloFlow, we use log and logit transformation as preprocessing.

Logarithmic transformations help the network deal with inputs distributed over several

orders of magnitude. Logit transformations help the network to generate only samples

in an appropriate range. During inference time, the preprocessing is inverted.

Sometimes, the Energy Distribution Flow produces outliers with high energies. For

that reason, we reject all sampled layer energies with an energy ratio of Edep/Einc > 2.6,

where Edep is the total deposited energy.

Causal Flows Each Causal Flow learns the probability distribution of shower shapes

in one particular calorimeter layer. This distribution can be denoted as

p(Ii|I1, . . . , Ii−1, E1, . . . , EN , Einc) (4)

where Ii ∈ Rn×n is the shower shape in layer i given by the deposited energy in each

calorimeter cell. We assume approximate locality and only pass up to five previous

layers, the energy deposited in layer i, and the incident energy as conditional input to

the flows. This helps the flow to focus on the most informative features.

We deploy two different network architectures to solve this task. The first one,

called L2LFlows-MAF, is a MAF like the Energy Distribution Flow. This architecture is

NORMALIZING FLOW-BASED SUBMISSIONS 27

squeeze

activation norm

spline coupling

1x1convolution

embedding net

condition

x

x 8

x 1

preprocessing

preprocessing

u

1x1 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

down

down up

up

untransform
ed features

context

spline param
eters

Figure 11: Diagrams illustrating the structure of our convolutional flows. Left: The

overall structure of a single Causal Flow. Right: A U-net as it is used in the coupling

blocks.

similar to the one published in [31]. The second one, called conv. L2LFlows, is a flow

based on coupling blocks with convolutional U-nets [110] as sub-networks.

The MAF architecture consists of four MADE blocks alternated with randomly

initialized but fixed permutations. To better deal with high-dimensional conditional

inputs, a summary network is applied. It receives all the conditional inputs and

summarizes the information. Our summary network has 64 output knots.

In figure 11, the convolutional flow architecture is illustrated. On the right-hand

side, we see how a data sample x is transformed into a noise sample u. First, it is

transformed using a preprocessing function. Next, a squeezing operation [104] stacks

pixels lying in small patches into different channels. This is necessary since, in the

coupling blocks, we want to split the information along the channel dimension in order

to preserve the spatial structure.

The heart of this architecture consists of eight GLOW blocks [105]. They comprise

an activation norm, a spline coupling block [111, 109], and an invertible 1×1 convolution,

where the activation norm is a normalization operation, and the invertible 1 × 1

convolution replaces the random but fixed permutation in the MAF. The spline coupling

block can learn correlations between pixels and transform inputs in a nonlinear way.

We used U-nets to learn features on different scales. This is in contrast to

RealNVP [104] and GLOW[105], which used a so-called multi-scale architecture. The

U-nets are employed in the coupling blocks as sub-networks. We found this setup to

be more flexible and to result in higher fidelity than the multi-scale architecture from

RealNVP. The U-net architecture is illustrated on the left-hand side of figure 11.

Since convolutional architectures scale much better with input dimension, the main

task of the embedding network is not to reduce the number of inputs but rather to bring

the input in a shape the flow can handle.

Training We train the conv. L2LFlows on datasets 2 and 3 for 800 epochs. The MAF

version, L2LFlows-MAF, is only trained on dataset 3 for 1000 epochs. In both cases,

Adam [89] is used as an optimizer. An exponential decay learning rate scheduler is

NORMALIZING FLOW-BASED SUBMISSIONS 28

used in the MAF version, while a one-cycle learning rate scheduler [112] is used in the

convolutional version. To ensure a stable training behavior, L2 regularization [113] and

L2 gradient clipping are applied.

To mitigate the challenges arising from data sparsity, we fill zero voxels with log

Gaussian distributed values. Since this noise is below the energy threshold, it will be

cut away after generation. Furthermore, we add noise between zero and 1 keV to all

voxels. We rotate showers by random angles during training as data augmentation.

The log-likelihood is additive under joining distributions. Therefore, training each

flow individually is equivalent to training all flows jointly. This allows for straightforward

parallelization on different compute nodes.

We implement our models using PyTorch [114] and NFlows [115]. Using single

floating point precision is sufficient since we fixed numerical instabilities in NFlows.

4.2. (inductive) CaloFlow

By Matthew R. Buckley, Claudius Krause, Ian Pang, and David Shih, with figures and

tables referring to these approaches as CaloFlow teacher [34], CaloFlow

student [34], iCaloFlow teacher [35], and iCaloFlow student [35] and code being

available at [36, 37].

Introduction Following the excellent performance of CaloFlow [108, 116] on a simplified

calorimeter setup, we adapt CaloFlow to the more realistic setup in dataset 1. This

corresponds to CaloFlow teacher [34] and CaloFlow student [34] submissions.

Architecture and Preprocessing In CaloFlow, we implement a two-flow method that

learns the normalized voxel-level shower energies Îa conditioned on the corresponding

incident energies of the showers Einc denoted by p(Îa|Einc). Here a is the voxel index

and the normalization is performed for each layer such that the normalized voxel

energies in each layer sum to unity. In the original CaloFlow studies [108, 116], it

was found that training a single flow to obtain p(Îa|Einc) resulted in problems related

to energy conservation. Hence, CaloFlow makes use of a two-flow (flow-1 and flow-

2) setup. Flow-1 is constructed to learn the probability density of calorimeter layer

energies¶ conditioned on incident energy p1(Ei|Einc), while flow-2 is designed to learn

the probability density of the voxel level shower energies conditioned on incident energy

and calorimeter layer energies p2(Îa|Einc, Ei). When sampling from CaloFlow, the layer

energies are first sampled using flow-1 given an input shower incident energy Einc. Next,

the layer energies Ei from flow-1 and the incident energy Einc are used as conditional

inputs for flow-2 which outputs the shower distribution Îa of the event. Both flow-1 and

flow-2 are chosen to be MAFs [102]. In particular, their transformation functions are

compositions of rational quadratic splines (RQS) [109]. A class of neural networks known

¶ The layer energy of a given calorimeter layer is the sum of all the voxel energies in that layer.

NORMALIZING FLOW-BASED SUBMISSIONS 29

Figure 12: Schematic of the flows used in the CaloFlow approach. Solid lines are

bidirectional — the direction into each flow denotes the density estimation step and the

direction out of the flow denotes the sample generation step. Dashed lines indicate the

conditional input to the respective flows.

as MADE blocks [107] are used to define the parameters κ⃗ of the RQS transformations.

Figure 12 shows a schematic of the CaloFlow approach. Separate flows were trained for

the photon and pion datasets.

Training Since MAFs are fast in performing density estimation but slow in generation,

we opt to train a corresponding IAFs [103] that is fast in generation instead. We only

trained an IAF for flow-2 as flow-1 has a lower dimensional output and is relatively fast

to sample from. Since training the IAF with the negative log-likelihood of the data

is prohibitively slow, the IAF is trained by fitting it to a pre-trained MAF using the

Probability Density Distillation (PDD) method [117] that was also applied in [116]. This

method is also known as teacher-student training where the MAF (IAF) is referred to

as the teacher (student). The objective of this training is to enable the IAFs to learn

fIAF = fMAF, or equivalently, to ensure that fMAF and f−1
IAF serve as inverse functions

of each other. This equivalence is crucial, as only the fast passes through the flows can

be used meaningfully for optimization. In practice, the fitting is implemented based

on two training loss terms that we refer to as z and x-losses. To compute the z-loss,

we begin with a sample z which is then passed through the student IAF to obtain a

sample x′ in data space and the corresponding likelihood s(x′). The data sample x′ is

then mapped via the teacher MAF back to the latent space which obtains the likelihood

t(x′). Similarly, to compute the x-loss, one can start with a data sample x which maps

to latent space z′ via the teacher, and then map back to data space via the student. In

the original PDD study [117] study, the KL divergence of s(x′) and t(x′) was initially

used as the training loss. However, the authors noted that it does not converge well.

Hence, as in [116], we used a training loss function that is based on a mean square

NORMALIZING FLOW-BASED SUBMISSIONS 30

error that compares relevant values+ at each equivalent stage of the teacher and student

passes.

In CaloFlow , each flow-1 MAF consists of six MADE blocks, while each flow-2

MAF/IAF consists of eight MADE blocks. We used two hidden layers for each flow-1

MADE block and a single layer for each flow-2 MADE block. The hidden layers in

flow-1 each have 64 nodes. We experimented with different flow-2 MADE block hidden

layers sizes and settled for the following choice: 378 for γ teacher; 736 for γ student;

533 for π+ teacher; 500 for π+ student.

Introduction Applying CaloFlow to the higher dimensional voxelization in datasets

2 and 3 is extremely memory intensive. The number of splines and therefore RQS

parameters grows linearly with data dimension d, making the number of parameters in

the output layer grow as O(d2), easily dominating over the number of parameters in the

hidden layers. Hence, we proposed a new method, that we dub inductive CaloFlow or

iCaloFlow, to overcome this obstacle. This method corresponds to the iCaloFlow

teacher [35] and iCaloFlow student [35] submissions.

Architecture and Preprocessing Our iCaloFlow method uses three normalizing flows to

learn and generate calorimeter showers. Flow-1 learns the joint probability distribution

of total energy deposited in each layer Ei, conditioned on the incident energy of the

event Einc: p1(Ei|Einc). It is necessary to learn this probability distribution as Ei is

a conditional input for flow-2 and flow-3 in the generation step. Flow-2 learns the

probability distribution of the unit-normalized voxel energies in the first layer of the

calorimeter, Î1a ≡ I1a/
∑

b I1b, conditioned on Einc and the energy deposited in the

first layer, E1: p2

(
Î1a|Einc, E1

)
. Here a is the voxel index. Finally, flow-3 learns the

probability distribution of unit-normalized voxel energies in every layer after the first,

Îia ≡ Iia/
∑

b Iib for i ∈ [2, 45], where the ith layer is conditioned on the energy deposited

in the layers i and i − 1 (Ei and Ei−1), the incident energy Einc, the unit-normalized

voxel energies in the (i − 1)th layer Î(i−1)a, and the one-hot† encoded layer number i:

p3

(
Îia|Einc, Ei, Ei−1, Î(i−1)a, i

)
. Figure 13 shows a schematic of the iCaloFlow approach.

Like in CaloFlow, we used MAFs with RQS transformations for flow-1, and MAF-IAF

pairs for flow-2 and flow-3. For dataset 2, flows-2 and -3 in iCaloFlow consist of eight

MADE blocks with two hidden layers of size 256‡. For dataset 3, the configuration is

similar, only flow-3 uses just one hidden layer for both MAF and IAF setups. Flow-1

+ For the student model for ds 1 – γ, these consist of coordinates before and after passing them

through the flows and RQS parameters from individual MADE blocks within the bijectors. For the

student model for ds 1 – π+, we did not enforce agreement with the teacher at the level of individual

MADE blocks, but only at the endpoints of the flows.
† One-hot encoding is used for layer numbers instead of ordinal encoding using the layer number

directly, because other than the location in the detector, there is no information in the layer number,

i.e., layer 30 is not 15 times more important than layer 2.
‡ With the exception of the flow-3 IAF, which has hidden layer sizes of 384.

NORMALIZING FLOW-BASED SUBMISSIONS 31

E1

Î1a

E2

Î2a

E(i−1)

Î(i−1)a

Ei

Îia

E45

Î45a

.

Flow 1: p1(Ei|Einc)

Flow 2: p2(Î1a|Einc, E1)

Flow 3: p3(Îia|Einc, Ei, Ei−1, Î(i−1)a, i)

Figure 13: Schematic of the three iCaloFlow flows. Solid lines are bidirectional — the

direction into each flow denotes the density estimation step and the direction out of the

flow denotes the sample generation step. Dashed lines indicate the conditional input to

the respective flows. Flow-3 is used iteratively on subsequent layers.

always has just one hidden layer.

The number of trainable parameters for the CaloFlow models are included in

Tables C5 and C12. For the teacher models, the total parameter count matches that of

sample generation, which is the sum of parameters in flow-1 and flow-2 (teacher). As

for the student models, the parameter count during sample generation is the sum of

parameters in flow-1 and flow-2 (student). Given the necessity of a pre-trained teacher

model for each student model, the total parameter count encompasses parameters from

flow-1, flow-2 (teacher), and flow-2 (student).

4.3. CaloINN

By Luigi Favaro, Florian Ernst, Claudius Krause, Tilman Plehn, and David Shih, with

figures and tables referring to this approach as CaloINN [38] and code being available

at [39].

Introduction In CaloINN [38] we train a normalizing flow for the generation of showers

in dataset 1 and dataset 2. We use the INN variant of FrEIA [118] with coupling

layers, which unlike autoregressive methods provides fast evaluation in the forward and

backward directions. This is achieved by transforming only a subset of the input features

with a reversible transformation. The parameters of the transformation are predicted by

a network conditioned on the remaining features and the incident energy. The CaloINN

NORMALIZING FLOW-BASED SUBMISSIONS 32

architecture allows for a generation step of O(1) ms per shower on a single GPU without

the necessity of a second distillation process.

Architecture and Preprocessing The architecture takes voxels normalized by the layer

energy as input. The information of the energy per layer is encoded in extra energy

dimensions, similarly preprocessed as in CaloFlow teacher, as shown in (5). To

explore the expressive power of a single flow network, we simply append the energy

ratio variables to the feature vector. We do not explore a separate training for the

energy and the voxel dimensions which would simplify and improve the learning process

of the energy dimensions.

u0 =

∑
iEi

Einc

and ui =
Ei∑
j≥iEj

, (5)

After creating the final feature vector, we add uniform noise sampled from U(0, b), where

b = 5 · 10−6 for dataset 1 and b = 10−6 for dataset 2. Then, we apply a regularized log

transformation with parameter α = 10−8 according to

x = log(x0 + α) . (6)

We show the schematic of a coupling block in figure 14. In each coupling block, the

input vector is split in two halves, xt and xc, of equal size. The block only transforms

half of the input features, which are selected randomly during initialization, defining

the transformation

T (xt, xc;Einc) =

{
yt = f(xt;xc, Einc)

yc = xc .
(7)

The splitting between xt and xc is fundamental in coupling layer-based normalizing

flows. This choice provides a triangular Jacobian matrix which is tractable and can

be promptly evaluated both during training and generation. The transformation f

applied to the features is a RQS [109] for dataset 1 and a cubic spline for dataset 2.

The prediction of the spline parameters is obtained with a sub-network consisting of a

sequence of dense layers with 256 nodes for each hidden layer. The number of hidden

layers is four for dataset 1 and three for dataset 2. After permuting the order of the

features, we normalize the output to mean zero and unit standard deviation with an

ActNorm [105] layer. This allowed us to improve the stability of the training and utilize

a deeper model. In the large-scale architecture, we stack twelve blocks for dataset 1 and

fourteen blocks for dataset 2 to construct the full flow.

NORMALIZING FLOW-BASED SUBMISSIONS 33

x, u

x̂, û

T

logEinc

Spline
params.

Split

ActNorm

Permute

Figure 14: Schematic representation of the CaloINN coupling block.

4.4. SuperCalo

By Ian Pang, John Andrew Raine, and David Shih, with figures and tables referring to

this approach as SuperCalo [40] and code being available at [41].

Introduction Our approach, which we dub as SuperCalo [40], presents a way

to generate high-dimensional calorimeter showers by super-resolving low-resolution

calorimeter showers. The showers used in the CaloChallenge datasets are represented as

3-dimensional images that are binned into voxels in position space. We will refer to these

voxels as fine voxels. A coarse-grained representation of each shower can be obtained by

grouping together neighboring fine voxels to make coarse voxels. In this approach, we

split the task of learning p(E⃗fine|Einc) into two parts. Here E⃗fine is the energy deposited

in the fine voxels and Einc is the incident energy of the particle. First, we learn to sample

from p(E⃗coarse|Einc), where E⃗coarse is the energy deposited in the coarse voxels. Next, we

learn to super-resolve the coarse voxels to obtain the fine voxels, which is equivalent to

sampling from p(E⃗fine|E⃗coarse).

Architecture and Preprocessing However, trying to learn p(E⃗fine|E⃗coarse) with a single

model would be no better in terms of model size than the original problem of learning

p(E⃗fine|Einc). As a result, we rewrite the distribution according to the following ansatz:

p(E⃗fine|E⃗coarse) =
Ncoarse∏

i=1

p(e⃗fine,i|Ecoarse,i, . . .). (8)

In other words, each coarse voxel, with deposited energy Ecoarse,i, is upsampled to

its fine voxels, with deposited energies e⃗fine,i, using a universal super-resolution model

NORMALIZING FLOW-BASED SUBMISSIONS 34

that may be conditioned on some coarse shower information. Here is the list of the

conditional inputs that we used in the super-resolution model:

• Incident energy of the incoming particle, Einc

• Deposited energy in coarse voxel i, Ecoarse,i

• Fine layer energies of layers spanned by coarse voxel i

• Deposited energy in neighboring coarse voxels in α, r and z directions§
• One-hot encoded coarse layer number

• One-hot encoded coarse radial bin

Since it is not obvious which choice of coarse shower representation would result

in the highest fidelity high-resolution showers (fine voxels), we experimented with a few

choices and picked the one that gave the best results. In particular, we grouped the fine

voxels such that 1 coarse voxel = 1 r bin × 2 α bins × 5 z bins. This choice results in

a 648 dimensional coarse shower.

Similar to CaloFlow teacher [34] and CaloFlow student [34], we used a flow-1

+ flow-2 setup to learn the distribution of energy deposited in coarse voxels in each

shower conditioned on the incident energy of the particle p(E⃗coarse|Einc). Next, we

train our super-resolution flow to learn p(e⃗fine,i|Ecoarse,i, . . .). Then, generating showers

with the full model chain involves sampling sequentially from flow-1, flow-2 and the

super-resolution flow. All the flows used in this work are MAFs [102] with RQS [109]

transformations. Like in CaloFlow, the parameters of each RQS transformation are

computed using a MADE block [107]. Each flow consists of eight MADE blocks. Flow-1

(2) has MADE blocks with a single hidden layer with 256 (648) nodes. The super-

resolution flow has MADE blocks with two hidden layers, each with size 128.

4.5. CaloPointFlow

By Simon Schnake, Benno Käch, Moritz Scham, Dirk Krücker, and Kerstin Borras,

with figures and tables referring to this approach as CaloPointFlow [42] and code

being available at [43].

Introduction The requirement for fast simulation of calorimeter showers has led to

a growing interest in using machine learning models for their efficient and high-fidelity

generation. Calorimeter showers are generally sparse, with a majority of calorimeter cells

being empty, necessitating a representation that is efficient and effective at capturing

the essential features of the data. Point clouds offer an apt solution for representing

sparse data structures due to their innate efficiency. Our modified model builds upon

§ There is maximum of 6 neighboring coarse voxels for each coarse voxel. For coarse voxels with fewer

than 6 adjacent coarse voxels, the missing neighboring coarse voxel energies are padded with zeros.

NORMALIZING FLOW-BASED SUBMISSIONS 35

the original PointFlow [119] model known for its exceptional ability to produce high-

quality point clouds. The CaloPointFlow model leverages PointFlow’s advantages while

making specific adjustments to specialize in generating calorimeter data.

The model consists of four sub-models, as shown in figure 15. The initial sub-

model, CondFlow, is responsible for generating the number of hits, referred to as nhits,

and the total energy, Esum, in the calorimeter cells by a normalizing flow. The second

stage comprises the permutation invariant encoder, which transforms the entire point

cloud X into a latent representation z. This transformation is based on the DeepSets

[120] architecture. Subsequently, the LatentFlow, the third sub-model, produces the

latent representation z, which is conditioned on the values of Esum and nhits. The final

component, the PointFlow, is a permutation equivariant normalizing flow that performs

pointwise transformations. PointFlow is conditioned on z, as well as Esum and nhits.

Encoder

PointFlow

LatentFlow

xi ∈ X

z

(a) Training

PointFlow

LatentFlow

CondFlow

xi ∈ X

z

(b) Sampling

Figure 15: Architecture of CaloPointFlow. Left: In training. Right: In sampling.

Preprocessing Concerning the conditional variables learned through CondFlow, the

number of hits, nhits, is processed by adding uniform noise ranging from 0 to 1 and then

dividing by the square root of the input energy, Ein. The total energy of the shower,

Esum, is normalized by dividing it by Ein. We then log-transform and normalize the

resulting values.

Discrete distributions in continuous space resemble delta distributions and pose

modeling challenges using a normalizing flow. To overcome this, dequantization

techniques transform discrete distributions into continuous ones. This usually

requires adding uniform noise to fill the space between 0 and 1, followed by

a logit transformation [121, 104]. We introduce a new dequantization strategy,

CDFDequantization, displayed in figure 16. This approach utilizes the quantile function

and the cumulative distribution function (CDF), which establish invertible mappings

between their distribution and the standard uniform distribution. This principle is

inherent in inverse sampling, where the uniform distribution is segmented into parts

corresponding to the probabilities of certain discrete values. Although the CDF mapping

NORMALIZING FLOW-BASED SUBMISSIONS 36

•0.38

1

•0.26

2

•0.17

3

•0.11

4

•0.08

5

X

1 2 3 4 5

0.0 0.38 0.64 0.81 1.0

U(0, 1)

1 2 3 4 5

N (0, 1)

stoch. ΦX

Φ−1
X

F−1
N

FN

Figure 16: The CDFDequantization

is not directly invertible, a stochastic inverse can be developed by transforming each

discrete value d into CDF (d) + PMF (d) · u, where u is randomly drawn from U(0, 1).

This process effectively raises our discrete distribution to U(0, 1). To map the uniform

distribution to the entire real space, and convert U(0, 1) to a logistic distribution, a

logit transform is typically applied in standard dequantization. However, we choose to

employ the quantile function of the standard normal distribution to map our values onto

the normal distribution. This design ensures the marginal distributions of our model are

intrinsically normal, with correlations being the only remaining aspect to be modeled.

Architecture All three flows — CondFlow, LatentFlow, and PointFlow — are

coupling layer-based flows [104] utilizing RQS [109]. In the previous iteration of the

CaloPointFlow model, a coupling-layer-based normalizing flow was applied on a point-

by-point basis. This involved dividing point features into two equal segments using a

system of coupling blocks, with one segment being transformed based on the other. The

final result is a permutation invariant system capable of managing varying numbers of

points. However, a significant challenge remained in this model: it lacked a mechanism

to facilitate the exchange of information between points, making it prohibitive to model

inter-point correlations.

In order to solve this problem, we have implemented a modification that makes

use of Deep Sets [120]. Following our coupling strategy, we opted to aggregate half of

the point features objectively. We maintain transformation permutation invariance by

initially mapping each point to a latent space that has high dimensionality. Afterwards,

we perform a pooling operation such as max, sum, or mean to merge the information.

We then transformed the aggregated latent information and incorporated it as an

additional conditional variable. This process enables our point-wise normalizing flows

to transfer inter-point information and therefore enhances the model’s ability to capture

correlations.

A major concern in point cloud-based models for simulating calorimeters is the

presence of multiple hits per cell. This occurs when points, produced in continuous

DIFFUSION-BASED SUBMISSIONS 37

space, are mapped onto the discrete space of calorimeter cells, which may result in

multiple points being assigned to a single cell. This inconsistency contradicts the real

data, where each cell can have only one energy value. To address this matter, the model

must accurately determine the direct distances between points as well as the occupancy

status of each cell, a task that is notably complex. The CaloPointFlow model, for

instance, could not carry out this function.

Our strategy for mitigating the issue leverages the rotational invariance

characteristic of the detector. The principle of rotational invariance implies that the

marginal energy distribution in the angular coordinate α should exhibit a uniform, or

flat distribution. To utilize this characteristic, we confine the generation of particle

showers to the (z, r) plane. Afterward, we randomly assign the angular position α. This

method effectively loosens the constraint of limiting the number of showers per cell. In

dataset 2, this relaxation allows up to 16 showers per cell, and for dataset 3, the number

rises to up to 50 showers per cell.

However, there may be instances where the number of hits surpasses the specified

limits. In these cases, the extra hits are randomly allocated to already occupied α

regions. Although this approach does not offer a complete resolution to the problem

of multiple hits, it has been demonstrated to considerably improve the experimental

outcomes in practical settings. The efficacy of the mentioned approach in augmenting

the quality of data highlights its potential as a significant temporary remedy, while

we attempt to devise more resilient techniques to tackle the intricacies linked with the

occurrence of multiple hits in particle detectors.

5. Diffusion-based Submissions

Diffusion models are a class of generative models based on applying a chosen

perturbation to the data and then training a model to invert that perturbation. The

model is defined in terms of a forward process, in which perturbations are gradually

applied to the data sample eventually reaching a known end-point distribution (such as

Gaussian noise). A model is then trained to learn the reverse process, which inverts

the perturbations to recover the original data sample. Once trained, new samples

can be generated by sampling from the end-point distribution and iteratively applying

the reverse process model. Diffusion models have been defined under two different

formalisms, a score-based formulation and a denoising formalism.

In score-based models, the forward process is defined by a stochastic differential

equation (SDE):

dx = f(x, t)dt + g(t)dW, (9)

where f(x, t) and g(t) are user-specified diffusion and drift functions, respectively. W

is a Wiener process (Brownian motion), indexed by a time parameter t ∈ [0, 1]. The

reverse process can then be solved by the following SDE:

dx = [f(x, t)− g(t)2∇xlogpt(x)]dt + g(t)dW, (10)

DIFFUSION-BASED SUBMISSIONS 38

where the ∇xlogpt(x) is the ‘score’ of the data, or the gradient of the log probability.

A denoising score-matching strategy is used to learn the score function [122] and then

used in (10) to generate samples.

In the denoising diffusion formalism, as formulated in the original DDPM paper

[123], the forward process is defined by the repeated addition of Gaussian noise to the

original data in t steps:

xt =
√

1− βtxt−1 + βtϵ, (11)

q(xt | xt−1) = N (xt |
√

1− βtxt−1, βt), (12)

where N (x | µ, σ) is a Gaussian likelihood and βt is a user-chosen ‘noise schedule’ that

specifies how much noise is added at each step. For a sufficiently large T (the total

number of diffusion steps), the Gaussian noise will overwhelm the original data and xT
will follow a multivariate Gaussian distribution. The reverse process is also assumed to

follow a Gaussian likelihood:

p(xt−1 | xt) = N (xt−1 | µθ(xt, t, z), βtI), (13)

with an unknown mean µθ that is learned by a neural network during training.

Though appearing conceptually different, these two formalisms have been shown to

be mathematically equivalent [124] for a particular choice of the drift and diffusion

functions (the ‘variance-preserving’ choice): the optimal model trained under one

formalism is optimal for the other as well. Though in practice, because optimality

is never reached, the two formalisms may offer different practical advantages and

disadvantages. The diffusion literature is rapidly evolving and newer models generally

alter these formalisms slightly, but the key conceptual ideas remain.

5.1. CaloDiffusion with GLaM

By Oz Amram and Kevin Pedro, with figures and tables referring to this approach as

CaloDiffusion [44] and code being available at [45].

Introduction CaloDiffusion [44] is based on denoising diffusion models [123], in which

the perturbation applied to the image is an addition of Gaussian noise. We use the

cosine noise schedule proposed in [125] with 400 diffusion steps for all datasets. Shower

preprocessing is done similarly to other approaches, where the voxel energies are divided

by the incident particle energy and logit transformed.

Architecture The denoising model follows a U-net architecture [110], with 3 sets of

ResNet [126] blocks with linear attention [127]. The input is compressed by a factor of

two in each dimension after each of the first two ResNet blocks. The architecture is then

mirrored, with 3 ResNet blocks with 2 upsampling layers to return to the original data

shape. Skip connections are used to ensure no information bottleneck. Conditioning

DIFFUSION-BASED SUBMISSIONS 39

variables — the diffusion noise level and the incident particle energy — are processed

by a DNN and then added to the model in the middle of each ResNet block.

We make several optimizations focused on the cylindrical geometry of shower

datasets. This includes cylindrical convolutions that the respect the periodic nature

of the angular dimension and a novel method to condition the convolutions on the layer

and radial bin values.

To handle the irregular geometry of dataset 1, we introduce a new approach:

Geometry Latent Mapping (GLaM). GLaM learns an embedding from the dataset

1 geometry to a perfectly regular cylindrical geometry. Unlike an autoencoder, the

embedding space is larger than the input space, so that no information is lost. The

mapping is learned separately for each layer and initialized based on the geometric

overlap of the input cells with a perfect cylinder. The cylindrical data is then processed

using the cylindrical convolutions and then a reverse embedding is learned to restore

the original shape.

5.2. CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation

By Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka,

Anatolii Korol, William Korcari, Katja Krüger, and Peter McKeown, with figures and

tables referring to this approach as CaloClouds [46, 47] and code being available

at [48, 49].

Training with mu / sigma

PointWise
Net

Denoised Output

t

E
N

Data!(0, t2I)

LMSE

−
+

× cin(σ) × cskip(σ) ÷ cout(σ)

(a) Training

E

Sampling

Shower
Flow

PointWise
Net

!(0, T2I)

 Ez,i, Nz,i Generated Shower
Calibration

 diffusion
steps

NtN

Ncal

(b) Sampling

Figure 17: CaloClouds training and sampling pipeline, taken from [47]. Left: Training

of the PointWise Net. The training of the Shower Flow is not shown. Right: Sampling

of CaloClouds.

Introduction The CaloClouds model family was introduced in [46]. The improved

version, CaloClouds II [47] with consistency distillation [128], is here adapted to

dataset 3. As a point cloud generative model, CaloClouds consists of two sub-models:

DIFFUSION-BASED SUBMISSIONS 40

A normalizing flow model dubbed Shower Flow and a diffusion model named PointWise

Net. An overview of the training and sampling pipeline is shown in figure 17.

Architecture As the names suggest, the Shower Flow generates several global

calorimeter shower observables, i.e. the layer-wise visible energy, the layer-wise number

of hits, as well as the center of gravity (center of energy) in x- and y-direction. The

Shower Flow is conditioned on the incident particle’s energy. We implemented it with a

single bijector consisting of ten normalizing flow blocks, each containing seven coupling

layers. Out of those, six are affine transformations [104] and one a RQS [109]. The

generated observables are used for a post-diffusion calibration of said shower features

and the total number of hits is used for the conditioning of the diffusion model.

The PointWise Net diffusion model is conditioned on the incident energy as well as

the number of hits. The diffusion model is based on the implementation in [129] and

the network architecture is adapted from [130]. As the name suggests, it generates each

calorimeter hit i.i.d. (independent and identically distributed). From a shower physics

perspective, this i.i.d. assumption is inaccurate, however it yields decent performance

and allows for a fast sampling necessary for large cardinality calorimeter showers such

as the ones studied in [46, 47] and in dataset 3. Layer structures taking into account

inter-point correlations could be considered for smaller point clouds such as dataset 1

and are implemented, i.e. in CaloGraph [54].

Training Both the Shower Flow and the PointWise Net are trained separately and

used sequentially during sampling of each batch. For the generation with the PointWise

Net, we apply 13 diffusion steps with the Heun ODE solver, resulting in 25 function

evaluations per batch. To apply the CaloClouds model to dataset 3, we transformed

each shower into a point cloud with four features: hit energy and the Cartesian

coordinates in 3-dimensional space. We normalized the 3-dimensional coordinates to

the range {x, y, z} ∈ [−1, 1]. This results in calorimeter shower point clouds with a

cardinality of up to 20 000 hits. To compare the CaloClouds model to other models, we

projected the calorimeter point clouds back to the (voxelized) fixed grid. As this leads

to a clustering of a few generated point into a single voxel, we apply a calibration step

between the predicted number of hits N and the (larger) calibrated generated number

of hits Ncal used for conditioning of PointWise Net.

In [46, 47], the CaloClouds models are used to generate point clouds with each

point clouds representing clustered Geant4 steps (simulated energy depositions) with

a resolution 36 times higher than the actual resolution of the simulated electromagnetic

calorimeter. A subsequent projection of there ultra-high granular calorimeter point

clouds (up to 6000 points per shower) into the regular high-granularity calorimeter

cells (up to 1500 calorimeter hits) results in a clustering of points leading to a precise

estimation of the number of (regular cell) hits. As dataset 3 only contains regular cell

hits, we expect the CaloClouds model performance to improve when using a ultra-high

granularity point cloud dataset. Nonetheless, even when generating showers with regular

DIFFUSION-BASED SUBMISSIONS 41

cell hits we observe a decent performance. Further speed-ups of the diffusion process

could be achieved by applying consistency distillation [128], which allows for single shot

generation without significant loss in fidelity.

5.3. Score-based Generative Models for Calorimeter Shower Simulation

By Vinicius Mikuni and Ben Nachman, with figures and tables referring to these

approaches as CaloScore [50, 51], CaloScore distilled [50, 51], and CaloScore

single-shot [50, 51] and code being available at [52, 53].

Introduction Continuous diffusion generative models, or score-based models aim to

approximate the score function of the data ∇ log(p(x)) for data described by the

probability density p(x). The advantage of this approach is that both stochastic and

deterministic solvers can be used for the generation of new observations, often leading

to faster sampling times. The first diffusion generative model applied to collider physics

problems was introduced in [50] and later updated to improve the generation quality

and speed in [51]. In the updated version, a neural network output vθ(xt, t) is used to

calculate the loss function by minimizing the quantity

L = Ext,t ∥vt − vθ(xt, t)∥2 . (14)

The velocity term vt ≡ αtϵ−σtx is calculated based on data xt that has been perturbed

by a time-dependent Gaussian perturbation q(xt|x) = N (xt, αtx, σ
2
t I). The velocity

parametrization is observed to lead to a lower variance loss, improving the quality of

the generated samples. The approximation to the score function sθ(xt, t) is identified as

sθ(xt, t) = xt −
αt
σt
vθ(xt, t). (15)

New samples are generated from the trained model by solving the following ordinary

differential equation,

dxt
dt

= f(x, t)− 1

2
g(t)2∇x log q(xt) , (16)

with the DDIM solver [131] with update rule then specified by

xs = αsxθ(xt, t) + σs
xt − αtxθ(xt, t)

σt
, (17)

for time s < t and position prediction xθ(xt, t) = αtxt − σtvθ(xt, t). While the solver

still require a large number of function evaluations (O(100)), we are able to reduce

this number trough a distillation procedure [132], resulting in faster generation times

requiring even a single step for the generation.

DIFFUSION-BASED SUBMISSIONS 42

Architecture The neural network architecture used for the training is similar to the

one used in the initial CaloScore paper, based on the U-net [110] architecture with

additional attention layers. More specifically, datasets 2 and 3 have the number of

spatial components in each dimension reduced by a factor 2 every other convolutional

layer (resulting in a factor 2 × 2 × 2 = 8 reduction) with fixed kernel size set to 3.

This process is repeated 3 times, with lowest dimensional representation reduced by a

factor 512 compared to the initial number of voxels. The 3-dimensional convolution

operations used for datasets 2 and 3 use 32, 64, and 96 hidden nodes with swish [133]

activation function. The attention layer is only used at the lowest dimensional

representation, with data patches determined by the flattened array describing the

data at the lowest dimensionality. The upsampling section of the architecture is a

mirrored version, with dimensions increased by a factor 8 every other layer. Skip

connections between the downsampling and upsampling sides of the architecture are

combined with a concatenation operation, completing the architecture. Conditional

information consisting of the time information, incident particle energy, and deposited

energy per layer (in case of the diffusion model trained to generate normalized voxels),

are included through an addition operation after every convolutional layer. A trainable

embedding of the conditional features is created by a fully connected layer over the

conditional inputs. The output size is fixed to match the expected output size of the

convolutional layers. For dataset 1, the strategy is similar. The number of voxels to be

simulated is reduced by a factor 2 every other layer, with this process repeated 4 times

and overall reduction of factor 16 compared to the initial size. The number of hidden

nodes for the 1-dimensional convolutional layers is then chosen to be 16, 32, 64, and

96 for each fixed dimensionality. Since this dataset is smaller compared to datasets 2

and 3, attention layers are used in all lower dimensional representations of the initial

data. A second diffusion model is introduced to learn only the energy deposition per

layer, similar to the approach used in the original CaloFlow paper [108]. The model

used to train the diffusion model is based on the ResNet [126] architecture, consisting of

multiple fully connected layers with additional skip connections. The number of ResNet

layers is set to 3 in all datasets, with 128 hidden nodes in dataset 1 and 1024 in datasets

2 and 3. Additional models are trained to reduce the sampling time of the baseline

CaloScore model. The model architecture of the distilled version is the same as the

baseline model, also using the initial baseline weights as the starting point to accelerate

the training procedure.

5.4. CaloGraph

By Dmitrii Kobylianskii, Nathalie Soybelman, Etienne Dreyer, and Eilam Gross, with

figures and tables referring to this approach as CaloGraph [54] and code being

available at [55].

DIFFUSION-BASED SUBMISSIONS 43

Figure 18: Event display from the pion dataset in graph form. The nodes represent the

center of the calorimeter cells, and their size relates to the cell energy.

Introduction CaloGraph [54] stands out as a diffusion model based on graphs

specifically designed for low-granularity calorimeters with irregular geometries, such as

those found in ATLAS. Unlike image-based methods that necessitate unique mappings

for non-regular geometries and point cloud generation techniques that predict point

positions requiring specific grid summation, a graph representation requires no pre- or

postprocessing, except for the initial one-time graph construction. Calorimeter cells are

nodes in the graph with fixed positions, and edges connect nearest neighbors within the

given layer and the layers below and above. An example from the pion dataset 1 is shown

in figure 18. However, managing a large number of edges will result in high memory

needs, making this approach mostly suited for low-granularity detectors. Therefore, we

Figure 19: Architecture of CaloGraph.

DIFFUSION-BASED SUBMISSIONS 44

present results only for dataset 1.

Architecture Our approach relies on a denoising diffusion model. We use a cosine

noise schedule from [125]. During the backward process, we use the “pseudo numerical

methods for diffusion models” (PNDM) from [134] to solve the diffusion ODE. The

architecture of the neural network is presented in figure 19.

The input to the network is the noised target graph: constructed as described above,

the node features consist of the cell position (η, ϕ, layer) and the noised cell energy. It is

passed through the initial DNN and then combined with the conditional input consisting

of the embedded, uniformly sampled time step as well as the incoming particle energy.

The combined input is passed through another DNN, resulting in the updated graph.

Subsequently, four rounds of message passing are applied before predicting the noise

through a final DNN. The network has a total of 0.8 million parameters, see table C5

and table C12.

5.5. Diffusion Transformer

By Renato Paulo Da Costa Cardoso, Piyush Raikwar, Anna Zaborowska, Dalila

Salamani, Kristina Jaruskova, Sofia Vallecorsa, Kyongmin Yeo, Vijay Ekambaram,

Nam Nguyen, Jayant Kalagnanam, and Mudhakar Srivatsa, with figures and tables

referring to this approach as CaloDiT [56] and code being available at [57].

Introduction Currently, the state-of-the-art approach for image generation is diffusion,

while the state-of-the-art architecture for almost any data modality is based on

transformers [135]. We combine both methodologies for a transformer-based diffusion

model.

The use of transformer models for the image generation task is not new, with

approaches such as Vision transformers (ViT) [136], Swin transformers [137], etc. getting

good results for image classification tasks. When paired with the diffusion process, we

have impressive generative models like OpenAI Sora [138]. In our case, the model

architecture is based on Diffusion with transformers (DiT) [139]. As for the diffusion

process, we go with denoising diffusion probabilistic models (DDPM) [123], with the

modification of using a cosine scheduler as described in [125]. We present the results of

CaloDiT for dataset 2.

Preprocessing We preprocess the input data to ease the diffusion process. The

preprocessing is done by scaling the shower energies in the range of -1 and 1, followed

by applying a logit function and normalization of those values. The energy condition

is also preprocessed to be in the 0 to 1 range via scaling it by the max energy of 1000

GeV.

DIFFUSION-BASED SUBMISSIONS 45

Architecture We define the architecture of the CaloDiT in figure 20. We use a stack

of 4 DiT blocks, which are ViT-like transformer blocks with a modified conditioning

unit to accommodate diffusion timesteps. In our case, we also concatenate the energy

condition along with the timestep, which is then passed to each DiT block. These

conditions along with a noisy shower are passed to the model to get a denoised shower

as an output. During inference, this process is repeated 400 times to generate a shower,

where 400 is the number of diffusion steps our model uses.

As with any other transformer-based model, we need to represent the input as some

form of sequence. While ViT and DiT are used for 2-dimensional images, the shower

dataset is 3-dimensional. Thus, we split the 3-dimensional shower into multiple smaller

3-dimensional patches (patchify), 704 patches to be precise. These patches are linearly

projected to a higher dimension of 144 and then passed to the model. We do the opposite

for the output to combine smaller 3-dimensional patches into the 3-dimensional shower

(unpatchify). Note that, we use a 2 × 2 × 2 convolution layer for “patchification” to

better extract the representations, but “unpatchification” is a simple reshape operation.

Within each DiT block, the conditions are first passed through a DNN of 2 layers and

then summed up with patch embeddings of size 144. After the final DiT block, we have

layer normalization and a linear projection to match the shower dimensions, followed

by unpatchification.

Since our sequence is 3-dimensional, we also adapt the sinusoidal positional

embeddings [135] from 2 dimensions to 3 dimensions to represent the patches in the

3-dimensional space. This is done by allocating space for an extra dimension in the

positional embedding vector. These positional embeddings are added to the patches

after their linear projection before the first DiT block.

VAE-BASED SUBMISSIONS 46

Figure 20: Architecture of CaloDiT.

6. VAE-based Submissions

Variational Autoencoders (VAEs) [140, 141] are a class of generative models which

combine deep learning with probabilistic methods. A VAE is composed of two stacked

neural networks acting as encoder and decoder. The encoder learns a mapping from

the input space to a latent space in which a meaningful representation of the data is

learned. The decoder learns the inverse mapping by reconstructing the original input

from the latent representation. The VAE is designed with a prior on the representation

space, hence once the model is trained to reconstruct the input, the decoder can be used

independently as a generator of new data by sampling from the prior.

Moreover, improved accuracy can be achieved by performing density estimation

on the latent space. The VAE thus serves as a dimensionality reduction method by

learning a low-dimensional manifold of the ambient space. The approach is explored

with different techniques and density estimators in this section.

The key idea behind training VAEs lies in variational inference (VI). VI

approximates probability densities based on the optimization of the Kullback-Leibler

(KL) divergence [142]. VI uses a family of densities and finds the closest member

of that family to the target density using the KL divergence. The KL divergence is

a fundamental quantity in information theory to measure the difference between two

probability distributions. If a probability distribution q is used to approximate p then

the KL divergence measures the loss in information using the approximation.

VAE-BASED SUBMISSIONS 47

6.1. Latent Generative Models for Calo Simulation with VQ-VAE

By Qibin Liu, Chase Shimmin, Xiulong Liu, Eli Shlizerman, Shu Li, and Shih-Chieh

Hsu, with figures and tables referring to these approaches as

Calo-VQ [58] and Calo-VQ(norm) [58] and code being available at [59].

Introduction Calorimeters with high granularity often feature a large number of voxels,

reaching up to tens of thousands. Directly sampling of such high-dimensional and

highly sparse data is usually challenging and inefficient. To address this, a two-

stage method, as illustrated in figure 21, is proposed. This method is based on

a vector-quantized variational auto-encoder (VQVAE) [143] and a transformer-based

token generative model [135, 144]. In the following, we describe the implementation of

this model, including processing of calorimeter data, representation, architecture and

training procedure.

