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Abstract: We present our lattice QCD result for the long-distance part of the hadronic
vacuum polarization contribution, (ahvpµ )LD, to the muon g − 2 in the time-momentum
representation. This is the numerically dominant, and at the same time the most chal-
lenging part regarding statistical precision. Our calculation is based on ensembles with
dynamical up, down and strange quarks, employing the O(a)-improved Wilson fermion
action with lattice spacings ranging from 0.035 − 0.099 fm. In order to reduce statis-
tical noise in the long-distance part of the correlator to the per-mille level, we apply
low-mode averaging and combine it with an explicit spectral reconstruction. Our result
is (ahvpµ )LD = 423.2(4.2)stat(3.4)syst × 10−10 in isospin-symmetric QCD, where the pion
decay constant is used to set the energy scale. When combined with our previous results
for the short- and intermediate-distance window observables and after including all sub-
dominant contributions as well as isospin-breaking corrections, we obtain the total leading-
order hadronic vacuum polarization contribution as ahvpµ = 724.9(5.0)stat(4.9)syst × 10−10.
Our result displays a tension of 3.9 standard deviations with the data-driven estimate pub-
lished in the 2020 White Paper, but leads to a SM prediction for the total muon anomalous
magnetic moment that agrees with the current experimental average.

CERN-TH-2024-196, MITP-24-080

ar
X

iv
:2

41
1.

07
96

9v
1 

 [
he

p-
la

t]
  1

2 
N

ov
 2

02
4

mailto:simon.kuberski@cern.ch


Contents

1 Introduction 2

2 Setup 3
2.1 Basic definitions 3
2.2 Gauge ensembles 4
2.3 The electromagnetic current on the lattice 5
2.4 Noise reduction in the long-distance tail 7
2.5 Physical point extrapolation 10
2.6 Finite-volume correction 13

3 Results 16
3.1 The isovector contribution 16
3.2 The isoscalar contribution 19
3.3 Further contributions 20
3.4 Flavour decomposition 21
3.5 The long-distance contribution 21
3.6 Full hadronic vacuum polarization contribution 24
3.7 Electromagnetic and strong isospin-breaking effects 26

4 Conclusion 28

A The hadronic scheme 30
A.1 Results in the alternative scheme 31

B The blinding strategy 32
B.1 Modified kernel 32

C The vector correlator from low-mode averaging 34
C.1 Low modes of the Dirac operator 34
C.2 Mesonic correlation functions 34
C.3 Even-odd preconditioning 36
C.4 Computational details 36

D I = 1 ππ scattering at physical pion mass 40
D.1 Measuring the finite-volume energies and matrix elements 40
D.2 Transition Point and Gounaris-Sakurai Parameters 43

E Tables 44

– 1 –



1 Introduction

For many years the tension between the experimentally measured muon anomalous magnetic
moment aµ ≡ 1

2(g − 2)µ and its theoretical prediction has been one of the most promising
hints for physics beyond the Standard Model. The largest share of the uncertainty in the
Standard Model prediction arises through the leading-order hadronic vacuum polarization
(HVP) contribution, ahvpµ . In the traditional data-driven method, which forms the basis
for the consensus value reported in the 2020 White Paper by the Muon g − 2 Theory
Initiative [1], one obtains ahvpµ from a dispersion integral over the experimentally measured
hadronic cross section, e+e− → hadrons [2–7]. However, since the publication of the White
Paper, this approach has been challenged on two fronts (see, e.g., [8, 9]): Firstly, the cross
section for the dominant channel e+e− → π+π− measured recently by CMD-3 [10, 11]
is significantly enhanced relative to all other experiments, yielding an estimate for ahvpµ

that is largely compatible with the latest direct measurement of aµ reported by the E989
experiment [12, 13]. Secondly, lattice QCD calculations have produced precise results for
ahvpµ [14] and the so-called intermediate window observable (ahvpµ )ID [14–21] indicating a
strong tension with estimates derived from e+e− cross sections published prior to CMD-3.
Tracing the origin(s) of these tensions and their possible resolution is the subject of intense
research.

In this paper, we report the results of a new precision calculation of ahvpµ in lattice QCD.
The main ingredient, which we describe in full detail in the following sections, is the fully
blinded calculation of the long-distance window observable (ahvpµ )LD in isospin-symmetric
QCD (isoQCD), for which we obtain

(ahvpµ )LD = (423.2± 4.2stat ± 3.4syst)× 10−10 . (1.1)

When combined with our previous results for the short- and intermediate-distance window
observables [18, 22], we obtain the total light-quark connected contribution as

(ahvpµ )ud, conn = (675.7± 4.1stat ± 3.7syst)× 10−10 , (1.2)

which disagrees with the corresponding data-driven evaluation [23] by more than five stan-
dard deviations. After including all sub-leading contributions and accounting for isospin-
breaking corrections we finally arrive at

ahvpµ = (724.9± 5.0stat ± 4.9syst)× 10−10 . (1.3)

This result differs from the White Paper estimate for ahvpµ by 3.9 standard deviations, whilst
being compatible with the current experimental average for aµ. It is also higher than the
lattice estimate by the BMW collaboration [14], as well as their recent update [24], which
partly relies on the data-driven method.

This paper is organized as follows: In section 2 we describe the details of our calcu-
lation, including our noise-reduction strategy, the extrapolation to the physical point and
the determination of finite-volume corrections. Our main results are presented in section 3,
including the long-distance window observables and the total HVP contribution in isospin-
symmetric QCD, as well as the correction for isospin-breaking effects that must be added
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to arrive at our final result for ahvpµ . After presenting our conclusions, we discuss addi-
tional computational details in several appendices, including our choice of hadronic scheme
(appendix A), our blinding strategy (appendix B), the use of low-mode averaging as noise-
reduction strategy (appendix C) and the spectral reconstruction of the long-distance tail
of the vector correlator (appendix D). Detailed results for the long-distance contributions
and ancillary information on individual ensembles are collected in appendix E.

2 Setup

2.1 Basic definitions

We employ the standard time-momentum representation (TMR) [25] to express the HVP
contribution ahvpµ as the Euclidean time integral of the spatially summed correlator G(t)
of the electromagnetic current, Jγ

µ , convoluted with an analytically known kernel function,
i.e.

ahvpµ =
(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G(t) , δklG(t) = −

∫
d3x

〈
Jγ
k (t,x)J

γ
l (0)

〉
(2.1)

Jγ
µ =

2

3
ūγµu− 1

3
d̄γµd−

1

3
s̄γµs+

2

3
c̄γµc+ . . . . (2.2)

The electromagnetic current can be written conveniently with the help of matrices Tm

acting in flavour space. Adopting the notation

Jm
µ ≡ ψ Tmγµ ψ, ψ = (ū, d̄, s̄, c̄, b̄) (2.3)

we describe the (u, d, s) flavour sector by setting

Tm = 1
2λ

m ⊕ 0, m = 1, . . . , 8 , (2.4)

where λm denote the Gell-Mann matrices, and 0 the null matrix of size 2×2. The charm and
bottom quark currents are defined by T c = diag(0, 0, 0, 1, 0) and T b = diag(0, 0, 0, 0, 1),
respectively. The generic correlator G(m,n) of the currents Jm

µ and Jn
µ is then given by

δklG
(m,n)(t) = −

∫
d3x ⟨Jm

k (t,x)Jn
l (0)⟩ . (2.5)

Setting m = γ corresponds to identifying Tm with the physical quark charge matrix, i.e.
T γ = diag(23 , −1

3 , −1
3 ,

2
3 , −1

3), which yields the following decomposition of the electromag-
netic current correlator G(t) ≡ G(γ, γ)(t):

G(γ,γ) = G(3,3) +
1

3
G(8,8) +

4

9
G(c,c)

conn +
2

3
√
3
G(c,8) +

4

9
G

(c,c)
disc +

1

9
G(b,b)

conn + . . . . (2.6)

Here the subscripts denote the quark-connected and -disconnected contributions, and the
ellipsis stands for contributions too small to be relevant in this work. Correspondingly, we
can define separate TMR integrals for each correlator G(m,n) as

am,n
µ =

(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G

(m,n)(t) . (2.7)
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In this way, we recover the isovector contribution as a3,3µ , while the isoscalar contribution
is given by 1

3a
8,8
µ .