Figure 21: Demonstration of the Calo-VQ architecture. The upper and lower parts show

the two stages of the model, respectively.

Preprocessing To handle the large dynamic range of calorimeter energy, the data is

normalized per detector layer (for ds 1 – γ and ds 1 – π+) or the entire detector (for

ds 2 and ds 3, except the model implicitly marked with “norm”) for each sample. It is

then transformed using a scaled and shifted logarithm. The pre-processing is described

in (18).

xi =
1

c
log

(
a + b

Ii
Esum

)
(18)

Here, i is the index of the voxel, Ii is the original value of each voxel, and Esum is

the sum of energies within the same layer or the entire calorimeter, depending on the

dataset. The hyperparameters a, b, and c are tuned according to the input range.

VAE-BASED SUBMISSIONS 48

Architecture The first stage of the model aims to reduce the dimensionality of the

input. The encoder transforms the input into the representation in the latent space,

followed by the decoder, which reconstructs the input. To achieve high compression

ratio and effective usage of latent space, a vector quantization technique [143] is

implemented. This technique labels each latent vector with one index of a fixed set of

representative “code vectors”. The code vectors are updated during training, minimizing

the quantization loss and commitment loss, as shown in the following,

LV Q = ||sg [q(z|x)]− ek||2 + ||q(z|x)− sg [ek]||2 (19)

Here sg [X] denotes the stop-gradient operator which will not take the gradient of X

into calculation. The first term denotes the quantization loss which moves the codebook

(ek) to better represent the latent space (z). The second term is called commitment loss

which limits the arbitrarily growth of embedding space and makes the encoded vector

commit to one of the codes.

The L2 distance between input and decoded output, following the vanilla VAE

architecture, is used as one loss term. Additionally, the discriminator loss [145] and

physics-aware losses are added to improve the quality of reconstruction, particularly for

the detailed feature.

The encoder and decoder consist of convolutional and dense layers. For photon and

pion datasets 1, 1-dimensional convolution and fully connected layers are combined to

better process the irregular geometry. For datasets 2 and 3, since the transitional

symmetry only exists in the z (depth) and α (angular) direction, 2-dimensional

convolutions are used, treating the 3-dimensional data as a multi-channel 2-dimensional

image defined on the (Z, α) coordinates. The cylindrical convolution operation is shown

in figure 22. It maintains the equivariant property of the calorimeter data mapped in

cylindrical coordinates. The radial direction is therefore treated as the channel of this

image-like representation.

Figure 22: Cylindrical convolution operator. The bottom plots show the equivariant

property is well kept.

VAE-BASED SUBMISSIONS 49

Arbitrary up-/down-sampling on the angular direction with circular (periodical)

boundaries is achieved using the FFT-resampling method, as illustrated in figure 23. The

data along the angular direction is first transformed with discrete FFT into frequency

space, then truncated to the desired dimension and transformed back with inverse

operation.

Figure 23: Illustration of the FFT down-sampling.

The softmax activation is used in the last layer to ensure the correct normalization

as mentioned in (18). By definition, the output of softmax satisfies the required

normalization in log scale with proper shift and scaling.

The second stage model focuses on learning and sampling of the probabilistic

distribution, in a highly reduced and regularized latent space, characterized by a fixed-

length sequence of discrete codes (tokens). The transformer-based model minGPT [144]

is adapted to sample the latent codes, conditioned on the incident energy. As discussed

in the previous section, the normalization factor(s) Esum, which control the energy

response of the entire calorimeter or each calorimeter layer, is digitized to discrete codes

and sampled together with the latent codes of the first stage. Two codes are used to

digitize one floating number with 20bit accuracy assuming 1024 choices for each code

are utilized.

The final sequence to learn for the second stage is

A1A2...︸ ︷︷ ︸
Esum codes

latent codes︷ ︸︸ ︷
B1B2B3B4... (20)

The parameters of the second stage model are tuned towards less transformer heads,

layers and embedding while retaining the same quality of generated data (such as smaller

error on Esum).

Training The first stage model is trained adversarially, updating the encoder/decoder

and the discriminator alternately. Learning rate is constant during the training and the

model with best reconstruction loss on validation dataset is selected after training for a

fixed number of epochs.

Then the quantized latent space, as discrete numbers (tokens), is used to train the

second stage model. The training objective is to minimize the cross-entropy between

VAE-BASED SUBMISSIONS 50

the predicted token based on previous ones and the truth token. A constant learning

rate is used and the model with best validation loss is chosen.

The main hyper-parameters are summarized in table 6.

ds 1 – γ ds 1 – π+ ds 2 ds 3 ds 3 (norm)

Pre-processing (18):

a 1 1 1 1 1

b 8000 8000 3000 40 000 40 000

c 10 10 7 10 10

Stages-1:

Hidden layer 5 5 7 10 10

VQ dim 256 256 256 192 256

Condition dim 3 3 1 1 1

Codebook size 1024 1024 1024 1024 1024

R code 10 14 2 2 90

Shower code 32 32 68 182 624

#pars / M 3.8 4.1 3.1 2.1 2.2

#pars (gen) / M 1.9 2.0 1.0 0.8 0.9

Stages-2:

Layer 2 2 2 1 1

Head 2 2 2 1 1

Embed 64 64 64 16 128

#pars / K 231 231 235 38 551

Table 6: Setup of hyper-parameter and number of trainable parameters of preprocessing,

first stage model and second stage model of Calo-VQ. The numbers for “hidden layers”

are halved since symmetric encoder and decoder. Only the decoder and quantization

module in stage 1 are used in generation mode and the number of parameters are denoted

with “(gen)” in the table.

6.2. CaloMan: Fast Generation of Calorimeter Showers with Density Estimation on

Learned Manifolds

By Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto

Reyes-Gonzalez, Marco Letizia, and Anthony L. Caterini, with figures and tables

referring to this approach as CaloMan [60] and code being available at [61].

Introduction As surveyed in the present work, many types of generative models have

been used to model calorimeter showers, and particular emphasis has been given to

VAE-BASED SUBMISSIONS 51

Figure 24: A low-dimensional density on a manifold (left), and a full-dimensional

density model undergoing manifold overfitting (right). Although the full-dimensional

model concentrates around the manifold, it distributes the density incorrectly along the

manifold. Figure reproduced from [60].

normalizing flows [108, 116]. Despite their expressivity, NFs suffer from the fact that

they model a density that has the same dimensionality as the input data. For high-

dimensional data, this would mean dealing with very large NF models that compromise

training and prediction speed. For calorimeter showers, size and speed can quickly

become major problems as the dimensionality of raw shower representations surpasses

104. However, we expect that shower generation is governed by simple underlying

physical processes, and thus can be represented in a much lower dimensional space.

In the context of machine learning, this is an example of the manifold hypothesis, which

states that high-dimensional natural data actually lies on a low-dimensional embedded

sub-manifold in the ambient space [146, 147, 148].

Moreover, maximum-likelihood methods, including NFs, rely on the assumption

that the underlying distribution possesses a full-dimensional probability density p(x)

in the ambient space. This may not always be the case: if the data is confined to a

low-dimensional manifold, the data manifold is a subset of measure zero, over which no

continuous density can be integrated to obtain non-zero probabilities. In this situation,

training a likelihood-based model typically leads to densities that spike to infinity around

the manifold, but not in accordance with the data distribution. This phenomenon,

illustrated in figure 24, is known as manifold overfitting [149, 150].

To avoid manifold overfitting, while also delivering fast, light-weight models, we

propose CaloMan, which follows the two-step procedure outlined by [149] to build

our calorimeter shower simulators. The first step of the approach is to learn a

lower dimensional manifold using a generalized autoencoder. This can be any ML

model capable of learning a latent space, and transforming it back to the ambient

space. Examples include autoencoders [151], variational autoencoders [140], Wasserstein

autoencoders [152], bidirectional GANs [153, 154], and adversarial variational Bayes

[155]. The second step is to perform density estimation on the learned manifold. Any

explicit likelihood estimator can be used. This includes NFs, energy based models [156],

VAE-BASED SUBMISSIONS 52

Figure 25: Benchmarking the ESS estimator. Left: As the dimension of random

Gaussian data is increased, the ESS estimate of intrinsic dimension linearly increases

(n = 5000). Standard deviations are smaller than the size of the dots. Right: ESS

provides consistent estimates regardless of the number of datapoints used. Notably,

accurate estimates can be obtained even when the number of datapoints is less than the

dimensionality. The error bars show standard deviations over 10 seeds.

auto-regressive models [121], score-based models [157], and diffusion models [123].

Intrinsic dimensionality of CaloChallenge datasets Most methods for learning low-

dimensional manifold structure require the dimensionality d to be provided as an input.

Hence, we applied methods for intrinsic dimension estimation [158], which also shed

light on the fundamental nature of the calorimeter shower data.

Here we use the Expected Simplex Skewness (ESS) estimator [159] which is based

on angular information between k-nearest neighbor points in a dataset. Most literature

on estimating the intrinsic dimension of datasets focuses on relatively low dimensions

(i.e. d ≤ 20) and few datapoints n. Hence, we first benchmark ESS on synthetic

datasets of known dimensionality d more comparable to CaloChallenge data, using the

implementation from [160] with default hyperparameters. We randomly generate n

datapoints from d-dimensional Gaussian distributions, with n ∈ {100, 500, 1000, 5000},
and d spanning values from 10 to 1000, and apply the ESS estimator to each dataset.

We repeat the test for 10 random seeds on each setting. Figure 25 shows that ESS has

a consistent linear behavior as d is increased, and that it is insensitive to n, even when

n < d. Noticing a slight negative bias, we fit a scale factor to the data for n = 5000,

and use its inverse to calibrate the ESS estimates on shower data. We also repeat the

experiment for data drawn from a uniform distribution on a hypercube with extremely

similar results. The calibration scaling factors are 1.0795 for Gaussian data, and 1.0793

for Uniform data∥.
With evidence that ESS can scale to high-dimensional datasets, we applied the

∥ We acknowledge that the synthetic data we used does not itself have low-dimensional structure,

however similar benchmarking has been done for such data with consistent results [161]. More recent

work shows some limitations of ESS [162].

VAE-BASED SUBMISSIONS 53

Table 7: Estimated Dimensionality d with Gaussian (G) and Uniform (U) Calibration

Dataset Features ESS ESS (G) ESS (U)

Photons 368 28.6 30.9 30.9

Pions 533 17.2 18.5 18.5

Electrons 2 6480 209.0 225.6 225.5

Electrons 3 40 500 749.2 808.7 808.6

ESS estimator to the four CaloChallenge training datasets without any preprocessing of

the data, and correct the results with our calibration factors. The intrinsic dimension

estimates are given in table 7, and we based our latent space dimensions on these

values in the following. The results provide evidence for low-dimensional structure in

calorimeter data, and emphasize the potential efficiency gains over approaches that

model a full-dimensional latent space.

Architecture and Preprocessing Similarly to [108], for CaloMan we separated the

training procedure into two stages. In the first stage, using a NF, we learn the

distributions of energies per layer, Eℓ, conditioned on the incident energies Einc. In

the second stage, we model the voxel energies I, conditioned on Einc and Eℓ by first

learning the manifold with a generalized autoencoder, then estimating a density on the

manifold as described above.

Preprocessing Following [34], to ensure energy conservation, the Eℓ are first

transformed as

u0 =

∑n
ℓ=0 Eℓ

Einc

, u1 =
E0
ℓ∑n

ℓ=0 Eℓ

, u2 =
E1
ℓ

E2
rem

, ... , un =
En−1
ℓ

En
rem

, (21)

where n is the total number of layers, and Ei
rem =

∑n
ℓ=0Eℓ −

∑i
ℓ=0Eℓ. The resulting

variables are then transformed into logit space as

u′
i = log

xi
1− xi

; (22)

where xi = α + (1− 2α)ui and α = 10−6. The incident energy Einc is preprocessed as:

Einc ← log10

(
Einc

33.3GeV

)
. (23)

For the second stage, Einc and Eℓ are transformed as

Einc ← log10 (Einc + 1keV) , Eℓ ← log10

(
Eℓ + 1keV

100GeV

)
− 1. (24)

Finally, the voxel energy I is normalized so that the energies per layer sums up to

one. The conditioning vector for the second stage is given by the concatenation of the

incident energy Einc and the energies per layer Eℓ.

It is worth pointing out that, according to our tests, the most important modeling

aspects are the separation of the pipeline in two stages and the inclusion of the energy

VAE-BASED SUBMISSIONS 54

per layer in the conditioning vector for the second stage. For simplicity, we adopted

a preprocessing strategy that closely follows [34] but we found that other reasonable

preprocessing choices at each step do not significantly impact the performance of the

model.

Architecture For all the experiments, we used a NF for the first stage and a two-

step model for the second stage with a VAE as the generalized autoencoder and a NF

of the same type as the density estimator.

For stage one and the photon dataset we used a 8 layer × 384 units coupling

rational-quadratic neural spline flow [109] with a 6-block residual network [126] in each

layer. For the pion dataset, we used the same model with 8 layer × 512 units and

3-block residual networks. The output of each residual block was combined with the

conditioning input, namely the incident energy, using a gated linear unit. The NF’s

prior distribution was a unit variance diagonal Gaussian.

For stage two, the VAE’s encoder and decoder were both DNNs with three hidden

layers of 512 units each, and ReLU activations. The encoder output the means and

variances for a diagonal Gaussian over the latent dimensions. The decoder output was

also treated as a diagonal Gaussian with means for each data dimension but only a

single variance shared across all dimensions. The prior distribution was a unit variance

diagonal Gaussian over the latent space. The latent dimension was 35 for photons and

20 for pions, values which are slightly higher than the estimates reported in table 7. The

NF was of the same type as in stage one with 4 layer × 128 units and 3-block residual

networks. The output of each residual block was combined with the conditioning input,

now the incident energy concatenated with the energies per layer, using a gated linear

unit. The NF’s prior distribution was a unit variance diagonal Gaussian.

Training All models were trained with batch sizes of 512 and the Adam optimizer [89]

with a learning rate of 10−4 in stage one and 10−3 in stage two. We also applied gradient

clipping with a max gradient norm of 10. The models were trained for a maximum of

200 epochs each with early stopping after 20 epochs of no validation improvement on a

20% hold-out set.

For stage two, the VAE and NF were trained sequentially. Once the VAE

was trained, its parameters were frozen and the training dataset was encoded

deterministically with the VAE encoder means. The encoded data were then passed

as inputs to the NF. The validation and early stopping metric was the average χ2

separation power over all high level features for stage one, the reconstruction error for

the VAE and the negative log-likelihood for the NF in stage two. Both the VAE and the

NF were conditioned on the incident energies and the energies per layer during training.

The models with the best validation metrics were used for evaluation.

VAE-BASED SUBMISSIONS 55

6.3. DNN CaloSim

By Dalila Salamani, with figures and tables referring to this approach as

DNNCaloSim [62, 63] and code being available at [64].

Introduction The VAE model explored for ds 1 – π+ is inspired by the VAE model

developed in the context of shower simulation in the ATLAS experiment [62, 63].

Architecture It comprises four dense layers for the encoder with 1500, 1000, 500,

and 100 nodes for each layer respectively. The decoder has also four dense layers

with a reversed order of the number of nodes. The latent dimension is 50. A batch

normalization layer is used after each dense layer. The encoder and decoder networks are

jointly trained to maximize the variational lower bound on the marginal log-likelihood

for the data, approximated with the reconstruction loss (binary cross-entropy) and the

KL divergence.

Preprocessing The model is not trained on the absolute voxel energies but rather on

the voxel energy ratios, where per shower, the energies of the voxels within each layer

are normalized to the total energy deposited in that layer. This reparametrization of

the input allows the model to better preserve the correlations of the energies across

layers. In order to re-scale back the energies after generation, the VAE model learns,

in addition, the energy per layer and the total energy of the shower deposited in the

calorimeter. These quantities are encoded as additional N+1 nodes in the input and

output of the VAE model, where N represents the number of calorimeter layers (in

dataset 1, for pions N=7). As the voxel energies are encoded as ratios the additional

N+1 nodes are also encoded as ratios, where for each layer its energy is divided by the

total energy and the total energy is divided by the incident energy. In total, the number

of nodes in the input and output layers is 541 = 533+7+1. The model is conditioned

on the incident energy of the incoming particle.

From prior knowledge on the deposited energy, ratios of voxel values and all total

energies per layer should sum up to one. This can be ensured in the output layer of

the VAE by applying a softmax activation function. By using the softmax function, the

values are converted into probabilities that sum to one and automatically values fall in

the range of [0,1]. The softmax is applied for the voxels of each calorimeter layer and

for the ratios of the energy per layer. Figure 26 shows a schematic representation of the

VAE model.

Training One effective trick for improving the training of the VAE model is using

an iterative approach, where the model is trained on varying batch sizes and learning

rates. By cycling through different combinations, the model is exposed to a variety of

training conditions, which helps to avoid local minima and leads easier to potentially

VAE-BASED SUBMISSIONS 56

Figure 26: For the DNNCaloSim model, the VAE is trained to reconstruct the voxel energy

ratios. The 533 inputs/outputs (the large pink boxes) represent the voxel energies for

layers 0, 1, 2, 3, 12, 13, and 14. The additional input/output (dark blue) represents the

normalized energy of the shower to the energy of the particle (Einc, called ETruth here)

and the 7 following inputs/outputs (in gray) are the ratios of the energy of the layer

to the energy of the shower. The model is conditioned on the energy of the incoming

particle, this is added as one additional input to the latent space (brown box).

generalization. In total 8 iterations are used with different values of batch sizes and

learning rates.

6.4. Geant4 Transformer

By Piyush Raikwar, Renato Paulo Da Costa Cardoso, Nadezda Chernyavskaya,

Kristina Jaruskova, Witold Pokorski, Dalila Salamani, Mudhakar Srivatsa, Kalliopi

Tsolaki, Sofia Vallecorsa, and Anna Zaborowska, with figures and tables referring to

this approach as Geant4-Transformer [65] and code being available at [66].

Introduction Given the recent success of transformer-based models in various tasks,

i.e., from image classification (ViT) [136] to text generation (GPT-3) [163], we explore

the applicability of transformers for the task of generating non-trivially structured

particle showers, specifically for dataset 3. The presence of an attention mechanism and

the lack of a strong inductive bias in the architecture should help in better modeling of

energy distributions in a highly granular mesh, given enough data.

VAE-BASED SUBMISSIONS 57

Preprocessing For the preprocessing, we divide the voxel energies (in MeV) by a scalar

of 4300 to bring all entries between 0 and 1. Also, to use the incident energies of the

particles as the condition, we divide the incident energies (in GeV) by 1024 so that their

distribution is between 0 and 1.

Since transformers are permutation-invariant sequence-to-sequence models, a

shower needs to be in the form of a sequence. A naive way would be to treat each voxel

as an element of the sequence, but that would be computationally expensive. Therefore,

inspired by ViT, we create non-overlapping 3-dimensional patches of the shower to feed

it to our model. To be specific, the dimensions of the patch are ∆r×∆ϕ×∆z = 18×5×3,

i.e., 150 patches per shower. In addition to having a sequence, the transformer also needs

to know the position of an element in the sequence, which we feed by using sinusoidal

positional embeddings.

Architecture Our model is a two-stage model inspired by Dall-E [164], where the first

stage is a Vector Quantized Variational Autoencoder (VQ-VAE) [143], followed by an

Autoregressive model (AR) (see figure 27). The VQ-VAE models the low-level features

by tokenizing the shower, and the AR models the high-level features by learning the

distribution of these tokens. These models are trained separately.

Figure 27: The figure shows the components of the VQ-VAE and the AR (top-right).

The shower is tokenized using the VQ-VAE’s encoder and by referring to the codebook.

The tokenized representation of the shower is then fed to VQ-VAE’s decoder to get back

the shower. The AR models the tokenized shower’s space (red tokens) separately in an

autoregressive manner conditioned on Einc (blue token). During inference, the VQ-VAE

encoder is not used.

The VQ-VAE, as already explained for Calo-VQ [58] in section 6.1, is similar to

a traditional VAE, except that its latent space is discrete and can be represented by

a set of codebook vectors (or tokens, T i) chosen from a codebook. The codebook is a

learnable entity that can be trained in parallel with the encoder and decoder to represent

VAE-BASED SUBMISSIONS 58

the latent space optimally. The output from the encoder is quantized using a nearest-

neighbor search on the codebook to obtain a discrete latent space. So, the VQ-VAE

is trained to reconstruct the showers where the latent space is a sequence of tokens.

The distribution of these tokens is unknown, hence we cannot generate new showers.

Therefore, the task of AR is to model the distribution of the tokens generated by the

VQ-VAE, given the initial conditions, i.e., incident energy of the particle in our case.

AR learns the latent space of VQ-VAE by autoregressively predicting these tokens, i.e.,

learning the probability of the next token given all the previous tokens. The process

of sampling a new token from a multinomial distribution makes the AR a generative

model. Note that VQ-VAE is not conditioned on the incident energy of the particle.

For the generation of new showers, we start by creating a condition token (T c).

Given the condition token, we sample the next token and this continues till we have

all the required tokens. All tokens except the condition token are then passed to the

VQ-VAE decoder to get the final shower.

Both VQ-VAE and AR have a ViT-like uniform architecture. Each of them is

described in detail as follows.

In the case of the VQ-VAE, the patches form the sequence. These patches are

linearly projected to match the projection dimension of the VQ-VAE, which is 256. To

this, 3-dimensional positional embeddings of 256 dimensions are added to inject the

position information. These patches are then fed to the VQ-VAE. The encoder and

decoder of the VQ-VAE consist of 4 encoder-only [135] transformer blocks each. Each

block consists of 16 attention heads and 512 nodes in the DNN sub-block. The patches

after the last transformer block in the encoder are concatenated and projected to the

desired dimensions of the latent space. That is, the number of patches is independent of

the number of tokens in the latent space. Thus, a token can represent information from

any of the patches. In our case, the latent space consists of 64 tokens of 128 dimensions.

The codebook however consists of 200 tokens, out of which a combination of 64 tokens

is used to represent a shower. The opposite is done to project the latent space back to

the patches, which are then fed to the decoder. The activation function at the end of

the decoder is a sigmoid, and binary cross-entropy is used as the loss function.

For the AR, the tokens form the sequence. The tokens are projected linearly to the

projection dimension of the AR, which is 128. Here, we use 1-dimensional positional

embeddings to denote a token’s position. These tokens are then passed to the AR. AR

consists of 4 decoder-only [163] transformer blocks having 8 attention heads and 256

nodes in the DNN. The condition token is created by linearly projecting our conditions

to match the projection dimension of the AR. The activation function at the end of the

last block is a softmax, and the model is trained with categorical cross-entropy loss,

where the target tokens are obtained from the VQ-VAE encoder.

VAE-BASED SUBMISSIONS 59

6.5. CaloVAE+INN

By Florian Ernst, Luigi Favaro, Claudius Krause, Tilman Plehn, and David Shih, with

figures and tables referring to this approach as CaloVAE+INN [38] and code being

available at [39].

Introduction In this section we describe our effort to improve the scaling of the CaloINN

model. The idea is similar to the previously described VAE-Flow models. We train a

VAE on the individual CaloChallenge datasets in a first step and a down-scaled CaloINN

in the corresponding latent space. The advantages of this approach were already dis-

cussed in section 6.2 in the context of CaloMan. Namely, the enhanced topological

properties and the smaller input dimensionality for the normalizing flow.

However, we were approaching with a different perspective. Our main goal is not to

find the true manifold dimensionality, but we consider the VAE as a pure compression

tool. Using this point of view it is of utmost importance to get good reconstructions

first, before applying the INN in the latent space.

Loss function For the INN part we are employing the same loss function that was

introduced in CaloINN (section 4.3).

For the VAE we are using the β-VAE [165, 166] ELBO loss with a Gaussian encoder

and a Bernoulli decoder. For the latent space we chose a standard normal distribution

resulting in the following loss function:

LBVAE =
∑

x∈TS

∑

z∼E(z|x)

[x log (λ(z)) + (1− x) log (1− λ(z))] (25)

+ β ·
∑

x∈TS

[
1 + log

(
σE(x)2

)
− µE(x)2 − σE(x)2

]
.

Here, λ is the parameter of the decoder Bernoulli distribution; µE and σE are the

parameters of the Gaussian encoder, as predicted by a neural network; E(z|x) is the

encoder; and TS indicates the training dataset. We decided to explicitly not add a

physics loss term since we did not want to bias the VAE to improve its reconstruction

of the relevant physics variables, as we use these variables as performance metrics.

Preprocessing Our preprocessing consists of four steps and is similar to the CaloINN

preprocessing. We keep the initial calorimeter layer normalization and extract our “extra

dimensions” just like before. However, we scale them with a factor of 0.9 to prevent

float precision problems. We did not add noise as we found it to be not helpful during

the reconstruction process. We replaced the logarithm with an α-regularized logit as

in (22) and added a final standardization layer. For the datasets 2 and 3 we used a

VAE-BASED SUBMISSIONS 60

learnable affine transformation, for dataset 1, we simply normalized to zero mean and

unit variance. The entire preprocessing is illustrated in figure 28 (left).

The biggest difference to the CaloINN preprocessing is the fact that the extra

dimensions are not learned explicitly but used as additional conditions for the VAE.

Afterwards, they are learned directly by the INN.

Normalize each layer
by its energy Ei

and scale with 0.9
x0−1 =

(
xi
Ei

)
i∈{1,...,L}

· 0.9

Append the conditions to x0−1

α-regularized logit

Normalize to zero
mean and unit variance

Undo normalization

α-regularized sigmoid

Revert layer normalization

x̂ =
(

x̂0−1∑
x̂0−1,i

· Êi

)
i∈{1,...,L}

Input: x ∈ Rd and Einc ∈ R

Preprocessed
data

Preprocessed
condition

Decoder output

Final threshold

x, Einc

x0−1 ui (Einc, E1, ...EL) ∈ C

y0−1 = (x0−1, C)

ylogit

yprepCprep x̂prep

x̂logit

x̂0−1

x̂

µ, σ

Ei

Einc
max(Einc)

∈ C

INN

Encoder
E(z|x)

Decoder
D(x|z)

Z, ui Z̃ui

xprep

x̂prep

Figure 28: Left: Visualization of the preprocessing steps before the VAE-compression.

Right: Schematic visualization of the VAE-INN combination of CaloVAE+INN.

Architecture For the practical implementation we chose a fully connected encoder and

decoder for dataset 1 and a kernel VAE (KVAE) for dataset 2 and 3. The KVAE is an

architecture that is a compromise between a fully connected network and and a con-

volutional network. It tries to find a optimum between the reconstruction quality of

the DNN and the scaling properties of the convolutional architecture. The idea is to

use a two-step encoding, where neighboring detector layers are jointly encoded into a

sub-latent space. Afterwards these sub-latent spaces are concatenated and encoded for

a second time. This architecture emphasizes the stronger correlations between neighbor-

ing layers. We call the number of jointly encoded detector layers the “kernel size” and

the distance between the two first layers of neighboring encoding “blocks” the “kernel

stride”

The decoder architecture is a copy of the encoder with inverted order of the size of the

hidden layers.

VAE-BASED SUBMISSIONS 61

The INN (a NF) is trained in the latent space of the second encoding step before

the sampling happens, as seen in figure 28 (right). This means, the INN is trained to

predict the actual σE and µE values, effectively doubling the size of the input space for

the INN. We found that this procedure improved the sampling quality of the result-

ing combined architecture significantly. The reason is probably that our β-parameter

in the ELBO-loss is so small that VAE learned to store non-trivial information in the

σE-parameters. Therefore, the input space of the INN consists of the encoder means

µE, the encoder widths σE and the extra dimensions ui.

Our final hyperparameter configurations for the three datasets can be seen in

table 8. We used β = 10−9 as the KL term is just a regularization in this setup. The

latent space is not required to be actually Gaussian, that is the task of the latent INN.

However, the latent space must be “well enough” behaved for the INN to be trained in

it.

VAE-BASED SUBMISSIONS 62

Parameter VAE

lr scheduler Constant LR

Inner VAE

lr 10−4

hidden dimension 5000, 1000, 500 (ds 1)

1500, 1000, 500 (ds 2)

2000, 1000, 500 (ds 3)

latent dimension 50 (ds 1,2) / 300 (ds 3)

of epochs 1000

batch size 256

β 10−9

threshold t [keV] 2 (ds 1) / 15.15 (ds 2,3)

hidden dimension 1500, 800, 300

Kernelkernel size 7

kernel stride 3 (ds 2), 5 (ds 3)

Parameter INN (after VAE)

coupling blocks RQS

layers 3

hidden dimension 32

of bins 10

of blocks 18

of epochs 200

batch size 256

lr scheduler “one cycle”

max. lr 10−4

β1,2 (Adam) (0.9, 0.999)

α 10−6

Table 8: Network and training parameters for the CaloVAE+INN.

6.6. CaloLatent: Score-based Generative Modeling in the Latent Space for Calorimeter

Shower Generation

By Thandikire Madula and Vinicius M. Mikuni, with figures and tables referring to

this approach as CaloLatent [67] and code being available at [68].

Introduction In our work, we introduce CaloLatent [67], a latent diffusion inspired

surrogate model. The main idea in latent diffusion is to map the data into a compressed

latent representation using a VAE. Once the latent representation has been obtained,

a diffusion model can be deployed to learn the distribution of the latent space.

VAE-BASED SUBMISSIONS 63

The motivations behind this approach are similar to those outlined by CaloMan and

CaloVAE+INN.

In our approach we use the VAE backbone primarily for compression, therefore we

prioritize the VAE’s reconstruction ability over its generation ability. To this end, we

utilize the β-VAE [165, 166] formulation where the KL divergence is weighted by a factor

of β. We chose β = 10−6. The diffusion model used to learn the latent distribution is a

score-based diffusion model, the intricacies of which have been outlined by CaloScore

in section 5.3.

Preprocessing To evaluate the performance of our model we focused on dataset 2 of

the challenge. We processed the data for training using the following steps. First, we

normalized the voxel energy using (26).

x′
i =
Ii
Ei

(26)

where Ii are the voxels in layer i of the detector and Ei is the total energy of that layer.

Secondly, we apply minmax scaling to the data which is defined by (27).

x′ =
x− xmin

xmin − xmax

(27)

Where xmin and xmax are the minimum and maximum voxel values respectively.

The resulting data is then transformed using the logit function outlined in (22). Finally,

we take the values in the logit space and apply a standardization as given by (28).

x′ =
x− µ

σ
(28)

Where µ and σ are the means and standard deviations, repectively.

Architecture CaloLatent is comprised of three networks. First, a scored-based

diffusion model that is used to learn the distribution of the layer energy. The layer

score model is a simple ResNet [126] consisting of 3 layers each with 512 nodes. Second,

we have the VAE backbone. The encoder and decoder of the VAE are 3-dimensional

convolutional neural networks also inspired by the ResNet architecture. Figure 29 shows

a schematic diagram of the VAE encoder used for CaloLatent. The decoder of the VAE

is a mirror image of the encoder; however, it employs up-sampling blocks in place of the

encoder down-sampling blocks. The VAE reduces the data dimensionality from 6408

to 1008. The third and final network in CaloLatent is the score-based diffusion model

used to learn the latent space, the architecture of this model is identical to that of the

layer model.

Training All three networks are trained independently. The layer score model and the

VAE are trained for 500 epochs using a cosine decaying learning rate with an initial

learning rate of 4 ·10−4. The latent score model is trained for 250 epochs using the same

learning schedule as the other models.

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 64

Figure 29: Schematic diagram of the CaloLatent VAE encoder.

7. Conditional Flow Matching-based Submissions

The conditional flow matching (CFM) algorithm was proposed in various forms

simultaneously by several groups [167, 168, 169], and developed in [170] which we follow

here. Like continuous normalizing flow models [171], flow matching learns to interpolate

probability densities pt between the data p1, and a simple prior p0 = N (x0 | 0, I).

The interpolation is determined by a vector field at each time µt(x), which transports

datapoints x via the ODE

dx = µt(x)dt. (29)

When pt and µt(x) jointly satisfy the continuity equation for conservation of probability

d

dt
pt +∇x · (ptµt) = 0, (30)

pt will be a properly normalized density at each t. Hypothetically, one could train a

model νθ(t, x) of the vector field µt(x) by direct regression,

LFM = Et∼U(0,1), x∼pt∥νθ(t, x)− µt(x)∥22, (31)

however in practice neither pt nor µt(x) is uniquely determined, we can only sample

from pt for t = 1 (data) and 0 (prior), and we do not have access to µt(x) for evaluation.

As a workaround, CFM proposes to use conditional densities pt(x | (x1, x0)) and vector

fields µt(x | (x1, x0)), where x1 ∼ p1 is a training datapoint and x0 ∼ p0 is noise, such

that both are tractable. For example, when

pt(x | (x1, x0)) = N (x | tx1 − (1− t)x0, σ
2), (32)

µt(x | (x1, x0)) = x1 − x0, (33)

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 65

the CFM loss

LCFM = Et∼U(0,1), x1∼p1, x0∼p0, x∼pt(·|(x1,x0)),∥νθ(t, x)− µt(x | (x1, x0))∥22, (34)

has the same gradients as (31), and therefore will lead to the same model νθ(t, x), but

now pt(x | (x1, x0)) and µt(x | (x1, x0)) are tractable for all t. Finally, new datapoints

are generated by solving the ODE in (29) starting from x0 ∼ p0 but using the learned

vector field νθ(t, x).

7.1. CaloDREAM: Vision Transformer CFM

By Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer, and Tilman Plehn, with

figures and tables referring to this approach as CaloDREAM [69] and code being

available at [70].

Introduction The CaloDREAM [69] architecture consists of two continuous normalizing

flows trained with the CFM objective given in (34) ¶. The first is an energy model,

which is responsible for generating the total energy deposited in each calorimeter layer.

The model uses the energy ratio variables u, defined in (5), as a basis for the layer

energies. CaloDREAM then employs a shape model to generate voxel values, given the u

ratios as conditions. In order to enforce energy conservation, the shape model is trained

on voxels normalized by their layer energy. In the following, the unique aspects of the

two models comprising CaloDREAM are detailed.

Architecture — Energy model As discussed above, the heart of a CFM model is a

learnable vector field νθ. Although it is typical to use a single neural network as a

direct parameterization, other choices are also viable. In particular, the causal nature

of energy flow through a calorimeter inspires an autoregressive construction of the full

vector field.

CaloDREAM adopts an autoregressive CFM architecture introduced in [172] to learn

the distribution of energy ratios given an incident energy, p(u|Einc). The model structure

is illustrated in figure 30 (left). Instead of directly learning a 45-dimensional vector field,

a single network is trained to solve 45 CFM tasks — one for each layer. In order to

distinguish these tasks, the network is conditioned on previous layer energy ratios. The

full vector field can be written as

νfull(t, u |Einc) = (νθ(t, u0 | c0), . . . , νθ(t, u44 | c44)) , (35)

where νθ is a neural network and each ci is a condition that encodes the incident energy

and the sequence of previous u’s

ci =

{
ci(u0, . . . , ui−1, Einc) i > 0

ci(Einc) i = 0
. (36)

¶ Here the resolution parameter σ from (32) is taken to be zero.

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 66

Einc

Embed

Encoder

Self-
Attention

0 u0 ... u43

Embed Embed ... Embed

Decoder

Masked Self-Attention

Cross-Attention

cI
N

N
C

F
M

cI
N

N
C

F
M ...

cI
N

N
C

F
M

(
νθ(t, u0; c0), νθ(t, u1; c1), ..., νθ(t, u44; c44)

)
νfull(t, u;Einc) =

c0 c1 c44

S
am

p
li

n
g

ViT Stack

AdaLN

Self-Attention

Embed Embed Embed

Split to
patches

Fourier
encoding

Position
encoding

x t Einc, u

Assemble
from patches

νθ(t, x |Einc, u)

Figure 30: Left: Schematic diagram of the CaloDREAM energy network. Right:

Schematic diagram of the shape network.

In practice, an encoder-decoder transformer is used to learn the conditions. Both the

encoder and decoder contain four attention blocks with four heads and an embedding

dimension of 64. By applying a triangular mask to the relevant attention matrices, the

structure prescribed in (36) is respected. For νθ, a DNN with eight layers and width of

512 is used.

When training the energy model, all components of the full vector field can be

evaluated in parallel. During inference, on the other hand, the CFM network must be

sampled for each component in sequence. Specifically, u0 is first sampled by integrating

νθ(t, u0 | c0) and can then be used to compute c1. This condition is in turn required to

generate u1 and so forth.

Architecture — Shape model CaloDREAM also uses CFM for the shape model, which is

responsible for learning to sample showers I from p(I |Einc, u). Unlike the energy model,

here the vector field is parameterized directly with a neural network νψ(t, I |Einc, u). In

order to obey energy conservation, the shape network is trained on layer-normalized

voxels. The network is a vision transformer (ViT) similar to [139] and illustrated in

figure 30 (right). As a first step, the network divides the shower into non-overlapping

rectangular blocks in the three-dimensional calorimeter space (z, α, r). Each of these

regions defines a patch, which is embedded with a shared linear layer. The embeddings

are supplemented with learnable position encodings which break the permutation

invariance among patches. The network uses a joint embedding for the conditional

inputs, t, Einc and u. The time embedding is first transformed to Fourier space and

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 67

embedded with a two-layer dense network. The energy conditions are instead directly

embedded with a separate dense network using the same architecture. The final

operation sums the two embedded conditions into a single vector.

After applying these initial transformations, the patches and the conditions are

passed to a stack of ViT blocks. Each block contains a self-attention over patches

followed by a dense network transformation. The conditional information is introduced

via affine transformations with shift and scale a, b ∈ R and an additional rescaling

factor γ ∈ R learned by a dense network, referred to as AdaLN [139, 173] in figure 30.

Concretely, the operation inside the ViT block is summarized by

xh = x + γhgh(ahx + bh), (37)

xl = xh + γlgl(alxh + bl), (38)

where gh is the multi-head self-attention step and gl is the fully connected

transformation. After the stack of ViT blocks, the same modulation is applied to the

final patch features before projecting back to the original size. The patches can then be

assembled into the full calorimeter shape.

Training The training is carried out using the AdamW optimizer with an initial

learning rate of 10−3 and a cosine learning rate scheduler. We train the model for 800

and 600 epochs for dataset 2 and dataset 3 respectively. The patch sizes used in each

dataset are (3, 16, 1) and (3, 5, 2). In both cases there are six self-attention blocks with

six heads each. The CaloDREAM samples evaluated in the results section are obtained

by solving the energy and shape model ODEs with the Runge-Kutta 4 solver with step

size 0.02.

7.2. CaloForest

By Jesse C. Cresswell and Taewoo Kim, with figures and tables referring to this

approach as CaloForest [71] and code being available at [72].

Introduction The methods in the above sections differ in their learning tasks and

architectures, but all use neural networks as function approximators. Neural network

architectures are often carefully designed to have inductive biases that are beneficial for

a specific data modality. A case in point are datasets 2 and 3 of section 2.2 which have

an image-like structure; each layer of the calorimeter corresponds to a channel, and the

voxels of each layer are arrayed in a consistent manner giving a familiar c×h×w format.

Convolutional neural networks are well-adapted for this structure, achieving efficiency

through parameter sharing by applying the same kernel across the image.

However, tabular datasets (like dataset 1 in section 2.1) have minimal structure

that neural networks can take advantage of. Researchers still often resort to basic DNN

architectures with little-to-no useful inductive bias. Historically, tree-based algorithms

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 68

have outperformed on discriminative tasks for tabular data at scale [174, 175], with

only very recent DNN-based foundation models starting to consistently improve upon

tree-based methods [176]. There are additional advantages of tree-based models: they

usually do not require any data pre-processing (whereas neural networks are highly

sensitive to input data scale and distribution); they can operate on data that contains

null values (whereas neural networks require null values to be dropped or imputed);

they can be trained efficiently on GPU or CPU (whereas large neural networks usually

necessitate GPU training, but most high performance computing clusters are still CPU

based); and they have improved explainability (for example, Shapley values [177] are

generally intractable to compute for large neural networks, but the TreeSHAP algorithm

makes them workable for trees [178, 179]). Yet, tree-based learning is not common for

generative tasks, even on tabular data.

We propose training generative models for the tabular dataset 1 using a tree-based

function approximator, namely XGBoost [180]. Just like a DNN, XGBoost is a universal

function approximator, meaning that with large enough number of parameters (i.e. tree

depth) and training datapoints, it can in principle fit any function [181]. This begs the

question of why tree-based models are still rarely used for generative tasks [182, 183].

In principle, XGBoost could be used as a replacement for the neural network function

approximator in any generative modeling algorithm, such as the ones used throughout

Sections 3–6. In practice, the mechanics of training trees deviates significantly from

how neural networks are trained, requiring non-trivial reengineering of algorithms.

Generative Modeling with Trees The difficulties of replacing neural network function

approximators with XGBoost (in this case for νθ(t, x)) are well-illustrated by the work

[183] which provides an implementation of CFM backed by XGBoost. First, notice

that when using neural networks, (34) would ordinarily be optimized by sampling a

minibatch of data x1 from p1, sampling a t, sampling x0 from the prior p0 and then

generating x from pt(x | (x1, x0)) in (32). In particular, the noise vector x0 would

be sampled anew every batch, eventually leading to good coverage of the distribution

in the expectation. XGBoost is not trained with minibatches; for regression tasks it

requires an entire dataset to be fed in and then minimizes the squared error loss overall.

Therefore, the noise x0 associated to each training point x1 would only be sampled once.

For better coverage of the noise distribution, [183] proposes to duplicate each of the n

training datapoints K times, and for each copy of x1 generate different noise x0.

Second, whereas with a neural network the time step t could be fed in as an

additional input to the network during training and generation, simply adding t as

a feature to XGBoost is unlikely to give sufficient emphasis to it, because only a single

feature is used in each split of each tree in the ensemble. Instead, [183] proposes to

discretize t into nt uniform steps and train a different XGBoost ensemble to represent

νθ(tj, x) for each timestep tj. The expectation over t is removed in the loss function

(34), and it is instead treated as a constant for each of nt separate loss functions.

Third, whereas a neural network can easily be designed with a number of outputs

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 69

equal to the number of features p in x (the same size as the regression target µt(x |
(x1, x0)) for a given t), XGBoost only outputs a scalar. A brute-force workaround

is to simply train a different ensemble to predict each element of the vector field

µt(x | (x1, x0)).

Fourth, when conditional generation on a class label y is required, a neural network

can accept y as an input during training and generation to adapt its behavior while

sharing parameters. Like conditioning on t, conditioning on y is better done by training a

separate XGBoost ensemble for each of the ny classes. This is only suited to conditioning

on categorical labels, not continuous ones, so it does not allow for sampling at arbitrary

incident energies.

Despite these challenges, the promises of tree-based generative modeling are

seductive: better performance on tabular regression tasks may translate to better

tabular generation; lack of need for preprocessing; native handling of missing values;

efficient training on CPU; and improved explainability. As a proof of concept for tree-

based generative modeling of calorimeter showers, we applied CFM backed by XGBoost

to the tabular dataset 1.

Modeling Dataset 1 In total, for a tabular dataset of size [n, p], the method described

by [183] requires training nt × p × ny XGBoost ensembles, each on a dataset of size

[ni × K, p], where ni is the number of points belonging to class i (with
∑ny

i ni = n).