Our focus in this paper is the long-distance window observable, (ahvpµ )LD, first defined
in ref. [26], which is obtained by multiplying the integrand in eq. (2.1) with an additional
factor Θ(t, d1, ∆):

(ahvpµ )LD =
(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G(t)Θ(t, d1, ∆) , (2.8)

where

Θ(t, d1, ∆) = 1
2 (1 + tanh[(t− d1)/∆]) (2.9)

is a smoothed step function at t ≈ d1 with width ∆. With this convention the standard
long-distance window is defined for d1 = 1.0 fm and ∆ = 0.15 fm. In the same manner we
identify the long-distance window observables for the flavour decomposition as

(am,n
µ )LD =

(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G

(m,n)(t)Θ(t, d1, ∆) . (2.10)

For completeness, we list the short- and intermediate-distance window observables, i.e.

(ahvpµ )SD =
(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G(t) [1−Θ(t, d0, ∆)] , (2.11)

(ahvpµ )ID =
(α
π

)2 ∫ ∞

0
dt K̃(t; mµ)G(t) [Θ(t, d0, ∆)−Θ(t, d1, ∆)] , (2.12)

where the standard choice is d0 = 0.4 fm. The generalization of these observables to the
flavour decomposition is obvious.

As detailed in appendix B, we have fully blinded our analysis by using five modified
versions of the kernel function, which only converge in the continuum limit, differing by a
multiplicative factor. After finalizing the analysis, we first performed the unblinding step,
and only then switched to the true kernel function, K̃(t; mµ), to produce the results and
figures presented in this work. In the following, all results for HVP contributions to aµ are
quoted in units of 10−10 unless otherwise specified.

2.2 Gauge ensembles

We perform our calculation on a subset of the 2 + 1-flavour CLS ensembles [27, 28] which
feature a tree-level Symanzik improved Lüscher-Weisz gauge action and non-perturbatively
O(a) improved Wilson quarks [29]. The RHMC algorithm is used to simulate the strange
quark component, and a small twist in the Dirac operator stabilizes the simulations of light
quark masses in large volumes. The target action, 2 + 1-flavour QCD, is restored by the
inclusion of the appropriate reweighting factors [30–33]. We focus on the chiral trajectory
where the sum of the bare sea quark masses is held constant. Starting from the SU(3)
symmetric point where mπ = mK ≈ 420MeV, the kaon mass approaches its physical value
from below when the pion mass is lowered towards its physical value since the combination
m2

K+ 1
2m

2
π is approximately constant along each chiral trajectory. We also include ensembles
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with a close-to-physical strange quark mass and pion masses around 220MeV to stabilize
the interpolation to physical quark masses. Three ensembles at physical values of the
light quark mass enter our interpolation, thereby allowing us to tightly constrain the chiral
behaviour.

Compared to our 2019 computation [34], we have significantly extended the set of
gauge ensembles which now covers six lattice spacings from about 0.01 fm down to 0.039 fm.
Eight gauge ensembles with pion masses ranging from 225MeV down to 131MeV have been
added or significantly extended to allow for a safe interpolation to physical quark masses
and to constrain possible mass-dependent cutoff effects. Replacing several ensembles with
relatively small spatial box sizes by new ensembles with larger volumes greatly strengthens
our confidence in controlling finite-size effects, both by reducing the size of the correction
and by offering an explicit check that we can quantitatively describe the finite-size effects
that are found in the data. Further details concerning the set of ensembles and their
inclusion in our work can be found in refs. [18, 22, 34, 35].

2.3 The electromagnetic current on the lattice

We use two different discretizations, i.e. the local (L) and the point-split (C) variant to
realize the vector current of eq. (2.3) on the lattice

J (L),a
µ (x) = ψ(x)γµT

aψ(x) , (2.13)

J (C),a
µ (x) =

1

2

(
ψ(x+ aµ̂)(1 + γµ)U

†
µ(x)T

aψ(x)

− ψ(x)(1− γµ)Uµ(x)T
aψ(x+ aµ̂)

)
, (2.14)

where Uµ(x) is the gauge link in the direction µ̂ associated with site x. With the local
tensor current defined as Σa

µν(x) = −1
2 ψ(x)[γµ, γν ]T

aψ(x), we obtain the O(a)-improved
versions of the currents via

J (α),a,I
µ (x) = J (α),a

µ (x) + ac
(α)
V (g0) ∂νΣ

a
µν(x) , α = L, C . (2.15)

Employing the non-perturbative determination of the improvement coefficients c(α)V (g0) en-
sures the removal of cutoff effects of O(a) in the chiral limit. The line of constant physics
(LCP) that is chosen in the formulation and evaluation of the relevant improvement condi-
tion is ambiguous regarding higher-order cutoff effects. As a consequence, matrix elements
of O(a)-improved currents that differ in the choice of LCP approach the continuum limit
with different rates in a2. In previous works, we have used two alternative sets of non-
perturbatively determined coefficients from [38] and [39] and interpreted possible deviations
in the continuum limit as systematic uncertainties of the continuum extrapolation.