This poses a practical challenge. The largest training datasets benchmarked in [183]

had sizes [16 512, 9] (largest n), [288, 90] (largest p), and [10 888, 16] (largest product

np), while dataset 1 – π+ is 370× larger at [120 800, 533].

Unfortunately, the implementation of CFM with XGBoost published by [183] does

not scale to problems of this magnitude.+ Noting that [183] recommend nt = 50 and

K = 100, dataset 1 – π+ (with ny = 15) would necessitate training 399 750 XGBoost

ensembles, most of which would use a dataset of size [1 000 000, 533]. From the original

[n, p] dataset, the implementation attempts to create a duplicated version of size

[nt, K × n, p] as a numpy array in memory all at once, which for the pions training

dataset requires 2.34 TiB of CPU memory. Training thousands of XGBoost ensembles

on slices of the data in parallel further exacerbates the memory burden, since many

copies of the data array are created and persisted in RAM or RAM disk. We estimate

that a full training run using the default hyperparameters on dataset 1 – π+ would

require more than 1.2 PiB of CPU memory.

However, this memory burden is not a fundamental limitation of the proposed

method, but rather a lack of optimization of the original implementation. For our proof-

of-concept, we reimplemented CFM with XGBoost solving many engineering challenges

around memory efficiency and parallelization in python. Our implementation runs with

a peak CPU memory burden of 78 GiB on dataset 1 – π+, or roughly 16 000 times less.

+ We accessed this code repository https://github.com/SamsungSAILMontreal/ForestDiffusion,

commit hash 855281b dated Nov. 2, 2023.

https://github.com/SamsungSAILMontreal/ForestDiffusion

CONDITIONAL FLOW MATCHING-BASED SUBMISSIONS 70

In addition to improving the memory efficiency and runtime, we also mention

methods to increase model performance. From hyperparameter ablation we found

that nt has the largest effect on model fit and should be increased as high as feasible,

noting that this comes with a linear increase in the training time and number of model

parameters. We found that for datasets with larger n a more conservative value of K

was sufficient compared to the recommendation in [183]. Larger tabular datasets tend

to have more redundant rows built in, and different noise is added to these rows giving

sufficient coverage with lower K. We observe that the model consistently underfits

the dataset for all sizes we tested, in agreement with [183], but underfitting can be

mitigated by increasing the learning rate substantially. Although XGBoost typically

does not require data preprocessing, the CFM algorithm adds noise which must be

commensurate to the data’s typical scale. Hence, it is important to at least scale the

data to a finite domain similar to the standard deviation of the added noise. The original

implementation uses MinMax scaling over the entire dataset. However, when the data

has distinct classes with different properties, as is the case for the incident energy levels

of Dataset 1, we find that it is more beneficial to scale each class separately since

XGBoost models are trained separately for each class.

In summary, we trained models for the photons and pions datasets using a single

desktop workstation with 250 GiB RAM and 40 CPUs (Intel Xeon Silver 4114T). We

discretized time into nt = 100 steps, and duplicated each datapoint K = 20 times. Each

XGBoost ensemble had 20 trees of maximum depth 7, a learning rate of 1.5, and all

other hyperparameters left as defaults.∗ We trained up to 20 XGBoost ensembles in

parallel at a time, each with 2 CPUs. In total, for the photons model 552 000 XGBoost

ensembles were trained in 135 hours with a peak memory burden of 54 GiB, while the

pions model used 799 500 ensembles, completed in 281 hours, and required 78 GiB of

memory.

This proof of concept shows that tabular generative modeling with tree-based

function approximators trained on CPU is feasible for calorimeter shower simulation.

We have worked through an example of how to convert from neural networks to XGBoost

using a modern generative framework. However, our trained models have clear room for

improvement on several fronts. First, performance is not yet competitive with highly-

tuned neural network approaches. Second, our models are massively overparameterized

(although we do not observe overfitting), with the number of XGBoost ensembles

several times larger than the number of datapoints they were trained on (each ensemble

having thousands of parameters). Third, the sheer number of trees trained contributes

to slow training and large model size on disk. We believe these are solvable issues.

Performance could be improved by replacing the simple Euler ODE solver with more

advanced methods, though we point out that the learned vector field νθ(t, x) only allows

sampling at discrete values of t. We anticipate model size could still be reduced with

additional hyperparameter optimization, or by moving to multi-output trees. Training

∗ We used XGBoost version 2.0.0.

INTRODUCTION TO METRICS 71

time could be slashed by parallelizing training steps across a cluster of CPUs, which is

straightforward for this method.

8. Introduction to metrics

The evaluation of DGMs is a challenging task that has seen significant research in itself

in the past years [184, 185, 20]. For the application of DGMs as part of the detector

simulation, we are interested in surrogate models that are faithful (i.e. reproduce the

showers of Geant4 as close as possible), light-weight (i.e. do not require much space

to store and are fast to load), and fast in generation. Each of these aspects by itself is

hard to capture with a single number, so we will report a set of different metrics to give

a more complete picture. It is expected that there will not necessarily be a single clear

winner, and different submissions will have their advantages and disadvantages.

8.1. High-level Features (Histograms)

We begin the evaluation by looking at high-level features, i.e. physical observables that

are derived from the energy depositions in the calorimeter. We focus on the following

set:

• The energy deposition in each voxel: Iia.
• The energy depositions in each layer of the calorimeter, as the sum over all voxels

in that layer: Ei =
∑

a Iia.
• The total energy deposition in the shower, as sum over all voxels, normalized to

the incident energy: Edep/Einc =
∑

a,i Iia/Einc.

• The centers of energy in η, ϕ, and r direction, defined via
∑

a laIia/
∑

a Iia. The

locations la are either ϕa = ra sinαa, ηa = ra cosαa or ra, where ra and αa are the

centers of the voxels in α and r. These are taken as the mean of the voxel boundary

values defined in the binning.xml files. The sum goes over all voxels a in a given

layer.

• The width of the center of energy distributions in η, ϕ, r direction:√∑
a l

2
aIia∑

a Iia −
(∑

a laIia∑
a Iia

)2

• The sparsity, defined as 1 minus the activity, with the activity being the fraction

of voxels per layer with an energy deposition above threshold (threshold is defined

per dataset in section 2).

For each of these observables, we compute the separation power between the

submissions and the held-out test set. We use the same binning as shown in appendix A

in the reference histograms for the two Geant4 datasets. The separation power between

two histograms is defined as [186]

S(h1, h2) =
1

2

∑

i

(h1,i − h2,i)
2

h1,i + h2,i

, (39)

INTRODUCTION TO METRICS 72

where hj,i is count of the ith bin of histogram j. The histogram counts are expected to

be normalized:
∑

i hj,i = 1. With these definitions, we have S = 0 if and only if h1 = h2

and S = 1 if the two distributions have no overlap.

The separation power is closely related to the χ2 homogeneity test [187, 188, 189].

The difference is that the χ2 test statistic does not include normalization of the histogram

counts.

To get a better feeling for the natural statistical spread of the separation power

between different Geant4 datasets, we show a gray band in all figures of separation

powers, indicating the minimal and maximal separation power we found comparing ten

different pairs of Geant4 datasets. For dataset 1, we constructed these pairs by joining,

shuffling, and then splitting the events from the two given datasets (i.e. drawing without

replacement from the joined dataset), ensuring that the Einc distribution is always the

same. For datasets 2 and 3, we generated 9 additional datasets with Geant4, 100 000

showers each, such that we get ten sets of pairs.

8.2. Correlations

The energies deposited in subsequent layers are correlated with each other due to the

size of the particle shower in z direction. One measure to study if these correlations are

learned correctly is given by Pearson correlation coefficient (PCC) between the layer-

wise energy depositions [20]. For two sets of layer energies {Ei} and {Ej} of the same

size, the PCC is given by

PCC(Ei, Ej) =

∑
k (Ei,k −mean(Ei)) (Ej,k −mean(Ej))√∑

k (Ei,k −mean(Ei))
2
√∑

k (Ej,k −mean(Ej))
2
, (40)

where k runs over all samples in the set, and i and j are layer numbers.

8.3. Classifier-based Metrics.

Classifiers offer a way to perform a two-sample test [190] that is sensitive to the full

distribution, including correlations between features. In the context of generative models

for calorimeter simulation, they have been proposed as metric in [108] and were further

discussed in [185], where it was also shown that they can give valuable insights to what

failure mode the generative model has.

Here we focus on two different classifier tests. The first one, a binary classification

task, compares each submission with the Geant4 test set. The second one, a multiclass

classification task, compares all submissions with each other. For each, we consider two

different neural network architectures.

Binary classification The binary classification test evaluates how well the underlying

distribution was learned and therefore how close the generated distribution is to the

reference. It relies on the Neyman-Pearson Lemma [191], stating that the most powerful

classifier to distinguish two samples is their likelihood ratio. If a well-trained classifier

INTRODUCTION TO METRICS 73

Table 9: Number of samples in training, testing and evaluation datasets in the binary

classification setup.

dataset training testing evaluation

1 - photon 80 000 20 000 21 000

1 - pion 80 000 20 000 20 800

2 60 000 20 000 20 000

3 60 000 20 000 20 000

is unable to distinguish submitted samples from the Geant4 test set, we conclude that

the submission replicates the Geant4 distribution well [108, 185]. The result of this

test, however, depends on the preprocessing that was applied to the data. Using the

calorimeter showers in the physical space lets the classifier focus on the brightest voxels

only, since energy depositions in them are orders of magnitude above the low-energy

depositions. Applying a logarithm or logit transformation, enhances the sensitivity to

mismodeling in them. While this gives a better understanding on whether or not the

entire distribution was learned well, it might be that the difference is only in features and

correlations that are irrelevant for the down-stream physics analysis. For that reason,

we consider two different sets of input features. The first one are the energy depositions

in the voxels (called “low-level” observables), the second one are the observables we

introduced in Section 8.1 (called “high-level” observables).

The figure of merit in this setup is the AUC, the area under the receiver operating

characteristic (ROC) curve. The ROC curve shows the true positive rate (TPR) as a

function of the false positive rate (FPR). In a random classifier, the TPR will grow

linearly with the FPR giving a AUC of 0.5. In a classifier that can separate the two

datasets perfectly well, the ROC curve will become a step function, so the AUC becomes

1. We train ten classifiers with different random initialization and average the AUCs

when reporting the results.

In training, we split the submission and Geant4 dataset each into training, testing,

and evaluation sets first, before merging them with the corresponding labels. This

ensures having always a balanced setup. The number of events in each set is shown

in table 9. We select the model state with the highest accuracy on the test set for the

final evaluation. Before evaluating the AUC on the evaluation dataset, we calibrate the

classifier with isotonic regression [192] on the test set.

However, since a different neural classifier is trained for each submission, a

comparison between submissions on equal conditions is harder to make. Therefore,

we consider a second classifier test based on a multiclass classification setup below.

Multiclass classification With the multiclass classification setup, we try to assess which

of the submissions is closest to Geant4. The method was introduced in [193] in the

context of comparing hydrodynamical galaxy simulations, and subsequently applied to

INTRODUCTION TO METRICS 74

high-energy physics scenarios in [31, 194]. It relies on training a single classifier with

cross entropy loss on the task “submission 1 vs. submission 2 vs. . . . vs. submission n”.

When evaluating the trained classifier on a Geant4-based test set, we can read off

which submission the Geant4 sample is closest to.

As figure of merit, we consider the average of the log posterior [193]. It is defined

as

LP (model i|samples j) =
1

N

∑

xk∈j

log pmodel i(xk), (41)

the average logarithm of the probability that samples j come from the model

(submission) i. Here, the index k goes over all N samples in the set j. As a cross

check of the quality of the trained multiclass classifier, we look at its performance in

identifying the held-out test sets of each submission. A well-trained classifier will be

able to distinguish the individual submissions from each other, so

LP (model i|samples j = i) > LP (model i|samples j ̸= i). (42)

We check that this holds for each trained multiclass classifier before using it for final

evaluation. We train ten classifiers with different random initialization and average the

mean log posteriors of the ten runs. The results of the cross check can be found in

appendix B.

The submissions are split in training, testing, and evaluation sets as shown

in table 9, before they are merged and shuffled into single training, testing and evaluation

sets. In training (both the DNN and the CNN ResNet architecture), the best model

state based on the validation loss is used for the final evaluations.

DNN We consider a regular DNN for the binary classification on low- and high-level

observables, and the multiclass classification setup. The DNN of the binary classification

consists of an input layer, two hidden layers of 2048 neurons each, and an output layer.

We use leaky ReLU activations (with negative slope 0.01) in all layers except the last

one, where we use a sigmoid activation. We do not use dropout or batch normalization.

The network is optimized with the Adam optimizer [89], a learning rate of 2 · 10−4, and

in batches of 1000 samples for 50 epochs.

The DNN of the multiclass classification test consists of an input layer, one hidden

layer with 4096 neurons, and an output layer. We use leaky ReLU activations (with

negative slope 0.01) in all layers except the last one, where we use a softmax activation.

No dropout or batch normalization is used. We optimize the network with a schedule-

free AdamW optimizer [195] and an initial learning rate of 1 · 10−3 in batches of 2000

samples for 25 epochs (or fewer, if the validation loss already increases).

When classifying “low-level” observables, we use the voxel energies normalized to

the incident energy and the decadic logarithm of the incident energy as input features.

“High-level” observables are given by the observables we introduced in section 8.1.

INTRODUCTION TO METRICS 75

CNN ResNet An alternative architecture based on 3D CNNs is considered for the

binary and multiclass classification on low-level features. Compared to a fully-connected

DNN, a CNN is more capable of exploiting the spatial structures of particle showers,

therefore allowing it to provide stronger separation between different models. We adapt

a 3D CNN implementation [196] based on the ResNet architecture [126] to process the

particle showers. Each shower is treated as a 3-dimensional image where the intensity

of each pixel is the energy deposition in the corresponding voxel. This leads to images

of a shape (45, 16, 9) for dataset 2, and (45, 50, 18) for dataset 3. The shower image is

first processed by a 3D convolution with a kernel size of 7 and a stride of 2, followed

by a max pooling layer with a kernel size of 3 and a stride of 2, for downsampling.

Then, an 18-layer ResNet is applied to the downsampled image. A kernel size of 3 is

used in all the convolutions in the ResNet, and the number of output channels in each

convolution ranges between 32 to 128. A global average pooling is used to aggregate the

output to a 1D feature vector summarizing the full image. This feature vector is then

concatenated with the incidence energy, normalized with a batch normalization layer

[96], before being processed by a final fully-connected layer for the classification.

For dataset 2, we optimize the network for 48 epochs using the AdamW

optimizer [113] with learning rate 2.5 · 10−5 and otherwise default settings. For dataset

3, it was sufficient to use the same optimizer setup, but with learning rate 5 · 10−5 for

12 epochs.

8.4. Computer Science-inspired Metrics

A standard quantitative benchmark for state-of-the-art generative models in computer

vision is the Fréchet Inception distance (FID) [197]. The idea behind FID is to

extract salient high-level features of real and generated images via the activations of

the penultimate layer of a high-performing inception classifier, and then compare them

using the Fréchet, or 2-Wasserstein, distance between Gaussian fits to the two sets of

features. This metric has been shown to be highly sensitive to the quality and diversity

of generated images and has been extended as well to evaluate jet simulations using

the ParticleNet classifier [198]. Recently, however, [184] studied a physics-informed

alternative to this method, referred to as the Fréchet physics distance (FPD) based

on high-level physical features of the samples, rather than DNN classifier activations,

which proved to be highly performant. The complementary kernel physics distance

(KPD) metric was proposed as well, similarly inspired by the popular kernel Inception

distance (KID) [199], which calculates a kernel-based estimate of the maximum mean

discrepancy between the two sets of features. In this work, we apply FPD and KPD

to evaluate the various surrogate models by using the meaningful high-level features

of calorimeter simulations outlined in section 8.1. We also importantly derive baseline

scores and errors with which to compare the submissions for the different datasets using

the procedures described in [184]. We use the implementation of [200] with a minimum

sample size of 10 000 in the computation of FPD and a batch size of 10 000 for the KPD.

INTRODUCTION TO METRICS 76

8.5. Manifold-based Metrics

Manifold-based metrics construct a proxy for the generated and reference data manifold

and provide a computationally straightforward way to asses the diversity of the

submitted samples. The diversity measures how well the generated samples populate the

entire data manifold. There is a trade-off between realism and diversity [201] observed

for natural images, which immediately triggers the question if such a trade-off also exists

for calorimeter showers. Here, we study four different metrics: Precision, Recall, Density,

and Coverage, which are defined in the following [202, 203, 204]. While Precision and

Density are more a measure of shower quality, Recall and Coverage measure diversity.

We report results on the former two as well because all four metrics are closely related

to each other and correlations between them provide additional insights.

Precision and Recall first construct a manifold of “real”, i.e. reference, and “fake”,

i.e. generated samples. These are defined as the union of all d-dimensional spheres

around the points xi, with the radii chosen such that the k nearest samples are inside

the sphere,

manifold(x1, . . . , xn) =
n⋃

i=1

B(xi,NNDk(xi)). (43)

Here, B(x, r) defines a sphere around x with radius r and NNDk(x) denotes the

distance of x to its kth nearest neighbor.

• Precision. Following the definition of the improved precision of [203], it counts the

binary decision of whether the generated data yj is contained in any neighborhood

sphere of reference samples xi. It is bounded by 1.

precision =
1

m

m∑

j=1

1yj∈manifold(x1,...,xn) (44)

Here, 1 is the indicator function and n(m) is the number of reference (generated)

samples.

• Density improves the Precision metric by taking into account that the manifold

around reference outliers is overestimating the manifold [204]. It counts how many

reference-sample neighborhood spheres contain yj. The manifold is now defined as

the superposition of spheres instead of the union, and models that place samples in

regions where the reference samples are densely packed are getting a higher score.

However, it is not bounded by 1 anymore.

density =
1

km

m∑

j=1

n∑

i=1

1yj∈B(xi,NNDk(xi)) (45)

• Recall. Following the definition of the improved recall of [203], it is symmetrically

with respect to precision. It counts the binary decision of whether the reference

INTRODUCTION TO METRICS 77

data xi is contained in any neighborhood sphere of generated samples yj. It is also

bounded by 1.

recall =
1

n

n∑

i=1

1xi∈manifold(y1,...,ym) (46)

• Coverage measures the fraction of reference samples whose neighborhoods contain

at least one generated sample. It is bounded between 0 and 1.

coverage =
1

n

n∑

i=1

1∃j s.t. yj∈B(xi,NNDk(xi)) (47)

In our analysis, we chose k = 5 [204] and preprocess all voxels by log10 I. Voxels without

energy deposition, i.e. below threshold, are set to log10 0.1 MeV = −1.

8.6. Generation Timings

To properly compare the generation times of all submissions, each submitting group

created a singularity container [205] of the necessary software environment. We

transferred them to the clip cluster [206] and measured the time it takes to load the

container, load the model (weights and biases), if applicable move it on the GPU,

generate the samples, and save them as .hdf5 [73] to disk. While this contains an

additional overhead, we think that it is more realistic, closer to the real-life application.

There is some scatter from run to run, but that comes from the execution on a cluster

and most likely is also present in a full simulation chain. We therefore repeat these steps

ten times and show the mean and standard deviation of the run times.

Current fast simulation frameworks, with or without deep generative models,

simulate with batch size of 1, since this is how simulation is handled in Geant4, with the

parallelization applied commonly on the event, and not particle, level (different events

are simulated simultaneously in different threads). Most of the DGM architectures,

however, benefit from larger batch sizes. We therefore study batch sizes of 1, 100, and

10 000 to show how the models behave under different use cases.

Unless explicitly noted otherwise, we generate as many samples as were in the

training set. However, for some models and smaller batch sizes we had to reduce the

overall number of generated events. In this cases, the overhead of loading the model will

have a higher share in the overall generation time compared to the sample generation.

DGMs usually run a lot faster on graphics processing units (GPU), since these

are optimized for matrix-vector multiplications. Yet, these are not as widely available

on HPC clusters, where the majority of nodes have only CPUs. We therefore run the

timing evaluations on both types of hardware and report the results. We run the CPU

timings on an Intel® Xeon® Gold 6138 CPU @2.00GHz with 170 GB RAM. While this

is more on the slow end, we used this node because of the larger RAM requirements of

some models. The GPU timings were done with a NVIDIA® A100-SXM4 with 40GB

Graphics RAM, 360GB RAM, and Intel® Xeon® Gold 6226R CPU @2.90GHz. These

are the C2 and G4 partitions of the clip cluster [206], respectively.

RESULTS: INDIVIDUAL METRICS 78

8.7. Memory Requirements

As a proxy of the memory requirements to store each model on disk, we report the

number of trainable parameters that each model requires. In particular, we report two

numbers. One refers to how many trainable parameters are involved in training the

generative model. The other one refers to how many trainable parameters are required

for generation, i.e. how many need to be loaded in production. These numbers can differ

for example in GANs, where only the generator network is needed in production, or in

cases where the generative network is a distilled version of another model. We know that

the actual memory requirements depend on the floating point representation used for the

parameters and on the number of additional, non-trainable parameters that are required

to load and run the model. Techniques like node pruning and weight quantization can

reduce the number of parameters and the memory footprint significantly, sometimes

without loss in sample quality. Nevertheless, we decided to not focus on these aspects

and just work with the number of trainable parameters.

9. Results: Individual Metrics

In total, we present here the results of 59 submissions. These are evenly spread across

the different datasets and generative model architectures as can be seen in figure 31 and

table 1.

Figure 31: Number of submissions per dataset and DGM architecture.

RESULTS: INDIVIDUAL METRICS 79

9.1. Preprocessing

All submitted files were checked for NaN entries, if the Einc distribution matches the

expectation, and if the correct number of samples were submitted. Then they were

saved as np.float32 numbers in a hdf5 file [73] with gzip compression. A threshold

cut was applied to all voxels before they were used in evaluation. The Geant4 reference

was treated the same way, and all results below use the second Geant4 dataset that

was provided at [75, 81, 82].

9.2. Dataset 1, Photons (ds 1 – γ)

We begin the evaluation with the high-level features, and especially the energy

depositions in figure 32. The separation power of the submissions vary roughly within

2 orders of magnitude and they stay almost everywhere just at the upper limit of the

Geant4 reference. It is interesting to note that almost all submissions show a better

performance, i.e. a smaller separation power, in layers with an angular segmentation (1

and 2, see table 2). Having more voxels per layer seems therefore beneficial for modeling

the layer energies. The best performance is given by normalizing flow (CaloFlow) and

diffusion model (CaloScore) based submissions. We should note that the otherwise well-

performing CaloDiffusion has a bad separation power in the total energy deposition,

one of the crucial observables.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

tot
al

En
erg

y

all
vox

els
10 5

10 4

10 3

10 2

se
pa

ra
tio

n

 better

Energy depositions, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 32: Separation power of energy depositions with threshold at 1 MeV.

RESULTS: INDIVIDUAL METRICS 80

Lay
er

1

Lay
er

2

Lay
er

1

Lay
er

2

10 3

10 2

se
pa

ra
tio

n

 better

Center of Energy, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 33: Separation power of centers of energy with threshold at 1 MeV.

Lay
er

1

Lay
er

2

Lay
er

1

Lay
er

2

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 34: Separation power of widths of centers of energy with threshold at 1 MeV.

RESULTS: INDIVIDUAL METRICS 81

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in r, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 35: Separation power of centers of energy with threshold at 1 MeV.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in r, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 36: Separation power of widths of centers of energy with threshold at 1 MeV.

RESULTS: INDIVIDUAL METRICS 82

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

10 5

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Layer Sparsity, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 37: Separation power of the sparsity with threshold at 1 MeV.

The centers of energy in η and ϕ direction are summarized in figure 33. Here we

see the diffusion model based submissions CaloDiffusion and CaloScore with the best

performance, at the level of the Geant4 reference. In general, we observe all models

performing equally well in η and ϕ direction.

The widths of centers of energy in η and ϕ in figure 34 tell a similar story. Again, the

model performance in η and ϕ directions is about the same, and the diffusion models

CaloDiffusion and CaloScore have the best separation power, just slightly worse

than the Geant4 reference. However, the distilled versions CaloScore distilled and

CaloScore single-shot are worse now, having a larger separation power than the first

normalizing flow models of CaloFlow.

The centers of energy in r in figure 35 and its width in figure 36 show separation

powers that are more or less constant from layer to layer, stemming from the fact

that Nr roughly stays within one order of magnitude. A few submissions show worse

performance in the width for layers 1 and 2, where the angular segmentation is present.

The ordering of the different DGMs is about the same as for the η and ϕ directions,

as these are correlated. CaloDiffusion is at the upper level of the Geant4 reference

and CaloScore is next, with the distilled versions a little worse and at the level of the

normalizing flow submissions CaloINN and CaloFlow.

The last observables we compare with separation powers are the sparsities shown

in figure 37. These show the largest spread among the considered observables, spanning

RESULTS: INDIVIDUAL METRICS 83

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.14 0.23 0.57 0.85 1.00

0.19 0.36 0.80 1.00 0.85

0.41 0.71 1.00 0.80 0.57

0.76 1.00 0.71 0.36 0.23

1.00 0.76 0.41 0.19 0.14

GEANT4

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.13 0.26 0.62 0.83 1.00

0.18 0.37 0.83 1.00 0.83

0.39 0.71 1.00 0.83 0.62

0.76 1.00 0.71 0.37 0.26

1.00 0.76 0.39 0.18 0.13

CaloDiffusion

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.12 0.28 0.73 0.95 1.00

0.16 0.35 0.84 1.00 0.95

0.34 0.69 1.00 0.84 0.73

0.67 1.00 0.69 0.35 0.28

1.00 0.67 0.34 0.16 0.12

CaloINN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.23 0.39 0.72 0.89 1.00

0.25 0.46 0.86 1.00 0.89

0.40 0.74 1.00 0.86 0.72

0.71 1.00 0.74 0.46 0.39

1.00 0.71 0.40 0.25 0.23

Calo-VQ

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.12 0.20 0.52 0.79 1.00

0.18 0.34 0.79 1.00 0.79

0.40 0.70 1.00 0.79 0.52

0.76 1.00 0.70 0.34 0.20

1.00 0.76 0.40 0.18 0.12

CaloScore

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.10 0.17 0.43 0.64 1.00

0.18 0.35 0.79 1.00 0.64

0.40 0.70 1.00 0.79 0.43

0.75 1.00 0.70 0.35 0.17

1.00 0.75 0.40 0.18 0.10

CaloScore distilled

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.11 0.19 0.47 0.70 1.00

0.18 0.33 0.78 1.00 0.70

0.40 0.70 1.00 0.78 0.47

0.76 1.00 0.70 0.33 0.19

1.00 0.76 0.40 0.18 0.11

CaloScore single-shot

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.15 0.28 0.65 0.88 1.00

0.20 0.38 0.83 1.00 0.88

0.41 0.71 1.00 0.83 0.65

0.76 1.00 0.71 0.38 0.28

1.00 0.76 0.41 0.20 0.15

CaloFlow teacher

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.13 0.25 0.61 0.86 1.00

0.18 0.36 0.81 1.00 0.86

0.40 0.71 1.00 0.81 0.61

0.76 1.00 0.71 0.36 0.25

1.00 0.76 0.40 0.18 0.13

CaloFlow student

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.09 0.35 0.14 0.34 1.00

0.04 0.32 0.73 1.00 0.34

0.00 0.59 1.00 0.73 0.14

0.04 1.00 0.59 0.32 0.35

1.00 0.04 0.00 0.04 0.09

CaloMan

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.39 0.37 0.59 0.83 1.00

0.38 0.49 0.83 1.00 0.83

0.49 0.78 1.00 0.83 0.59

0.69 1.00 0.78 0.49 0.37

1.00 0.69 0.49 0.38 0.39

BoloGAN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.16 0.21 0.49 0.61 1.00

0.15 0.36 0.82 1.00 0.61

0.36 0.69 1.00 0.82 0.49

0.72 1.00 0.69 0.36 0.21

1.00 0.72 0.36 0.15 0.16

CaloShower2GAN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.13 0.27 0.66 0.86 1.00

0.13 0.34 0.80 1.00 0.86

0.33 0.70 1.00 0.80 0.66

0.65 1.00 0.70 0.34 0.27

1.00 0.65 0.33 0.13 0.13

CaloShower3GAN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.16 0.28 0.68 0.96 1.00

0.20 0.36 0.79 1.00 0.96

0.43 0.72 1.00 0.79 0.68

0.76 1.00 0.72 0.36 0.28

1.00 0.76 0.43 0.20 0.16

CaloVAE+INN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.26 0.50 0.87 0.96 1.00

0.29 0.56 0.93 1.00 0.96

0.43 0.76 1.00 0.93 0.87

0.75 1.00 0.76 0.56 0.50

1.00 0.75 0.43 0.29 0.26

CaloForest

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.20 0.32 0.66 0.89 1.00

0.27 0.43 0.81 1.00 0.89

0.50 0.76 1.00 0.81 0.66

0.80 1.00 0.76 0.43 0.32

1.00 0.80 0.50 0.27 0.20

CaloGraph

0.0

0.2

0.4

0.6

0.8

1.0

Figure 38: Pearson correlation coefficients of layer energies in ds 1 – γ, with threshold

at 1 MeV.

four orders of magnitude between the Geant4 reference and the worst performing

submission. The ordering of the models, however, is similar to all the other considered

observables. The diffusion models are at the upper end of the reference, with distilled

versions in between normalizing flow based models. CaloGraph, which was just slightly

worse than these in all other observables too, is now at the same level.

We now move on to investigate the correlations between the energies deposited in

the layers in figure 38. Overall, most of the submissions reproduce the pattern induced

by Geant4 well, but there is a noticeable tendency of models to overestimate the

correlation between layers 3 and 12, as seen in the top right corners. Some models

based on GANs and VAEs, which had higher separation powers, also seem to have a

harder time reproducing these correlations.

RESULTS: INDIVIDUAL METRICS 84

0.5 0.6 0.7 0.8 0.9 1.0
AUC

low-level

high-level

 better

AUCs of binary classification: submission vs. GEANT4, dataset 1 - photons

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled

CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN

CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 39: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 1 – γ, averaged over 10 independent evaluation runs. For the precise numbers, see

Table C1.

-0.1 0.0 0.1 1 10 100

FPD 103

KPD 103

 better

KPD and FPD scores of submission vs. GEANT4, dataset 1 - photons

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled

CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN

CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 40: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – γ. For the

precise numbers, see Table C2.

RESULTS: INDIVIDUAL METRICS 85

Another way to look at the correlations between all observables is given by

the classifier metric. Figure 39 (and table C1) shows the AUCs of classifying low-

level and high-level observables of the submission against the Geant4 reference. In

general, we observe a good consistency between the two sets of observables and a

small spread of AUCs for reruns with different initialization. Submissions that have

a high (low) score in the low-level observables also have a high (low) score when high-

level observables are used as an input. The difference between the AUCs of the same

submission is below 0.2. These results are also consistent to what we have seen in the

separation power. DGMs based on diffusion models or normalizing flows achieve the best

results, with AUCs of O(0.6). We also observe that distilled versions tend to perform

worse compared to their base model. This is more prominent for CaloScore distilled

to CaloScore distilled and CaloScore single-shot than for CaloFlow teacher

distilled to CaloFlow student.

When judged by KPD and FPD in figure 40 (see also table C2), the relative

performance of the submissions is confirmed by this metric, too. We do see, however,

that these metrics (especially the KPD) scatter a bit more, so the flow-based and

diffusion model-based submission’s scores now almost all agree with each other within

the uncertainties. This larger scatter of the KPD would also result in concluding

that some submissions are indistinguishable from the reference data, since the KPD

is consistent with 0. This, however, cannot be confirmed by the FPD and the AUCs of

figure 39, which see the best scores of CaloDiffusion still significantly away from the

baseline scores obtained with the Geant4 reference.

Now we move on to the multiclass classifier. The crosscheck of the well-trained

classifier can be found in figure B1. Figure 41 shows the main results, the mean log-

posterior for the Geant4 test set (and the same results are reported in table C3). These

results are consistent with the other classifier test, with CaloDiffusion and CaloINN

in the lead. Interestingly, CaloScore, which was having good results in terms of the

separation power of the high-level observables, was overtaken by the classifier metrics

by normalizing flow-based submissions like CaloFlow and CaloINN.

Overall, in terms of shower quality of ds 1 – γ, we observe that some models

approach the Geant4 reference, telling us that the comparatively easy and low-

dimensional distribution of photon showers can indeed be learned by DGMs. In

particular, we see that diffusion model and normalizing flow-based submissions get

consistently better scores than GAN and VAE-based submissions.

In figure 42 and table C4 we show precision, density, recall, and coverage of the

ds 1 – γ submissions. We observe different classes of results. The first one shows values

for all 4 metrics that are of the same order as the scores for the Geant4 reference,

indicating a diverse and realistic dataset. CaloDiffusion, CaloINN, CaloScore, and

CaloGraph fall in this class.

The second prominent pattern we observe shows values of precision and coverage

that are of the same size as for Geant4, but a much larger density and a much smaller

recall. Most of the GAN and VAE-based models like Calo-VQ, CaloMan, CaloShowerGAN,

RESULTS: INDIVIDUAL METRICS 86

Calo
Diffu

sio
n

Calo
INN

Calo
-VQ

Calo
Sco

re

Calo
Sco

re
dis

till
ed

Calo
Sco

re
sin

gle
-sh

ot

Calo
Flo

w te
ach

er

Calo
Flo

w st
ud

en
t

Calo
Man

Bolo
GAN

Calo
Sh

ow
er2

GAN

Calo
Sh

ow
er3

GAN

Calo
VA

E+
INN

Calo
For

est

Calo
Grap

h

30

25

20

15

10

5

 better

Log posterior of GEANT4, dataset 1 - photons

Figure 41: Log-posterior scores for ds 1 – γ Geant4 test data, averaged over 10

independent classifier trainings. For the precise numbers, see Table C3.

0.0 0.2 0.4 0.6 0.8 1.0
coverage

recall
precision

10 1 100 101 102 103
density

Manifold-based metrics, dataset 1 - photons

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled

CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN

CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 42: Precision, density, recall, and coverage for ds 1 – γ submissions. For the

precise numbers, see Table C4.

RESULTS: INDIVIDUAL METRICS 87

106 107 108 109

Number of parameters

generation

training

 better

Number of trainable parameters, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student

CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 43: Number of trainable parameters for training and generation of ds 1 – γ

submissions. For the precise numbers, see Table C5.

and CaloVAE+INN, but also CaloForest fall in this class. The high density suggests that

the generated samples all fall close to the bulk of the reference data, but the low recall

indicates that the relative distance between the generated samples is fairly small, so not

many of the reference samples lie on the generated manifold. Overall, these generative

models seem to focus on generating samples in the bulk that are similar to each other.

The third class have good scores for recall and coverage, but a small precision, with

the density being at the order of Geant4 or smaller. In table C4, we see CaloScore

single-shot and CaloFlow in this category. They have a good distribution of samples

close to the reference manifold, but a noticeable subset of them falls outside the manifold.

When the density is low, it also indicates that the bulk is not as densely populated.

The last pattern we observe has all four metrics below the Geant4 reference, as

seen for BoloGAN.

In terms of the the requirements of resources, the situation is different. Figure 43

shows the number of trainable parameters of each submission, with the precise numbers

in table C5. Normalizing Flow-based models are now at the back of the list, as they

usually require larger models. GANs and VAEs are much more lightweight, as can be

seen by CaloShowerGAN and BoloGAN, which need the fewest parameters. Given the

rather small dimensionality of ds 1 – γ, the diffusion model of CaloDiffusion also only

needs a comparatively small number of parameters.

Which model is the fastest really depends on specific setup of the evaluation.

We see the generation times per shower of the submissions in figure 44 (with details

in table C6 and table C7). On the CPU in figure 44 (and table C6), we observe a

reduction in generation time when moving from batch size 1 to batch size 100 for all

submissions. Further increasing the batch size to 10000 does not decrease the generation

time further, indicating that now the algorithms are not dominated by the for loop over

all batches anymore. The fastest models, BoloGAN and CaloVAE+INN reach generation

times of about one millisecond per shower for batch size 100, and even below for larger

batch size. On the GPU in figure 44 (and table C7), generation times are usually

smaller than on the CPU, but different models gained differently under the changing

hardware. For batch size 100, we now have five submissions at or below one millisecond

generation time. For batch size 10000, only CaloDiffusion, CaloScore, and CaloFlow

teacher are well above the one millisecond mark. The fastest models are now GAN-

RESULTS: INDIVIDUAL METRICS 88

10 1 100 101 102 103 104

time per shower [ms]

GPU batch size 10000

GPU batch size 100

GPU batch size 1

CPU batch size 10000

CPU batch size 100

CPU batch size 1

 better

Generation times, dataset 1 - photons

CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled

CaloScore single-shot
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN

CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 44: Timing of ds 1 – γ submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C6 and table C7.

based (like BoloGAN) or VAE-based (like Calo-VQ, CaloMan, and CaloVAE+INN). We

now also observe improvements when increasing the batch size to 10000, even though

the advantage in going from 100 to 10000 is not as big as the one going from 1 to 100.

Rather surprisingly, we observe a larger generation time for the GAN-based models

CaloShower2GAN and CaloShower3GAN. We suspect that this is a remnant of these

being part of the larger ATLAS software pipeline that was not fully optimized for the

challenge submission.

9.3. Dataset 1, Pions (ds 1 – π+)

Starting again with high-level features, we first look at the energy depositions

in figure 45. The separation power of the submissions vary roughly within 2 orders

of magnitude and they stay about one order of magnitude worse than the Geant4

reference. CaloFlow shows the best performance overall, but occasionally another model

is better in modeling a single layer. Diffusion models are not as good as for ds 1 – γ,

now VAE-based models like DNNCaloSim, Calo-VQ, or CaloMan are better, especially for

earlier layers. Again, many models show better performance in layers 12 and 13, which

have a higher segmentation in angular direction.

The centers of energy, shown in figure 46, show a consistent picture in both

RESULTS: INDIVIDUAL METRICS 89

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

Lay
er

13

Lay
er

14

tot
al

En
erg

y

all
vox

els

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Energy depositions, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 45: Separation power of energy depositions with threshold at 1 MeV.

Lay
er

1

Lay
er

2

Lay
er

12

Lay
er

13

Lay
er

1

Lay
er

2

Lay
er

12

Lay
er

13

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 46: Separation power of centers of energy with threshold at 1 MeV.

RESULTS: INDIVIDUAL METRICS 90

Lay
er

1

Lay
er

2

Lay
er

12

Lay
er

13

Lay
er

1

Lay
er

2

Lay
er

12

Lay
er

13

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 47: Separation power of widths of centers of energy with threshold at 1 MeV.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

Lay
er

13

Lay
er

14
10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in r, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 48: Separation power of centers of energy with threshold at 1 MeV.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

Lay
er

13

Lay
er

14

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in r, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 49: Separation power of widths of centers of energy with threshold at 1 MeV.

RESULTS: INDIVIDUAL METRICS 91

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

12

Lay
er

13

Lay
er

14

10 5

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Layer Sparsity, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan
BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph
GEANT4

Figure 50: Separation power of the sparsity with threshold at 1 MeV.

directions η and ϕ. The separation power again spans about two orders of magnitude

with CaloDiffusion just at the Geant4 reference, followed by CaloFlow, CaloINN, and

CaloShowerGAN. Interestingly, DNNCaloSim shows larger separation powers even though

its performance in other metrics indicates otherwise, as we will see below.

The widths of these center of energy distributions are compared to each other

in figure 47. We again observe a very good performance of CaloDiffusion, but now

CaloGraph and CaloShowerGAN come in second before the flow-based models.

When turning to the radial direction, the centers of energy in figure 48 and its

width in figure 49 show again results consistent with the evaluation along η and

ϕ: CaloDiffusion with the smallest separation powers, followed by CaloGraph and

CaloShowerGAN. While most submissions show separation powers of the same size for

each layer, DNNCaloSim does a lot better in layers 0, 3, and 14 than in layers 1, 2, 12,

and 13.

For the sparsities in figure 50, we see a lot more variation from layer to layer in each

of the submission. Even the separation power of the Geant4 reference varies almost

two orders of magnitude between layers 2 and 3. The best performing submission is still

CaloDiffusion, but the gap to the other submissions is smaller.