The calculation of c(α)V (g0) in [38] was based on a preliminary determination of the
improvement coefficient b̃A that enters the improvement condition. However, the final
results for b̃A published in [40] differ significantly from the preliminary ones used in [38]. In
turn, an updated determination of c(α)V (g0) using the published values of b̃A and additional
SU(3)-symmetric ensembles [41] yield coefficients that differ significantly from those in
[38] while being much closer to the ones extracted directly at vanishing quark masses in the
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Id β bc
(
L
a

)3 × T
a a [fm] mπ [MeV] mK [MeV] mπL L [fm] MDU

A653 3.34 p 243 × 48 0.097 430 430 5.1 2.3 20200
A654 p 243 × 48 338 462 4.0 2.3 16000
H101 3.4 o 323 × 96 0.085 424 424 5.8 2.7 8064
H102 o 323 × 96 358 445 4.9 2.7 7832
H105∗ o 323 × 96 283 470 3.9 2.7 8260
N101 o 483 × 128 282 468 5.8 4.1 6376
C101 o 483 × 96 222 478 4.6 4.1 8000
C102† o 483 × 96 224 506 4.6 4.1 6000
D150† p 643 × 128 131 484 3.6 5.4 1616
B450 3.46 p 323 × 64 0.075 422 422 5.1 2.4 6448
S400∗ o 323 × 128 355 447 4.3 2.4 11492
N452 p 483 × 128 356 447 6.5 3.6 4000
N451 p 483 × 128 291 468 5.3 3.6 4044
D450 p 643 × 128 219 483 5.3 4.8 2000
D451† p 643 × 128 219 509 5.3 4.8 3700
D452 p 643 × 128 156 490 3.8 4.8 4000
H200∗ 3.55 o 323 × 96 0.064 423 423 4.4 2.0 8000
N202 o 483 × 128 417 417 6.4 3.0 7608
N203 o 483 × 128 349 447 5.4 3.0 6172
N200 o 483 × 128 286 468 4.4 3.0 6848
D251 p 643 × 128 286 467 5.9 4.1 5968
D200 o 643 × 128 202 486 4.2 4.1 8004
D201† o 643 × 128 202 507 4.2 4.1 4312
E250† p 963 × 192 131 495 4.1 6.1 4496
N300∗ 3.7 o 483 × 128 0.049 425 425 5.1 2.4 8188
J307 o 643 × 192 424 424 6.7 3.1 3200
N302∗ o 483 × 128 350 456 4.2 2.4 8804
J306 o 643 × 192 349 455 5.6 3.1 3840
J303 o 643 × 192 260 480 4.1 3.1 8584
J304† o 643 × 192 263 530 4.2 3.1 6508
E300 o 963 × 192 177 498 4.2 4.7 7180
F300† o 1283 × 256 136 496 4.3 6.3 1412
J500 3.85 o 643 × 192 0.039 417 417 5.2 2.5 15000
J501 o 643 × 192 337 450 4.2 2.5 15680

Table 1. Parameters of the simulations: the bare coupling β = 6/g20 , the temporal boundary
conditions, open (o) or anti-periodic (p), the lattice dimensions, the lattice spacing a in physical
units based on [36, 37], the approximate pion and kaon masses, the physical size of the lattice
and the length of the Monte Carlo chain in Molecular Dynamics Units (MDU). Ensembles with an
asterisk are used to control finite-size effects, but are not included in the final analysis. Ensembles
marked by a dagger lie on a second chiral trajectory where ms ≈ mphys

s . Ensembles in bold face
have either been added or the current correlator has been determined with significantly improved
precision with respect to [34].
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Schrödinger functional scheme employed in [39]. In this work, we will use the updated values
of [41] for set 1 and employ them to cross-check our main results which will be computed
using the published values of [39] (set 2). We note that our earlier results for the short-
and intermediate-distance windows [18, 22] are unaffected by the change of improvement
coefficients of set 1.

The renormalization pattern of the electromagnetic current based on Wilson quarks
has been outlined in refs. [18, 34, 35], and we use the renormalization factor and improve-
ment coefficients of [38] and [39, 42], respectively, in combination with set 1 and set 2 of
improvement coefficients c(α)V . The values of the critical hopping parameters that enter the
mass-dependent improvement via the bare subtracted quark mass are taken from [37].

2.4 Noise reduction in the long-distance tail

One of the two main difficulties in the computation of the long-distance contribution to
ahvpµ is the exponential loss of signal in the light-connected and disconnected correlation
functions. In this work we employ several advanced noise reduction techniques to enhance
the statistical signal, focusing on the light-quark connected correlation function which con-
tributes about 90% of the total ahvpµ . Specifically, we combine improved estimators from
low-mode averaging (LMA) and the spectral reconstruction of the isovector correlation
function with the widely used bounding method.

In our previous work [34], the light-quark connected correlation function was computed
either from point sources or from time, spin and colour-diluted time slice sources. In both
cases, assuming that multiple sources on a gauge configuration are largely uncorrelated, the
statistical uncertainty at a certain source-sink separation scales ∝ 1/

√
N with the number

of sources N . A brute-force reduction of the statistical error by increasing the number of
sources is infeasible in the long-distance regime and at close-to-physical values of the light
quark masses, since the signal deteriorates exponentially fast.

In this work, we resort to an improved estimator for the light-connected correlation
function that is based on the low modes of the Dirac operator. For small values of the
light quark mass, we find low-mode averaging (LMA) [43, 44] to yield significantly more
accurate results compared to our old setup, and thus we employ LMA for all ensembles
with pion masses smaller than 280 MeV. We refer to appendix C for a detailed explanation
of our setup for the LMA computation. Our setup for computing the quark-disconnected
correlation functions via a combination of frequency-splitting techniques [45, 46] and hier-
archical probing [47] in combination with the generalized hopping parameter expansion [48]
has been extensively discussed in appendix C of [35].

Euclidean finite-volume two-point correlation functions at source-sink separation t can
be expressed via the spectral decomposition

G(k,l)(t) =

∞∑

n=0

Z2
n

2En
e−Ent , (2.16)

where Zn denote the real amplitudes and En the ordered real and positive finite-volume
energies. At sufficiently large time separations, only the lowest-lying states contribute
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significantly, as contributions from higher-energy states decay faster. In this regime, the
finite-volume isovector correlation function G(3,3)(t) is dominated by two-pion states. These
can be computed in a dedicated spectroscopy study, as outlined in appendix D.

In both the isovector and isoscalar channels, we make use of the representation in
eq. (2.16) to impose lower and upper bounds on G(k,l)(t) via [26, 34, 49, 50]

0 ≤ G(k,l)(tc) e
−E∗

eff(t−tc) ≤ G(k,l)(t) ≤ G(k,l)(tc) e
−E0(t−tc) , t ≥ tc . (2.17)

Here, E0 is the energy level of the lowest-lying state that contributes to the correlation
function. In practice, it has to be computed or estimated from the data.

On those ensembles for which we performed a dedicated spectroscopy study in the
isovector channel, we employ the lowest state determined from the generalized eigenvalue
problem (GEVP). On all other ensembles, we use a Gounaris-Sakurai parameterization of
the timelike pion form factor, which is used to compute the finite-volume correction (see
section 2.6), to estimate the ground-state energy, which is always found to lie below that
of two non-interacting pions. We note that the lowest energy levels determined by the
Gounaris-Sakurai fit agree with those from the dedicated spectroscopy study. We use the
central value minus the statistical uncertainty of this estimate as input for E0. As in [35],
this estimate for E0 is also used for the isoscalar correlation function, which is justified by
the fact that mρ ≲ mω, making this a conservative choice.

The energy E∗
eff is determined from the effective mass of the correlation function at some

time teff < tc, as computed from the logarithmic derivative of the correlation function. In
this work, we fix teff on each ensemble such that the effective mass at this distance is clearly
larger than in the region where the bounding method will be applied. Empirically, we find
that this requirement is satisfied for teff = 4.5/E0 for all ensembles used in this work. This
approach provides a strict lower bound on the correlation function that is not affected by
local fluctuations.