Figure 51 shows the correlation in layer energies for the submissions. The

submissions CaloDiffusion, CaloFlow, CaloMan, and DNNCaloSim reproduce the

pattern of Geant4 well. Other submissions, such as CaloINN, Calo-VQ, BoloGAN,

RESULTS: INDIVIDUAL METRICS 92

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.07 0.11 0.21 0.24 0.42 0.72 1.00

0.12 0.19 0.33 0.36 0.67 1.00 0.72

0.16 0.24 0.41 0.54 1.00 0.67 0.42

0.17 0.25 0.66 1.00 0.54 0.36 0.24

0.42 0.67 1.00 0.66 0.41 0.33 0.21

0.78 1.00 0.67 0.25 0.24 0.19 0.11

1.00 0.78 0.42 0.17 0.16 0.12 0.07

GEANT4

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.08 0.12 0.20 0.25 0.41 0.72 1.00

0.13 0.19 0.33 0.39 0.66 1.00 0.72

0.17 0.23 0.42 0.58 1.00 0.66 0.41

0.16 0.23 0.63 1.00 0.58 0.39 0.25

0.44 0.67 1.00 0.63 0.42 0.33 0.20

0.79 1.00 0.67 0.23 0.23 0.19 0.12

1.00 0.79 0.44 0.16 0.17 0.13 0.08

CaloDiffusion

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.01 0.10 0.21 0.28 0.46 0.76 1.00

0.02 0.15 0.29 0.38 0.68 1.00 0.76

0.02 0.18 0.37 0.54 1.00 0.68 0.46

0.03 0.22 0.64 1.00 0.54 0.38 0.28

0.08 0.65 1.00 0.64 0.37 0.29 0.21

0.15 1.00 0.65 0.22 0.18 0.15 0.10

1.00 0.15 0.08 0.03 0.02 0.02 0.01

CaloINN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.06 0.09 0.15 0.19 0.33 0.62 1.00

0.10 0.18 0.30 0.37 0.66 1.00 0.62

0.15 0.25 0.40 0.53 1.00 0.66 0.33

0.16 0.25 0.62 1.00 0.53 0.37 0.19

0.39 0.64 1.00 0.62 0.40 0.30 0.15

0.74 1.00 0.64 0.25 0.25 0.18 0.09

1.00 0.74 0.39 0.16 0.15 0.10 0.06

Calo-VQ

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.08 0.13 0.24 0.28 0.45 0.75 1.00

0.14 0.20 0.35 0.42 0.70 1.00 0.75

0.17 0.24 0.43 0.57 1.00 0.70 0.45

0.18 0.26 0.66 1.00 0.57 0.42 0.28

0.42 0.67 1.00 0.66 0.43 0.35 0.24

0.79 1.00 0.67 0.26 0.24 0.20 0.13

1.00 0.79 0.42 0.18 0.17 0.14 0.08

CaloFlow teacher

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.08 0.14 0.24 0.28 0.44 0.73 1.00

0.14 0.21 0.36 0.42 0.70 1.00 0.73

0.18 0.25 0.44 0.57 1.00 0.70 0.44

0.17 0.25 0.66 1.00 0.57 0.42 0.28

0.43 0.67 1.00 0.66 0.44 0.36 0.24

0.79 1.00 0.67 0.25 0.25 0.21 0.14

1.00 0.79 0.43 0.17 0.18 0.14 0.08

CaloFlow student

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.08 0.12 0.22 0.28 0.44 0.72 1.00

0.12 0.18 0.33 0.41 0.70 1.00 0.72

0.16 0.23 0.43 0.60 1.00 0.70 0.44

0.16 0.23 0.66 1.00 0.60 0.41 0.28

0.40 0.62 1.00 0.66 0.43 0.33 0.22

0.78 1.00 0.62 0.23 0.23 0.18 0.12

1.00 0.78 0.40 0.16 0.16 0.12 0.08

CaloMan

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.15 0.11 0.23 0.25 0.40 0.68 1.00

0.19 0.15 0.33 0.38 0.65 1.00 0.68

0.14 0.21 0.46 0.63 1.00 0.65 0.40

0.07 0.29 0.65 1.00 0.63 0.38 0.25

0.19 0.65 1.00 0.65 0.46 0.33 0.23

0.45 1.00 0.65 0.29 0.21 0.15 0.11

1.00 0.45 0.19 0.07 0.14 0.19 0.15

BoloGAN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.06 0.11 0.20 0.23 0.40 0.70 1.00

0.12 0.20 0.33 0.37 0.67 1.00 0.70

0.16 0.25 0.42 0.56 1.00 0.67 0.40

0.17 0.25 0.65 1.00 0.56 0.37 0.23

0.41 0.67 1.00 0.65 0.42 0.33 0.20

0.78 1.00 0.67 0.25 0.25 0.20 0.11

1.00 0.78 0.41 0.17 0.16 0.12 0.06

DNN CaloSim

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.12 0.12 0.21 0.25 0.40 0.67 1.00

0.17 0.20 0.33 0.38 0.69 1.00 0.67

0.21 0.25 0.42 0.57 1.00 0.69 0.40

0.22 0.26 0.62 1.00 0.57 0.38 0.25

0.50 0.72 1.00 0.62 0.42 0.33 0.21

0.75 1.00 0.72 0.26 0.25 0.20 0.12

1.00 0.75 0.50 0.22 0.21 0.17 0.12

CaloShowerGAN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.02 0.06 0.16 0.20 0.27 0.41 1.00

0.06 0.18 0.40 0.45 0.67 1.00 0.41

0.08 0.21 0.48 0.61 1.00 0.67 0.27

0.09 0.22 0.68 1.00 0.61 0.45 0.20

0.21 0.59 1.00 0.68 0.48 0.40 0.16

0.38 1.00 0.59 0.22 0.21 0.18 0.06

1.00 0.38 0.21 0.09 0.08 0.06 0.02

CaloVAE+INN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.14 0.28 0.50 0.54 0.70 0.85 1.00

0.20 0.37 0.61 0.65 0.86 1.00 0.85

0.22 0.40 0.65 0.74 1.00 0.86 0.70

0.21 0.38 0.74 1.00 0.74 0.65 0.54

0.41 0.72 1.00 0.74 0.65 0.61 0.50

0.69 1.00 0.72 0.38 0.40 0.37 0.28

1.00 0.69 0.41 0.21 0.22 0.20 0.14

CaloForest

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
r 0

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 1
2

La
ye

r 1
3

La
ye

r 1
4

Layer 14

Layer 13

Layer 12

Layer 3

Layer 2

Layer 1

Layer 0

0.18 0.24 0.36 0.44 0.60 0.86 1.00

0.22 0.30 0.44 0.54 0.77 1.00 0.86

0.30 0.38 0.55 0.72 1.00 0.77 0.60

0.34 0.45 0.76 1.00 0.72 0.54 0.44

0.56 0.77 1.00 0.76 0.55 0.44 0.36

0.81 1.00 0.77 0.45 0.38 0.30 0.24

1.00 0.81 0.56 0.34 0.30 0.22 0.18

CaloGraph

0.0

0.2

0.4

0.6

0.8

1.0

Figure 51: Pearson correlation coefficients of layer energies in ds 1 – π+, with threshold

at 1 MeV.

CaloVAE+INN, and CaloShowerGAN, have some problems with correlations of layers 0

and/or 14, which are the first and last layers. CaloForest finds a smaller correlation

between the first layers and a too large correlation for the rest while CaloGraph has too

large correlations everywhere.

Moving on to classifier-based metrics, we find the AUCs of high- and low-level

observables in figure 52 (and table C8). Here we observe several things. First, the AUC

for separating the training and test Geant4 samples is larger than the expected value

of 0.5. This is due to the fact that two slightly different versions of the ATLAS software

were used due to technical problems in generating high statistics with the old version

used for the ATLAS internal training. The differences were expected and deemed small

enough to be irrelevant for physics applications. Detailed comparison between the two

RESULTS: INDIVIDUAL METRICS 93

0.5 0.6 0.7 0.8 0.9 1.0
AUC

low-level

high-level

 better

AUCs of binary classification: submission vs. GEANT4, dataset 1 - pions

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
DNN CaloSim

CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 52: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 1 – π+, averaged over 10 independent evaluation runs. For the precise numbers, see

Table C8.

-0.1 0.0 0.1 1 10 100 1000

FPD 103

KPD 103

 better

KPD and FPD scores of submission vs. GEANT4, dataset 1 - pions

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
DNN CaloSim

CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 53: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – π+. For the

precise numbers, see Table C9.

RESULTS: INDIVIDUAL METRICS 94

Calo
Diffu

sio
n

Calo
INN

Calo
-VQ

Calo
Flo

w te
ach

er

Calo
Flo

w st
ud

en
t

Calo
Man

Bolo
GAN

DNN Calo
Sim

Calo
Sh

ow
erG

AN

Calo
VA

E+
INN

Calo
For

est

Calo
Grap

h

25

20

15

10

5

 better

Log posterior of GEANT4, dataset 1 - pions

Figure 54: Log-posterior scores for ds 1 – π+ Geant4 test data, averaged over 10

independent classifier trainings. For the precise numbers, see Table C10.

samples that justify this statement are provided in A.2. The AUC from the generative

models will have this value as the maximum achievable separation instead of the usual

0.5. Second, we see very low AUCs for CaloDiffusion, which was already indicated by

the separation powers of the obervables before. Third, we see a low AUC for DNNCaloSim

in the low-level observables which is, however, not reflected in the AUC of the high-level

observables. This latter fact also correlates with the separation powers seen before.

Other than that, we see overall good scores from diffusion and normalizing flow-based

models, whereas GAN and VAE-based models show AUCs worse than 0.9.

The same is true for KPD and FPD metrics shown in figure 53 (and also in table C9).

The best scores are attained for CaloDiffusion, followed by CaloGraph and CaloFlow.

The submission of DNNCaloSim is not among the top contestants here.

When looking at the results of the multiclass classification, the situation is slightly

different. CaloDiffusion, CaloINN, and CaloGraph show again good scores, but

DNNCaloSim is outperforming them. Since the multiclass classification is also based

on low-level observables, this observation confirms the low-level AUC of table C8. The

consistency check of the multiclass classifier can be seen at figure B2.

In figure 55 and table C11 we show precision, density, recall, and coverage of

the ds 1 – π+ submissions. We again observe similar patterns as in the ds 1 – γ

RESULTS: INDIVIDUAL METRICS 95

0.0 0.2 0.4 0.6 0.8 1.0
coverage

recall
precision

10 1 100 101 102
density

Manifold-based metrics, dataset 1 - pions

GEANT4
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
DNN CaloSim

CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 55: Precision, density, recall, and coverage for ds 1 – π+ submissions. For the

precise numbers, see Table C11.

106 107 108 109

Number of parameters

generation

training

 better

Number of trainable parameters, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 56: Number of trainable parameters for training and generation of ds 1 – π+

submissions. For the precise numbers, see Table C12.

case. The submissions CaloDiffusion, DNNCaloSim, and CaloGraph have their scores

around the scores of the Geant4 reference, indicating a good fit to the underlying

distribution. The normalizing flow-based submissions CaloINN and CaloFlow have good

recall and coverage, but a relatively small precision and density, indicating that a large

enough subset of samples were generated away from the reference manifold. VAE-based

submissions Calo-VQ, CaloMan, CaloVAE+INN, and to some extend also CaloShowerGAN

show a large density paired with a very small recall. As for ds 1 – γ, we interpret this

as generative models that seem to focus on generating samples in the bulk of the data,

with all samples being fairly similar to each other.

Figure 56 compares the sizes of the submissions, with table C12 giving the precise

numbers. Most models require (at least in training) more than 106 trainable parameters,

only CaloDiffusion and CaloGraph stay below that. Overall, we observe normalizing-

flow based models to be much larger than diffusion and GAN-based models. The BDT-

based CaloForest stands out because of the many parameters that are required to

RESULTS: INDIVIDUAL METRICS 96

10 1 100 101 102 103 104 105

time per shower [ms]

GPU batch size 10000

GPU batch size 100

GPU batch size 1

CPU batch size 10000

CPU batch size 100

CPU batch size 1

 better

Generation times, dataset 1 - pions

CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
DNN CaloSim

CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 57: Timing of ds 1 – π+ submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C13 and table C14.

define all trees.

Figure 57 (with details in table C13 and table C14) show the generation times

per particle shower of the submissions. Across all batch sizes and architectures, we

see DNNCaloSim as being the fastest model, only beaten for very large batch sizes on a

GPU but not by a large margin. This model only needs a few milliseconds (for batch

size 1) to a fraction of a millisecond (for lager batch sizes) to generate a single shower.

Other GAN-based and VAE-based models like BoloGAN and CaloVAE+INN also show fast

shower generation times. Normalizing-flow-based submissions, however, show a strong

dependence on the implemented algorithm. The coupling-layer based implementation of

CaloINN is much faster than the MAF/IAF-based implementations of CaloFlow, with

the MAF being much slower than the IAF, as expected [116]. CaloForest does not

have timings on a GPU, as the tree-based algorithm only runs on a CPU. Also here,

we observe a larger generation time for the GAN-based model CaloShowerGAN. Again,

we suspect that this is a remnant of CaloShowerGAN being part of the larger ATLAS

software pipeline that was not fully optimized for the challenge submission.

9.4. Dataset 2, Electrons (ds 2)

As explained in section 2.2, the minimal energy that can be read out is given by 15.15 keV

and we apply a threshold cut to all submissions before evaluation.

RESULTS: INDIVIDUAL METRICS 97

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

tot
al

En
erg

y

all
vox

els

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Energy depositions, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 58: Separation power of energy depositions.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in , dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 59: Separation power of centers of energy in η direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in , dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 60: Separation power of centers of energy in ϕ direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in , dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 61: Separation power of widths of centers of energy in η direction.

RESULTS: INDIVIDUAL METRICS 98

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in , dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 62: Separation power of widths of centers of energy in ϕ direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in r, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 63: Separation power of centers of energy in radial direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in r, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 64: Separation power of widths of centers of energy in radial direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Layer Sparsity, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM
GEANT4

Figure 65: Separation power of the sparsity.

RESULTS: INDIVIDUAL METRICS 99

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

GEANT4

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloDiffusion

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

conv. L2LFlows

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloINN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

MDMA

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

Calo-VQ

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloScore

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloScore distilled

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloScore single-shot

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

iCaloFlow teacher

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

iCaloFlow student

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

SuperCalo

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

DeepTree

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloPointFlow

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloVAE+INN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloLatent

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloDiT

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloDREAM

0.0

0.2

0.4

0.6

0.8

1.0

Figure 66: Pearson correlation coefficients of layer energies in ds 2.

We again start the evaluation with the separation power of the energy depositions

in all layers, all voxels, and the total deposited energy in figure 58. The values for the

submissions span roughly 2 orders of magnitude and only for early layers they reach

down to the reference values given by Geant4. In general, we observe all submissions

getting worse towards the end of the detector, i.e. for a larger layer number. While

some submissions show a smooth change of separation powers from layer to layer, some

others oscillate with a period of a few layers.

RESULTS: INDIVIDUAL METRICS 100

The centers of energy in η and ϕ are shown in figure 59 and figure 60. There is a

rotational symmetry in the data, so the distributions in η and ϕ look very similar to each

other (see figure A10 and figure A12). Judging by the separation powers, the models

learn the distributions in these two variables equally well, reflecting this symmetry. In

detail, we see CaloDiffusion and CaloDREAM having the smallest separation powers,

just at the upper bound of the Geant4 reference band. VAE-based submissions

like CaloVAE+INN, CaloMan, or Calo-VQ again have the the largest separation powers.

Looking at the change from layer to layer, we now see a different pattern compared to

the energy distributions in figure 58. Now, only some submissions show an increasing

separation power for an increasing layer number. Others are either rather constant or

have a large separation power for small layer numbers, show better results in the central

part of the detector and then increase again towards the end. We also notice some

models having a rather steep increase only in the last layer.

The separation powers of the widths of centers of energy in η (figure 61) and ϕ

(figure 62) are very similar to the separation powers of the centers of energies themselves.

Both directions, η and ϕ, show almost identical results. Now CaloDREAM is having the

best score, at the level of the Geant4 reference band. Other submissions show again

their best performance in the central region of the calorimeter segment, before the

separation power rises again at larger layer numbers.

Given the rotational symmetry in η and ϕ, the separation powers in centers of

energy and its width in radial direction resemble the ones in η and ϕ strongly, as can

be seen in figure 63 and figure 64.

The last set of separation powers we look at are from the sparsities in figure 65.

Here, the spread between different models is larger, ranging more than three orders of

magnitude. Interestingly, CaloDREAM still shows very good results, at the level of the

Geant4 reference band. CaloDiffusion on the other hand does not reproduce the

sparsities well, with CaloScore, SuperCalo, CaloINN, and iCaloFlow outperforming it

in all layers.

We show the Pearson correlation coefficients in layer energies in figure 66.

Interestingly, we do not reproduce all findings of [20], which trained a few models

from scratch, indicating that some of the observed patterns fluctuate from training

to training. In general, we observe two different failure modes in these figures: One

group (most prominently CaloLatent and CaloDiT) do not reproduce the correlations

in a large region. A second group (consisting of CaloScore distilled, iCaloFlow,

and CaloPointFlow) show problems in single layers, indicated by streaks in figure 66.

Also, the distillation procedure worsened the pattern for CaloScore single-shot, but

slightly improved it for iCaloFlow student. CaloDiT shows only correlation to one of

the nearest neighbor layers, nothing beyond that, which is consistent with the larger

separation powers we saw before.

We now turn to classifier-based metrics and start with the AUC of the binary

classifiers in figure 67 (and table C15). In addition to the DNN architecture that we

also used for dataset 1, we now have an additional, CNN-ResNet-based architecture

RESULTS: INDIVIDUAL METRICS 101

0.5 0.6 0.7 0.8 0.9 1.0
AUC

CNN-ResNet

low-level

high-level

 better

AUCs of binary classification: submission vs. GEANT4, dataset 2

GEANT4
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ

CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo

DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 67: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 2,

averaged over 10 independent evaluation runs. For the precise numbers, see Table C15.

-0.1 0.0 0.1 1 10 100 1000 10000

FPD 103

KPD 103

 better

KPD and FPD scores of submission vs. GEANT4, dataset 2

GEANT4
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ

CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo

DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 68: KPD and FPD for evaluating Geant4 vs. submission of ds 2. For the precise

numbers, see Table C16.

RESULTS: INDIVIDUAL METRICS 102

Calo
Diffu

sio
n

con
v. L

2LF
low

s

Calo
INN

MDMA

Calo
-VQ

Calo
Sco

re

Calo
Sco

re
dis

till
ed

Calo
Sco

re
sin

gle
-sh

ot

iCalo
Flo

w te
ach

er

iCalo
Flo

w st
ud

en
t

Su
pe

rCalo

Dee
pTr

ee

Calo
Poi

ntF
low

Calo
VA

E+
INN

Calo
Lat

en
t

Calo
DiT

Calo
DREA

M
22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

 better

Log posterior of GEANT4, dataset 2, DNN

Figure 69: Log-posterior scores for ds 2 Geant4 test data, averaged over 10 independent

DNN classifier trainings. For the precise numbers, see Table C17.

that we use for the evaluation. This CNN-ResNet architecture is much more sensitive

to differences in the distributions and it moves the AUC of many submissions close

to 1.0. While CaloDREAM has the best scores in the DNN-based classifiers, it is tied

with CaloDiffusion in the stronger CNN-ResNet classifier. However, as before, the

submissions CaloDREAM, CaloDiffusion, and CaloScore show in general the best

(lowest) binary AUC scores, independent of the classifier architecture used. Flow-based

models follow, while VAE and GAN-based submissions have the highest AUC.

The computer science-inspired metrics KPD and FPD in figure 68 (with details in

table C16) show results consistent with the classifier AUCs. CaloDREAM, CaloDiffusion,

and CaloScore again have the best (lowest) scores, but now CaloScore is slightly better

than CaloDiffusion, which is in fact overlapping with conv. L2LFlows now. At the

other end of the spectrum we again see submissions based on GANs and VAEs.

For the multiclass classification we also employ a DNN and a CNN-ResNet

architecture. Both of these have well-trained classifiers, as can be seen in figure B3

and figure B4. In figure 69 (as well as table C17), we see the results for the

DNN architecture. CaloDREAM is again leading with CaloDiffusion at a very close

second place. CaloScore with its distilled versions and the flow-based submissions

of SuperCalo, conv. L2LFlows, CaloINN, and iCaloFlow follow with very small

differences. Distilled submissions of CaloScore and iCaloFlow perform in general

slightly worse than the original versions that they have been distilled from. Turning to

RESULTS: INDIVIDUAL METRICS 103

Calo
Diffu

sio
n

con
v. L

2LF
low

s

Calo
INN

MDMA

Calo
-VQ

Calo
Sco

re

Calo
Sco

re
dis

till
ed

Calo
Sco

re
sin

gle
-sh

ot

iCalo
Flo

w te
ach

er

iCalo
Flo

w st
ud

en
t

Su
pe

rCalo

Dee
pTr

ee

Calo
Poi

ntF
low

Calo
VA

E+
INN

Calo
Lat

en
t

Calo
DiT

Calo
DREA

M
10

9

8

7

6

5

4

3

2

 better

Log posterior of GEANT4, dataset 2, CNN-ResNet

Figure 70: Log-posterior scores for ds 2 Geant4 test data, averaged over 10 independent

CNN ResNet classifier trainings. For the precise numbers, see Table C18.

the CNN-ResNet architecture in figure 70 (and table C18), the story is roughly the same

as for the DNN before. Overall, we observe the errorbars becoming larger, indicating a

larger spread of result in different trainings. However, the spread in the log posterior

from the best to the worst model decreased by a factor two from about 20 to about

10. The three submissions CaloDiffusion, CaloScore, and CaloDREAM are on top and

have comparable scores within their error bars. conv. L2LFlows follows closely and has

a small gap to the midfield, which is composed of iCaloFlow, the distilled versions of

CaloScore, and SuperCalo.

In figure 71 (with details in table C19) we show precision, density, recall, and

coverage of the ds 2 submissions. We first notice that there is a group of submissions

— consisting of CaloDiffusion, conv. L2LFlows, CaloScore and its distillations,

iCaloFlow, and CaloDREAM — that gets all four metrics close to the Geant4 reference.

This is another indication that these models generate high-quality showers. Another

group stands out with a large density value. These are CaloINN, Calo-VQ, CaloVAE+INN,

and CaloDiT. The large density, together with the small recall that most of the

submissions in this group have, suggests again that samples are generated very similar to

each other, but not diverse enough. The GAN submissions MDMA and DeepTree stand out

in a third group, with low precision, density and coverage, but large recall. We interpret

this pattern as generating samples that are fairly spread out, but not really close to the

reference samples. That way, precision and density are low, but the large distance

RESULTS: INDIVIDUAL METRICS 104

0.0 0.2 0.4 0.6 0.8 1.0
coverage

recall
precision

10 1 100 101 102 103
density

Manifold-based metrics, dataset 2

GEANT4
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ

CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo

DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 71: Precision, density, recall, and coverage for ds 2 submissions. For the precise

numbers, see Table C19.

105 106 107 108

Number of parameters

generation

training

 better

Number of trainable parameters, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 72: Number of trainable parameters for training and generation of ds 2

submissions. For the precise numbers, see Table C20.

between the submitted samples makes the recall manifold large enough to contain the

references. The remaining submissions, SuperCalo, CaloPointFlow, and CaloLatent

do not really fit in these groups, but are somehow similar to the GAN submissions with

smaller precision, density, and coverage, but larger recall than the Geant4 reference.

However, the gap is smaller in these cases.

To summarize the shower quality, we see a similar pattern than already for dataset

1: The diffusion and conditional flow matching models have the best quality, followed

then by Normalizing Flows and GAN and VAE-based models at the end.

Figure 72 compares the sizes of the submissions, with table C20 giving the precise

numbers. The by-far smallest model is MDMA, with about an order of magnitude fewer

parameters than the next submissions, CaloDiffusion and DeepTree. Normalizing-

flow-based architectures like conv. L2LFlows and CaloINN have the most parameters,

RESULTS: INDIVIDUAL METRICS 105

100 101 102 103 104 105 106

time per shower [ms]

GPU batch size 10000

GPU batch size 100

GPU batch size 1

CPU batch size 10000

CPU batch size 100

CPU batch size 1

 better

Generation times, dataset 2

CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore

CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree

CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 73: Timing of ds 2 submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C21 and table C22.

so the bijective transformation in this 6480-dimensional space takes it toll on the required

number of parameters.

Figure 73 (with detailed numbers in table C21 and table C22) show the generation

times of the submissions normalized to generating a single shower. Overall, they span

several orders of magnitude, even when only looking at one of the two architectures

alone. This spread depends also on the batch size, with smaller batch sizes having a

larger spread between slowest and fastest submission. For example, for a batch size of 1,

we see four to five orders of magnitude difference. On the CPU, sample generation is in

general slower and more spread out between slowest and fastest submission than on the

GPU. Batching helps to speed up generation, but some of the models run into memory

problems at very large batch sizes, even more on a GPU with limited VRAM. As for the

DGM types, we see VAE and GAN-based models in the lead, with MDMA, CaloVAE+INN,

and Calo-VQ being the fastest. The symmetric flow architecture of CaloINN is also fast

in generation, but only on a GPU and for larger batch sizes. The diffusion models and

MAF-based normalizing flows are the slowest submissions. Distillation of models clearly

improves the generation speed in all cases, as expected. Generating showers in batches

improves the generation speed in all cases, but also leads to out of memory errors in

RESULTS: INDIVIDUAL METRICS 106

11 out of 17 cases on the GPU. Given that some of the generation times (especially for

smaller batch sizes) get considerably large, we restricted the number of samples used to

time the models to fewer than 100 000 events, see the details in table C21 and table C22.

9.5. Dataset 3, Electrons (ds 3)

Also for dataset 3, the minimal energy that can be read out is given by 15.15 keV.

We again start our evaluation with the separation power of high-level observables, in

particular with the energy depositions per layer and in total in figure 74. We notice

that many models show the best performance around layers 3 – 10, and separation

powers then grow towards the end of the detector. CaloDREAM, CaloDiffusion,

conv. L2LFlows, and L2LFlows-MAF even reach the Geant4 reference band in this

region. Further, CaloDREAM matches the total energy deposition very well.

Moving on to centers of energy in η and ϕ in figure 75 and figure 76, we see again

two very similar distributions in both of these directions, indicating that the rotational

symmetry was learned well by all submissions. At the level of the Geant4 reference,

we see CaloDiffusion and CaloDREAM, both with rather smooth separation powers

from one calorimeter layer to the next. Slightly worse, we have CaloPointFlow, which

was also smooth, and conv. L2LFlows, which shows some ups and downs from layer

to layer. Among the rest, we notice a similar, but stronger up and down pattern for

Calo-VQ (which is however not present in the improved version Calo-VQ(norm)). MDMA

shows the largest spread between the lowest and largest separation power. The VAE-

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

tot
al

En
erg

y

all
vox

els
10 4

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Energy depositions, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 74: Separation power of energy depositions.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in , dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 75: Separation power of centers of energy in η direction.

RESULTS: INDIVIDUAL METRICS 107

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in , dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 76: Separation power of centers of energy in ϕ direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in , dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 77: Separation power of widths of centers of energy in η direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in , dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 78: Separation power of widths of centers of energy in ϕ direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Center of Energy in r, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 79: Separation power of centers of energy in radial direction.

RESULTS: INDIVIDUAL METRICS 108

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 3

10 2

10 1

se
pa

ra
tio

n

 better

Width of Center of Energy in r, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 80: Separation power of widths of centers of energy in radial direction.

Lay
er

0

Lay
er

1

Lay
er

2

Lay
er

3

Lay
er

4

Lay
er

5

Lay
er

6

Lay
er

7

Lay
er

8

Lay
er

9

Lay
er

10

Lay
er

11

Lay
er

12

Lay
er

13

Lay
er

14

Lay
er

15

Lay
er

16

Lay
er

17

Lay
er

18

Lay
er

19

Lay
er

20

Lay
er

21

Lay
er

22

Lay
er

23

Lay
er

24

Lay
er

25

Lay
er

26

Lay
er

27

Lay
er

28

Lay
er

29

Lay
er

30

Lay
er

31

Lay
er

32

Lay
er

33

Lay
er

34

Lay
er

35

Lay
er

36

Lay
er

37

Lay
er

38

Lay
er

39

Lay
er

40

Lay
er

41

Lay
er

42

Lay
er

43

Lay
er

44

10 5

10 4

10 3

10 2

10 1

100

se
pa

ra
tio

n

 better

Layer Sparsity, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM
GEANT4

Figure 81: Separation power of the sparsity.

based submissions CaloVAE+INN and Geant4-Transformer have the most problems

reproducing the Geant4 data.

Most of the statements of the centers of energy also apply to their widths

in figure 77 and figure 78. CaloDREAM has the smallest separation powers, close to

Geant4. CaloDiffusion comes second, but with a larger gap for earlier layers,

where conv. L2LFlows shows a better match to the reference. In between these

submissions and the bulk, we see CaloScore distilled and CaloScore single-shot.

Calo-VQ again has an oscillating behavior over the entire size of the detector, and

Geant4-Transformer and CaloVAE+INN have the largest separation powers. The order

of submissions is also preserved when looking at the centers of energy in r in figure 79

and their widths in figure 80.

Only for the sparsities in figure 81 we see a difference. CaloDREAM still shows the best

performance, again at the level of Geant4, but CaloDiffusion has a much harder time

reproducing the correct distribution. Instead, CaloScore distilled and CaloScore

single-shot (for early layers), iCaloFlow (for later layers), and conv. L2LFlows have

small separation powers and get close to CaloDREAM. Also in this observable, the VAE-

based submissions Geant4-Transformer and CaloVAE+INN show the largest separation

powers. In fact, overall we see the separation powers ranging over five orders of

magnitude between best and worst submission.

In figure 82 we look at the Pearson correlation coefficients of the layer energies.

Also in this case we do not reproduce all findings of [20], again indicating that some of

the observed patterns might fluctuate from training to training. Similar to what we have

RESULTS: INDIVIDUAL METRICS 109

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

GEANT4

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloDiffusion

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

L2LFlows MAF

0.0

0.2

0.4

0.6

0.8

1.0
La

ye
r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

conv. L2LFlows

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

MDMA

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloClouds

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

Calo-VQ

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloScore distilled

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloScore single-shot

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

iCaloFlow teacher

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

iCaloFlow student

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

GEANT4 transformer

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloPointFlow

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloVAE+INN

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

Calo-VQ(norm)

0.0

0.2

0.4

0.6

0.8

1.0

La
ye

r 0

La
ye

r 4

La
ye

r 8

La
ye

r 1
2

La
ye

r 1
6

La
ye

r 2
0

La
ye

r 2
4

La
ye

r 2
8

La
ye

r 3
2

La
ye

r 3
6

La
ye

r 4
0

La
ye

r 4
4

Layer 44

Layer 40

Layer 36

Layer 32

Layer 28

Layer 24

Layer 20

Layer 16

Layer 12

Layer 8

Layer 4

Layer 0

CaloDREAM

0.0

0.2

0.4

0.6

0.8

1.0

Figure 82: Pearson correlation coefficients of layer energies in ds 3.

observed for the other datasets, we see three different groups of correlation patterns.

The first one reproduces the Geant4 shape quite well and consists of CaloClouds,

iCaloFlow student, and CaloDREAM. The submissions MDMA, Geant4-Transformer in

the second group are also very smooth and only have small regions that appear slightly

brighter than the reference. The third group consists of submissions that have single

layers that do not have the correct correlation, indicated by stripes in the figures. While

some are very faint and just a few (like for CaloDiffusion, Calo-VQ, CaloVAE+INN,

or iCaloFlow teacher), others have more and a stronger contrast (like CaloScore

distilled, CaloScore single-shot, CaloPointFlow, or Calo-VQ(norm)). We also

find again the intriguing pattern that the distillation of CaloScore made the correlations

worse, but the distillation of iCaloFlow improved the correlations.

The AUCs of the binary classifiers in figure 83 (and table C23) corroborate the

RESULTS: INDIVIDUAL METRICS 110

0.5 0.6 0.7 0.8 0.9 1.0
AUC

CNN-ResNet

low-level

high-level

 better

AUCs of binary classification: submission vs. GEANT4, dataset 3

GEANT4
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds

Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student

GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 83: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 3,

averaged over 10 independent evaluation runs. For the precise numbers, see Table C23.

-0.1 0.0 0.1 1 10 100 1000 10000 100000

FPD 103

KPD 103

 better

KPD and FPD scores of submission vs. GEANT4, dataset 3

GEANT4
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds

Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student

GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 84: KPD and FPD for evaluating Geant4 vs. submission of ds 3. For the precise

numbers, see Table C24.

results of the separation power. For the high-level features, the best three models

— CaloDREAM, CaloDiffusion, and conv. L2LFlows— are clearly separated from the

other submissions. For low-level features, these three submissions still have the best

performance, independent of the classifier architecture, but the ordering changed with

CaloDiffusion having the best AUC. While the DNN indicates differences between

submissions, yielding a spread between all the AUCs, the CNN-ResNet architecture

RESULTS: INDIVIDUAL METRICS 111

Calo
Diffu

sio
n

L2L
Flo

ws M
AF

con
v. L

2LF
low

s
MDMA

Calo
Clou

ds

Calo
-VQ

Calo
Sco

re
dis

till
ed

Calo
Sco

re
sin

gle
-sh

ot

iCalo
Flo

w te
ach

er

iCalo
Flo

w st
ud

en
t

GEA
NT4

 tra
nsf

orm
er

Calo
Poi

ntF
low

Calo
VA

E+
INN

Calo
-VQ(no

rm
)

Calo
DREA

M

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

 better

Log posterior of GEANT4, dataset 3, DNN

Figure 85: Log-posterior scores for ds 3 Geant4 test data, averaged over 10 independent

DNN classifier trainings. For the precise numbers, see Table C25.

essentially identifies the three best submissions — CaloDiffusion, CaloDREAM, and

conv. L2LFlows— and gives all other submissions an AUC of 1.

A similar ordering, at least in terms of the top three models, is also seen in the KPD

and FPD scores in figure 84 (with details in table C24). Now CaloDREAM is closest to the

Geant4 reference. Also for these scores (especially for the KPD), the bulk of all other

submissions is very close to each other with scores overlapping within uncertainties.

The multiclass classifier metric, shown in figure 85, figure 86, table C25, and

table C26 is consistent with the binary AUCs shown before. CaloDREAM and

CaloDiffusion have the highest log-posterior, and conv. L2LFlows comes in third

before there is a gap to the remaining submissions. Again, we see the CNN-ResNet

being more powerful, giving low scores to almost all submissions when compared to

Geant4. As with ds 2, we also observe here that the spread in log-posterior between the

best and worst model is smaller in the CNN-ResNet compared to the DNN architecture.

However, both of the considered architectures have well-trained classifiers, as can be seen

in figure B5 and figure B6. The size of the error bars, coming from ten independent

retrainings of the classifier, seems to be correlated with the central value of the log-

posterior, with smaller (worse) log-posterior scores having larger error bars.

In figure 87 and table C27 we show precision, density, recall, and coverage of

the ds 3 submissions. The first thing we notice are the Geant4 scores, which now

have much smaller precision and recall compared to ds 2 in figure 71, maybe a

RESULTS: INDIVIDUAL METRICS 112

Calo
Diffu

sio
n

L2L
Flo

ws M
AF

con
v. L

2LF
low

s
MDMA

Calo
Clou

ds

Calo
-VQ

Calo
Sco

re
dis

till
ed

Calo
Sco

re
sin

gle
-sh

ot

iCalo
Flo

w te
ach

er

iCalo
Flo

w st
ud

en
t

GEA
NT4

 tra
nsf

orm
er

Calo
Poi

ntF
low

Calo
VA

E+
INN

Calo
-VQ(no

rm
)

Calo
DREA

M

10

8

6

4

2

 better

Log posterior of GEANT4, dataset 3, CNN-ResNet

Figure 86: Log-posterior scores for ds 3 Geant4 test data, averaged over 10 independent

CNN ResNet classifier trainings. For the precise numbers, see Table C26.

0.0 0.2 0.4 0.6 0.8 1.0
coverage

recall
precision

10 1 100 101 102 103
density

Manifold-based metrics, dataset 3

GEANT4
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds

Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student

GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 87: Precision, density, recall, and coverage for ds 3 submissions. For the precise

numbers, see Table C27.

RESULTS: INDIVIDUAL METRICS 113

105 106 107 108 109

Number of parameters

generation

training

 better

Number of trainable parameters, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 88: Number of trainable parameters for training and generation of ds 3

submissions. For the precise numbers, see Table C28.

sign for the much higher-dimensional dataset. When looking at the submissions, we

observe groups with similar patterns as for the other datasets before. The first one

of these are CaloDiffusion, CaloScore distilled, and iCaloFlow teacher, which

have scores comparable to the Geant4 reference. Similar to these, but with a slightly

larger density are CaloDREAM, conv. L2LFlows and iCaloFlow student. These groups

overlap to a large extend with the “winners” of the classifier-based metrics, but have

with iCaloFlow also new members. With increasing density, we but otherwise similar

scores is L2LFlows-MAF. These all indicate samples that are distributed similarly close

to the validation data like the training data. Another group of submissions, consisting

of MDMA, CaloClouds, CaloScore single-shot, and CaloPointFlow, have precision,

density and coverage below the Geant4 scores, and at the same time a very large

recall. As already for ds 2, we interpret such a pattern as samples being generated fairly

spread out, but not really close to the reference samples. Also these observations are

consistent with what we saw for other metrics before. The last group, with a very large

density, a larger precision and a low recall was also present in ds 2. In this group we

have Calo-VQ, Calo-VQ(norm), Geant4-Transformer, and CaloVAE+INN.

Figure 88 compares the sizes of the submissions, with table C28 giving the precise

numbers. Overall, the entire span in number of parameters is more than four orders

of magnitude. Similar to ds 2, MDMA has by far the fewest number of trainable

parameters, making it a very economic submission. Following behind are with Calo-VQ

and CaloDiffusion a VAE and a diffusion model, showing that these architectures can

generate high-dimensional data much more economically than normalizing flows.

Lastly, we look at the generation time per shower in figure 89 (see table C29 for

CPU and table C30 for GPU details). Overall, we see the same pattern as for all

datasets before. Increasing the batch size and moving from a CPU to a GPU architecture

speeds up generation. Depending on the architecture, sometimes by several orders of

magnitude. However, the high dimensionality of ds 3 makes generation with large batch

sizes sometimes impossible due to memory constraints. For example at batch size 10000,

nine out of 15 submissions run into CUDA out of memory errors on the GPU. The large

spread in generation times also required us to restrict the number of samples used to

time the models to fewer than 100 000 events, especially for smaller batch sizes. For

the largest batch size of 10 000, we had three cases on the CPU in which generation

RESULTS: CORRELATIONS BETWEEN METRICS 114

100 101 102 103 104 105 106 107

time per shower [ms]

GPU batch size 10000

GPU batch size 100

GPU batch size 1

CPU batch size 10000

CPU batch size 100

CPU batch size 1

 better

Generation times, dataset 3

CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds

Calo-VQ
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher
iCaloFlow student

GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 89: Timing of ds 3 submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C29 and table C30.

of a single batch took longer than two days. Details for this are given in table C29

and table C30. The fastest models are again GAN-based submissions like MDMA and

VAE-based submissions like Calo-VQ or CaloVAE+INN. As for the previous datasets, we

observe that distillation worked and speeds up generation in all cases.

10. Results: Correlations Between Metrics

In this section we study how the scores in different metrics are related to each other.

The goal of that is two-fold: First, in section 10.1, we study how various different

metrics that all measure the same property correlate with each other. In the case of

the sample quality, this will shed light on various aspects regarding the evaluation of

generative models, a result of great importance beyond detector fast simulation. Second,

in section 10.2, we are interested in the Pareto fronts in the “quality vs. speed vs. resource

consumption” space, as these will be the ultimate results of the CaloChallenge. The

observations made in the first part, i.e. how which quality metrics correlate with each

other, will be especially important for the choice of metrics shown in the final evaluation

Pareto Fronts.

RESULTS: CORRELATIONS BETWEEN METRICS 115

10.1. Metric Comparison

As a nice side result of the challenge, we can evaluate how different metrics that measure

the quality of the showers correlate with each other. These tests also justify that the

Pareto fronts we will show below are representative.

10 1 100

sum of all separation powers

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of high-level binary AUC to sum of separation powers, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student

CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 90: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 32–figure 37) vs. the binary AUC (figure 39 and table C1).

100

sum of all separation powers

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of high-level binary AUC to sum of separation powers, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 91: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 45–figure 50) vs. the binary AUC (figure 52 and table C8).

The first of these tests looks at the high-level observables that were defined in

section 8.1 and compares the sum of all separation powers to the AUC of the binary

classifier. While the former is only sensitive to the distribution of the individual

observables, the latter also captures correlations between them. We see in figure 90

that the results for ds 1 – γ show a clear correlation. Submissions with a higher AUC

also have a larger sum of their separation powers. The situation is similar for ds 1 – π+

RESULTS: CORRELATIONS BETWEEN METRICS 116

100 101

sum of all separation powers

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of high-level binary AUC to sum of separation powers, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDREAM

Figure 92: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 58–figure 65) vs. the binary AUC (figure 67 and table C15).

100 101

sum of all separation powers

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of high-level binary AUC to sum of separation powers, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 93: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 74–figure 81) vs. the binary AUC (figure 83 and table C23).

in figure 91, but there the submissions are a little more spread out, indicating that some

models struggled a bit more to capture all correlations between the observables. Also

datasets 2 and 3 in figure 92 and figure 93 show a clear correlation of the two metrics,

confirming that they both capture the essential features of the high-level observables.

Next we investigate how the choice of the input representation to the binary

classifier influences the AUC. In particular, we look at the correlation of the AUC

of the binary classifier with low-level inputs vs. the AUC of the binary classifier with

high-level inputs. Figure 94 shows the result for ds 1 – γ. While there is a clear

correlation between the two metrics visible, there is also a noticeable spread between

submissions, for example when comparing CaloINN to CaloScore. The situation is

more clear for ds 1 – π+ in figure 95. Here, we see two different lines forming. One

with CaloDiffusion, CaloINN, CaloGraph, and CaloFlow, where the low-level AUC is

RESULTS: CORRELATIONS BETWEEN METRICS 117

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of low-level binary AUC to high-level binary AUC, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student

CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 94: Correlation of two metrics based on binary classifiers (figure 39 and table C1):

the AUC based on low-level observables vs. the AUC based on high-level observables.

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of low-level binary AUC to high-level binary AUC, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 95: Correlation of two metrics based on binary classifiers (figure 52 and table C8):

the AUC based on low-level observables vs. the AUC based on high-level observables.

slightly worse than the corresponding high-level AUC. The other one with DNNCaloSim,

CaloVAE+INN, CaloShowerGAN, CaloForest, Calo-VQ, and CaloMan, where the high-

level AUC is larger than the low-level AUC. Interestingly, the division in these two sets

aligns with the underlying architectures, with the diffusion models and normalizing flows

in the first group and the VAEs and GANs in the second group. We interpret these

differences as follows: the first group (diffusion and Normalizing Flow-based) generates

showers which better capture the correlations between voxels that form the high-level

observables and the remaining mismodeling between the submissions and Geant4 is

in the lower-energetic, subleading voxels. The second group (VAE and GAN-based),

however, already mismodels the correlations that form the high-level observables leading

to a larger AUC for this classifier. The strong correlation between the AUCs is also

RESULTS: CORRELATIONS BETWEEN METRICS 118

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of low-level binary AUC to high-level binary AUC, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 96: Correlation of two metrics based on binary classifiers (figure 67 and

table C15): the AUC based on low-level observables vs. the AUC based on high-level

observables.

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y

AU
C

 better

Correlation of low-level binary AUC to high-level binary AUC, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 97: Correlation of two metrics based on binary classifiers (figure 83 and

table C23): the AUC based on low-level observables vs. the AUC based on high-level

observables.

present for dataset 2 in figure 96. For dataset 3 in figure 97 it is not as pronounced,

but that is mostly due to the high-level AUCs being close to 1 for many submissions.

The correlations between high and low-level AUCs also tell us something about the

classifier metric itself. Since all the high-level observables are derived from the low-

level ones, there cannot be any additional information in the high-level observables.

The AUC based on low-level inputs should therefore be strictly larger, i.e. indicating

a better classifier than the AUC based on high-level features alone. The fact that we

do not see this here indicates that the DNN classifier used in this study is not at the

Neyman-Pearson limit and additional studies based on the high-level observables are

indeed necessary to get a better understanding on the quality of the generated samples.

RESULTS: CORRELATIONS BETWEEN METRICS 119

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

CN
N

Re
sN

et
 b

in
ar

y
AU

C

 better

Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 98: Correlation of two metrics based on binary classifiers and low-level

observables (figure 67 and table C15): the AUC based on a DNN classifier vs. the

AUC based on CNN ResNet classifier.

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

0.5

0.6

0.7

0.8

0.9

1.0

CN
N

Re
sN

et
 b

in
ar

y
AU

C

 better

Correlation of low-level binary AUC to CNN ResNet binary AUC, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 99: Correlation of two metrics based on binary classifiers and low-level

observables (figure 83 and table C23): the AUC based on a DNN classifier vs. the

AUC based on CNN ResNet classifier.

For datasets 2 and 3 we can also compare the AUCs obtained by the two different

architectures used for the binary classification: the DNN and the CNN ResNet. The

results are shown in figure 98 and figure 99. In both cases we see a correlation, but we

also see many submissions having a CNN ResNet-based AUC close to 1, making it hard

to order them by this metric. This is especially true for dataset 3. We therefore use the

DNN architecture for the Pareto fronts below.

Lastly, we compare the results of the binary classification to the results of the

multiclass classification. Also in these cases (ds 1 – γ in figure 100, ds 1 – π+ in figure 101,

ds 2 in figure 102, and ds 3 in figure 103), we observe a clear correlation: submissions

performing well in one metric also perform well in the other metric, indicating that

RESULTS: CORRELATIONS BETWEEN METRICS 120

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

30

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Correlation of low-level binary AUC to multiclass log-posterior, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student

CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 100: Correlation of two metrics based on classifiers : the log posterior (figure 41

and table C3) of the multiclass classification vs. the AUC of the binary classification

(figure 39 and table C1).