Via eq. (2.17), the bounds on the energy E0 and E∗
eff are translated into bounds on

the correlation function. By replacing the measured correlation function with its upper
and lower bounds for t > tc in eq. (2.7), we obtain corresponding constraints on ak,lµ that
depend on tc. At the value of tc where the central values of both bounds are compatible
within the 1σ uncertainty of their respective counterpart, we average over the mean of the
two bounds in a region of 0.25 fm or at least 4 time slices, to smooth out local fluctuations.

On ensembles with periodic boundary conditions in the temporal direction, we extend
the above boundaries to include the contributions of wrappers around the temporal direction
of the torus, which are small in all cases that are considered. For the ensembles A653, A654
and B450 with mπ > 335MeV and small temporal extents, we perform a fit to a single-state
in the region around T/2 and replace the correlator at large times by the corresponding
single-exponential form [51]. Note that this treatment is only possible due to the large pion
mass on these ensembles such that a single stable state dominates.

For two ensembles, D200 at mπ ≈ 200MeV and E250 at mπ ≈ 130MeV, we increase the
statistical precision in the long-distance tail further by supplementing the LMA calculation
with an explicit reconstruction of the isovector correlation function in terms of two-pion
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Figure 1. Determination of ak,lµ using the bounding method. tc denotes the time where the
correlator is replaced by the single state exponential as detailed in eq. (2.17). The downward
triangles show the upper bound from the estimate of the ground state energy. The lower bound
from the effective mass is given by the upward triangles, and the lower bound from setting the
correlator to zero beyond tc, which is just shown for comparison, is represented by the circles.
The gray area indicates the final estimate. Left: In the isovector channel on ensemble E250. The
dotted vertical line denote the switching point between the LMA and the spectroscopy correlation
functions. The dashed horizontal lines indicate the starting time and the 1σ uncertainty band of
the estimate that would be obtained when using only the LMA data set. Right: In the isoscalar
channel on ensemble J303.

states, similarly to what was done in [34]. To this end, we have computed the lowest-
lying energies En and corresponding amplitudes Zn for the vector-vector, as well as the
derivative of the vector-tensor currents, see [52–54]. Full details on the computation of the
finite-volume energies and matrix elements at physical pion mass are deferred to appendix D.

For D200 and E250, we observe that the isovector correlation function is fully saturated
by the three lowest states starting at t ≳ 1.1 fm and by the four lowest states starting at
1.5 fm, respectively. However, since LMA still yields smaller statistical errors for source-sink
separations below about 2.5 fm, we only switch to the reconstructed isovector correlator
when the latter is statistically more precise. In this way we are able to eliminate the
exponential growth of the relative statistical noise, which is also encountered for LMA
(albeit at a much reduced level), since the signal-to-noise ratio varies only slowly for the
spectrally reconstructed correlator. We stress that the reconstruction in terms of the four
lowest-lying states occurs in a region where all higher states have clearly decayed below any
statistical significance.

We illustrate the bounding method for the isovector channel on the physical mass
ensemble E250 and for the isoscalar channel on the finer lattice spacing ensemble J303,
as shown in figure 1. The blue triangles denote the upper bound on ak,lµ based on the
estimated ground state energy, while the green upward triangles depict the lower bound
from the effective mass. For comparison, we also display a less strict lower bound obtained
by setting G(k,l) to zero for t > tc. The gray area represents the estimate for ak,lµ , bounded
by the two limits, and begins at the time separation where we start averaging the two.

In the left hand panel, the dotted vertical line indicates the time separation where we
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switch from the LMA to the reconstructed correlation function.1 The dashed vertical lines
show the uncertainty range of the estimate that would be obtained from using only the
LMA correlation function.

2.5 Physical point extrapolation

Our strategy to approach the physical point consists in a combined chiral-continuum extra-
polation of our lattice data. Whereas the continuum limit is mostly constrained by ensem-
bles that feature larger-than-physical pion masses, precise data at near-physical values of
the quark masses ensure that the interpolation in m2

π is well controlled. To disentangle
strange from light quark mass effects, we have added four ensembles with physical strange
quark mass to our standard set of ensembles, for which the sum of the bare quark masses
is held constant along a chiral trajectory.