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Correlation of low-level binary AUC to multiclass log-posterior, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 101: Correlation of two metrics based on classifiers : the log posterior (figure 54

and table C10) of the multiclass classification vs. the AUC of the binary classification

(figure 52 and table C8).

both the binary and multiclass classification capture the main differences between the

submissions. The spread for ds 3 in figure 103 is larger than for ds 2 in figure 102, which

is maybe due to the rather small sample size compared to the high-dimensionality of

ds 3. Overall, this implies that the binary classification can be used for further model

development and it is not required to have all other submitted samples at hand to

perform a multiclass classification for model evaluation.

In addition to the quality metrics, we also look at the correlation between the

generation times per shower on CPU and GPU architectures. In particular, we consider

generation batch sizes of 100 in figure 104 for ds 1 – γ, figure 105 for ds 1 – π+, figure 106

for ds 2, and figure 107 for ds 3. In all cases, we see the scatter between fastest and

RESULTS: CORRELATIONS BETWEEN METRICS 121

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Correlation of low-level binary AUC to multiclass log-posterior, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 102: Correlation of two metrics based on classifiers : the log posterior (figure 69

and table C17) of the multiclass classification vs. the AUC of the binary classification

(figure 67 and table C15).

0.5 0.6 0.7 0.8 0.9 1.0
low-level binary AUC

20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Correlation of low-level binary AUC to multiclass log-posterior, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 103: Correlation of two metrics based on classifiers : the log posterior (figure 85

and table C25) of the multiclass classification vs. the AUC of the binary classification

(figure 83 and table C23).

slowest model to be much larger on the CPU than on the GPU. On top of the usual

speed-up on the GPU, we observe the actual speed-up factor vary from model to model,

depending on the specific building blocks of the models.

RESULTS: CORRELATIONS BETWEEN METRICS 122

100 101 102 103 104

CPU geneneration time [ms]

100

101

102

GP
U

ge
ne

ne
ra

tio
n

tim
e

[m
s]

 better

Correlation of CPU to GPU generation times at batch size 100, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloGraph

Figure 104: Correlation of generation times on CPU and GPU (see figure 44, table C6

and table C7).

100 101 102 103

CPU geneneration time [ms]

100

101

102

GP
U

ge
ne

ne
ra

tio
n

tim
e

[m
s]

 better

Correlation of CPU to GPU generation times at batch size 100, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloGraph

Figure 105: Correlation of generation times on CPU and GPU (see figure 57, table C13

and table C14).

RESULTS: CORRELATIONS BETWEEN METRICS 123

101 102 103 104 105

CPU geneneration time [ms]

100

101

102

103

GP
U

ge
ne

ne
ra

tio
n

tim
e

[m
s]

 better

Correlation of CPU to GPU generation times at batch size 100, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 106: Correlation of generation times on CPU and GPU (see figure 73, table C21

and table C22).

101 102 103 104 105

CPU geneneration time [ms]

101

102

103

GP
U

ge
ne

ne
ra

tio
n

tim
e

[m
s]

 better

Correlation of CPU to GPU generation times at batch size 100, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 107: Correlation of generation times on CPU and GPU (see figure 89, table C29

and table C30).

RESULTS: CORRELATIONS BETWEEN METRICS 124

10.2. Pareto Fronts

This section compiles the main results of the “Fast Calorimeter Simulation Challenge

2022”. We show the performance of the submissions in the abstract “quality vs. speed

vs. resource consumption” space. We are interested in submissions which are lightweight

(i.e. have few parameters), are fast in generation, and have good sample quality. In

particular, we focus on two planes in which there is a trade-off between two properties:

quality vs. resource consumption and quality vs. speed. The third option, speed

vs. resource consumption, does not show a real trade-off, so we collect the figures in

appendix D.

106 107 108 109

parameters in generation

30

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: number of parameters in generation vs. multiclass log-posterior, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher
CaloFlow student

CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 108: Pareto front in sample quality (from figure 41 and table C3) and number

of parameters in generation (from figure 43 and table C5).

106 107 108 109

parameters in generation

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: number of parameters in generation vs. multiclass log-posterior, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 109: Pareto front in sample quality (from figure 54 and table C10) and number

of parameters in generation (from figure 56 and table C12).

We start by comparing sample quality to model size by plotting the DNN multiclass

log-posterior with respect to the number of trainable parameters in generation. While

we expect models with more parameters to better learn the underlying probability

RESULTS: CORRELATIONS BETWEEN METRICS 125

105 106 107 108

parameters in generation

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: number of parameters in generation vs. multiclass log-posterior, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 110: Pareto front in sample quality (from figure 69 and table C17) and number

of parameters in generation (from figure 72 and table C20).

105 106 107 108 109

parameters in generation

20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: number of parameters in generation vs. multiclass log-posterior, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 111: Pareto front in sample quality (from figure 85 and table C25) and number

of parameters in generation (from figure 88 and table C28).

distribution that generates the showers, the use of the generative model inside a fast

simulation framework prefers models that require less memory and are faster to load,

i.e. have fewer parameters in generation. The figures for both particles in dataset 1

(photons in figure 108 and pions in figure 109) are very similar. In both cases we see

CaloDiffusion in the top left corner, indicating that this diffusion model can generate

high-quality showers with a comparatively small number of parameters. For dataset 2

in figure 110, we do not have a clear winner in the corner. Instead, we observe a cluster of

various submissions (including CaloScore, its distillations, iCaloFlow, and SuperCalo)

at good scores, but relatively large number of parameters. CaloDiffusion is part of

the Pareto front, with similar or better quality than submissions of said cluster, but

more than an order of magnitude fewer parameters. Sacrificing some quality moves the

Pareto front to even fewer parameters with the submission MDMA. Dataset 3 in figure 111

shows a similar trade-off between CaloDiffusion and MDMA around the top-left corner,

RESULTS: CORRELATIONS BETWEEN METRICS 126

but not such a large cluster of submission in the top-right.

100 101 102

GPU generation time, batch size 100, in ms

30

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloGraph

Figure 112: Pareto front in sample quality (from figure 41 and table C3) and generation

speed (from figure 44 and table C7).

100 101 102

GPU generation time, batch size 100, in ms

25

20

15

10

5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloGraph

Figure 113: Pareto front in sample quality (from figure 54 and table C10) and generation

speed (from figure 57 and table C14).

Next, we show the money plots in figure 112, figure 113, figure 114, and figure 115.

Here, we compare the sample quality, measured by the DNN multiclass log-posterior,

to the generation time, measured by the per-shower-time it takes to generate the entire

dataset in batches of 100 on a GPU.

For ds 1 – γ, we truly see a trade-off between the two metrics in figure 112. On

the one side, we have submissions with good sample quality, i.e. a high log-posterior

and large generation time in the top-right corner. The submissions CaloDiffusion,

CaloScore, CaloGraph, and CaloFlow teacher belong to this group. The distillations

CaloScore distilled and CaloScore single-shot for a line to smaller generation

times at the expense of a little shower quality, as we had seen in the individual metrics

before. On the other side, we have submissions with lower log-posterior score, but a much

RESULTS: CORRELATIONS BETWEEN METRICS 127

100 101 102 103

GPU generation time, batch size 100, in ms

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure 114: Pareto front in sample quality (from figure 69 and table C17) and generation

speed (from figure 73 and table C22).

101 102 103

GPU generation time, batch size 100, in ms

20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

m
ul

tic
la

ss
 lo

g-
po

st
er

io
r

 better

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 115: Pareto front in sample quality (from figure 85 and table C25) and generation

speed (from figure 89 and table C30).

faster generation time per shower. The VAE-based submissions CaloMan, Calo-VQ, and

CaloVAE+INN belong to this group. In the corner with the best scores of both dimensions,

we have the Normalizing Flow-based submission CaloINN. Also CaloFlow student is

close, indicating that the low-dimensional data of dataset 1 – photons can be described

well with normalizing flows and that a good choice for the architecture can also make

the generation fast.

With ds 1 – π+ in figure 113, the situation is similar than with ds 1 – γ, given

that it has comparable dimensionality. We again observe a cluster of submissions

in the top-right at good shower quality and large generation time. Again, these are

the diffusion models CaloDiffusion, CaloGraph, the MAF-based normalizing flow of

CaloFlow teacher, and the GAN of CaloShowerGAN. Much faster, but also worse in

quality we again see VAE and GAN-based models of Calo-VQ, BoloGAN, and CaloMan.

In the corner of fast generation of good showers, we see four submissions that actually

CONCLUSIONS AND OUTLOOK 128

form a line, making it easy to give them an order towards better showers at shorter

times: From worst to best, these are CaloFlow student, CaloVAE+INN, CaloINN, and

DNNCaloSim. Out of these, we have two normalizing flow-based submissions with

CaloINN and CaloFlow student— as we had before for the photon dataset. However

this time, we also have two VAE-based submissions at the Pareto front: DNNCaloSim and

CaloVAE+INN. This indicates that the larger shower-to-shower variability of pion showers

is better captured by VAEs as the rather uniform photon showers we had before.

Dataset 2 now increases the dimensionality of the samples by an order of magnitude.

The Pareto front in figure 114, however, does show similar features as we have seen for

dataset 1 before. There is a group of diffusion and normalizing flow-based submissions

in the top right with very high log-posterior scores, but also rather big generation

times per shower. In this group, we have CaloDREAM, CaloDiffusion, CaloScore,

iCaloFlow, SuperCalo, and conv. L2LFlows. At the other end of the spectrum, we

have again fast submissions with worse log-posterior scores. In this group we have

GAN-based submissions MDMA and DeepTree, and VAE-based submissions Calo-VQ and

CaloVAE+INN. In the corner with both scores being good, we have three submissions:

CaloPointFlow, CaloScore single-shot, and CaloINN from “worst” to best. So also

for this dataset, the normalizing flow-based submissions have the best trade-off between

shower quality and generation speed.

In dataset 3, the Pareto front in figure 115 is a little more diffuse, with the

individual groups more spread out and no single submission in the best corner.

Nevertheless, the similar general trends than before also apply. Diffusion models

like CaloDiffusion and CaloScore distilled, the CFM model CaloDREAM, and

normalizing flow-based submissions L2LFlows-MAF and iCaloFlow teacher have good

shower quality, but need longer to generate the showers. VAE and GAN-based

submissions Calo-VQ, Calo-VQ(norm), Geant4-Transformer and MDMA are much faster

in generation, but at the expense of shower quality. In the top-left corner, we see the

remaining submissions. While CaloClouds and iCaloFlow student are outperformed

by CaloVAE+INN, CaloScore single-shot, CaloPointFlow and conv. L2LFlows they

still show a decent trade-off of quality and generation speed. The latter group now

forms the Pareto front. The fastest among them is CaloVAE+INN. With a better shower

quality, but at slightly bigger generation time, we have CaloPointFlow and CaloScore

single-shot almost at the exact same spot, just slightly slower. Slowest of these four,

but best in quality, is conv. L2LFlows. For this high-dimensional dataset finding the

optimal point really influences the choice of generative architecture, since this group

consists of normalizing flows, a diffusion model, and a VAE.

11. Conclusions and Outlook

In this document, we summarize the results of the Fast Calorimeter Simulation

Challenge 2022. We present a broad survey of state-of-the-art generative AI

architectures on four different calorimeter shower datasets with dimensionalities ranging

CONCLUSIONS AND OUTLOOK 129

from a few hundred to a few tens of thousand voxels. The data has a few physics-specific

characteristics, like a high degree of sparsity, energy depositions in voxels spanning

several orders of magnitude, and correlations between voxels across several layers, that

are not present in natural images and other datasets. With about 15 submissions per

dataset, and at least one submission for each type of generative architecture (GAN,

VAE, Normalizing Flow, Diffusion, and Conditional Flow Matching) per dataset, this

document provides the most detailed and complete survey of generative AI for high-

energy physics.

First announced in February 2022, the challenge quickly motivated the first

publications using the dataset with CaloScore [50, 51], CaloFlow [34], and CaloMan [60].

More followed and were presented at the ML4Jets conference in November 2022 at

Rutgers [17]. While we first planned to close the challenge with the dedicated meeting

in Frascati [19] in May 2023, we saw a constant interest in the challenge with new

submissions being presented at ML4Jets in Hamburg in November 2023 [18]. In total, we

have received 59 submissions, sampled from 31 models, from 23 collaborations consisting

of researchers from the theory and the experimental communities, as well as from outside

academia. By now most of the submissions have been published by physics journals or

ML conferences, highlighting the high quality of the individual works.

While the main focus of this challenge was on generative models for calorimeter

showers, with the requirements of the (HL)-LHC and future colliders in mind, many

of the results will likely translate to other domains in high-energy physics in which

generative AI is used as well, such as generative unfolding [207, 208, 209, 210, 211, 212,

213, 214, 215, 216, 217, 218, 219], modeling of hadronization effects [220, 221, 222, 223,

224], end-to-end simulations like flashsim [225], or anomaly detection with generative

aspects [226, 227, 228].

11.1. Overall Physics Results

Since fast simulation frameworks are in the ideal case faithful, fast, and light-weight,

it was expected that with such ambitious objectives there will be no clear winner of

the CaloChallenge. Instead, our goal was to create a survey of different generative

architectures, their advantages and disadvantages, and especially their scaling behavior

when increasing the dimensionality of the dataset. Ultimately, the objectives of

experiments will differ, with some in need of high fidelity simulation, others prioritizing

the speed, trading off physics accuracy to a certain extent.

For low-dimensional datasets, i.e. dataset 1 – photons with 368 voxels, we saw

that diffusion models like CaloDiffusion [44] and Normalizing Flow-based models like

CaloINN [38] have the best quality, meaning they reproduce the Geant4 distribution

most faithfully. The diffusion model has a rather small number of trainable parameters,

so it’s also more lightweight than the normalizing flow, but since generation requires

multiple steps and calls to the neural network, the diffusion model is much slower in

generation. The invertible architecture of CaloINN does not require multiple calls to

CONCLUSIONS AND OUTLOOK 130

the same neural network, it also avoids a more resource-consuming distillation step like

CaloFlow, making CaloINN an optimal submission for ds 1 – γ, see figure 112. GAN

and VAE-based architectures are in general also fast in generation, but do not produce

high-quality showers, making them less favorable if high fidelity is top priority.

For dataset 1 – pions, the situation is very similar. With 533 voxels, the dataset

is still relatively low-dimensional, so normalizing flows and diffusion models, namely

CaloINN [38] and CaloDiffusion [44] show again a good performance. In addition,

the VAE-based submission DNNCaloSim [62, 63] showed great performance in many

of the quality metrics. The statement regarding model size and generation speed of

dataset ds 1 – γ also applies here. The diffusion model does not need a lot of trainable

parameters, which makes it very lightweight. Generation speed, however, is lower due to

the subsequent denoising steps in generation. The normalizing flow, on the other hand,

is growing at least linearly in size with the dimensionality of the dataset, so it is now

already about 1.4 times bigger than for the photons. Nevertheless, it is still very fast

in generation, and, at least on the GPU, only marginally behind the well-performing

submission DNNCaloSim. This VAE-based model is the fastest in generation on the CPU

for all batch sizes and is only beaten marginally on the GPU for very large batch sizes.

It is midrange in terms of model size, with some GANs having fewer parameters and

most normalizing flows having more. It is also interesting to note that DNNCaloSim had

the best scores in the low-level binary AUC and the multiclass log-posterior, but had

worse scores for KPD and FPD, as well as the separation powers we looked at. In these

latter cases, CaloDiffusion, CaloFlow student [34], and CaloGraph [54] performed

better than DNNCaloSim.

Dataset 2 now increases the dimensionality by an order of magnitude to 6480. This

also increases the number of parameters in the so-far well-performing normalizing flow of

CaloINN [38] by an order of magnitude to about 2.7·108, making it the largest submission

for dataset 2. Nevertheless, it still gives the best trade-off in quality and generation speed

in figure 114. In terms of quality alone, the diffusion models CaloDiffusion [44] and

CaloScore [50, 51] as well as the conditional flow matching model CaloDREAM [69] have

better multiclass log-posteriors, KPD/FPD, and binary AUCs. However, in generation

all of these require multiple steps and hence they are slower than CaloINN. With the use

of distillation, CaloScore was able to speed up generation generation times by an order

of magnitude to CaloScore distilled and another order of magnitude to CaloScore

single-shot [50, 51] at the expense of a little shower quality. Similar techniques can

also be applied to CaloDiffusion and CaloDREAM, which would bring them closer to

CaloINN in figure 114. In terms of model size, MDMA [23, 24] needed by far the fewest

parameters, making it also the fastest in generation, especially for small batch sizes.

Dataset 3 increases the complexity of the showers by another order of magnitude, to

40500 voxels. This was too big for the bijector in CaloINN [38], so it was not submitted

to this dataset. Diffusion and conditional flow matching models CaloDiffusion [44],

CaloScore distilled [50, 51], and CaloDREAM [69] show again the best shower quality,

but not the fastest generation. Splitting the entire shower into individual calorimeter

CONCLUSIONS AND OUTLOOK 131

layers makes the problem again manageable for a normalizing flow, as can be seen by

the good shower quality of conv. L2LFlows [32]. In terms of model sizes, MDMA [23, 24]

again is the smallest submission, followed by the VAE-based model Calo-VQ [58] and

its variant Calo-VQ(norm) [58] and then CaloDiffusion and CaloDREAM. In terms of

generation speed, GAN-based submission MDMA and VAE-based submissions Calo-VQ

and CaloVAE+INN [38] are the fastest, which is correlated to the model sizes. When

looking at the trade-off between quality and speed in figure 115, we see four submissions

competing with each other. Fastest, but worst in quality of those four is CaloVAE+INN.

In the center, we have CaloPointFlow [42] and CaloScore single-shot [50, 51],

and slowest, but best in quality, is conv. L2LFlows. The potential speed-up of

CaloDiffusion and CaloDREAM with model distillation, as discussed at the end of the

dataset 2 paragraph, also applies here.

Summarizing, there is no single submission that excels in all three types of metrics:

speed, quality, and size. Normalizing Flows show the best trade-off in sample quality

and generation speed, but since they have to train a bijective mapping they do not scale

well to higher dimensional datasets. Diffusion and conditional flow matching models

have the highest sample quality, but suffer from a slow generation process. GAN and

VAE-based submissions have fewer trainable parameters and are usually very fast in

generation, but that comes at the expense of shower quality. Even the best performing

model is not perfect for the high-dimensional datasets 2 and 3, so there is still a lot of

room for improvement in generative architectures to be even more faithful and resource-

efficient in the future.

Model distillation improves speed at expense of quality and we have seen some

submissions that use this technique already, while it could be applied to others, too.

Techniques like weight quantization or node pruning can have a large effect on the

resource requirements with some or little effect on the sample quality. This has not

been studied here and should be investigated more in the future.

11.2. Take-aways of the CaloChallenge beyond Detector Simulation

This challenge triggered the development and adaptation of a lot of generative

architectures to high-dimensional calorimeter shower data, leading to more than 20

publications in physics and ML journals or conferences, as well as talks at the central

machine learning conference in particle physics, ML4Jets [17, 18] and other specialized

workshops [19]. This collaborative effort was done by experimentalists, theorists, and

scientists working outside academia in industry alike, but mostly outside of the big

collaborations ATLAS and CMS. We hope that the presented results are useful for the

experiment-specific development of fast simulation frameworks in the future.

The challenge also provided four datasets that will now serve as benchmarks for

future generative models. Despite the large body of results we reported, there are

a few questions that this challenge cannot answer. For example, some submissions

(CaloPointFlow [42], MDMA [23, 24], DeepTree [28, 29], and CaloClouds [46, 47]) worked

CONCLUSIONS AND OUTLOOK 132

with point clouds instead of with the voxelized data that we provided. Since they did

not have access to the hits that Geant4 simulated before we voxelized the data, they

had to rely on suboptimal methods to create the point clouds. Further studies that

directly use the point clouds coming from Geant4 are needed to understand if that

had an effect on shower quality.

Something else we noticed but were unable to disentangle and study in detail was

the effect of model distillation. CaloScore distilled and CaloScore single-shot

were distilled from CaloScore and CaloFlow student and iCaloFlow student were

distilled from CaloFlow teacher and iCaloFlow teacher respectively. Since both,

samples from the original model and samples from the distilled version of the same

original model were submitted, there is a correlation between the scores of these

submissions. This is most visible in the multiclass classification metric, where original

and distilled model were sometimes confused with each other (see for example figure B3).

We also see it in the Pearson correlation coefficients of layer energies in figure 66

and figure 82, where the distinct pattern of CaloScore got worse with distillation.

The situation is, however, different for iCaloFlow, where the pattern got fainter with

distillation. Other metrics were also sometimes better, sometimes worse in distilled

versions, as previously seen also in [116]. We suspect that a smoothing that takes place

in distillation can improve an incorrectly learned feature. One way of disentangling such

effects would be to train multiple instances of the original model and use one for sample

generation of the submission and the other one for training the distilled model.

The irregular geometry of datasets 1 posed a special challenge, in particular for

models that were using 3-dimensional convolutions. While for example conv. L2LFlows

decided not to work on ds 1 – γ and ds 1 – π+ for that reason, CaloDiffusion came

up with a special solution to the problem. It also triggered some dedicated approaches

for irregular geometries, like for example CaloGraph.

In addition, we also gained more insights in the evaluation of generative models for

physics applications. We studied how different quality metrics, motivated by physics or

coming from computer science, correlate with each other.

11.3. Outlook to the Future

To serve as a benchmark for future developments in calorimeter simulation, we collected

the raw data that went into all the figures of section 9 and tables in section C in

a pandas [229] dataframe that we publish together with the jupyter notebook [230]

required to reproduce the figures on the GitHub page of the CaloChallenge [231].

For a better understanding on the resource requirements and best working point

in the shower quality vs. generation speed trade-off, a full end-to-end implementation

in fast simulation frameworks of experiments is needed. Since the generation times

improve a lot for generating showers in batches, this should also be taken into account

properly. In that sense, the results presented here focus only on one single step of

the full fast simulation chain. The produced showers still need to be projected back

CONCLUSIONS AND OUTLOOK 133

into the detector geometry and the generative model needs to be embedded in the

appropriate software framework. These additional constraints go beyond the scope of

this challenge, but they are required to get a full picture on the impact of generative

AI in making the simulation faster. It could therefore very well be that sacrificing a

little performance for a better speed, or sacrificing some speed advantage for a better

performance is more beneficial when looking at the end-to-end performance. Also,

conditioning on more initial conditions, like for example the incident angle vs. training

more individual models can only be evaluated in a more complete framework. Another

practical question that arises is the computing architecture which will run the final fast

simulation. While inference clearly benefits GPU utilization and large batch sizes, this

must be well incorporated in experiments’ computing workflows so that speed-up factors

can be maximized. In any case, further studies in all of these directions are therefore

needed, and the corresponding results are applicable well beyond (HL)-LHC.

It is also important to stress that while many figures of merit are presented in this

work, any experiment should not simply pick a technology but should carry out a careful

evaluation of several models. The granularity of the calorimeters, the geometry of the

cells in the sub-systems and the overall detector geometry will impose constraints on

which models can be used. For example, ATLAS trains and runs 100 models (one per

η slice) but has a relatively low detector granularity while the CMS high-granularity

calorimeter (HGCAL) covers only a small region of the detector but has a much higher

granularity. Therefore, ATLAS may struggle to handle hundreds of models with many

parameters but will be less affected by poor modeling of the shape, making some of the

less performing models better candidates. For the HGCAL the opposite is true, although

in this case the complex geometry of the calorimeter may require additional studies for

the voxelisation strategy. What needs to be mentioned here is an important work of

the LHCb on the implementation of the workflow presented in the Par04 example of

Geant4 into their simulation framework, featuring a Par04-inspired VAE model [232].

This allows them to test any of the models submitted to the CaloChallenge, looking

not only at the simulation level observables, but at the broader spectrum of important

variables that are typically a part of validation chain.

To summarize, we are very excited to have received so many different submissions

to the CaloChallenge. We now have a full toolbox with publicly available models as well

as a detailed set of comparisons of several different approaches for experiments and other

interested users to try out. It will be highly exciting to see how these methods evolve

in the future and how they are deployed in experiments, expanding our understanding

of Nature by improved simulation techniques!

Acknowledgments

We thank James Tuan for the IT support at Rutgers University, where the intermediate

evaluations and preparations were run. The main computational results presented were

obtained using the CLIP cluster (https://clip.science).

https://clip.science

CONCLUSIONS AND OUTLOOK 134

Oz Amram is supported by the U.S. CMS Software and Computing Operations

Program under the U.S. CMS HL-LHC R&D Initiative. Erik Buhmann, Thorsten

Buss, Gregor Kasieczka, and William Korcari are supported by the Deutsche

Forschungsgemeinschaft under Germany’s Excellence Strategy — EXC 2121 Quantum

Universe — 390833306 and via the KISS consortium (05D23GU4, 13D22CH5) funded

by the German Federal Ministry of Education and Research BMBF in the ErUM-

Data action plan. Erik Buhmann further acknowledges funding through a scholarship

by the Friedrich Naumann Foundation for Freedom. The work of Florian Ernst

has been sponsored by the Wolfgang Gentner Programme of the German Federal

Ministry of Education and Research (grant no. 13E18CHA). Michele Faucci Giannelli

received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement No 754496. Luigi

Favaro and Ayodele Ore are supported by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under grant 396021762 – TRR 257: Particle Physics

Phenomenology after the Higgs Discovery. Benno Käch is funded by Helmholtz

Association’s Initiative and Networking Fund through Helmholtz AI (grant number:

ZT-I-PF-5-64). Dmitrii Kobylianskii, Nathalie Soybelman, Etienne Dreyer, and Eilam

Gross are supported by the Israel Science Foundation (ISF), Grant No. 2871/19

Centers of Excellence and BSF-NSF Grant No. 2020780. They are also grateful

for the support provided by the collaborative Weizmann Institute and Mohamed bin

Zayed University of Artificial Intelligence (MBZUAI) research grant, as well as the

Benoziyo Center for High Energy Physics. Marco Letizia acknowledges the financial

support of the European Research Council (grant SLING 819789). Qibin Liu and Shu

Li acknowledge the support from National Key R&D Program of China (Grant No.:

2023YFA1606904 and 2023YFA1606900), National Natural Science Foundation of China

(Grant No.: 12150006), and Shanghai Pilot Program for Basic Research—Shanghai

Jiao Tong University (Grant No.: 21TQ1400209). Benjamin Nachman is supported

by the U.S. Department of Energy (DOE), Office of Science under contract DE-

AC02-05CH11231. Sofia Palacios Schweitzer is supported by the BMBF Junior Group

Generative Precision Networks for Particle Physics (DLR 01IS22079). Matthew Buckley,

Ian Pang, and David Shih are supported by the U.S. Department of Energy (DOE),

Office of Science grant DOE-SC0010008. Kevin Pedro and Oz Amram are supported

by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the

U.S. Department of Energy, Office of Science, Office of High Energy Physics. Piyush

Raikwar, Dalila Salamani, and Anna Zaborowska were supported by the CERN Strategic

R&D Programme on Technologies for Future Experiments and have received funding

from the European Union’s Horizon 2020 Research and Innovation programme under

Grant Agreement No. 101004761. Humberto Reyes-Gonzalez is supported by the

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant

396021762 – TRR 257: Particle Physics Phenomenology after the Higgs Discovery.

He also acknowledges the support from the Italian PRIN grant 20172LNEEZ. Moritz

Scham is funded by Helmholtz Association’s Initiative and Networking Fund through

APPENDIX 135

Helmholtz AI (grant number: ZT-I-PF-5-3). Rui Zhang is supported by US High-

Luminosity Upgrade of the Large Hadron Collider (HL-LHC) under Work Authorization

No. KA2102021.

A. Histograms of high-level features

Here we show the histograms of the high-level features that were used to compute the

separation powers in section 8.1. In particular, we show the distributions of the Geant4

training and evaluation datasets. The exact same binning was chosen to compute the

separation powers with (39).

A.1. Dataset 1, Photons (ds 1 – γ)

APPENDIX 136

100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 0

100 101 102 103 104 105

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3
Energy deposited in layer 1

100 101 102 103 104 105 106

E [MeV]

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 2

100 101 102 103 104 105

E [MeV]

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 3

100 101 102 103 104 105 106

E [MeV]

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 12

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Etot/Einc

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

Sparsity in layer 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Sparsity in layer 1

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sparsity in layer 2

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 3

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 12

100 101 102 103 104 105 106

E [MeV]

10 12

10 10

10 8

10 6

10 4

10 2

Voxel energy distribution

training evaluation

Figure A1: Distribution of Geant4 training and evaluation data in layer energies Ei,

ratio of total deposited energy to incident energy, sparsity, and energy per voxel for ds1

— photons.

APPENDIX 137

100 75 50 25 0 25 50 75 100

[mm]

10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

0 20 40 60 80 100

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

100 75 50 25 0 25 50 75 100

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

0 20 40 60 80 100

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

100 75 50 25 0 25 50 75 100

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

0 20 40 60 80 100

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

100 75 50 25 0 25 50 75 100

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

0 20 40 60 80 100

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

training evaluation

Figure A2: Distribution of Geant4 training and evaluation data in centers of energy

along η and ϕ, as well as the widths of these distributions for ds1 — photons.

APPENDIX 138

0 100 200 300 400 500

[mm]

10 5

10 4

10 3

10 2

Center of Energy in r in layer 0

0 100 200 300 400 500

[mm]

10 5

10 4

10 3

10 2

Width of Center of Energy in r in layer 0

0 100 200 300 400 500

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in r in layer 1

0 100 200 300 400 500

[mm]
10 6

10 5

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 1

0 100 200 300 400 500

[mm]
10 6

10 5

10 4

10 3

10 2

10 1
Center of Energy in r in layer 2

0 100 200 300 400 500

[mm]
10 6

10 5

10 4

10 3

10 2

10 1
Width of Center of Energy in r in layer 2

0 100 200 300 400 500

[mm]
10 6

10 5

10 4

10 3

10 2

10 1
Center of Energy in r in layer 3

0 100 200 300 400 500

[mm]
10 6

10 5

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 3

0 200 400 600 800 1000 1200 1400

[mm]

10 6

10 5

10 4

10 3

10 2

Center of Energy in r in layer 12

0 200 400 600 800 1000 1200 1400

[mm]

10 6

10 5

10 4

10 3

10 2

Width of Center of Energy in r in layer 12

training evaluation

Figure A3: Distribution of Geant4 training and evaluation data in centers of energy

along the radial direction, as well as their widths for ds1 — photons.

APPENDIX 139

A.2. Dataset 1, Pions (ds 1 – π+)

100 101 102 103 104

E [MeV]
10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 0

100 101 102 103 104 105

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 1

100 101 102 103 104 105 106

E [MeV]
10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 2

100 101 102 103 104 105

E [MeV]

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 3

100 101 102 103 104 105 106

E [MeV]

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 12

100 101 102 103 104 105 106 107

E [MeV]

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 13

100 101 102 103 104 105 106

E [MeV]

10 10

10 8

10 6

10 4

10 2

Energy deposited in layer 14

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Etot/Einc

0.0

0.5

1.0

1.5

2.0

2.5

training evaluation

Figure A4: Distribution of Geant4 training and evaluation data in layer energies Ei,

and ratio of total deposited energy to incident energy for ds1 — pions.

APPENDIX 140

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 1

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 2

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 3

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 12

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

Sparsity in layer 13

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12
Sparsity in layer 14

100 101 102 103 104 105 106

E [MeV]

10 12

10 10

10 8

10 6

10 4

10 2

Voxel energy distribution

training evaluation

Figure A5: Distribution of Geant4 training and evaluation data in sparsity and energy

per voxel for ds1 — pions.

APPENDIX 141

100 75 50 25 0 25 50 75 100

[mm]

10 3

10 2

10 1

Center of Energy in in layer 1

0 20 40 60 80 100

[mm]

10 3

10 2

10 1

Width of Center of Energy in in layer 1

100 75 50 25 0 25 50 75 100

[mm]

10 3

10 2

10 1

Center of Energy in in layer 1

0 20 40 60 80 100

[mm]

10 3

10 2

10 1

Width of Center of Energy in in layer 1

100 75 50 25 0 25 50 75 100

[mm]

10 3

10 2

10 1

Center of Energy in in layer 2

0 20 40 60 80 100

[mm]

10 2

10 1

Width of Center of Energy in in layer 2

100 75 50 25 0 25 50 75 100

[mm]

10 3

10 2

10 1

Center of Energy in in layer 2

0 20 40 60 80 100

[mm]

10 2

10 1

Width of Center of Energy in in layer 2

400 200 0 200 400

[mm]

10 4

10 3

10 2

Center of Energy in in layer 12

0 50 100 150 200 250 300 350 400

[mm]

10 3

10 2

Width of Center of Energy in in layer 12

400 200 0 200 400

[mm]

10 4

10 3

10 2

Center of Energy in in layer 12

0 50 100 150 200 250 300 350 400

[mm]

10 3

10 2

Width of Center of Energy in in layer 12

400 200 0 200 400

[mm]

10 4

10 3

10 2

Center of Energy in in layer 13

0 50 100 150 200 250 300 350 400

[mm]

10 3

10 2

10 1

Width of Center of Energy in in layer 13

400 200 0 200 400

[mm]

10 4

10 3

10 2

Center of Energy in in layer 13

0 50 100 150 200 250 300 350 400

[mm]

10 3

10 2

10 1

Width of Center of Energy in in layer 13

training evaluation

Figure A6: Distribution of Geant4 training and evaluation data in centers of energy

along η and ϕ, as well as their widths for ds1 — pions.

APPENDIX 142

0 100 200 300 400 500

[mm]
10 5

10 4

10 3

10 2

Center of Energy in r in layer 0

0 100 200 300 400 500

[mm]

10 3

10 2

10 1
Width of Center of Energy in r in layer 0

0 100 200 300 400 500

[mm]

10 3

10 2

Center of Energy in r in layer 1

0 100 200 300 400 500

[mm]
10 4

10 3

10 2

Width of Center of Energy in r in layer 1

0 100 200 300 400 500

[mm]

10 3

10 2

Center of Energy in r in layer 2

0 100 200 300 400 500

[mm]

10 4

10 3

10 2

Width of Center of Energy in r in layer 2

0 100 200 300 400 500

[mm]

10 4

10 3

10 2

Center of Energy in r in layer 3

0 100 200 300 400 500

[mm]
10 4

10 3

10 2

10 1
Width of Center of Energy in r in layer 3

0 200 400 600 800 1000 1200 1400

[mm]

10 4

10 3

10 2

Center of Energy in r in layer 12

0 200 400 600 800 1000 1200 1400

[mm]

10 6

10 5

10 4

10 3

10 2

Width of Center of Energy in r in layer 12

0 200 400 600 800 1000 1200 1400

[mm]

10 4

10 3

10 2

Center of Energy in r in layer 13

0 200 400 600 800 1000 1200 1400

[mm]

10 5

10 4

10 3

10 2

Width of Center of Energy in r in layer 13

0 200 400 600 800 1000 1200 1400

[mm]

10 4

10 3

10 2

Center of Energy in r in layer 14

0 200 400 600 800 1000 1200 1400

[mm]

10 6

10 5

10 4

10 3

10 2

Width of Center of Energy in r in layer 14

training evaluation

Figure A7: Distribution of Geant4 training and evaluation data in centers of energy

along the radial direction, as well as their widths for ds1 — pions.

APPENDIX 143

A.3. Dataset 2, Electrons (ds 2)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Etot/Einc

0

2

4

6

8

10 2 10 1 100 101 102 103 104

E [MeV]

10 10

10 8

10 6

10 4

10 2

Voxel energy distribution

training evaluation

Figure A8: Distribution of Geant4 training and evaluation data in ratio of total

deposited energy to incident energy and energy per voxel for ds2.

APPENDIX 144

10 2 10 1 100 101 102 103

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 0

10 2 10 1 100 101 102 103 104

E [MeV]
10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 1

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 2

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 3

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 4

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 5

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 6

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 7

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 8

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 9

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

Energy deposited in layer 10

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 11

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

Energy deposited in layer 12

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 5

10 4

10 3

10 2
Energy deposited in layer 13

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 14

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 15

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 16

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 17

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 18

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 19

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 20

10 2 10 1 100 101 102 103 104

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 21

10 2 10 1 100 101 102 103 104

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 22

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 23

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 24

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 25

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 26

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 27

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 28

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 29

10 2 10 1 100 101 102 103 104

E [MeV]
10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 30

10 2 10 1 100 101 102 103 104

E [MeV]
10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 31

10 2 10 1 100 101 102 103 104

E [MeV]
10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 32

10 2 10 1 100 101 102 103 104

E [MeV]
10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 33

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 34

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 35

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 36

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 37

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 38

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 39

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 40

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 41

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 42

10 2 10 1 100 101 102 103

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 43

10 2 10 1 100 101 102 103

E [MeV]
10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 44

training evaluation

Figure A9: Distribution of Geant4 training and evaluation data in layer energies Ei

for ds2.

APPENDIX 145

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 0

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 3

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 4

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 5

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 6

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 7

30 20 10 0 10 20 30

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 8

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 9

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 10

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 11

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 12

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 13

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 14

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 15

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 16

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 17

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 18

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 19

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 20

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 21

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 22

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 23

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 24

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 25

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 26

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 27

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 28

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 29

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 30

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 31

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 32

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 33

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 34

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 35

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 36

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 37

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 38

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 39

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 40

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 41

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 42

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 43

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100

Center of Energy in in layer 44

training evaluation

Figure A10: Distribution of Geant4 training and evaluation data in centers of energy

in η direction for ds2.

APPENDIX 146

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 0

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 3

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 4

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 5

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 6

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 7

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 8

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 9

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 10

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 11

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 12

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 13

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 14

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 15

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 16

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 17

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 18

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 19

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 20

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 21

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 22

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 23

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 24

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 25

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 26

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 27

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 28

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 29

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 30

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 31

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 32

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 33

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 34

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 35

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 36

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 37

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 38

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 39

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 40

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 41

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 42

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 43

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 44

training evaluation

Figure A11: Distribution of Geant4 training and evaluation data in width of the

centers of energy in η direction for ds2.

APPENDIX 147

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 0

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 3

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 4

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 5

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 6

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 7

30 20 10 0 10 20 30

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 8

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 9

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 10

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 11

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 12

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 13

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 14

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 15

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 16

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 17

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 18

30 20 10 0 10 20 30

[mm]
10 4

10 3

10 2

10 1

Center of Energy in in layer 19

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 20

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 21

30 20 10 0 10 20 30

[mm]
10 4

10 3

10 2

10 1

Center of Energy in in layer 22

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 23

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 24

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 25

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 26

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 27

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 28

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 29

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 30

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 31

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 32

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 33

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 34

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 35

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 36

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 37

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 38

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 39

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 40

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 41

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 42

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 43

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100

Center of Energy in in layer 44

training evaluation

Figure A12: Distribution of Geant4 training and evaluation data in centers of energy

in ϕ direction for ds2.

APPENDIX 148

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 0

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 3

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 4

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 5

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 6

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 7

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 8

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 9

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 10

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 11

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 12

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 13

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 14

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 15

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 16

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 17

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 18

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 19

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 20

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 21

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 22

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 23

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 24

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 25

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 26

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 27

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 28

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 29

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 30

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 31

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 32

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 33

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 34

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 35

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 36

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 37

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 38

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 39

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 40

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 41

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 42

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 43

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 44

training evaluation

Figure A13: Distribution of Geant4 training and evaluation data in width of the

centers of energy in ϕ direction for ds2.

APPENDIX 149

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 0

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 1

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 2

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 3

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 4

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 5

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 6

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 7

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 8

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 9

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 10

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 11

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 12

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 13

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 14

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 15

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 16

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 17

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 18

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 19

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 20

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 21

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 22

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 23

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 24

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 25

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 26

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 27

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 28

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 29

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 30

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 31

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 32

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 33

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 34

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 35

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 36

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 37

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 38

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 39

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 40

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 41

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 42

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 43

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 44

training evaluation

Figure A14: Distribution of Geant4 training and evaluation data in centers of energy

in r direction for ds2.

APPENDIX 150

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 2

10 1

100
Width of Center of Energy in r in layer 0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 11

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 13

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 16

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 17

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100
Width of Center of Energy in r in layer 18

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 19

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 22

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 23

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 26

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 27

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 28

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 29

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 30

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 31

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 33

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 34

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 35

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 36

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 37

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 38

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 39

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 40

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 41

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 42

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 43

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 44

training evaluation

Figure A15: Distribution of Geant4 training and evaluation data in width of the

centers of energy in r direction for ds2.

APPENDIX 151

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

Sparsity in layer 1

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sparsity in layer 2

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sparsity in layer 3

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sparsity in layer 4

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

Sparsity in layer 5

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

Sparsity in layer 6

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sparsity in layer 7

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sparsity in layer 8

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Sparsity in layer 9

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

Sparsity in layer 10

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

Sparsity in layer 11

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sparsity in layer 12

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sparsity in layer 13

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sparsity in layer 14

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

Sparsity in layer 15

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 16

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 17

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 18

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 19

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 20

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 21

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

8

Sparsity in layer 22

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

8

Sparsity in layer 23

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

Sparsity in layer 24

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

Sparsity in layer 25

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10
Sparsity in layer 26

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 27

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 28

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 29

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 30

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12
Sparsity in layer 31

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 32

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 33

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 34

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 35

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 36

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14
Sparsity in layer 37

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 38

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 39

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 40

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 41

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16
Sparsity in layer 42

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 43

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 44

training evaluation

Figure A16: Distribution of Geant4 training and evaluation data in sparsity for ds2.

APPENDIX 152

A.4. Dataset 3, Electrons (ds 3)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Etot/Einc

0

2

4

6

8

10 2 10 1 100 101 102 103

E [MeV]

10 10

10 8

10 6

10 4

10 2

Voxel energy distribution

training evaluation

Figure A17: Distribution of Geant4 training and evaluation data in ratio of total

deposited energy to incident energy and energy per voxel for ds3.

APPENDIX 153

10 2 10 1 100 101 102 103

E [MeV]
10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 0

10 2 10 1 100 101 102 103 104

E [MeV]
10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 1

10 2 10 1 100 101 102 103 104

E [MeV]
10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 2

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 3

10 2 10 1 100 101 102 103 104

E [MeV]

10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 4

10 2 10 1 100 101 102 103 104

E [MeV]
10 7

10 6

10 5

10 4

10 3

Energy deposited in layer 5

10 2 10 1 100 101 102 103 104

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 6

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 7

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 8

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

Energy deposited in layer 9

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

Energy deposited in layer 10

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 5

10 4

10 3

Energy deposited in layer 11

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 5

10 4

10 3

Energy deposited in layer 12

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 5

10 4

10 3

10 2

Energy deposited in layer 13

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 14

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 15

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 16

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 17

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 18

10 2 10 1 100 101 102 103 104 105

E [MeV]
10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 19

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 20

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 21

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 22

10 2 10 1 100 101 102 103 104 105

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Energy deposited in layer 23

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 24

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 25

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 26

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 27

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Energy deposited in layer 28

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 29

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 30

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 31

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 32

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 33

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 34

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 35

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 36

10 2 10 1 100 101 102 103 104

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 37

10 2 10 1 100 101 102 103 104

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 38

10 2 10 1 100 101 102 103

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 39

10 2 10 1 100 101 102 103

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 40

10 2 10 1 100 101 102 103

E [MeV]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 41

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 42

10 2 10 1 100 101 102 103 104

E [MeV]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 43

10 2 10 1 100 101 102 103 104

E [MeV]
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Energy deposited in layer 44

training evaluation

Figure A18: Distribution of Geant4 training and evaluation data in layer energies Ei

for ds3.

APPENDIX 154

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 0

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 3

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 4

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 5

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 6

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 7

30 20 10 0 10 20 30

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 8

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 9

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 10

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 11

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 12

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 13

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 14

30 20 10 0 10 20 30

[mm]
10 4

10 3

10 2

10 1

Center of Energy in in layer 15

30 20 10 0 10 20 30

[mm]
10 4

10 3

10 2

10 1

Center of Energy in in layer 16

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 17

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 18

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 19

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 20

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 21

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 22

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 23

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 24

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 25

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 26

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 27

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 28

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 29

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 30

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 31

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 32

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 33

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 34

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

Center of Energy in in layer 35

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 36

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

Center of Energy in in layer 37

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

Center of Energy in in layer 38

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 39

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 40

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 41

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 42

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 43

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100

Center of Energy in in layer 44

training evaluation

Figure A19: Distribution of Geant4 training and evaluation data in centers of energy

in η direction for ds3.

APPENDIX 155

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 0

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 3

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 4

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 5

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 6

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 7

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 8

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 9

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 10

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 11

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 12

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 13

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 14

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 15

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 16

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 17

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 18

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 19

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 20

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 21

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 22

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 23

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 24

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 25

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 26

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 27

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 28

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 29

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 30

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 31

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 32

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 33

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 34

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 35

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 36

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 37

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 38

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 39

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 40

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 41

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 42

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 43

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 44

training evaluation

Figure A20: Distribution of Geant4 training and evaluation data in width of the

centers of energy in η direction for ds3.

APPENDIX 156

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 0

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 1

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 2

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 3

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 4

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 5

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 6

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 7

30 20 10 0 10 20 30

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 8

30 20 10 0 10 20 30

[mm]
10 5

10 4

10 3

10 2

10 1

Center of Energy in in layer 9

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 10

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 11

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 12

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 13

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 14

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 15

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 16

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 17

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 18

30 20 10 0 10 20 30

[mm]

10 4

10 3

10 2

10 1

Center of Energy in in layer 19

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 20

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 21

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 22

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 23

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 24

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 25

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 26

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 27

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 28

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 29

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 30

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 31

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 32

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 33

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 34

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 35

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 36

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 37

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

Center of Energy in in layer 38

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 39

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 40

30 20 10 0 10 20 30

[mm]

10 3

10 2

10 1

100
Center of Energy in in layer 41

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 42

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100
Center of Energy in in layer 43

30 20 10 0 10 20 30

[mm]
10 3

10 2

10 1

100

Center of Energy in in layer 44

training evaluation

Figure A21: Distribution of Geant4 training and evaluation data in centers of energy

in ϕ direction for ds3.

APPENDIX 157

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 0

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 1

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 2

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 3

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 4

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 5

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 6

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 7

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 8

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 9

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 10

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 11

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 12

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 13

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 14

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 15

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 16

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 17

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 18

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 19

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in in layer 20

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 21

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 22

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in in layer 23

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 24

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 25

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 26

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 27

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 28

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 29

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in in layer 30

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 31

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 32

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 33

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 34

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 35

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 36

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 37

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 38

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 39

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 40

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 41

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 42

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 43

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in in layer 44

training evaluation

Figure A22: Distribution of Geant4 training and evaluation data in width of the

centers of energy in ϕ direction for ds3.

APPENDIX 158

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 0

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 1

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 2

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 3

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 4

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 5

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 6

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 7

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 8

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 9

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 10

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 11

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 12

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 13

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 14

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

Center of Energy in r in layer 15

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 16

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

Center of Energy in r in layer 17

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 18

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 19

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 20

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 21

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 22

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 23

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 24

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 25

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 26

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 27

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 28

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 29

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

Center of Energy in r in layer 30

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 31

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 32

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 33

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100
Center of Energy in r in layer 34

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 35

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 36

0 5 10 15 20 25 30 35 40

[mm]

10 3

10 2

10 1

100

Center of Energy in r in layer 37

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 38

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 39

0 5 10 15 20 25 30 35 40

[mm]
10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 40

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 41

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 42

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 43

0 5 10 15 20 25 30 35 40

[mm]

10 4

10 3

10 2

10 1

100

Center of Energy in r in layer 44

training evaluation

Figure A23: Distribution of Geant4 training and evaluation data in centers of energy

in r direction for ds3.

APPENDIX 159

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 3

10 2

10 1

Width of Center of Energy in r in layer 0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 11

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 13

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 16

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in r in layer 17

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in r in layer 18

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in r in layer 19

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 22

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 23

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 26

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 27

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 28

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 29

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 30

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 31

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 33

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 34

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 35

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 36

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 37

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 38

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 39

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 40

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 41

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 42

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 43

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in r in layer 44

training evaluation

Figure A24: Distribution of Geant4 training and evaluation data in width of the

centers of energy in r direction for ds3.

APPENDIX 160

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 0

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12
Sparsity in layer 1

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

8

Sparsity in layer 2

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6
Sparsity in layer 3

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 4

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

Sparsity in layer 5

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

Sparsity in layer 6

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

Sparsity in layer 7

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5
Sparsity in layer 8

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 9

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

Sparsity in layer 10

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 11

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

Sparsity in layer 12

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 13

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

Sparsity in layer 14

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

8

Sparsity in layer 15

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

1

2

3

4

5

6

7

8

Sparsity in layer 16

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

Sparsity in layer 17

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

Sparsity in layer 18

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 19

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 20

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 21

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

Sparsity in layer 22

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12
Sparsity in layer 23

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 24

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 25

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

Sparsity in layer 26

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14
Sparsity in layer 27

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 28

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 29

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 30

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

Sparsity in layer 31

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16
Sparsity in layer 32

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 33

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 34

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0

2

4

6

8

10

12

14

16

Sparsity in layer 35

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Sparsity in layer 36

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sparsity in layer 37

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sparsity in layer 38

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sparsity in layer 39

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sparsity in layer 40

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sparsity in layer 41

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Sparsity in layer 42

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Sparsity in layer 43

0.0 0.2 0.4 0.6 0.8 1.0
fraction of voxels without energy deposition

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sparsity in layer 44

training evaluation

Figure A25: Distribution of Geant4 training and evaluation data in sparsity for ds3.

APPENDIX 161

B. Consistency check of the multiclass classifier

A well-trained multiclass classifier identifies samples from each submission correctly.

We show this test here in terms of the log posterior of (41). We show the mean and

standard deviation of ten independent trainings and subsequent determination of the

log posterior. In figure B1 to figure B6 we show all log posteriors in terms of confusion

matrices. The consistency condition of (42) can be read line by line in them: In each

line, the largest entry is in the diagonal position. This holds for all tests, except for

the DNN classifier of dataset 2, where a CaloScore submission was confused as being

CaloDREAM, which could bias the test with the Geant4 dataset towards CaloDREAM. In

addition, there are a few cases where a class confusion is within error bars, but these

concern mostly models that are distilled versions from each other, most notably between

CaloScore distilled and CaloScore single-shot for both, datasets 2 and 3.

APPENDIX 162

Ca
lo

Di
ffu

sio
n

Ca
lo

IN
N

Ca
lo

-V
Q

Ca
lo

Sc
or

e

Ca
lo

Sc
or

e
di

st
ille

d

Ca
lo

Sc
or

e
sin

gl
e-

sh
ot

Ca
lo

Fl
ow

 te
ac

he
r

Ca
lo

Fl
ow

 st
ud

en
t

Ca
lo

M
an

Bo
lo

GA
N

Ca
lo

Sh
ow

er
2G

AN

Ca
lo

Sh
ow

er
3G

AN

Ca
lo

VA
E+

IN
N

Ca
lo

Fo
re

st

Ca
lo

Gr
ap

h

Predicted label

CaloDiffusion

CaloINN

Calo-VQ

CaloScore

CaloScore distilled

CaloScore single-shot

CaloFlow teacher

CaloFlow student

CaloMan

BoloGAN

CaloShower2GAN

CaloShower3GAN

CaloVAE+INN

CaloForest

CaloGraph

Tr
ue

 la
be

l

-1.97(1) -2.51(1) -17.48(44) -3.43(2) -4.26(4) -5.48(5) -3.03(2) -3.16(2) -29.12(147)-10.11(36) -7.54(18) -7.18(20) -5.34(13) -3.23(3) -3.26(3)

-2.48(1) -2.02(1) -18.32(48) -3.22(3) -3.95(4) -5.08(5) -2.51(1) -2.62(1) -29.81(156)-10.36(36) -7.37(18) -7.04(19) -5.10(14) -3.61(3) -3.70(3)

-16.68(57) -17.11(52) -0.04(0) -18.87(65) -20.48(67) -22.62(67) -17.32(54) -17.12(53) -22.80(70) -23.41(48) -18.73(53) -17.66(53) -18.48(31) -15.13(49) -17.93(57)

-3.92(2) -3.53(2) -19.04(50) -2.19(1) -2.51(2) -3.34(2) -3.30(1) -3.33(2) -30.65(161)-11.50(37) -8.78(20) -8.06(20) -5.48(15) -4.92(5) -4.37(4)

-4.94(3) -4.31(4) -20.08(52) -2.24(1) -2.13(1) -2.55(2) -3.73(2) -3.73(2) -32.23(171)-12.29(37) -9.61(21) -8.79(22) -5.74(16) -5.72(6) -5.01(5)

-5.73(4) -4.94(5) -20.52(52) -2.50(1) -2.13(1) -1.84(1) -4.15(2) -4.19(3) -33.17(177)-12.48(35) -10.31(23) -9.38(23) -6.32(17) -6.54(6) -5.51(6)

-3.00(1) -2.46(1) -19.20(50) -3.30(3) -3.83(4) -4.67(4) -2.00(1) -2.07(1) -29.79(157)-10.76(37) -7.72(18) -7.46(20) -5.22(15) -3.80(3) -4.01(4)

-3.02(1) -2.48(1) -19.07(49) -3.24(3) -3.74(4) -4.56(4) -2.00(1) -1.92(1) -29.22(153)-10.92(37) -7.87(19) -7.62(21) -5.19(15) -3.78(3) -4.03(4)

-18.65(41) -19.64(37) -13.27(31) -21.24(45) -22.48(49) -24.01(53) -20.07(46) -19.63(40) -0.01(0) -24.10(55) -17.27(35) -16.08(38) -20.08(28) -16.90(36) -19.07(44)

-6.67(26) -7.00(26) -20.89(54) -8.03(27) -8.72(26) -9.24(29) -7.31(23) -7.95(24) -31.10(167) -0.81(1) -9.84(27) -9.49(29) -12.57(34) -8.18(24) -7.62(27)

-6.60(12) -6.07(12) -21.90(54) -7.29(13) -8.02(15) -9.39(16) -6.24(12) -6.82(12) -33.22(166)-14.55(41) -0.91(1) -5.57(17) -11.56(28) -7.34(13) -7.77(16)

-6.13(10) -5.66(10) -21.21(56) -6.81(10) -7.55(11) -8.88(12) -5.88(10) -6.49(9) -32.39(168)-14.53(43) -5.42(14) -1.00(2) -10.10(27) -6.79(10) -7.29(13)

-4.85(10) -4.29(10) -20.22(42) -4.64(13) -5.06(14) -6.03(16) -4.14(10) -4.34(10) -38.32(218)-11.93(39) -9.18(22) -8.26(26) -1.05(2) -5.27(10) -5.64(13)

-2.97(2) -3.87(4) -17.04(45) -4.64(5) -5.17(6) -6.41(6) -3.84(2) -3.88(2) -26.98(135)-11.95(42) -8.33(17) -7.86(19) -5.99(12) -1.47(1) -3.75(4)

-2.76(2) -3.46(3) -18.93(50) -3.82(4) -4.29(4) -5.06(5) -4.00(3) -4.18(3) -29.59(150)-10.90(39) -8.49(20) -8.08(22) -6.27(17) -3.69(5) -1.59(1)

consistency check, dataset 1 - photons

35

30

25

20

15

10

5

Figure B1: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 1 – γ.

APPENDIX 163

Ca
lo

Di
ffu

sio
n

Ca
lo

IN
N

Ca
lo

-V
Q

Ca
lo

Fl
ow

 te
ac

he
r

Ca
lo

Fl
ow

 st
ud

en
t

Ca
lo

M
an

Bo
lo

GA
N

DN
N

Ca
lo

Si
m

Ca
lo

Sh
ow

er
GA

N

Ca
lo

VA
E+

IN
N

Ca
lo

Fo
re

st

Ca
lo

Gr
ap

h

Predicted label

CaloDiffusion

CaloINN

Calo-VQ

CaloFlow teacher

CaloFlow student

CaloMan

BoloGAN

DNN CaloSim

CaloShowerGAN

CaloVAE+INN

CaloForest

CaloGraph

Tr
ue

 la
be

l

-1.96(0) -2.70(1) -8.84(18) -3.18(2) -3.89(2) -24.11(95) -9.32(15) -3.30(7) -4.88(7) -3.75(4) -4.38(4) -2.98(2)

-2.77(2) -1.99(0) -10.45(24) -2.47(1) -3.00(1) -24.44(96) -10.28(18) -3.99(8) -5.18(8) -3.43(4) -4.62(4) -3.44(3)

-7.44(8) -8.01(9) -0.59(0) -9.13(10) -9.48(12) -21.79(78) -12.34(19) -7.79(10) -10.33(16) -7.95(11) -9.16(9) -8.49(11)

-3.21(3) -2.40(1) -11.17(25) -1.87(1) -2.24(1) -25.82(107) -11.00(20) -4.58(9) -5.66(8) -3.84(5) -4.61(4) -3.59(4)

-3.52(3) -2.54(1) -11.34(27) -1.93(1) -1.65(0) -25.66(111) -11.25(22) -4.97(10) -5.89(9) -4.18(5) -4.79(5) -3.75(4)

-21.81(32) -19.38(32) -16.80(29) -19.33(27) -19.54(31) -0.11(0) -25.97(32) -21.81(36) -21.69(46) -17.77(24) -21.93(33) -20.43(25)

-9.00(13) -9.48(13) -17.16(34) -10.09(12) -10.80(13) -32.37(123) -0.93(1) -8.34(13) -10.99(25) -10.82(17) -11.38(14) -10.05(13)

-2.91(5) -3.60(6) -9.20(20) -4.07(5) -4.94(5) -26.36(107) -8.87(17) -1.53(1) -5.34(8) -4.49(7) -5.06(5) -4.03(6)

-4.34(7) -4.46(7) -12.45(29) -4.97(7) -5.74(8) -28.22(113) -11.77(28) -5.19(13) -1.21(1) -4.77(9) -6.71(10) -5.37(9)

-3.60(4) -2.96(3) -10.92(25) -3.52(3) -4.55(4) -24.23(90) -10.98(20) -4.60(9) -5.17(9) -1.52(0) -5.77(6) -4.37(5)

-4.72(5) -5.15(4) -9.96(19) -4.79(3) -5.32(4) -24.68(88) -11.57(21) -6.59(8) -8.16(10) -6.02(6) -1.20(1) -5.02(5)

-2.53(1) -2.92(2) -9.69(19) -3.17(2) -3.70(3) -23.26(89) -10.37(17) -4.06(8) -5.53(7) -4.07(4) -4.55(4) -1.72(1)

consistency check, dataset 1 - pions

30

25

20

15

10

5

Figure B2: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 1 – π+.

APPENDIX 164

Ca
lo

Di
ffu

sio
n

co
nv

. L
2L

Fl
ow

s

Ca
lo

IN
N

M
DM

A

Ca
lo

-V
Q

Ca
lo

Sc
or

e

Ca
lo

Sc
or

e
di

st
ille

d

Ca
lo

Sc
or

e
sin

gl
e-

sh
ot

iC
al

oF
lo

w
te

ac
he

r

iC
al

oF
lo

w
st

ud
en

t

Su
pe

rC
al

o

De
ep

Tr
ee

Ca
lo

Po
in

tF
lo

w

Ca
lo

VA
E+

IN
N

Ca
lo

La
te

nt

Ca
lo

Di
T

Ca
lo

DR
EA

M

Predicted label

CaloDiffusion

conv. L2LFlows

CaloINN

MDMA

Calo-VQ

CaloScore

CaloScore distilled

CaloScore single-shot

iCaloFlow teacher

iCaloFlow student

SuperCalo

DeepTree

CaloPointFlow

CaloVAE+INN

CaloLatent

CaloDiT

CaloDREAM

Tr
ue

 la
be

l

-2.37(1) -3.13(2) -2.99(1) -7.35(33) -10.83(22) -2.83(2) -3.30(5) -3.47(6) -3.53(3) -3.89(3) -2.71(2) -10.35(20) -5.13(20) -6.14(13) -11.44(25) -21.04(46) -2.44(1)

-3.16(2) -2.25(0) -3.85(4) -7.21(30) -14.27(34) -3.66(5) -4.24(8) -4.36(9) -3.16(2) -3.89(3) -3.20(4) -10.58(20) -4.80(17) -7.40(17) -11.05(26) -23.25(46) -3.00(2)

-2.70(1) -3.30(3) -2.26(1) -7.37(32) -11.08(21) -2.91(3) -3.09(5) -3.20(6) -3.11(2) -3.31(3) -2.81(2) -10.58(19) -4.53(14) -5.67(13) -12.25(29) -21.18(48) -2.63(1)

-6.31(33) -5.50(28) -6.94(32) -1.05(3) -20.40(65) -7.64(38) -8.28(38) -8.33(37) -6.58(32) -7.76(34) -6.20(27) -9.46(25) -4.33(13) -16.96(85) -13.38(49) -24.27(57) -6.16(31)

-7.04(12) -7.38(20) -8.06(15) -15.51(77) -0.32(1) -7.45(17) -8.03(20) -8.22(22) -8.47(20) -8.35(20) -7.54(14) -19.77(47) -12.44(42) -9.44(18) -14.43(48) -24.17(60) -7.31(15)

-2.62(1) -3.27(2) -3.01(1) -7.89(34) -11.13(23) -2.55(1) -2.89(3) -3.02(4) -3.54(3) -4.05(3) -2.92(2) -10.94(21) -5.43(19) -5.63(11) -11.69(25) -21.80(46) -2.47(1)

-2.99(2) -3.48(3) -3.05(2) -8.36(34) -11.62(24) -2.56(2) -2.53(2) -2.59(3) -3.43(2) -3.84(3) -3.18(3) -11.43(23) -5.41(17) -5.68(12) -12.06(26) -21.90(49) -2.79(2)

-3.22(4) -3.61(4) -3.27(4) -8.67(33) -12.26(27) -2.58(1) -2.47(2) -2.49(2) -3.53(3) -4.01(4) -3.39(3) -11.77(24) -5.58(17) -5.91(14) -12.27(27) -22.29(50) -2.97(3)

-3.27(3) -2.90(2) -3.27(4) -7.44(32) -12.61(27) -3.56(5) -3.73(6) -3.80(7) -2.23(1) -2.57(1) -3.21(4) -10.61(22) -4.48(12) -6.37(11) -11.40(27) -22.01(47) -3.14(3)

-3.20(3) -3.01(2) -3.09(3) -8.01(36) -11.26(23) -3.57(5) -3.58(6) -3.64(7) -2.22(1) -2.03(1) -3.22(3) -10.74(24) -4.76(13) -5.94(9) -12.05(28) -20.19(49) -3.24(3)

-2.69(2) -3.17(3) -3.10(2) -7.44(32) -11.77(27) -3.19(4) -3.60(7) -3.74(8) -3.40(3) -3.91(4) -2.31(1) -10.24(22) -4.92(17) -6.65(15) -11.67(28) -21.68(46) -2.69(2)

-9.43(20) -7.26(18) -10.13(17) -7.40(21) -26.59(74) -10.85(24) -11.20(27) -11.20(27) -8.97(18) -10.08(20) -8.29(14) -0.93(2) -7.91(26) -18.63(52) -11.98(38) -24.94(64) -9.26(18)

-3.73(9) -3.51(7) -3.77(7) -4.99(14) -15.40(43) -4.53(12) -4.82(13) -4.88(14) -3.62(6) -4.33(7) -3.65(6) -10.36(15) -1.79(4) -9.90(31) -12.45(37) -23.14(48) -3.64(7)

-4.51(12) -5.01(12) -4.29(13) -11.81(70) -11.84(34) -3.99(11) -4.20(13) -4.38(14) -4.65(10) -5.00(11) -4.67(13) -13.09(56) -7.51(30) -1.09(3) -14.31(43) -24.87(55) -4.21(12)

-13.13(27) -10.45(25) -16.72(35) -14.17(59) -24.69(83) -14.32(43) -15.71(47) -15.84(49) -13.43(29) -16.71(32) -13.42(38) -17.19(37) -16.11(67) -23.52(71) -0.55(1) -37.04(75) -13.28(31)

-17.24(58) -17.41(60) -18.20(64) -19.64(70) -28.04(73) -18.65(68) -19.70(75) -19.70(76) -18.87(59) -18.88(57) -16.98(61) -23.42(78) -19.98(83)-27.91(117)-27.77(57) -0.65(3) -17.33(56)

-2.52(1) -3.14(2) -3.03(2) -7.41(33) -11.77(26) -2.76(2) -3.25(5) -3.41(6) -3.52(3) -4.06(3) -2.80(2) -10.55(21) -5.14(19) -6.16(13) -11.85(27) -21.71(46) -2.39(1)

consistency check, dataset 2, DNN

35

30

25

20

15

10

5

Figure B3: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 2.

APPENDIX 165

Ca
lo

Di
ffu

sio
n

co
nv

. L
2L

Fl
ow

s

Ca
lo

IN
N

M
DM

A

Ca
lo

-V
Q

Ca
lo

Sc
or

e

Ca
lo

Sc
or

e
di

st
ille

d

Ca
lo

Sc
or

e
sin

gl
e-

sh
ot

iC
al

oF
lo

w
te

ac
he

r

iC
al

oF
lo

w
st

ud
en

t

Su
pe

rC
al

o

De
ep

Tr
ee

Ca
lo

Po
in

tF
lo

w

Ca
lo

VA
E+

IN
N

Ca
lo

La
te

nt

Ca
lo

Di
T

Ca
lo

DR
EA

M

Predicted label

CaloDiffusion

conv. L2LFlows

CaloINN

MDMA

Calo-VQ

CaloScore

CaloScore distilled

CaloScore single-shot

iCaloFlow teacher

iCaloFlow student

SuperCalo

DeepTree

CaloPointFlow

CaloVAE+INN

CaloLatent

CaloDiT

CaloDREAM

Tr
ue

 la
be

l

-1.83(22) -2.54(16) -7.14(48) -9.36(42) -6.96(49) -2.15(14) -4.15(43) -4.70(49) -3.96(24) -4.63(26) -4.50(36) -8.66(68) -9.14(43) -6.79(32) -8.29(52) -5.88(54) -2.08(11)

-2.83(38) -1.89(17) -6.72(48) -8.96(46) -7.66(57) -2.87(25) -4.59(48) -4.99(53) -2.98(23) -3.77(24) -4.04(43) -8.09(69) -8.37(43) -6.60(27) -8.39(62) -6.36(64) -2.55(23)

-5.62(102) -4.68(86) -1.92(62) -8.51(58) -9.08(102) -4.43(86) -4.43(93) -4.65(94) -3.27(49) -3.50(50) -2.60(35) -8.05(64) -6.23(33) -7.28(57) -10.08(118) -7.82(91) -4.65(89)

-9.63(55) -8.02(76) -7.91(67) -0.30(7) -11.32(91) -9.07(59) -9.11(86) -8.92(83) -8.02(66) -8.41(66) -7.54(62) -5.37(53) -5.94(60) -8.43(58) -9.87(87) -9.13(87) -8.92(70)

-6.61(88) -6.44(88) -10.09(64)-11.01(114) -0.29(11) -6.87(93) -7.96(103) -8.51(106) -8.02(59) -8.44(63) -8.94(88) -10.52(110)-11.55(121) -7.41(60) -8.79(84) -8.85(92) -6.90(87)

-2.46(32) -2.94(24) -6.66(50) -9.38(42) -7.27(49) -1.92(8) -3.11(35) -3.63(39) -3.83(23) -4.40(25) -4.47(40) -8.61(62) -8.99(42) -6.81(33) -8.37(52) -6.42(54) -2.34(21)

-4.45(66) -4.42(54) -6.76(68) -9.92(71) -8.23(64) -2.94(37) -1.51(13) -1.65(21) -4.36(41) -4.58(37) -5.20(72) -8.99(67) -9.12(66) -7.17(48) -8.93(64) -7.54(78) -3.94(57)

-4.98(66) -4.75(53) -6.83(69) -10.05(78) -8.58(64) -3.36(39) -1.56(9) -1.39(15) -4.51(42) -4.73(40) -5.31(73) -9.09(64) -9.08(69) -7.30(48) -9.12(66) -7.78(80) -4.37(57)

-4.09(79) -2.97(53) -5.55(53) -9.07(55) -8.33(71) -3.62(62) -4.39(63) -4.67(67) -1.77(26) -2.13(32) -3.45(59) -8.15(61) -7.96(39) -7.04(35) -9.19(90) -7.07(69) -3.46(66)

-4.29(87) -3.33(63) -5.48(57) -9.24(61) -8.32(74) -3.75(71) -4.08(71) -4.37(75) -1.80(22) -1.74(33) -3.58(65) -8.33(63) -8.11(42) -7.23(38) -9.36(99) -7.02(76) -3.74(76)

-3.91(67) -3.26(53) -4.22(67) -8.46(45) -8.24(72) -3.45(55) -4.40(66) -4.65(68) -2.57(16) -3.09(23) -2.06(32) -7.84(50) -6.94(28) -7.06(41) -9.18(83) -6.75(63) -3.16(50)

-8.85(47) -7.10(54) -8.12(41) -6.40(49) -10.63(54) -8.41(74) -8.73(90) -8.47(76) -7.02(46) -7.54(55) -7.13(37) -0.45(8) -6.89(45) -8.25(32) -9.42(39) -8.57(48) -8.22(64)

-8.29(86) -6.31(73) -4.70(32) -6.72(29) -10.60(122) -7.91(93) -8.12(94) -7.51(90) -5.84(80) -6.46(65) -4.86(63) -6.45(61) -0.62(12) -8.44(69) -10.77(105) -8.23(86) -7.03(75)

-7.52(77) -6.97(74) -8.82(56) -9.94(91) -8.39(73) -7.36(63) -7.95(76) -8.03(70) -7.72(47) -8.20(51) -7.97(63) -9.11(70) -10.11(82) -0.48(10) -8.46(83) -8.23(46) -7.43(62)

-8.29(54) -8.17(46) -10.94(57) -10.02(59) -9.33(33) -7.96(56) -9.10(55) -9.23(51) -9.16(63) -9.83(37) -9.56(49) -8.93(45) -11.13(70) -7.91(39) -0.11(2) -8.92(64) -8.27(52)

-3.75(69) -4.00(63) -8.18(67) -9.64(72) -8.02(65) -4.50(83) -5.98(97) -6.19(94) -5.70(63) -5.66(61) -5.54(52) -8.91(62) -9.49(79) -7.19(53) -9.07(84) -1.24(32) -4.13(71)

-2.26(29) -2.55(19) -6.64(51) -9.18(42) -7.34(49) -2.18(13) -3.86(41) -4.36(45) -3.51(23) -4.17(25) -4.03(36) -8.44(63) -8.73(41) -6.84(31) -8.42(55) -6.08(54) -2.10(16)

consistency check, dataset 2, CNN-ResNet

10

8

6

4

2

Figure B4: Log posteriors for evaluating the CNN ResNet multiclass classifier on

submission test sets for ds 2.

APPENDIX 166

Ca
lo

Di
ffu

sio
n

L2
LF

lo
ws

 M
AF

co
nv

. L
2L

Fl
ow

s

M
DM

A

Ca
lo

Cl
ou

ds

Ca
lo

-V
Q

Ca
lo

Sc
or

e
di

st
ille

d

Ca
lo

Sc
or

e
sin

gl
e-

sh
ot

iC
al

oF
lo

w
te

ac
he

r

iC
al

oF
lo

w
st

ud
en

t

GE
AN

T4
 tr

an
sf

or
m

er

Ca
lo

Po
in

tF
lo

w

Ca
lo

VA
E+

IN
N

Ca
lo

-V
Q(

no
rm

)

Ca
lo

DR
EA

M

Predicted label

CaloDiffusion

L2LFlows MAF

conv. L2LFlows

MDMA

CaloClouds

Calo-VQ

CaloScore distilled

CaloScore single-shot

iCaloFlow teacher

iCaloFlow student

GEANT4 transformer

CaloPointFlow

CaloVAE+INN

Calo-VQ(norm)

CaloDREAM

Tr
ue

 la
be

l

-2.18(1) -4.32(14) -2.67(1) -9.53(34) -6.09(26) -18.15(52) -3.21(8) -3.70(11) -6.69(20) -5.44(17) -11.43(43) -3.67(16) -6.43(21) -8.96(23) -2.25(1)

-3.84(10) -2.14(4) -2.74(2) -10.73(43) -5.96(18) -20.70(62) -3.67(11) -3.94(11) -5.24(11) -4.74(12) -12.91(44) -4.82(21) -6.50(24) -9.92(35) -3.41(8)

-2.83(4) -3.56(10) -2.31(1) -9.88(38) -6.49(22) -19.54(61) -3.48(10) -3.93(11) -6.21(16) -5.25(14) -13.99(52) -4.29(19) -6.92(25) -9.50(31) -2.72(3)

-5.73(12) -7.05(26) -5.37(10) -0.77(2) -10.40(24) -25.18(104) -7.48(24) -8.16(28) -9.44(28) -8.63(29) -17.76(81) -5.66(13) -9.91(36) -14.00(48) -6.10(15)

-3.26(8) -3.79(11) -3.52(6) -11.05(57) -1.89(2) -25.02(73) -3.37(7) -3.81(10) -5.92(14) -5.70(13) -11.90(43) -3.70(15) -8.46(31) -9.09(19) -3.16(7)

-10.82(26) -13.24(46) -10.17(40) -18.04(81) -20.72(63) -0.07(0) -12.35(29) -12.59(32) -15.48(38) -13.55(47) -21.45(111) -14.99(53) -12.84(48) -11.28(58) -11.60(23)

-3.35(9) -4.21(14) -3.32(9) -12.21(58) -6.60(24) -20.71(58) -1.96(4) -2.16(5) -7.23(21) -6.07(17) -13.76(51) -5.05(23) -7.76(27) -9.07(28) -2.80(5)

-4.09(16) -4.69(17) -3.89(11) -13.80(63) -7.48(26) -22.44(62) -2.03(8) -1.90(4) -8.02(27) -6.88(20) -15.43(56) -5.90(28) -8.57(30) -9.75(38) -3.34(11)

-5.95(19) -5.44(27) -5.22(19) -15.95(84) -8.47(47) -26.25(84) -6.47(21) -7.02(34) -1.26(1) -3.30(12) -19.13(127) -7.26(38) -10.26(43) -12.60(63) -5.86(19)

-4.27(15) -3.76(12) -3.76(9) -12.17(51) -7.22(27) -20.46(68) -4.66(15) -4.98(15) -2.94(6) -1.49(1) -15.14(61) -6.46(29) -8.20(32) -9.80(33) -4.58(14)

-8.54(40) -8.88(41) -8.90(45) -13.42(59) -10.60(52) -17.94(45) -8.47(39) -8.89(37) -11.28(37) -12.10(46) -0.25(1) -9.43(56) -7.10(18) -11.64(34) -7.80(35)

-2.73(5) -4.02(16) -3.06(5) -9.13(35) -5.33(18) -20.74(72) -3.77(11) -4.23(11) -6.60(20) -6.15(19) -11.21(45) -2.07(3) -6.92(26) -10.51(31) -2.71(7)

-5.30(16) -5.91(23) -4.91(17) -12.11(42) -8.35(34) -19.37(52) -6.19(21) -6.60(22) -8.92(30) -8.89(34) -11.12(29) -7.02(32) -1.12(2) -11.90(43) -4.66(13)

-7.77(21) -7.67(22) -5.92(16) -13.74(48) -12.23(44) -16.11(44) -8.64(23) -8.90(25) -10.95(33) -8.63(28) -19.45(65) -11.18(41) -8.30(25) -0.47(1) -8.39(19)

-2.47(1) -4.28(15) -2.78(2) -9.99(39) -6.09(25) -19.26(55) -2.99(6) -3.44(9) -6.86(20) -5.93(18) -11.62(41) -3.87(19) -6.33(20) -9.33(24) -2.21(1)

consistency check, dataset 3, DNN

25

20

15

10

5

Figure B5: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 3.

APPENDIX 167

Ca
lo

Di
ffu

sio
n

L2
LF

lo
ws

 M
AF

co
nv

. L
2L

Fl
ow

s

M
DM

A

Ca
lo

Cl
ou

ds

Ca
lo

-V
Q

Ca
lo

Sc
or

e
di

st
ille

d

Ca
lo

Sc
or

e
sin

gl
e-

sh
ot

iC
al

oF
lo

w
te

ac
he

r

iC
al

oF
lo

w
st

ud
en

t

GE
AN

T4
 tr

an
sf

or
m

er

Ca
lo

Po
in

tF
lo

w

Ca
lo

VA
E+

IN
N

Ca
lo

-V
Q(

no
rm

)

Ca
lo

DR
EA

M

Predicted label

CaloDiffusion

L2LFlows MAF

conv. L2LFlows

MDMA

CaloClouds

Calo-VQ

CaloScore distilled

CaloScore single-shot

iCaloFlow teacher

iCaloFlow student

GEANT4 transformer

CaloPointFlow

CaloVAE+INN

Calo-VQ(norm)

CaloDREAM

Tr
ue

 la
be

l

-0.94(9) -9.91(54) -2.50(21) -10.21(63) -10.31(60) -9.01(37) -5.38(45) -6.48(52) -9.17(44) -9.30(59) -10.01(56) -10.20(37) -9.40(48) -8.34(42) -1.47(15)

-10.62(49) -0.78(18) -8.12(43) -9.17(58) -7.33(46) -11.04(107) -8.67(71) -8.31(54) -3.92(52) -4.10(58) -10.21(53) -6.02(56) -8.99(50) -10.56(45) -9.32(57)

-2.95(28) -9.17(54) -1.07(15) -10.06(62) -10.07(58) -9.62(33) -5.25(46) -5.87(51) -8.22(41) -8.51(57) -10.08(62) -9.96(46) -9.05(42) -9.22(35) -1.95(10)

-11.01(99) -8.21(56) -9.38(71) -0.21(7) -5.85(69) -10.03(49) -10.65(70) -10.22(84) -9.51(69) -9.52(63) -10.56(70) -7.62(52) -10.48(71) -11.13(81) -10.43(66)

-11.72(67) -6.60(59) -10.44(67) -6.39(90) -0.24(6) -10.90(75) -10.43(76) -10.17(77) -8.94(75) -9.43(85) -10.73(51) -6.52(69) -10.85(79) -11.27(67) -10.96(82)

-9.94(66) -11.71(117) -10.37(69) -10.49(71) -10.92(78) -0.02(1) -10.58(61) -10.95(51) -11.29(86) -11.00(91) -9.82(93) -12.01(115) -9.86(64) -9.16(82) -10.41(63)

-6.46(60) -9.51(51) -5.30(57) -10.75(57) -9.99(70) -9.68(59) -0.82(6) -1.63(11) -9.13(46) -9.05(55) -10.34(73) -10.54(39) -9.25(37) -9.50(56) -4.73(43)

-7.33(66) -9.66(58) -5.78(61) -11.00(57) -10.09(75) -10.18(59) -1.30(14) -0.85(8) -9.16(45) -9.13(62) -10.55(81) -10.52(48) -9.31(43) -9.93(63) -5.49(46)

-9.17(52) -5.55(49) -6.61(53) -10.20(76) -8.91(39) -10.59(81) -7.81(47) -7.35(61) -0.82(8) -1.45(16) -10.14(71) -8.49(59) -8.31(42) -10.39(84) -7.83(53)

-9.05(49) -5.51(44) -6.69(59) -10.10(80) -8.96(41) -10.40(77) -7.32(56) -6.93(67) -1.40(7) -0.79(11) -10.11(69) -8.60(56) -8.37(44) -10.24(87) -7.80(55)

-10.22(58) -10.05(78) -9.88(77) -9.53(77) -9.80(76) -8.95(62) -9.87(48) -9.56(65) -9.68(82) -9.69(42) -0.00(0) -10.03(71) -8.22(39) -8.85(39) -9.81(31)

-10.82(58) -4.76(43) -9.36(64) -7.92(52) -6.79(40) -11.79(84) -10.46(90) -9.45(77) -7.33(55) -7.69(65) -10.95(52) -0.36(8) -10.35(73) -10.89(60) -10.05(45)

-10.86(88) -9.65(65) -9.55(68) -11.27(72) -11.44(85) -10.31(60) -9.77(61) -9.70(68) -9.62(54) -9.38(68) -9.25(53) -11.18(80) -0.08(2) -9.93(52) -9.82(47)

-9.49(65) -11.26(74) -9.70(41) -11.47(70) -11.04(61) -8.63(57) -10.11(46) -10.65(40) -10.69(60) -10.80(59) -9.75(64) -11.39(92) -9.70(48) -0.04(1) -9.83(68)

-1.94(17) -9.55(52) -2.21(21) -10.04(50) -10.03(56) -9.11(33) -4.39(36) -5.36(42) -8.80(43) -8.97(57) -9.86(54) -9.98(34) -9.07(42) -8.59(42) -1.10(11)

consistency check, dataset 3, CNN-ResNet

12

10

8

6

4

2

Figure B6: Log posteriors for evaluating the CNN ResNet multiclass classifier on

submission test sets for ds 3.

APPENDIX 168

C. Numerical Results in Tables

In this appendix we show tables with all the results that went into the figures of section 9.

C.1. Dataset 1, Photons (ds 1 – γ)

Table C1: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 1 –

γ, averaged over 10 independent evaluation runs. For visualization, see Figure 39.

Submission low-level AUC ↓ high-level AUC ↓
Geant4 0.499± 0.002 0.499± 0.003

CaloDiffusion [44] 0.635± 0.003 0.536± 0.003

CaloINN [38] 0.626± 0.004 0.638± 0.003

Calo-VQ [58] 0.998± 0.000 0.989± 0.001

CaloScore [50, 51] 0.751± 0.002 0.552± 0.005

CaloScore distilled [50, 51] 0.816± 0.004 0.641± 0.003

CaloScore single-shot [50, 51] 0.866± 0.003 0.726± 0.004

CaloFlow teacher [34] 0.733± 0.003 0.636± 0.002

CaloFlow student [34] 0.761± 0.002 0.667± 0.004

CaloMan [60] 1.000± 0.000 0.999± 0.000

BoloGAN [26] 0.927± 0.003 0.966± 0.001

CaloShower2GAN [21] 0.938± 0.004 0.942± 0.002

CaloShower3GAN [21] 0.928± 0.004 0.947± 0.002

CaloVAE+INN [38] 0.889± 0.003 0.966± 0.001

CaloForest [71] 0.845± 0.002 0.924± 0.002

CaloGraph [54] 0.820± 0.002 0.672± 0.004

APPENDIX 169

Table C2: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – γ. For

visualization, see Figure 40.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 0.0279± 0.0592 0.1192± 0.0534

CaloDiffusion [44] −0.0100± 0.0515 0.6497± 0.1308

CaloINN [38] 0.2327± 0.2165 3.8974± 0.1707

Calo-VQ [58] 2.4053± 0.1363 35.9531± 0.3235

CaloScore [50, 51] 0.0008± 0.0579 0.4381± 0.1296

CaloScore distilled [50, 51] 0.0319± 0.0504 1.1200± 0.1310

CaloScore single-shot [50, 51] 0.2214± 0.0537 3.0866± 0.1348

CaloFlow teacher [34] 0.0824± 0.0679 3.1124± 0.0938

CaloFlow student [34] 0.0902± 0.0723 3.1512± 0.1080

CaloMan [60] 11.1063± 0.5458 141.3752± 0.4676

BoloGAN [26] 11.6268± 1.1852 142.4424± 1.3268

CaloShower2GAN [21] 2.8025± 0.4946 52.0972± 0.3547

CaloShower3GAN [21] 1.1561± 0.2029 20.5146± 0.3082

CaloVAE+INN [38] 1.2138± 0.0542 14.5877± 0.1710

CaloForest [71] 2.2297± 0.3132 33.5196± 0.5523

CaloGraph [54] 1.1558± 0.2367 15.7884± 0.2592

Table C3: Log-posterior scores for ds 1 – γ Geant4 test data, averaged over 10

independent classifier trainings. For visualization, see Figure 41.

Submission Log-posterior ↑
CaloDiffusion [44] −2.1893± 0.0053

CaloINN [38] −2.2046± 0.0083

Calo-VQ [58] −17.9096± 0.4605

CaloScore [50, 51] −3.3126± 0.0254

CaloScore distilled [50, 51] −4.2047± 0.0408

CaloScore single-shot [50, 51] −5.4383± 0.0507

CaloFlow teacher [34] −2.7946± 0.0133

CaloFlow student [34] −2.9796± 0.0143

CaloMan [60] −30.3461± 1.5767

BoloGAN [26] −9.7551± 0.3416

CaloShower2GAN [21] −7.1072± 0.1705

CaloShower3GAN [21] −6.7926± 0.1889

CaloVAE+INN [38] −5.2225± 0.1405

CaloForest [71] −3.6188± 0.0307

CaloGraph [54] −3.5833± 0.0310

APPENDIX 170

Table C4: Precision, density, recall, and coverage for ds 1 – γ submissions. A

visualization is shown in figure 42.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.704 0.992 0.699 0.964

CaloDiffusion [44] 0.730 1.152 0.665 0.974

CaloINN [38] 0.607 0.831 0.716 0.911

Calo-VQ [58] 0.957 115.883 0.003 0.952

CaloScore [50, 51] 0.662 0.891 0.708 0.939

CaloScore distilled [50, 51] 0.613 0.781 0.722 0.907

CaloScore single-shot [50, 51] 0.482 0.441 0.807 0.782

CaloFlow teacher [34] 0.595 0.799 0.718 0.913

CaloFlow student [34] 0.617 0.859 0.701 0.912

CaloMan [60] 0.888 612.387 0.010 0.888

BoloGAN [26] 0.207 0.315 0.194 0.411

CaloShower2GAN [21] 0.761 72.665 0.036 0.832

CaloShower3GAN [21] 0.734 65.729 0.039 0.795

CaloVAE+INN [38] 0.873 73.873 0.139 0.973

CaloForest [71] 0.906 17.494 0.186 0.957

CaloGraph [54] 0.657 0.982 0.670 0.933

APPENDIX 171

Table C5: Number of trainable parameters in training and for generation for ds 1 – γ

submissions. A visualization is shown in figure 43.

number of parameters ↓
Submission total generator only

CaloDiffusion [44] 521581 521 581

CaloINN [38] 18 821 350 18 821 350

Calo-VQ [58] 4 060 878 2 152 637

CaloScore [50, 51] 2 447 366 2 447 366

CaloScore distilled [50, 51] 4 894 732 2 447 366

CaloScore single-shot [50, 51] 4 894 732 2 447 366

CaloFlow teacher [34] 28 043 810 28 043 810

CaloFlow student [34] 84 500 898 56 554 930

CaloMan [60] 19 276 658 17 061 148

BoloGAN [26] 1 185 520 368 558

CaloShower2GAN [21] 1 183 606 367380

CaloShower3GAN [21] 1 696 459 472 120

CaloVAE+INN [38] 15 747 908 8 321 308

CaloForest [71] 3 837 598 845 3 837 598 845

CaloGraph [54] 823 617 823 617

APPENDIX 172

Table C6: Timing of ds 1 – γ submissions on a CPU. The symbols ∗, †, ‡, and ⋄ indicate

that only 1000 / 10 000 / 20 000 / 50 000 events were generated in timing the submission.