As outlined in [34], see also [55], a strong chiral dependence with a leading term pro-
portional to 1/m2

π or log(m2
π) can be expected in the long-distance regime of ahvpµ . Our

set of ensembles (see section 2.2) allows us to constrain the pion mass dependence of the
observables that are studied in this work in the full range mπ ∈ [131, 430]MeV. We point
out that the region below 220MeV is especially finely sampled and that three ensembles
with approximately physical values of the quark masses enter the interpolation, with the
data set on ensemble E250 being one of the statistically most precise ones.

For the Wilson quark action used in this work, distortions of the pion spectrum that
could affect the long-distance tail are absent, in contrast to staggered or Wilson twisted-
mass discretizations. Data computed for six values of the lattice spacing allow us to resolve
leading and subleading cutoff effects. At our level of precision, we have to reckon with
the occurrence of non-negligible mass-dependent cutoff effects. These can be reliably con-
strained since we cover the full range of pion masses on four of the six values of the lattice
spacing that enter our result. In a future update, a significant increase in the number of
available configurations for ensemble F300 will play a crucial role for further reducing the
systematic uncertainty of the continuum extrapolation at the physical pion mass.

The small-a behaviour of a (lattice) regularized quantum field theory is described by
Symanzik effective theory, which is expected to work well for the observable (ahvpµ )LD. As
pointed out in [56] for the case of QCD, the leading dependence on the cutoff is modified
by logarithmic corrections and can be expressed as anmin [αs(1/a)]

Γ̂, where Γ̂ is the leading
anomalous dimension. The Wilson quark action and the currents used in our work are
non-perturbatively O(a)-improved such that nmin = 2. As explained in ref. [57], for our
choice of action the term with Γ̂ = 0.76 is expected to dominate the description of cutoff
effects in spectral quantities and those from the sea, while Γ̂ = 0.395 is the lowest non-zero
anomalous dimension for quark bilinears with vector quantum numbers [58]. A potentially
dangerous slowing down of the continuum extrapolation due to large negative anomalous
dimensions can thus be excluded thanks to the existing analytic knowledge for our action.
While it is not possible to resolve one or more anomalous dimensions in the existing range

1Note that the bounding method does not have to be applied as soon as the reconstructed correlation
function is employed because the noise is under control in this case.
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of lattice spacings, all of our continuum extrapolations include the possibility of a non-zero
anomalous dimension for the leading term.

To convert the muon mass in the QED kernel function to lattice units and to form
dimensionless quantities that act as proxies for the quark masses in our ensembles, we use
the pion decay constant afπ. This approach, known as fπ-rescaling, was introduced in
[34]. The key benefit of this strategy is the mitigation of the quark mass dependence in
the isovector contribution to (ahvpµ )LD via a partial cancellation from the corresponding
dependence of the decay constant. For each of our ensembles, we calculate afπ as outlined
in appendix E of [18] and apply corrections for the leading finite-size effects, following [59].
The renormalization and improvement procedure utilizes the results for ZA from [60] and
bA, b̄A from [61]. To reduce fluctuations in the decay constants, we perform a fit to the
values obtained from all large-volume ensembles. This fit is guided by the expectations
from SU(3) chiral perturbation theory [62]. The fitted results are then evaluated for the
parameter values specific to each ensemble, ensuring a stable and consistent representation
of the decay constants.

The fit proceeds by forming a dimensionless combination of the decay constant and the
flow quantity

√
t0. The physical value of

√
t0 is irrelevant for this purpose since we perform

a local interpolation of the data. The quark mass dependence of the pion decay constant
is then parameterized using the two variables

y =
m2

π

8π2f2π
∝ ml , yKπ =

m2
K + 1

2m
2
π

8π2f2Kπ

∝ 2ml +ms , (2.18)

where fKπ = 2
3(fK + 1

2fπ). The specific physical values that define our hadronic scheme are
collected in appendix A. It is worth noting that only a small deviation from the physical
value of yKπ is observed among the ensembles used in this work.

We refer to the pion decay constant at finite lattice spacing and physical values of y
and yKπ as af̃π. It is obtained according to

af̃π =

(
a√
tsym0

)
·



√
tsym0√
tphys0


 ·

(√
t0fπ

)
phys

, (2.19)

with the first two factors taken from [37], the second being evaluated in the continuum.
The quantity

(√
t0fπ

)
phys

is obtained from the fit described above at physical values of y
and yKπ for each value of the lattice spacing.