A visualization of these timings is shown in figure 44.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 15 677± 633† 4266± 106† 4500± 357‡

CaloINN [38] 37.9±3.2 2.78± 0.34 2.88± 0.31

Calo-VQ [58] 93.6± 5.6 10.4± 1.8 14.1± 3.1

CaloScore [50, 51] 19 324± 729∗ 9425± 322∗ 12 871± 1197†

CaloScore distilled [50, 51] 2456± 178† 1078± 54† 1276± 190‡

CaloScore single-shot [50, 51] 223.3± 10.1 20.5± 2.0 19.8± 3.5

CaloFlow teacher [34] 42 875± 3085∗ 2053± 171† 1912± 141‡

CaloFlow student [34] 575.9± 22.2 11.1± 1.3 6.11± 0.60

CaloMan [60] 186.5± 31.8 3.20± 0.51 1.46± 0.16

BoloGAN [26] 105.5± 6.5 1.73±0.10 0.55±0.03

CaloShower2GAN [21] 582.0± 9.4† 65.6± 3.2 1.28± 0.07

CaloShower3GAN [21] 480.0± 19.5† 55.5± 2.9 1.20± 0.07

CaloVAE+INN [38] 38.0±3.2 1.58±0.14 1.20± 0.11

CaloForest [71] 28 400± 916∗ 308.1± 17.4 27.3± 1.7

CaloGraph [54] 3250± 277† 914.4± 70.2† 1382± 83⋄

APPENDIX 173

Table C7: Timing of ds 1 – γ submissions on a GPU. The symbols ∗ and ‡ indicate

that only 5000 or 10 000 events were generated in timing the submission; a – indicates

a model that does not run on a GPU; and “CUDA o.o.m” ran out of VRAM on the

GPU. A visualization of these timings is shown in figure 44.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 5593± 64∗ 75.2± 2.1 24.4± 0.1

CaloINN [38] 24.6±1.6 0.51±0.03 0.19± 0.01

Calo-VQ [58] 48.2± 0.6 0.81± 0.08 0.16±0.01

CaloScore [50, 51] 4706± 171∗ 60.4± 4.1 36.00± 0.01

CaloScore distilled [50, 51] 756.6± 22.8 8.8± 0.2 4.96± 0.02

CaloScore single-shot [50, 51] 189.4± 12.5 2.0± 0.0 0.56± 0.02

CaloFlow teacher [34] 4193± 130∗ 45.5± 1.1 8.13± 0.03

CaloFlow student [34] 56.9± 0.5 0.79± 0.01 0.26± 0.10

CaloMan [60] 76.0± 1.1 1.04± 0.08 0.30± 0.25

BoloGAN [26] 286.1± 12.3 2.26± 0.48 0.53± 0.03

CaloShower2GAN [21] 611.6± 44‡ 70.8± 1.8 1.71± 0.67

CaloShower3GAN [21] 518.8± 44.7‡ 63.8± 1.2 1.49± 0.05

CaloVAE+INN [38] 34.0± 0.4 0.64± 0.02 0.26± 0.01

CaloForest [71] – – –

CaloGraph [54] 1633± 25‡ 25.0± 0.4 CUDA o.o.m.

APPENDIX 174

C.2. Dataset 1, Pions (ds 1 – π+)

Table C8: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 1 –

π+, averaged over 10 independent evaluation runs. For visualization, see Figure 52.

Submission low-level AUC ↓ high-level AUC ↓
Geant4 0.609± 0.004 0.558± 0.002

CaloDiffusion [44] 0.680± 0.002 0.652± 0.006

CaloINN [38] 0.784± 0.002 0.732± 0.002

Calo-VQ [58] 0.958± 0.002 0.976± 0.001

CaloFlow teacher [34] 0.845± 0.002 0.797± 0.002

CaloFlow student [34] 0.884± 0.002 0.827± 0.004

CaloMan [60] 0.999± 0.000 0.999± 0.000

BoloGAN [26] 0.913± 0.002 0.969± 0.001

DNNCaloSim [62, 63] 0.676± 0.004 0.819± 0.002

CaloShowerGAN [21] 0.889± 0.002 0.922± 0.001

CaloVAE+INN [38] 0.853± 0.003 0.921± 0.002

CaloForest [71] 0.909± 0.002 0.965± 0.001

CaloGraph [54] 0.811± 0.005 0.763± 0.002

Table C9: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – π+. For

visualization, see Figure 53.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 −0.0075± 0.0362 0.5110± 0.0730

CaloDiffusion [44] 0.0893± 0.0572 2.7746± 0.0922

CaloINN [38] 1.4781± 0.2448 29.2598± 0.2133

Calo-VQ [58] 6.2679± 0.2652 126.9924± 0.6750

CaloFlow teacher [34] 0.8083± 0.0923 25.6634± 0.3002

CaloFlow student [34] 0.9937± 0.0846 25.6868± 0.2292

CaloMan [60] 31.1636± 0.9840 524.4263± 0.9067

BoloGAN [26] 25.2457± 0.9748 498.6887± 2.9504

DNNCaloSim [62, 63] 20.0149± 1.0029 464.6882± 2.2500

CaloShowerGAN [21] 3.0518± 0.1067 113.2271± 0.6673

CaloVAE+INN [38] 4.3241± 0.2868 82.9985± 0.8746

CaloForest [71] 9.5250± 0.9264 204.7435± 1.6359

CaloGraph [54] 0.8500± 0.2796 22.3235± 0.4428

APPENDIX 175

Table C10: Log-posterior scores for ds 1 – π+ Geant4 test data, averaged over 10

independent classifier trainings. For visualization, see Figure 54.

Submission Log-posterior ↑
CaloDiffusion [44] −2.3189± 0.0135

CaloINN [38] −3.0949± 0.0234

Calo-VQ [58] −8.5998± 0.1748

CaloFlow teacher [34] −3.7110± 0.0316

CaloFlow student [34] −4.5623± 0.0365

CaloMan [60] −25.9528± 1.0659

BoloGAN [26] −8.0202± 0.1331

DNNCaloSim [62, 63] −1.9262± 0.0239

CaloShowerGAN [21] −4.7157± 0.0807

CaloVAE+INN [38] −4.0618± 0.0511

CaloForest [71] −4.8811± 0.0406

CaloGraph [54] −3.4762± 0.0360

Table C11: Precision, density, recall, and coverage for ds 1 – π+ submissions. A

visualization is shown in figure 55.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.643 0.782 0.739 0.913

CaloDiffusion [44] 0.632 0.750 0.743 0.895

CaloINN [38] 0.474 0.474 0.789 0.734

Calo-VQ [58] 0.954 54.862 0.134 0.947

CaloFlow teacher [34] 0.394 0.390 0.799 0.621

CaloFlow student [34] 0.414 0.445 0.772 0.625

CaloMan [60] 0.669 27.709 0.133 0.584

BoloGAN [26] 0.268 0.487 0.335 0.386

DNNCaloSim [62, 63] 0.945 0.788 1.000 0.931

CaloShowerGAN [21] 0.710 2.803 0.185 0.855

CaloVAE+INN [38] 0.709 5.857 0.416 0.808

CaloForest [71] 0.643 1.625 0.490 0.661

CaloGraph [54] 0.626 0.800 0.687 0.827

APPENDIX 176

Table C12: Number of trainable parameters in training and for generation for ds 1 – π+

submissions. A visualization is shown in figure 56.

number of parameters ↓
Submission total generator only

CaloDiffusion [44] 525901 525901

CaloINN [38] 26 592 624 26 592 624

Calo-VQ [58] 4 314 739 2 237 538

CaloFlow teacher [34] 57 079 326 57 079 326

CaloFlow student [34] 110 389 398 53 426 622

CaloMan [60] 18 452 248 16 032 327

BoloGAN [26] 1 678 334 848 733

DNNCaloSim [62, 63] 6 052 063 3 169 663

CaloShowerGAN [21] 1 715 742 880 541

CaloVAE+INN [38] 17 426 875 9 165 275

CaloForest [71] 5 297 822 388 5 297 822 388

CaloGraph [54] 823 617 823 617

Table C13: Timing of ds 1 – π+ submissions on a CPU. The symbols ⋄, ‡, ∗, and †

indicate that only 100 / 1000 / 10 000 / 20 000 events were generated in timing the

submission. A visualization of these timings is shown in figure 57.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 15 144± 1126‡ 4571± 333∗ 4501± 181†

CaloINN [38] 42.8± 2.9 3.92± 0.36 4.57± 0.3

Calo-VQ [58] 108.2± 10.5 12.7± 1.4 16.5± 4.3

CaloFlow teacher [34] 197 570± 34 423⋄ 5430± 489∗ 3509± 177†

CaloFlow student [34] 620.1± 18.4 14.2± 2.2 10.2± 0.6

CaloMan [60] 605.5± 38.3 12.1± 1.3 7.38± 0.54

BoloGAN [26] 79.6± 3.1 1.38± 0.05 0.49± 0.03

DNNCaloSim [62, 63] 3.85±0.96 0.47±0.04 0.39±0.03

CaloShowerGAN [21] 1163± 301∗ 70.7± 6.3 1.60± 0.07

CaloVAE+INN [38] 40.8± 1.1 1.72± 0.14 1.20± 0.14

CaloForest [71] 37 876± 1905∗ 432.8± 22.9 41.2± 4.2

CaloGraph [54] 3168± 135∗ 1263± 112∗ 2419± 153†

APPENDIX 177

Table C14: Timing of ds 1 – π+ submissions on a GPU. The symbols ∗, ‡, and † indicate

that only 4000 / 5000 / 10 000 events were generated in timing the submission; a –

indicates a model that does not run on a GPU; and “CUDA o.o.m” ran out of VRAM

on the GPU. A visualization of these timings is shown in figure 57.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 5673± 49‡ 76.9± 2.2 27.0± 0.2

CaloINN [38] 24.7± 2.0 0.44± 0.01 0.20±0.01

Calo-VQ [58] 53.3± 0.8 0.83± 0.05 0.18±0.01

CaloFlow teacher [34] 6166± 112∗ 70.1± 1.0 17.7± 0.0

CaloFlow student [34] 77.4± 3.6 1.00± 0.02 0.25± 0.08

CaloMan [60] 181.4± 3.6 2.07± 0.02 0.27± 0.01

BoloGAN [26] 209.5± 12.9 1.59± 0.13 0.48± 0.03

DNNCaloSim [62, 63] 2.34±0.17 0.32±0.01 0.29± 0.01

CaloShowerGAN [21] 1119± 56† 122.6± 1.5 2.06± 0.06

CaloVAE+INN [38] 34.2± 0.5 0.68± 0.02 0.27± 0.01

CaloForest [71] – – –

CaloGraph [54] 1475± 22† 28.4± 0.02 CUDA o.o.m.

C.3. Dataset 2, Electrons (ds 2)

APPENDIX 178

Table C15: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 2, averaged over 10 independent evaluation runs. For visualization, see Figure 67.

Submission
AUC ↓

low-level high-level ResNet

Geant4 0.500± 0.002 0.499± 0.002 0.500± 0.004

CaloDiffusion [44] 0.577± 0.004 0.591± 0.009 0.680± 0.006

conv. L2LFlows [32] 0.708± 0.004 0.737± 0.002 0.941± 0.003

CaloINN [38] 0.743± 0.002 0.865± 0.003 0.994± 0.000

MDMA [23, 24] 0.942± 0.005 0.987± 0.001 1.000± 0.000

Calo-VQ [58] 0.986± 0.001 0.994± 0.000 0.999± 0.000

CaloScore [50, 51] 0.595± 0.003 0.666± 0.002 0.795± 0.011

CaloScore distilled [50, 51] 0.710± 0.002 0.891± 0.003 0.965± 0.002

CaloScore single-shot [50, 51] 0.747± 0.003 0.902± 0.002 0.973± 0.002

iCaloFlow teacher [35] 0.763± 0.004 0.837± 0.005 0.970± 0.002

iCaloFlow student [35] 0.819± 0.004 0.886± 0.003 0.975± 0.002

SuperCalo [40] 0.694± 0.006 0.757± 0.004 0.986± 0.001

DeepTree [28, 29] 0.963± 0.002 0.927± 0.002 0.999± 0.000

CaloPointFlow [42] 0.863± 0.005 0.908± 0.004 0.999± 0.000

CaloVAE+INN [38] 0.907± 0.004 1.000± 0.000 0.993± 0.001

CaloLatent [67] 0.983± 0.001 0.995± 0.001 1.000± 0.000

CaloDiT [56] 0.984± 0.001 0.912± 0.002 0.988± 0.001

CaloDREAM [69] 0.531± 0.003 0.521± 0.002 0.681± 0.015

APPENDIX 179

Table C16: KPD and FPD for evaluating Geant4 vs. submission of ds 2. For

visualization, see Figure 68.

Submission KPD ·103 ↓ FPD ·103 ↓
Geant4 −0.0276± 0.0215 10.7760± 0.7901

CaloDiffusion [44] 0.1741± 0.0422 146.9334± 0.8703

conv. L2LFlows [32] 0.2705± 0.0897 157.4047± 0.9684

CaloINN [38] 2.8210± 0.4194 732.8274± 5.3303

MDMA [23, 24] 4.9624± 0.2728 864.9781± 5.1452

Calo-VQ [58] 8.5212± 0.5043 1315.7233± 7.0344

CaloScore [50, 51] 0.1486± 0.0568 112.4790± 0.9080

CaloScore distilled [50, 51] 1.0129± 0.0738 638.8525± 1.5996

CaloScore single-shot [50, 51] 0.9294± 0.0684 546.2661± 1.9396

iCaloFlow teacher [35] 0.5679± 0.1375 377.0613± 1.8961

iCaloFlow student [35] 1.0406± 0.2190 449.2585± 3.2844

SuperCalo [40] 0.5564± 0.1900 300.8183± 2.7275

DeepTree [28, 29] 0.6803± 0.1285 292.6319± 2.9330

CaloPointFlow [42] 0.3241± 0.0392 494.0547± 1.7906

CaloVAE+INN [38] 45.6091± 0.8315 5443.4295± 27.2305

CaloLatent [67] 2.8791± 0.1998 962.9750± 2.4089

CaloDiT [56] 11.0322± 0.4274 1690.9873± 6.7650

CaloDREAM [69] 0.0231± 0.0364 24.6488± 1.0350

APPENDIX 180

Table C17: Log-posterior scores for ds 2 Geant4 test data, averaged over 10

independent DNN classifier trainings. For visualization, see Figure 69.

Submission Log-posterior ↑
CaloDiffusion [44] −2.5226± 0.0094

conv. L2LFlows [32] −3.1295± 0.0219

CaloINN [38] −3.2032± 0.0153

MDMA [23, 24] −7.4399± 0.3234

Calo-VQ [58] −11.8863± 0.2627

CaloScore [50, 51] −2.8415± 0.0238

CaloScore distilled [50, 51] −3.4226± 0.0556

CaloScore single-shot [50, 51] −3.5974± 0.0685

CaloDREAM [69] −2.4102± 0.0105

iCaloFlow teacher [35] −3.6423± 0.0286

iCaloFlow student [35] −4.2617± 0.0360

SuperCalo [40] −2.8204± 0.0237

CaloDiT [56] −22.1206± 0.4549

DeepTree [28, 29] −10.5062± 0.2094

CaloPointFlow [42] −5.2306± 0.1996

CaloVAE+INN [38] −6.4103± 0.1439

CaloLatent [67] −11.6683± 0.2679

APPENDIX 181

Table C18: Log-posterior scores for ds 2 Geant4 test data, averaged over 10

independent CNN ResNet classifier trainings. For visualization, see Figure 70.

Submission Log-posterior ↑
CaloDiffusion [44] −1.9901± 0.2358

conv. L2LFlows [32] −2.4500± 0.1546

CaloINN [38] −7.2706± 0.4780

MDMA [23, 24] −9.3476± 0.4435

Calo-VQ [58] −7.0740± 0.4898

CaloScore [50, 51] −2.1544± 0.1303

CaloScore distilled [50, 51] −4.1027± 0.4292

CaloScore single-shot [50, 51] −4.6509± 0.4837

CaloDREAM [69] −1.9761± 0.1203

iCaloFlow teacher [35] −3.9376± 0.2385

iCaloFlow student [35] −4.6476± 0.2627

SuperCalo [40] −4.4702± 0.4064

CaloDiT [56] −5.8461± 0.5629

DeepTree [28, 29] −8.5889± 0.6987

CaloPointFlow [42] −9.0910± 0.4704

CaloVAE+INN [38] −6.9001± 0.3468

CaloLatent [67] −8.2169± 0.5325

APPENDIX 182

Table C19: Precision, density, recall, and coverage for ds 2 submissions. A visualization

is shown in figure 71.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.239 1.021 0.241 0.971

CaloDiffusion [44] 0.239 1.236 0.235 0.933

conv. L2LFlows [32] 0.231 1.656 0.177 0.969

CaloINN [38] 0.193 4.573 0.090 0.957

MDMA [23, 24] 0.003 0.009 0.937 0.033

Calo-VQ [58] 0.345 254.397 0.217 0.868

CaloScore [50, 51] 0.228 1.013 0.228 0.933

CaloScore distilled [50, 51] 0.197 1.407 0.181 0.880

CaloScore single-shot [50, 51] 0.171 1.056 0.208 0.852

iCaloFlow teacher [35] 0.152 0.809 0.253 0.817

iCaloFlow student [35] 0.155 1.354 0.253 0.827

SuperCalo [40] 0.120 0.347 0.310 0.692

DeepTree [28, 29] 0.003 0.013 0.834 0.045

CaloPointFlow [42] 0.016 0.575 0.335 0.487

CaloVAE+INN [38] 0.739 1793.855 0.026 0.961

CaloLatent [67] 0.016 0.176 0.622 0.235

CaloDiT [56] 0.500 10.228 0.060 0.924

CaloDREAM [69] 0.253 1.146 0.220 0.976

APPENDIX 183

Table C20: Number of trainable parameters in training and for generation for ds 2

submissions. A visualization is shown in figure 72.

number of parameters ↓
Submission total generator only

CaloDiffusion [44] 517 969 517 969

conv. L2LFlows [32] 158 017 226 158 017 226

CaloINN [38] 270 999 370 270 999 370

MDMA [23, 24] 108656 66416

Calo-VQ [58] 3 317 546 1 231 433

CaloScore [50, 51] 14 436 206 14 436 206

CaloScore distilled [50, 51] 28 872 412 14 436 206

CaloScore single-shot [50, 51] 28 872 412 14 436 206

iCaloFlow teacher [35] 19 470 168 19 470 168

iCaloFlow student [35] 41 237 080 24 519 512

SuperCalo [40] 87 465 608 87 465 608

DeepTree [28, 29] 2 240 496 527 676

CaloPointFlow [42] 14 215 334 14 215 334

CaloVAE+INN [38] 96 356 674 48 393 824

CaloLatent [67] 10 707 408 1 942 402

CaloDiT [56] 1 221 544 1 221 544

CaloDREAM [69] 28 427 393 28 427 393

APPENDIX 184

Table C21: Timing of ds 2 submissions on a CPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission. “LLVM: o.o.m.” crashes with

an LLVM out of memory error, “o.o.m.” crashes with an memory allocation error,

“> 17 280” translates to >48h/batch. A visualization of these timings is shown in

figure 73.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 36 502± 2127(1000) 23 317± 3343(1000) > 17 280

conv. L2LFlows [32] 1969± 234(10 000) 121.2± 4.4 89.2± 13.2

CaloINN [38] 387.7± 31.6 59.7± 10.1 46.2± 0.7

MDMA [23, 24] 14.3±0.6 19.9± 5.3 32.4± 4.5

Calo-VQ [58] 168.4± 7.3 26.1± 1.2 36.2± 9.6

CaloScore [50, 51] 133 549± 5286(1000) 147 694± 12 981(500) LLVM: o.o.m.

CaloScore distilled [50, 51] 16 785± 388(10 000) 17 989± 595(1000) LLVM: o.o.m.

CaloScore single-shot [50, 51] 406.6± 14.3 278.0± 16.6 LLVM: o.o.m.

iCaloFlow teacher [35] 250 171± 18 156(100) 11 614± 380(1000) 8179± 164(20 000)

iCaloFlow student [35] 3048± 102(10 000) 135.2± 4.9 77.6± 1.5

SuperCalo [40] 397 940± 114 537(100) 7988± 470(1000) 7609± 663(20 000)

DeepTree [28, 29] 67.5± 3.4 38.3± 3.3 48.4± 3.9

CaloPointFlow [42] 154.6± 5.6 161.1± 25.2 132.6± 27.0

CaloVAE+INN [38] 64.1± 3.9 4.60±0.19 3.38±0.31

CaloLatent [67] 6611± 577(10 000) 541.3± 54.9 LLVM: o.o.m.

CaloDiT [56] 24 642± 1883(1000) 33 355± 4854(1000) o.o.m.

CaloDREAM [69] 16 942± 1707(1000) 5052± 496(10 000) 5727± 271(20 000)

APPENDIX 185

Table C22: Timing of ds 2 submissions on a GPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “CUDA o.o.m.” ran out of

VRAM on the GPU; and “array o.o.m.” crashed because created arrays were too large.

A visualization of these timings is shown in figure 73.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 5291± 88(5000) 99.5± 1.8 CUDA o.o.m.

conv. L2LFlows [32] 1409± 29(10 000) 14.2± 0.1 1.64± 0.01

CaloINN [38] 53.4± 0.9 1.18±0.03 0.65± 0.03

MDMA [23, 24] 6.4±0.1 1.2±0.1 CUDA o.o.m.

Calo-VQ [58] 72.8± 1.0 1.1±0.1 0.36±0.01

CaloScore [50, 51] 2389± 92(5000) 241.3± 0.6 array o.o.m.

CaloScore distilled [50, 51] 470.6± 37.5(50 000) 31.9± 0.3 array o.o.m.

CaloScore single-shot [50, 51] 138.2± 3.0 2.5± 0.1 array o.o.m.

iCaloFlow teacher [35] 77 016± 3447(100) 829.4± 16.7(10 000) 56.1± 0.1

iCaloFlow student [35] 1127± 12(10 000) 13.2± 0.5 1.45± 0.05

SuperCalo [40] 8508± 77(1000) 103.0± 1.6 CUDA o.o.m.

DeepTree [28, 29] 37.3± 0.9 5.82± 0.14 CUDA o.o.m.

CaloPointFlow [42] 49.9± 1.2 3.00± 0.04 CUDA o.o.m.

CaloVAE+INN [38] 41.5± 0.5 1.22± 0.03 0.77± 0.02

CaloLatent [67] 8497± 79(2500) 79.8± 8.5 array o.o.m.

CaloDiT [56] 1036± 18(25 000) 179.0± 0.7 CUDA o.o.m.

CaloDREAM [69] 4846± 47(10 000) 74.3± 0.8 CUDA o.o.m.

APPENDIX 186

C.4. Dataset 3, Electrons (ds 3)

Table C23: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 3, averaged over 10 independent evaluation runs. For visualization, see Figure 83.

Submission
AUC ↓

low-level high-level ResNet

Geant4 0.498± 0.002 0.500± 0.003 0.499± 0.002

CaloDiffusion [44] 0.561± 0.003 0.607± 0.005 0.656± 0.015

L2LFlows-MAF [31, 32] 0.720± 0.016 0.946± 0.002 1.000± 0.000

conv. L2LFlows [32] 0.588± 0.004 0.733± 0.006 0.919± 0.003

MDMA [23, 24] 0.944± 0.002 0.987± 0.001 1.000± 0.000

CaloClouds [46, 47] 0.865± 0.005 0.980± 0.001 1.000± 0.000

Calo-VQ [58] 0.996± 0.001 0.998± 0.000 1.000± 0.000

Calo-VQ(norm) [58] 0.975± 0.003 0.994± 0.000 1.000± 0.000

CaloScore distilled [50, 51] 0.776± 0.005 0.924± 0.002 0.994± 0.001

CaloScore single-shot [50, 51] 0.807± 0.005 0.939± 0.001 0.995± 0.002

iCaloFlow teacher [35] 0.911± 0.003 0.962± 0.001 1.000± 0.000

iCaloFlow student [35] 0.891± 0.003 0.971± 0.001 1.000± 0.000

Geant4-Transformer [65] 0.886± 0.011 1.000± 0.000 1.000± 0.000

CaloPointFlow [42] 0.720± 0.012 0.945± 0.002 1.000± 0.000

CaloVAE+INN [38] 0.881± 0.005 1.000± 0.000 1.000± 0.000

CaloDREAM [69] 0.630± 0.005 0.524± 0.004 0.802± 0.014

APPENDIX 187

Table C24: KPD and FPD for evaluating Geant4 vs. submission of ds 3. For

visualization, see Figure 84.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 −0.0091± 0.0466 8.7578± 0.5587

CaloDiffusion [44] 0.2278± 0.0978 71.2380± 1.9208

L2LFlows-MAF [31, 32] 1.5398± 0.1831 665.4975± 1.6930

conv. L2LFlows [32] 0.3245± 0.1521 171.6365± 1.7965

MDMA [23, 24] 1.6705± 0.1370 588.6035± 2.5358

CaloClouds [46, 47] 5.1826± 0.7016 948.2275± 4.6265

Calo-VQ [58] 5.6838± 0.2075 1193.9149± 2.8258

Calo-VQ(norm) [58] 3.9937± 0.3564 930.8472± 3.4598

CaloScore distilled [50, 51] 1.7304± 0.2490 610.8560± 4.0175

CaloScore single-shot [50, 51] 1.5934± 0.1380 584.0234± 2.9294

iCaloFlow teacher [35] 2.8602± 0.3240 897.5908± 5.2608

iCaloFlow student [35] 2.5991± 0.2299 841.1136± 5.1413

Geant4-Transformer [65] 241.0380± 2.6919 22947.3168± 23.3703

CaloPointFlow [42] 2.0229± 0.4123 670.7538± 3.3806

CaloVAE+INN [38] 83.0692± 0.7260 11060.7266± 13.9947

CaloDREAM [69] 0.0098± 0.0145 20.7469± 1.0767

Table C25: Log-posterior scores for ds 3 Geant4 test data, averaged over 10

independent DNN classifier trainings. For visualization, see Figure 85.

Submission Log-posterior ↑
CaloDiffusion [44] −2.3860± 0.0063

L2LFlows-MAF [31, 32] −4.3836± 0.1634

conv. L2LFlows [32] −2.6992± 0.0171

MDMA [23, 24] −9.8424± 0.3800

CaloClouds [46, 47] −5.9925± 0.2542

Calo-VQ [58] −19.8196± 0.6060

Calo-VQ(norm) [58] −9.6010± 0.2645

CaloScore distilled [50, 51] −3.2759± 0.0844

CaloScore single-shot [50, 51] −3.8002± 0.1135

CaloDREAM [69] −2.2337± 0.0132

iCaloFlow teacher [35] −6.7583± 0.2071

iCaloFlow student [35] −5.8949± 0.1835

Geant4-Transformer [65] −12.0696± 0.4366

CaloPointFlow [42] −3.6853± 0.1748

CaloVAE+INN [38] −6.4805± 0.2134

APPENDIX 188

Table C26: Log-posterior scores for ds 3 Geant4 test data, averaged over 10

independent CNN ResNet classifier trainings. For visualization, see Figure 86.

Submission Log-posterior ↑
CaloDiffusion [44] −1.1254± 0.1035

L2LFlows-MAF [31, 32] −9.8665± 0.5211

conv. L2LFlows [32] −2.3183± 0.1994

MDMA [23, 24] −10.1538± 0.6095

CaloClouds [46, 47] −10.2566± 0.5892

Calo-VQ [58] −8.9864± 0.3448

Calo-VQ(norm) [58] −8.3526± 0.4014

CaloScore distilled [50, 51] −5.3080± 0.4710

CaloScore single-shot [50, 51] −6.3708± 0.5287

CaloDREAM [69] −1.4174± 0.1267

iCaloFlow teacher [35] −9.1767± 0.4420

iCaloFlow student [35] −9.3465± 0.5997

Geant4-Transformer [65] −9.9694± 0.5631

CaloPointFlow [42] −10.1480± 0.3690

CaloVAE+INN [38] −9.3558± 0.4615

Table C27: Precision, density, recall, and coverage for ds 3 submissions. A visualization

is shown in figure 87.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.098 1.145 0.095 0.980

CaloDiffusion [44] 0.122 1.118 0.090 0.973

L2LFlows-MAF [31, 32] 0.079 6.126 0.068 0.870

conv. L2LFlows [32] 0.109 1.667 0.065 0.887

MDMA [23, 24] 0.000 0.097 0.790 0.233

CaloClouds [46, 47] 0.001 0.000 0.841 0.002

Calo-VQ [58] 0.313 199.747 0.000 0.948

Calo-VQ(norm) [58] 0.561 227.616 0.002 1.000

CaloScore distilled [50, 51] 0.078 1.020 0.085 0.708

CaloScore single-shot [50, 51] 0.038 0.262 0.153 0.536

iCaloFlow teacher [35] 0.070 0.989 0.123 0.786

iCaloFlow student [35] 0.079 1.463 0.115 0.793

Geant4-Transformer [65] 0.623 1570.369 0.074 0.478

CaloPointFlow [42] 0.004 0.045 0.284 0.171

CaloVAE+INN [38] 0.879 1990.146 0.009 0.787

CaloDREAM [69] 0.114 1.637 0.079 0.989

APPENDIX 189

Table C28: Number of trainable parameters in training and for generation for ds 3

submissions. A visualization is shown in figure 88.

number of parameters ↓
Submission total generator only

CaloDiffusion [44] 1 221 153 1 221 153

L2LFlows-MAF [31, 32] 556 526 578 556 526 578

conv. L2LFlows [32] 194 964 482 194 964 482

MDMA [23, 24] 108656 66416

CaloClouds [46, 47] 77 475 856 77 475 856

Calo-VQ [58] 2 155 763 876 050

Calo-VQ(norm) [58] 2 767 443 1 471 282

CaloScore distilled [50, 51] 28 872 412 14 436 206

CaloScore single-shot [50, 51] 28 872 412 14 436 206

iCaloFlow teacher [35] 95 088 152 95 088 152

iCaloFlow student [35] 187 423 704 95 088 152

Geant4-Transformer [65] 1 262 921 306 1 262 921 306

CaloPointFlow [42] 14 215 334 14 215 334

CaloVAE+INN [38] 204 609 270 93 935 070

CaloDREAM [69] 8 253 575 8 253 575

APPENDIX 190

Table C29: Timing of ds 3 submissions on a CPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “LLVM: o.o.m.” crashes with

an LLVM out of memory error, “o.o.m.” crashes with an memory allocation error,

“> 17 280” translates to >48h/batch. A visualization of these timings is shown in

figure 89.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 205 235± 6154(100) 269 230± 50 007(100) o.o.m.

L2LFlows-MAF [31, 32] 880 131± 61 699(100) 141 317± 8151(1000) > 17 280

conv. L2LFlows [32] 2357± 283(10 000) 340.2± 15.2(10 000) 428.7± 25.7

MDMA [23, 24] 32.1±1.4 193.7± 12.7 o.o.m.

CaloClouds [46, 47] 2404± 96(10 000) 3924± 701(10 000) o.o.m.

Calo-VQ [58] 260.0± 16.3 68.1± 4.7 58.2± 8.4

Calo-VQ(norm) [58] 3957± 269(10 000) 3635± 219(10 000) 3543± 311(20 000)

CaloScore distilled [50, 51] 83 500± 3567(1000) 96 869± 6748(1000) o.o.m.

CaloScore single-shot [50, 51] 1416± 30 1539± 111(10 000) o.o.m.

iCaloFlow teacher [35] 15 512 081± 3 471 602(10) 438 642± 55 017(100) > 17 280

iCaloFlow student [35] 20 217± 4133(1000) 454.7± 20.5(10 000) 446.3± 58.4

Geant4-Transformer [65] 762.3± 35.9 179.5± 12.9 193.4± 15.1

CaloPointFlow [42] 301.7± 19.2 308.5± 6.4 o.o.m.

CaloVAE+INN [38] 90.6± 3.2 13.6±0.9 16.2±1.9

CaloDREAM [69] 33 292± 672(1000) 32 138± 2721(1000) > 17 280

APPENDIX 191

Table C30: Timing of ds 3 submissions on a GPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “CUDA o.o.m.” ran out of

VRAM on the GPU. A visualization of these timings is shown in figure 89.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [44] 6171± 45(2500) 810.2± 2.4(10 000) CUDA o.o.m.

L2LFlows-MAF [31, 32] 235 537± 4910(100) 2454± 120(10 000) 3112± 1(10 000)

conv. L2LFlows [32] 1430± 16(10 000) 16.0± 0.2 6.8± 0.1

MDMA [23, 24] 9.51±0.13 5.47± 0.30 CUDA o.o.m.

CaloClouds [46, 47] 94.9± 1.1 25.3± 0.2 CUDA o.o.m.

Calo-VQ [58] 127.4± 1.9 1.8±0.1 0.98± 0.02

Calo-VQ(norm) [58] 466.0± 5.0(10 000) 26.6± 0.2 CUDA o.o.m.

CaloScore distilled [50, 51] 473.2± 24.3(50 000) 162.2± 0.5 CUDA o.o.m.

CaloScore single-shot [50, 51] 135.5± 5.9 6.5± 0.3 CUDA o.o.m.

iCaloFlow teacher [35] 470 081± 3379(50) 5596± 56(5000) 1979± 1(10 000)

iCaloFlow student [35] 1156± 31(10 000) 16.7± 0.5 6.0± 0.2

Geant4-Transformer [65] 203.2± 5.8 8.77± 0.36 CUDA o.o.m.

CaloPointFlow [42] 57.9± 4.6 5.52± 0.03 CUDA o.o.m.

CaloVAE+INN [38] 44.3± 0.6 3.83± 0.09 3.18±0.15

CaloDREAM [69] 5003± 67(10 000) 179.6± 0.5 CUDA o.o.m.

APPENDIX 192

D. Generation time vs. number of parameters

100 101 102

GPU generation time, batch size 100, in ms

106

107

pa
ra

m
et

er
s i

n
ge

ne
ra

tio
n better

Pareto front: shower generation time on a GPU vs. number of parameters, dataset 1 - photons
CaloDiffusion
CaloINN
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
CaloShower2GAN
CaloShower3GAN
CaloVAE+INN
CaloGraph

Figure D1: Pareto front in number of trainable parameters in generation (from figure 43

and table C5) and generation speed (from figure 44 and table C7).

100 101 102

GPU generation time, batch size 100, in ms

106

107

pa
ra

m
et

er
s i

n
ge

ne
ra

tio
n

 better

Pareto front: shower generation time on a GPU vs. number of parameters, dataset 1 - pions
CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher
CaloFlow student
CaloMan

BoloGAN
DNN CaloSim
CaloShowerGAN
CaloVAE+INN
CaloGraph

Figure D2: Pareto front in number of trainable parameters in generation (from figure 56

and table C12) and generation speed (from figure 57 and table C14).

When looking at the Pareto front in generation speed (here taken as the time it

takes to generate in batches of 100 on a GPU) and the model size (in terms of number

of trainable parameters in generation), we barely see an actual front emerging. The

generation time strongly depends on the model architecture and not so much on the

actual size of the submissions, as can be seen for example by the CaloFlow examples

in ds 1 – γ in figure D1: CaloFlow student has more parameters than CaloFlow

teacher, but is almost 2 orders of magnitude faster in sampling. The diffusion model

CaloDiffusion even has the fewest number of parameters in figure D1, but is one of

the slowest in sampling. Datasets 2 (in figure D3) and 3 (in figure D4) show even less

APPENDIX 193

100 101 102 103

GPU generation time, batch size 100, in ms

105

106

107

108

pa
ra

m
et

er
s i

n
ge

ne
ra

tio
n

 better

Pareto front: shower generation time on a GPU vs. number of parameters, dataset 2
CaloDiffusion
conv. L2LFlows
CaloINN
MDMA
Calo-VQ
CaloScore
CaloScore distilled
CaloScore single-shot
iCaloFlow teacher

iCaloFlow student
SuperCalo
DeepTree
CaloPointFlow
CaloVAE+INN
CaloLatent
CaloDiT
CaloDREAM

Figure D3: Pareto front in number of trainable parameters in generation (from figure 72

and table C20) and generation speed (from figure 73 and table C22).

101 102 103

GPU generation time, batch size 100, in ms

105

106

107

108

109

pa
ra

m
et

er
s i

n
ge

ne
ra

tio
n

 better

Pareto front: shower generation time on a GPU vs. number of parameters, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure D4: Pareto front in number of trainable parameters in generation (from figure 88

and table C28) and generation speed (from figure 89 and table C30).

of a front, but with MDMA a submission clearly in the sweet spot at few parameters and

fast generation.

REFERENCES 194

References

[1] ATLAS Collaboration 2022 ATLAS Software and Computing HL-LHC Roadmap Tech. rep.

CERN Geneva URL https://cds.cern.ch/record/2802918

[2] CMS Collaboration CMS Offline and Computing Public Results URL https://twiki.cern.ch/

twiki/bin/view/CMSPublic/CMSOfflineComputingResults

[3] Bozzi C 2024 LHCb Computing Resources: 2025 requests Tech. rep. CERN Geneva URL

https://cds.cern.ch/record/2888939

[4] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D,

Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A,

Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko

P and Dell’Acqua A 2003 Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 506 250–303 ISSN 0168-9002

URL https://www.sciencedirect.com/science/article/pii/S0168900203013688

[5] Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra

R, Chauvie S, Chytracek R, Cirrone G, Cooperman G, Cosmo G, Cuttone G, Daquino G,

Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S,

Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T,

Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O,

Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K,

Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia M, Ribon

A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S,

Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch J,

Williams D, Wright D and Yoshida H 2006 IEEE Transactions on Nuclear Science 53 270–278

[6] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee

S, Barrand G, Beck B, Bogdanov A, Brandt D, Brown J, Burkhardt H, Canal P, Cano-

Ott D, Chauvie S, Cho K, Cirrone G, Cooperman G, Cortés-Giraldo M, Cosmo G, Cuttone

G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V, Folger G, Francis Z, Galoyan A,

Garnier L, Gayer M, Genser K, Grichine V, Guatelli S, Guèye P, Gumplinger P, Howard A,

Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V, Jones F, Jun S, Kaitaniemi

P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A,

Lee S, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K,

Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M, Pokorski W, Quesada J, Raine

M, Reis M, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin

J, Strakovsky I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H, Truscott P, Urban L,

Uzhinsky V, Verbeke J, Verderi M, Wendt B, Wenzel H, Wright D, Wright D, Yamashita T,

Yarba J and Yoshida H 2016 Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 835 186–225 ISSN 0168-9002

URL https://www.sciencedirect.com/science/article/pii/S0168900216306957

[7] ATLAS Collaboration 2010 The simulation principle and performance of the ATLAS fast

calorimeter simulation FastCaloSim ATL-PHYS-PUB-2010-013 URL https://cds.cern.ch/

record/1300517

[8] ATLAS Collaboration 2014 Performance of the Fast ATLAS Tracking Simulation (FATRAS) and

the ATLAS Fast Calorimeter Simulation (FastCaloSim) with single particles ATL-SOFT-PUB-

2014-001 URL https://cds.cern.ch/record/1669341

[9] ATLAS Collaboration 2021 Comput. Softw. Big Sci. 6 7 (Preprint 2109.02551)

[10] Abdullin S, Azzi P, Beaudette F, Janot P and Perrotta A (CMS) 2011 J. Phys. Conf. Ser. 331

032049

[11] Hildreth M, Ivanchenko V N and Lange D J (CMS) 2017 J. Phys.: Conf. Ser. 898 042040 URL

https://cds.cern.ch/record/2297284

[12] Paganini M, de Oliveira L and Nachman B 2018 Phys. Rev. Lett. 120 042003 (Preprint

https://cds.cern.ch/record/2802918
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://cds.cern.ch/record/2888939
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900216306957
https://cds.cern.ch/record/1300517
https://cds.cern.ch/record/1300517
https://cds.cern.ch/record/1669341
2109.02551
https://cds.cern.ch/record/2297284

REFERENCES 195

1705.02355)

[13] Hashemi B and Krause C 2024 Rev. Phys. 12 100092 (Preprint 2312.09597)

[14] Barbetti M 2023 Lamarr: LHCb ultra-fast simulation based on machine learning models deployed

within Gauss 21th International Workshop on Advanced Computing and Analysis Techniques

in Physics Research: AI meets Reality (Preprint 2303.11428)

[15] Butter A et al. 2019 SciPost Phys. 7 014 (Preprint 1902.09914)

[16] Kasieczka G et al. 2021 Rept. Prog. Phys. 84 124201 (Preprint 2101.08320)

[17] 2022 ML4Jets 2022 Conference, Rutgers University URL https://indico.cern.ch/event/

1159913/

[18] 2023 ML4Jets 2023 Conference, DESY Hamburg URL https://indico.cern.ch/event/

1253794/

[19] 2023 CaloChallenge Workshop, Villa Mondragone Frascati URL https://agenda.infn.it/

event/34036/

[20] Ahmad F Y, Venkataswamy V and Fox G 2024 (Preprint 2406.12898)

[21] Faucci Giannelli M and Zhang R 2024 Eur. Phys. J. Plus 139 597 (Preprint 2309.06515)

[22] Faucci Giannelli M and Zhang R 2024 GitHub repository

https://gitlab.cern.ch/zhangruiPhysics/FastCaloChallenge

[23] Käch B and Melzer-Pellmann I 2023 (Preprint 2305.15254)

[24] Käch B, Melzer-Pellmann I and Krücker D 2024 (Preprint 2408.04997)

[25] Käch B and Melzer-Pellmann I 2023 GitHub repository

https://github.com/kaechb/MDMA/tree/NeurIPS

[26] ATLAS Collaboration 2020 Fast simulation of the ATLAS calorimeter system with

Generative Adversarial Networks ATL-SOFT-PUB-2020-006 URL https://cds.cern.ch/

record/2746032

[27] Corchia F A G, Rinaldi L and Franchini M 2024 GitHub repository

https://github.com/FedericoCorchia/BoloGAN

[28] Scham M A W, Krücker D, Käch B and Borras K 2023 EPJ Web Conf. (Preprint 2311.12616)

URL http://arxiv.org/abs/2311.12616

[29] Scham M A W, Krücker D and Borras K 2023 EPJ Web Conf. (Preprint 2312.00042) URL

http://arxiv.org/abs/2312.00042

[30] Scham M A W, Krücker D and Borras K 2023 GitHub repository

https://github.com/DeGeSim/nips23DeepTreeGANv2

[31] Diefenbacher S, Eren E, Gaede F, Kasieczka G, Krause C, Shekhzadeh I and Shih D 2023 JINST

18 P10017 (Preprint 2302.11594)

[32] Buss T, Gaede F, Kasieczka G, Krause C and Shih D 2024 JINST 19 P09003 (Preprint

2405.20407)

[33] Buss T, Gaede F, Kasieczka G, Krause C and Shih D 2024 GitHub repository

https://github.com/FLC-QU-hep/ConvL2LFlow

[34] Krause C, Pang I and Shih D 2024 SciPost Phys. 16 126 (Preprint 2210.14245)

[35] Buckley M R, Krause C, Pang I and Shih D 2024 Phys. Rev. D 109 033006 (Preprint 2305.11934)

[36] Krause C, Pang I and Shih D 2022 GitHub repository https://github.com/Ian-Pang/caloflow-for-

calochallenge

[37] Buckley M R, Krause C, Pang I and Shih D 2023 GitHub repository https://github.com/claudius-

krause/inductive-caloflow

[38] Ernst F, Favaro L, Krause C, Plehn T and Shih D 2023 (Preprint 2312.09290)

[39] Ernst F, Favaro L, Krause C, Plehn T and Shih D 2023 GitHub repository

https://github.com/heidelberg-hepml/CaloINN

[40] Pang I, Shih D and Raine J A 2024 Phys. Rev. D 109 092009 (Preprint 2308.11700)

[41] Pang I, Shih D and Raine J A 2023 GitHub repository https://github.com/Ian-Pang/supercalo

[42] Schnake S, Krücker D and Borras K 2024 (Preprint 2403.15782)

[43] Schnake S, Krücker D and Borras K 2024 GitHub repository

1705.02355
2312.09597
2303.11428
1902.09914
2101.08320
https://indico.cern.ch/event/1159913/
https://indico.cern.ch/event/1159913/
https://indico.cern.ch/event/1253794/
https://indico.cern.ch/event/1253794/
https://agenda.infn.it/event/34036/
https://agenda.infn.it/event/34036/
2406.12898
2309.06515
2305.15254
2408.04997
https://cds.cern.ch/record/2746032
https://cds.cern.ch/record/2746032
2311.12616
http://arxiv.org/abs/2311.12616
2312.00042
http://arxiv.org/abs/2312.00042
2302.11594
2405.20407
2210.14245
2305.11934
2312.09290
2308.11700
2403.15782

REFERENCES 196

https://github.com/simonschnake/CaloPointFlow

[44] Amram O and Pedro K 2023 Phys. Rev. D 108 072014 (Preprint 2308.03876)

[45] Amram O and Pedro K 2023 GitHub repository https://github.com/OzAmram/CaloDiffusionPaper

[46] Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasieczka G, Korol A, Korcari W, Krüger K and

McKeown P 2023 JINST 18 P11025 (Preprint 2305.04847)

[47] Buhmann E, Gaede F, Kasieczka G, Korol A, Korcari W, Krüger K and McKeown P 2024 JINST

19 P04020 (Preprint 2309.05704)

[48] Buhmann E, Diefenbacher S, Eren E, Gaede F, Kasieczka G, Korol A, Korcari W, Krüger K and

McKeown P 2023 GitHub repository https://github.com/FLC-QU-hep/CaloClouds

[49] Buhmann E, Gaede F, Kasieczka G, Korol A, Korcari W, Krüger K and McKeown P 2023 GitHub

repository https://github.com/FLC-QU-hep/CaloClouds-2

[50] Mikuni V and Nachman B 2022 Phys. Rev. D 106 092009 (Preprint 2206.11898)

[51] Mikuni V and Nachman B 2024 JINST 19 P02001 (Preprint 2308.03847)

[52] Mikuni V and Nachman B 2022 GitHub repository https://github.com/ViniciusMikuni/CaloScore

[53] Mikuni V and Nachman B 2023 GitHub repository https://github.com/ViniciusMikuni/CaloScoreV2

[54] Kobylianskii D, Soybelman N, Dreyer E and Gross E 2024 Phys. Rev. D 110(7) 072003 URL

https://link.aps.org/doi/10.1103/PhysRevD.110.072003

[55] Kobylianskii D, Soybelman N, Dreyer E and Gross E 2024 GitHub repository

https://github.com/dkobylianskii/CaloGraph

[56] Cardoso R P D C, Raikwar P, Zaborowska A, Salamani D, Jaruskova K, Vallecorsa S, Yeo

K, Ekambaram V, Nguyen N, Kalagnanam J and Srivatsa M 2024 CaloDiT: Diffusion

with transformers for fast shower simulation URL https://indico.cern.ch/event/1330797/

contributions/5796591/

[57] Cardoso R P D C, Raikwar P, Zaborowska A, Salamani D, Jaruskova K, Vallecorsa S,

Yeo K, Ekambaram V, Nguyen N, Kalagnanam J and Srivatsa M 2024 GitLab repository

https://gitlab.cern.ch/redacost/calo submission renato

[58] Liu Q, Shimmin C, Liu X, Shlizerman E, Li S and Hsu S C 2024 (Preprint 2405.06605)

[59] Liu Q, Shimmin C, Liu X, Shlizerman E, Li S and Hsu S C 2024 GitHub repository

https://github.com/qibin2020/calo-VQ

[60] Cresswell J C, Ross B L, Loaiza-Ganem G, Reyes-Gonzalez H, Letizia M and Caterini A L 2022

CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds

NeurIPS Workshop on Machine Learning and the Physical Sciences (Preprint 2211.15380)

[61] Cresswell J C, Ross B L, Loaiza-Ganem G, Reyes-Gonzalez H, Letizia M and Caterini A L 2022

GitHub repository https://github.com/layer6ai-labs/calo-man

[62] Salamani D 2021 Machine Learning Techniques for Fast Shower Simulation at the ATLAS

Experiment Ph.D. thesis Geneva U.

[63] ATLAS Collaboration 2024 Comput. Softw. Big Sci. 8 7 (Preprint 2210.06204)

[64] Salamani D 2024 GitHub repository https://github.com/DalilaSalamani/ATLASDNNCaloSim

[65] Raikwar P, Cardoso R, Chernyavskaya N, Jaruskova K, Pokorski W, Salamani D, Srivatsa

M, Tsolaki K, Vallecorsa S and Zaborowska A 2024 EPJ Web of Conf. 295 09039 URL

https://doi.org/10.1051/epjconf/202429509039

[66] Raikwar P, Cardoso R, Chernyavskaya N, Jaruskova K, Pokorski W, Salamani D,

Srivatsa M, Tsolaki K, Vallecorsa S and Zaborowska A 2024 GitLab repository

https://gitlab.cern.ch/praikwar/ml4fastsim/-/tree/updated?ref type=heads

[67] Madula T and Mikuni V M 2023 CaloLatent: Score-based Generative Modelling in the Latent

Space for Calorimeter Shower Generation NeurIPS Workshop on Machine Learning and the

Physical Sciences URL https://ml4physicalsciences.github.io/2023/files/NeurIPS_

ML4PS_2023_19.pdf

[68] Madula T and Mikuni V M 2023 GitHub repository https://github.com/thandi1908/CaloLatent

[69] Favaro L, Ore A, Schweitzer S P and Plehn T 2024 (Preprint 2405.09629)

[70] Favaro L, Ore A, Schweitzer S P and Plehn T 2024 GitHub repository

2308.03876
2305.04847
2309.05704
2206.11898
2308.03847
https://link.aps.org/doi/10.1103/PhysRevD.110.072003
https://indico.cern.ch/event/1330797/contributions/5796591/
https://indico.cern.ch/event/1330797/contributions/5796591/
2405.06605
2211.15380
2210.06204
https://doi.org/10.1051/epjconf/202429509039
https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_19.pdf
https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_19.pdf
2405.09629

REFERENCES 197

https://github.com/luigifvr/calo dreamer

[71] Cresswell J C and Kim T 2024 Scaling Up Diffusion and Flow-based XGBoost Models ICML

Workshop on AI for Science (Preprint 2408.16046) URL https://openreview.net/forum?

id=Jnu4adAVeA

[72] Cresswell J C and Kim T 2024 GitHub repository https://github.com/layer6ai-labs/calo-forest

[73] Collette A 2013 Python and HDF5 (O’Reilly) URL https://www.h5py.org/

[74] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2022 Fast Calorimeter Simulation Challenge 2022 - Dataset 1 URL https://doi.org/10.

5281/zenodo.6368338

[75] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2023 Fast Calorimeter Simulation Challenge 2022 - Updated Dataset 1 URL https:

//doi.org/10.5281/zenodo.8099322

[76] ATLAS Collaboration 2023 Datasets used to train the Generative Adversarial Networks used in

ATLFast3 URL https://doi.org/10.7483/OPENDATA.ATLAS.UXKX.TXBN

[77] ATLAS Collaboration 2017 Eur. Phys. J. C 77 490 (Preprint 1603.02934)

[78] Geant4 Collaboration Par04 example URL https://gitlab.cern.ch/geant4/geant4/-/

tree/master/examples/extended/parameterisations/Par04

[79] Salamani D and Zaborowska A 2022 High Granularity Electromagnetic Calorimeter Shower

Images URL https://doi.org/10.5281/zenodo.6082201

[80] Particle Data Group Atomic and nuclear properties of tungsten (w) URL https://pdg.lbl.

gov/2020/AtomicNuclearProperties/HTML/tungsten_W.html

[81] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2022 Fast Calorimeter Simulation Challenge 2022 - Dataset 2 URL https://doi.org/10.

5281/zenodo.6366271

[82] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2022 Fast Calorimeter Simulation Challenge 2022 - Dataset 3 URL https://doi.org/10.

5281/zenodo.6366324

[83] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and

Bengio Y 2014 arXiv e-prints arXiv:1406.2661 (Preprint 1406.2661)

[84] Karras T, Laine S and Aila T 2019 A style-based generator architecture for generative adversarial

networks (Preprint 1812.04948)

[85] Arjovsky M and Bottou L 2017 arXiv e-prints arXiv:1701.04862 (Preprint 1701.04862)

[86] Arjovsky M, Chintala S and Bottou L 2017 arXiv e-prints arXiv:1701.07875 (Preprint 1701.

07875)

[87] Paganini M, de Oliveira L and Nachman B 2018 Phys. Rev. D 97 014021 (Preprint 1712.10321)

[88] ATLAS Collaboration (ATLAS) 2021 FastCaloGAN Training Project (1.0), URL https://doi.

org/10.5281/zenodo.5589623

[89] Kingma D P and Ba J 2014 ICLR arXiv:1412.6980 (Preprint 1412.6980)

[90] Kansal R, Duarte J, Su H, Orzari B, Tomei T, Pierini M, Touranakou M, Vlimant J R and

Gunopulos D 2022 Jetnet URL https://doi.org/10.5281/zenodo.6975118

[91] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V and Courville A 2017 Improved training of

Wasserstein GANs Advances in Neural Information Processing Systems vol 30 ed Guyon I,

Luxburg U V, Bengio S, Wallach H, Fergus R, Vishwanathan S and Garnett R (Curran

Associates, Inc.) p 5767 (Preprint 1704.00028) URL http://papers.nips.cc/paper/

7159-improved-training-of-wasserstein-gans.pdf

[92] Xiang S and Li H 2017 On the effects of batch and weight normalization in generative adversarial

networks (Preprint 1704.03971)

[93] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J,

Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser

L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M,

Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,

2408.16046
https://openreview.net/forum?id=Jnu4adAVeA
https://openreview.net/forum?id=Jnu4adAVeA
https://www.h5py.org/
https://doi.org/10.5281/zenodo.6368338
https://doi.org/10.5281/zenodo.6368338
https://doi.org/10.5281/zenodo.8099322
https://doi.org/10.5281/zenodo.8099322
https://doi.org/10.7483/OPENDATA.ATLAS.UXKX.TXBN
1603.02934
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://doi.org/10.5281/zenodo.6082201
https://pdg.lbl.gov/2020/AtomicNuclearProperties/HTML/tungsten_W.html
https://pdg.lbl.gov/2020/AtomicNuclearProperties/HTML/tungsten_W.html
https://doi.org/10.5281/zenodo.6366271
https://doi.org/10.5281/zenodo.6366271
https://doi.org/10.5281/zenodo.6366324
https://doi.org/10.5281/zenodo.6366324
1406.2661
1812.04948
1701.04862
1701.07875
1701.07875
1712.10321
https://doi.org/10.5281/zenodo.5589623
https://doi.org/10.5281/zenodo.5589623
1412.6980
https://doi.org/10.5281/zenodo.6975118
1704.00028
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf
1704.03971

REFERENCES 198

Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y and Zheng X 2015 TensorFlow: Large-

scale machine learning on heterogeneous systems software available from tensorflow.org URL

https://www.tensorflow.org/

[94] Xu K, Hu W, Leskovec J and Jegelka S 2018 arXiv e-prints arXiv:1810.00826 (Preprint

1810.00826)

[95] Fey M and Lenssen J E 2019 ICLR Workshop on Representation Learning on Graphs and

Manifolds arXiv:1903.02428 (Preprint 1903.02428)

[96] Ioffe S and Szegedy C 2015 Batch normalization: Accelerating deep network training by reducing

internal covariate shift (Preprint 1502.03167)

[97] Brody S, Alon U and Yahav E 2021 International Conference on Learning Representa-

tions arXiv:2105.14491 (Preprint 2105.14491) URL https://openreview.net/forum?id=

F72ximsx7C1

[98] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer

P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and

Duchesnay E 2011 Journal of Machine Learning Research 12 2825–2830

[99] Kobyzev I, Prince S J D and Brubaker M A 2021 IEEE Trans. Pattern Anal. Machine Intell. 43

3964–3979 (Preprint 1908.09257)

[100] Papamakarios G, Nalisnick E, Rezende D J, Mohamed S and Lakshminarayanan B 2021 J.

Machine Learning Res. 22 2617–2680 (Preprint 1912.02762)

[101] Ross B and Cresswell J 2021 Tractable density estimation on learned manifolds with conformal

embedding flows Advances in Neural Information Processing Systems vol 34 (Curran

Associates, Inc.) pp 26635–26648 (Preprint 2106.05275) URL https://proceedings.

neurips.cc/paper/2021/hash/dfd786998e082758be12670d856df755-Abstract.html

[102] Papamakarios G, Pavlakou T and Murray I 2017 arXiv e-prints arXiv:1705.07057 (Preprint

1705.07057)

[103] Kingma D P, Salimans T, Jozefowicz R, Chen X, Sutskever I and Welling M 2016 Advances in

neural information processing systems 29 arXiv:1606.04934 (Preprint 1606.04934)

[104] Dinh L, Sohl-Dickstein J and Bengio S 2016 (Preprint 1605.08803)

[105] Kingma D P and Dhariwal P 2018 Advances in Neural Information Processing Systems

31 (Preprint 1807.03039) URL https://proceedings.neurips.cc/paper/2018/file/

d139db6a236200b21cc7f752979132d0-Paper.pdf

[106] Ardizzone L, Kruse J, Wirkert S, Rahner D, Pellegrini E W, Klessen R S, Maier-Hein L, Rother

C and Köthe U 2019 Analyzing inverse problems with invertible neural networks (Preprint

1808.04730) URL https://arxiv.org/abs/1808.04730

[107] Germain M, Gregor K, Murray I and Larochelle H 2015 arXiv e-prints arXiv:1502.03509 (Preprint

1502.03509)

[108] Krause C and Shih D 2023 Phys. Rev. D 107 113003 (Preprint 2106.05285)

[109] Durkan C, Bekasov A, Murray I and Papamakarios G 2019 Advances in Neural Information

Processing Systems 32 (Preprint 1906.04032) URL https://proceedings.neurips.cc/

paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf

[110] Ronneberger O, Fischer P and Brox T 2015 U-net: Convolutional networks for biomedical

image segmentation Medical Image Computing and Computer-Assisted Intervention – MICCAI

2015 ed Navab N, Hornegger J, Wells W M and Frangi A F (Cham: Springer International

Publishing) p 234 ISBN 978-3-319-24574-4 (Preprint 1505.04597)

[111] Dinh L, Krueger D and Bengio Y 2014 arXiv e-prints arXiv:1410.8516 (Preprint 1410.8516)

[112] Smith L N and Topin N 2017 arXiv e-prints arXiv:1708.07120 (Preprint 1708.07120)

[113] Loshchilov I and Hutter F 2017 arXiv e-prints arXiv:1711.05101 (Preprint 1711.05101)

[114] Paszke A et al. 2019 Advances in Neural Information Processing Sys-

tems 32 8024–8035 Advances in Neural Information Processing Sys-

tems 32 pp. 8024–8035 URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

https://www.tensorflow.org/
1810.00826
1903.02428
1502.03167
2105.14491
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
1908.09257
1912.02762
2106.05275
https://proceedings.neurips.cc/paper/2021/hash/dfd786998e082758be12670d856df755-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dfd786998e082758be12670d856df755-Abstract.html
1705.07057
1606.04934
1605.08803
1807.03039
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
1808.04730
https://arxiv.org/abs/1808.04730
1502.03509
2106.05285
1906.04032
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
1505.04597
1410.8516
1708.07120
1711.05101
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

REFERENCES 199

[115] Durkan C, Bekasov A, Murray I and Papamakarios G 2020 nflows: normalizing flows in PyTorch

URL https://doi.org/10.5281/zenodo.4296287

[116] Krause C and Shih D 2023 Phys. Rev. D 107 113004 (Preprint 2110.11377)

[117] van den Oord A, Li Y, Babuschkin I, Simonyan K, Vinyals O, Kavukcuoglu K, van den Driessche

G, Lockhart E, Cobo L, Stimberg F, Casagrande N, Grewe D, Noury S, Dieleman S, Elsen E,

Kalchbrenner N, Zen H, Graves A, King H, Walters T, Belov D and Hassabis D 2018 Parallel

WaveNet: Fast high-fidelity speech synthesis Proceedings of the 35th International Conference

on Machine Learning (Proceedings of Machine Learning Research vol 80) ed Dy J and Krause

A (PMLR) pp 3918–3926 URL https://proceedings.mlr.press/v80/oord18a.html

[118] Ardizzone L, Bungert T, Draxler F, Köthe U, Kruse J, Schmier R and Sorrenson P 2018-2022

Framework for Easily Invertible Architectures (FrEIA) URL https://github.com/vislearn/

FrEIA

[119] Yang G, Huang X, Hao Z, Liu M Y, Belongie S and Hariharan B 2019 Proceedings of the

IEEE/CVF international conference on computer vision arXiv:1906.12320 (Preprint 1906.

12320)

[120] Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R and Smola A 2017

Advances in Neural Information Processing Systems 30 arXiv:1703.06114 (Preprint

1703.06114) URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

[121] Uria B, Murray I and Larochelle H 2013 RNADE: The real-valued neural autoregressive

density-estimator In Advances in Neural Information Processing Systems 26 (NIPS 26) p

arXiv:1306.0186 (Preprint 1306.0186)

[122] Vincent P 2011 Neural Computation 23 1661–1674 ISSN 0899-7667 (Preprint https://

direct.mit.edu/neco/article-pdf/23/7/1661/851298/neco_a_00142.pdf) URL https:

//doi.org/10.1162/NECO_a_00142

[123] Ho J, Jain A and Abbeel P 2020 Advances in Neural Information Processing Systems 33

arXiv:2006.11239 (Preprint 2006.11239)

[124] Luo C 2022 arXiv e-prints arXiv:2208.11970 (Preprint 2208.11970)

[125] Nichol A Q and Dhariwal P 2021 Improved denoising diffusion probabilistic models Proceedings

of the 38th International Conference on Machine Learning (Proceedings of Machine Learning

Research vol 139) ed Meila M and Zhang T (PMLR) p 8162 (Preprint 2102.09672) URL

https://proceedings.mlr.press/v139/nichol21a.html

[126] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp 770–778 (Preprint

1512.03385)

[127] Katharopoulos A, Vyas A, Pappas N and Fleuret F 2020 ICML 2020 (Preprint 2006.16236)

[128] Song Y, Dhariwal P, Chen M and Sutskever I 2023 arXiv e-prints arXiv:2303.01469 (Preprint

2303.01469)

[129] Karras T, Aittala M, Aila T and Laine S 2022 arXiv e-prints arXiv:2206.00364 (Preprint

2206.00364)

[130] Luo S and Hu W 2021 arXiv e-prints arXiv:2103.01458 (Preprint 2103.01458)

[131] Song J, Meng C and Ermon S 2020 CoRR abs/2010.02502 (Preprint 2010.02502) URL

https://arxiv.org/abs/2010.02502

[132] Salimans T and Ho J 2022 arXiv preprint arXiv:2202.00512

[133] Ramachandran P, Zoph B and Le Q V 2017 arXiv preprint arXiv:1710.05941

[134] Liu L, Ren Y, Lin Z and Zhao Z 2022 arXiv e-prints arXiv:2202.09778 (Preprint 2202.09778)

[135] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin

I 2017 Advances in neural information processing systems 30 arXiv:1706.03762 (Preprint

1706.03762)

[136] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M,

Minderer M, Heigold G, Gelly S, Uszkoreit J and Houlsby N 2020 ICLR 2021 arXiv:2010.11929

https://doi.org/10.5281/zenodo.4296287
2110.11377
https://proceedings.mlr.press/v80/oord18a.html
https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
1906.12320
1906.12320
1703.06114
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
1306.0186
https://direct.mit.edu/neco/article-pdf/23/7/1661/851298/neco_a_00142.pdf
https://direct.mit.edu/neco/article-pdf/23/7/1661/851298/neco_a_00142.pdf
https://doi.org/10.1162/NECO_a_00142
https://doi.org/10.1162/NECO_a_00142
2006.11239
2208.11970
2102.09672
https://proceedings.mlr.press/v139/nichol21a.html
1512.03385
2006.16236
2303.01469
2206.00364
2103.01458
2010.02502
https://arxiv.org/abs/2010.02502
2202.09778
1706.03762

REFERENCES 200

(Preprint 2010.11929)

[137] Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S and Guo B 2021 arXiv:2103.14030 (Preprint

2103.14030)

[138] Brooks T, Peebles B, Holmes C, DePue W, Guo Y, Jing L, Schnurr D, Taylor J, Luhman

T, Luhman E, Ng C, Wang R and Ramesh A 2024 URL https://openai.com/research/

video-generation-models-as-world-simulators

[139] Peebles W and Xie S 2023 arXiv:2212.09748 (Preprint 2212.09748)

[140] Kingma D P and Welling M 2013 arXiv e-prints arXiv:1312.6114 (Preprint 1312.6114)

[141] Rezende D J, Mohamed S and Wierstra D 2014 Stochastic backpropagation and approximate

inference in deep generative models International conference on machine learning (PMLR) pp

1278–1286

[142] Jordan M I, Ghahramani Z, Jaakkola T S and Saul L K 1999 Machine learning 37 183–233

[143] van den Oord A, Vinyals O and Kavukcuoglu K 2017 Advances in neural information processing

systems 30 arXiv:1711.00937 (Preprint 1711.00937)

[144] Karpathy A 2020 mingpt: A pytorch re-implementation of gpt

https://github.com/karpathy/minGPT

[145] Esser P, Rombach R and Ommer B 2020 Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition arXiv:2012.09841 (Preprint 2012.09841)

[146] Bengio Y, Courville A and Vincent P 2013 IEEE transactions on pattern analysis and machine

intelligence 35 1798–1828

[147] Pope P, Zhu C, Abdelkader A, Goldblum M and Goldstein T 2021 The Intrinsic Dimension

of Images and Its Impact on Learning International Conference on Learning Representations

(Preprint 2104.08894)

[148] Brown B C, Caterini A L, Ross B L, Cresswell J C and Loaiza-Ganem G 2023 Verifying

the union of manifolds hypothesis for image data The Eleventh International Conference on

Learning Representations (Preprint 2207.02862) URL https://openreview.net/forum?id=

Rvee9CAX4fi

[149] Loaiza-Ganem G, Ross B L, Cresswell J C and Caterini A L 2022 Diagnosing and Fixing Manifold

Overfitting in Deep Generative Models Transactions on Machine Learning Research (Preprint

2204.07172)

[150] Loaiza-Ganem G, Ross B L, Hosseinzadeh R, Caterini A L and Cresswell J C 2024 Deep generative

models through the lens of the manifold hypothesis: A survey and new connections Transactions

on Machine Learning Research (Preprint 2404.02954)

[151] Rumelhart D E, Hinton G E and Williams R J 1985 Learning internal representations by error

propagation Tech. rep. California Univ San Diego La Jolla Inst for Cognitive Science

[152] Tolstikhin I, Bousquet O, Gelly S and Schoelkopf B 2017 arXiv e-prints arXiv:1711.01558

(Preprint 1711.01558)

[153] Donahue J, Krähenbühl P and Darrell T 2016 arXiv e-prints arXiv:1605.09782 (Preprint

1605.09782)

[154] Dumoulin V, Belghazi I, Poole B, Mastropietro O, Lamb A, Arjovsky M and Courville A 2016

arXiv e-prints arXiv:1606.00704 (Preprint 1606.00704)

[155] Mescheder L, Nowozin S and Geiger A 2017 Adversarial Variational Bayes: Unifying Variational

Autoencoders and Generative Adversarial Networks International Conference on Machine

Learning (PMLR) pp 2391–2400 (Preprint 1701.04722)

[156] Du Y and Mordatch I 2019 Advances in Neural Information Processing Systems 32 3608–3618

[157] Song Y and Ermon S 2019 Generative Modeling by Estimating Gradients of the Data Distribution

Advances in Neural Information Processing Systems vol 32 p arXiv:1907.05600 (Preprint

1907.05600)

[158] Campadelli P, Casiraghi E, Ceruti C and Rozza A 2015 Mathematical Problems in Engineering

2015 1–21

[159] Johnsson K, Soneson C and Fontes M 2015 IEEE Transactions on Pattern Analysis and Machine

2010.11929
2103.14030
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
2212.09748
1312.6114
1711.00937
2012.09841
2104.08894
2207.02862
https://openreview.net/forum?id=Rvee9CAX4fi
https://openreview.net/forum?id=Rvee9CAX4fi
2204.07172
2404.02954
1711.01558
1605.09782
1606.00704
1701.04722
1907.05600

REFERENCES 201

Intelligence 37 196–202

[160] Bac J, Mirkes E M, Gorban A N, Tyukin I and Zinovyev A 2021 Entropy 23 1368 ISSN 1099-4300

(Preprint 2109.02596)

[161] Tempczyk P, Michaluk R, Garncarek L, Spurek P, Tabor J and Goliński A 2022 Proceedings

of the 39th International Conference on Machine Learning 162 arXiv:2206.14882 (Preprint

2206.14882)

[162] Kamkari H, Ross B L, Hosseinzadeh R, Cresswell J C and Loaiza-Ganem G 2024 A geometric

view of data complexity: Efficient local intrinsic dimension estimation with diffusion models

Advances in Neural Information Processing Systems vol 37 (Preprint 2406.03537)

[163] Brown T, Mann B, Ryder N, Subbiah M, Kaplan J D, Dhariwal P, Neelakantan A,

Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T,

Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin

M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I and

Amodei D 2020 Advances in Neural Information Processing Systems 33 arXiv:2005.14165

(Preprint 2005.14165) URL https://proceedings.neurips.cc/paper_files/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[164] Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M and Sutskever I 2021

Proceedings of the 38th International Conference on Machine Learning 139 arXiv:2102.12092

(Preprint 2102.12092) URL https://proceedings.mlr.press/v139/ramesh21a.html

[165] Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S and Lerchner

A 2017 beta-VAE: Learning basic visual concepts with a constrained variational framework

International Conference on Learning Representations URL https://openreview.net/

forum?id=Sy2fzU9gl

[166] Burgess C P, Higgins I, Pal A, Matthey L, Watters N, Desjardins G and Lerchner A 2018

Understanding disentangling in β-VAE (Preprint 1804.03599)

[167] Liu X, Gong C and qiang liu 2023 Flow straight and fast: Learning to generate and transfer

data with rectified flow The Eleventh International Conference on Learning Representations

(Preprint 2209.03003) URL https://openreview.net/forum?id=XVjTT1nw5z

[168] Albergo M S and Vanden-Eijnden E 2023 Building normalizing flows with stochastic interpolants

The Eleventh International Conference on Learning Representations (Preprint 2209.15571)

URL https://openreview.net/forum?id=li7qeBbCR1t

[169] Lipman Y, Chen R T Q, Ben-Hamu H, Nickel M and Le M 2023 Flow matching for generative

modeling The Eleventh International Conference on Learning Representations (Preprint 2210.

02747) URL https://openreview.net/forum?id=PqvMRDCJT9t

[170] Tong A, Fatras K, Malkin N, Huguet G, Zhang Y, Rector-Brooks J, Wolf G and Bengio Y

2024 Transactions on Machine Learning Research arXiv:2302.00482 ISSN 2835-8856 (Preprint

2302.00482)

[171] Chen R T Q, Rubanova Y, Bettencourt J and Duvenaud D K 2018 Neural ordinary differential

equations Advances in Neural Information Processing Systems vol 31 (Preprint 1806.07366)

[172] Heimel T, Huetsch N, Winterhalder R, Plehn T and Butter A 2023 (Preprint 2310.07752)

[173] Perez E, Strub F, de Vries H, Dumoulin V and Courville A 2018 Proceedings of the AAAI

Conference on Artificial Intelligence 32 arXiv:1709.07871 (Preprint 1709.07871) URL https:

//ojs.aaai.org/index.php/AAAI/article/view/11671

[174] Grinsztajn L, Oyallon E and Varoquaux G 2022 Why do tree-based models still outperform deep

learning on typical tabular data? Advances in Neural Information Processing Systems vol 35

(Preprint 2207.08815)

[175] McElfresh D, Khandagale S, Valverde J, Prasad C V, Feuer B, Hegde C, Ramakrishnan G,

Goldblum M and White C 2023 When do neural nets outperform boosted trees on tabular

data? Advances in Neural Information Processing Systems vol 36 (Preprint 2305.02997)

[176] Ma J, Thomas V, Hosseinzadeh R, Kamkari H, Labach A, Cresswell J C, Golestan K, Yu G,

Volkovs M and Caterini A L 2024 TabDPT: Scaling Tabular Foundation Models (Preprint

2109.02596
2206.14882
2406.03537
2005.14165
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
2102.12092
https://proceedings.mlr.press/v139/ramesh21a.html
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
1804.03599
2209.03003
https://openreview.net/forum?id=XVjTT1nw5z
2209.15571
https://openreview.net/forum?id=li7qeBbCR1t
2210.02747
2210.02747
https://openreview.net/forum?id=PqvMRDCJT9t
2302.00482
1806.07366
2310.07752
1709.07871
https://ojs.aaai.org/index.php/AAAI/article/view/11671
https://ojs.aaai.org/index.php/AAAI/article/view/11671
2207.08815
2305.02997

REFERENCES 202

2410.18164)

[177] Shapley L S 1951 Notes on the n-person game—ii: The value of an n-person game (Notes on the

N-person Game no Bd. 2) (Rand Corporation) URL https://books.google.at/books?id=

uMoWzwEACAAJ

[178] Lundberg S M and Lee S I 2017 A unified approach to interpreting model predictions Advances

in Neural Information Processing Systems vol 30 (Preprint 1705.07874)

[179] Lundberg S M, Erion G G and Lee S I 2018 arXiv:1802.03888 (Preprint 1802.03888)

[180] Chen T and Guestrin C 2016 Xgboost: A scalable tree boosting system Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ISBN

9781450342322 (Preprint 1603.02754)

[181] Friedman J H 2001 The Annals of Statistics 29

[182] Nock R and Guillame-Bert M 2022 Generative trees: Adversarial and copycat Proceedings

of the 39th International Conference on Machine Learning (Preprint 2201.11205) URL

https://proceedings.mlr.press/v162/nock22a.html

[183] Jolicoeur-Martineau A, Fatras K and Kachman T 2024 Generating and imputing tabular data

via diffusion and flow-based gradient-boosted trees Proceedings of The 27th International

Conference on Artificial Intelligence and Statistics (Preprint 2309.09968) URL https://

proceedings.mlr.press/v238/jolicoeur-martineau24a.html

[184] Kansal R, Li A, Duarte J, Chernyavskaya N, Pierini M, Orzari B and Tomei T 2023 Phys. Rev.

D 107 076017 (Preprint 2211.10295)

[185] Das R, Favaro L, Heimel T, Krause C, Plehn T and Shih D 2024 SciPost Phys. 16 031 (Preprint

2305.16774)

[186] Diefenbacher S, Eren E, Kasieczka G, Korol A, Nachman B and Shih D 2020 JINST 15 P11004

(Preprint 2009.03796)

[187] Pearson K 1900 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science 50 157–175

[188] Cramér H 1946 Mathematical Methods of Statistics Goldstine Printed Materials (Princeton

University Press) ISBN 9780691080048

[189] Gagunashvili N D 2007 PoS ACAT 054 (Preprint physics/0605123)

[190] Lopez-Paz D and Oquab M 2016 arXiv e-prints arXiv:1610.06545 (Preprint 1610.06545)

[191] Neyman J and Pearson E S 1933 Phil. Trans. Roy. Soc. Lond. A 231 289–337

[192] Guo C, Pleiss G, Sun Y and Weinberger K Q 2017 arXiv e-prints arXiv:1706.04599 (Preprint

1706.04599)

[193] Lim S H, Raman K A, Buckley M R and Shih D 2024 Mon. Not. Roy. Astron. Soc. 533 143–164

(Preprint 2211.11765)

[194] Golling T, Kasieczka G, Krause C, Mastandrea R, Nachman B, Raine J A, Sengupta D, Shih D

and Sommerhalder M 2024 Eur. Phys. J. C 84 241 (Preprint 2307.11157)

[195] Defazio A, Xingyu, Yang, Mehta H, Mishchenko K, Khaled A and Cutkosky A 2024 arXiv e-prints

arXiv:2405.15682 (Preprint 2405.15682)

[196] Hara K, Kataoka H and Satoh Y 2018 Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) arXiv:1711.09577 (Preprint 1711.09577)

[197] Heusel M, Ramsauer H, Unterthiner T, Nessler B and Hochreiter S 2017 Ad-

vances in Neural Information Processing Systems 30 arXiv:1706.08500 (Preprint

1706.08500) URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

8a1d694707eb0fefe65871369074926d-Paper.pdf

[198] Kansal R, Duarte J, Su H, Orzari B, Tomei T, Pierini M, Touranakou M, Vlimant J R and

Gunopulos D 2021 Particle Cloud Generation with Message Passing Generative Adversarial

Networks 35th Conference on Neural Information Processing Systems (Preprint 2106.11535)

[199] Bińkowski M, Sutherland D J, Arbel M and Gretton A 2018 International Conference on Learning

Representations arXiv:1801.01401 (Preprint 1801.01401) URL https://openreview.net/

forum?id=r1lUOzWCW

2410.18164
https://books.google.at/books?id=uMoWzwEACAAJ
https://books.google.at/books?id=uMoWzwEACAAJ
1705.07874
1802.03888
1603.02754
2201.11205
https://proceedings.mlr.press/v162/nock22a.html
2309.09968
https://proceedings.mlr.press/v238/jolicoeur-martineau24a.html
https://proceedings.mlr.press/v238/jolicoeur-martineau24a.html
2211.10295
2305.16774
2009.03796
physics/0605123
1610.06545
1706.04599
2211.11765
2307.11157
2405.15682
1711.09577
1706.08500
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
2106.11535
1801.01401
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW

REFERENCES 203

[200] Kansal R, Pareja C, Hao Z and Duarte J 2023 Journal of Open Source Software 8 5789 URL

https://joss.theoj.org/papers/10.21105/joss.05789

[201] Astolfi P, Careil M, Hall M, Mañas O, Muckley M, Verbeek J, Romero Soriano A and Drozdzal

M 2024 arXiv e-prints arXiv:2406.10429 (Preprint 2406.10429)

[202] Sajjadi M S M, Bachem O, Lucic M, Bousquet O and Gelly S 2018 arXiv e-prints

arXiv:1806.00035 (Preprint 1806.00035)

[203] Kynkäänniemi T, Karras T, Laine S, Lehtinen J and Aila T 2019 arXiv e-prints arXiv:1904.06991

(Preprint 1904.06991)

[204] Ferjad Naeem M, Oh S J, Uh Y, Choi Y and Yoo J 2020 arXiv e-prints arXiv:2002.09797 (Preprint

2002.09797)

[205] Kurtzer G M, Sochat V and Bauer M W 2017 PLOS ONE 12 1–20 URL https://doi.org/10.

1371/journal.pone.0177459

[206] Cloud Infrastructure Platform (CLIP) Vienna URL https://www.clip.science/

[207] Datta K, Kar D and Roy D 2018 (Preprint 1806.00433)

[208] Bellagente M, Butter A, Kasieczka G, Plehn T and Winterhalder R 2020 SciPost Phys. 8 070

(Preprint 1912.00477)

[209] Bellagente M, Butter A, Kasieczka G, Plehn T, Rousselot A, Winterhalder R, Ardizzone L and

Köthe U 2020 SciPost Phys. 9 074 (Preprint 2006.06685)

[210] Vandegar M, Kagan M, Wehenkel A and Louppe G 2020 (Preprint 2011.05836)

[211] Howard J N, Mandt S, Whiteson D and Yang Y 2022 Sci. Rep. 12 7567 (Preprint 2101.08944)

[212] Leigh M, Raine J A, Zoch K and Golling T 2023 SciPost Phys. 14 159 (Preprint 2207.00664)

[213] Backes M, Butter A, Dunford M and Malaescu B 2024 SciPost Phys. Core 7 007 (Preprint

2212.08674)

[214] Shmakov A, Greif K, Fenton M, Ghosh A, Baldi P and Whiteson D 2023 (Preprint 2305.10399)

[215] Ackerschott J, Barman R K, Gonçalves D, Heimel T and Plehn T 2024 SciPost Phys. 17 001

(Preprint 2308.00027)

[216] Diefenbacher S, Liu G H, Mikuni V, Nachman B and Nie W 2024 Phys. Rev. D 109 076011

(Preprint 2308.12351)

[217] Butter A, Jezo T, Klasen M, Kuschick M, Palacios Schweitzer S and Plehn T 2024 SciPost Phys.

Core 7 064 (Preprint 2311.17175)

[218] Shmakov A, Greif K, Fenton M J, Ghosh A, Baldi P and Whiteson D 2024 (Preprint 2404.14332)

[219] Huetsch N et al. 2024 (Preprint 2404.18807)

[220] Ilten P, Menzo T, Youssef A and Zupan J 2023 SciPost Phys. 14 027 (Preprint 2203.04983)

[221] Ghosh A, Ju X, Nachman B and Siodmok A 2022 Phys. Rev. D 106 096020 (Preprint

2203.12660)

[222] Chan J, Ju X, Kania A, Nachman B, Sangli V and Siodmok A 2023 JHEP 09 084 (Preprint

2305.17169)

[223] Bierlich C, Ilten P, Menzo T, Mrenna S, Szewc M, Wilkinson M K, Youssef A and Zupan J 2024

SciPost Phys. 17 045 (Preprint 2311.09296)

[224] Chan J, Ju X, Kania A, Nachman B, Sangli V and Siodmok A 2023 (Preprint 2312.08453)

[225] Vaselli F, Rizzi A, Cattafesta F and Cicconofri G 2024 EPJ Web Conf. 295 09020

[226] Hallin A, Isaacson J, Kasieczka G, Krause C, Nachman B, Quadfasel T, Schlaffer M, Shih D and

Sommerhalder M 2022 Phys. Rev. D 106 055006 (Preprint 2109.00546)

[227] Raine J A, Klein S, Sengupta D and Golling T 2023 Front. Big Data 6 899345 (Preprint

2203.09470)

[228] Golling T, Klein S, Mastandrea R and Nachman B 2023 Phys. Rev. D 107 096025 (Preprint

2212.11285)

[229] pandas development team T 2021 pandas-dev/pandas: Pandas 1.3.5 URL https://doi.org/10.

5281/zenodo.5774815

[230] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick

J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S and Willing C 2016 Jupyter notebooks

https://joss.theoj.org/papers/10.21105/joss.05789
2406.10429
1806.00035
1904.06991
2002.09797
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://www.clip.science/
1806.00433
1912.00477
2006.06685
2011.05836
2101.08944
2207.00664
2212.08674
2305.10399
2308.00027
2308.12351
2311.17175
2404.14332
2404.18807
2203.04983
2203.12660
2305.17169
2311.09296
2312.08453
2109.00546
2203.09470
2212.11285
https://doi.org/10.5281/zenodo.5774815
https://doi.org/10.5281/zenodo.5774815

REFERENCES 204

– a publishing format for reproducible computational workflows Positioning and Power in

Academic Publishing: Players, Agents and Agendas ed Loizides F and Schmidt B (IOS Press)

pp 87 – 90

[231] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2022 Fast calorimeter simulation challenge 2022 github page https://github.com/

CaloChallenge/homepage

[232] Mazurek M, Corti G and Kmiec M 2024 Performance of the Gaussino CaloChallenge-compatible

infrastucture for ML-based fast simulation in the LHCb Experiment URL https://indico.

cern.ch/event/1330797/contributions/5796650/

https://github.com/CaloChallenge/homepage
https://github.com/CaloChallenge/homepage
https://indico.cern.ch/event/1330797/contributions/5796650/
https://indico.cern.ch/event/1330797/contributions/5796650/

	Introduction
	Datasets
	Dataset 1 Photons and Pions
	Datasets 2 and 3

	GAN-based Submissions
	CaloShowerGAN
	Matching Deep Mean-field Attentive (MDMA) GAN
	BoloGAN
	DeepTree

	Normalizing Flow-based Submissions
	L2LFlows
	(inductive) CaloFlow
	CaloINN
	SuperCalo
	CaloPointFlow

	Diffusion-based Submissions
	CaloDiffusion with GLaM
	CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation
	Score-based Generative Models for Calorimeter Shower Simulation
	CaloGraph
	Diffusion Transformer

	VAE-based Submissions
	Latent Generative Models for Calo Simulation with VQ-VAE
	CaloMan: Fast Generation of Calorimeter Showers with Density Estimation on Learned Manifolds
	DNN CaloSim
	Geant4 Transformer
	CaloVAE+INN
	CaloLatent: Score-based Generative Modeling in the Latent Space for Calorimeter Shower Generation

	Conditional Flow Matching-based Submissions
	CaloDREAM: Vision Transformer CFM
	CaloForest

	Introduction to metrics
	High-level Features (Histograms)
	Correlations
	Classifier-based Metrics.
	Computer Science-inspired Metrics
	Manifold-based Metrics
	Generation Timings
	Memory Requirements

	Results: Individual Metrics
	Preprocessing
	Dataset 1, Photons
	Dataset 1, Pions
	Dataset 2, Electrons
	Dataset 3, Electrons

	Results: Correlations Between Metrics
	Metric Comparison
	Pareto Fronts

	Conclusions and Outlook
	Overall Physics Results
	Take-aways of the CaloChallenge beyond Detector Simulation
	Outlook to the Future

	Histograms of high-level features
	Dataset 1, Photons
	Dataset 1, Pions
	Dataset 2, Electrons
	Dataset 3, Electrons

	Consistency check of the multiclass classifier
	Numerical Results in Tables
	Dataset 1, Photons
	Dataset 1, Pions
	Dataset 2, Electrons
	Dataset 3, Electrons

	Generation time vs. number of parameters
	References