For our fits to the various contributions to (ahvpµ )LD we proceed as follows. The proxies
for the light quark mass and the sum of the sea quark masses are defined by

y =
m2

π

8π2f2π
∝ ml , z =

m2
K + 1

2m
2
π

8π2f̃2π
∝ 2ml +ms . (2.20)

Compared to yKπ, we find that the simpler quark mass dependence of z helps us to dis-
entangle the two directions in the quark mass plane and to separate cutoff effects. The
quantity a/

√
t0 serves as a proxy for the lattice spacing. For the muon mass entering the

QED kernel used on a given ensemble, we use amµ = (afπ) · (mµ/fπ)
phys for the isovector
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contribution, with afπ computed on that ensemble, while amµ = (af̃π) · (mµ/fπ)
phys is

used for the other contributions. This strategy prevents the chiral dependence of the pion
decay constant from affecting the isoscalar contribution while ensuring a consistent scale
setting across all our observables. We summarize the values of the bare lattice quantities
and quark mass proxies in table 6.

We follow the general strategy of our previous works [18, 22] to extrapolate to the
physical point by performing a simultaneous fit of our data to the quark mass and cutoff
dependence. Denoting the light quark mass proxy by Xπ ∝ ml, we describe the continuum
light quark mass dependence with the general ansatz

O(Xπ) = O(Xphys
π ) + γ1

(
Xπ −Xphys

π

)
(2.21)

+ γ2

(
fch,1(Xπ)− fch,1(X

phys
π )

)

+ γ3

(
fch,2(Xπ)− fch,2(X

phys
π )

)

where fch,1 ∈ {1/Xπ ; log(Xπ) ; Xπ log(Xπ) ; X2
π } ,

and fch,2 ∈ {1/Xπ ; X2
π } .

Here we always include the leading term ∝ Xπ and test for the significance of the higher
order terms on a case-by-case basis. The dependence on the quark mass proxy XK ∝
2ml +ms is always parameterized via

O(XK) = O(Xphys
K ) + γ0

(
XK −Xphys

K

)
. (2.22)

and allows us to correct for small deviations from Xphys
K .

Denoting the proxy for the lattice spacing with Xa ∝ a, our most general ansatz for
the dependence on the lattice spacing in this work is

O(Xa) = β2 [αs(1/Xa)]
Γ̂X2

a + β3X
3
a + δ2 [αs(1/Xa)]

Γ̂X2
a

(
Xπ −Xphys

π

)
, (2.23)

where Γ̂ ∈ {0, 0.395}. We always include the leading term with the coefficient β2 and test
for higher order cutoff effects as well as quark mass dependent cutoff effects by includ-
ing/excluding the terms proportional to β3 and δ2. We perform every fit for each of the two
choices for the anomalous dimension Γ̂ that have been motivated above. We use the five-
loop running relation from [63], using as input Λ

(3)

MS
[64], to evaluate the running-coupling

constant at the scale 1/a.
Further variations are introduced by applying cuts to the data that enter the fits. In

addition to fitting the whole data set, we also consider fits in which the coarsest or the
two coarsest values of the lattice spacing are excluded. To avoid overfitting when removing
data from the two coarsest lattice spacings, we do not include terms that parameterize
higher-order cutoff effects. We also perform fits that exclude ensembles with pion masses
larger than 400MeV, thereby removing data at the SU(3)-symmetric point. Further cuts
in the pion mass are not considered because this would exclude both of our ensembles at
the finest lattice spacing of a ≈ 0.039 fm.
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To quantify the systematic uncertainty from the extrapolation to the physical point
and to determine our final results, we perform a model average over the different fit forms
that are considered in this work. As done in our previous works and following ref. [65], we
use the Akaike Information Criterion (AIC) [66] to assign a weight to each fit. The central
value and its statistical uncertainty are then obtained from a weighted average over all
analyses, whereas the systematic uncertainty is obtained from the distribution of weighted
models. We test explicitly that using the information criterion that has been defined in
[14] leads to negligible differences in our final results. The determination and propagation
of statistical uncertainties is performed using the Γ-method in the implementation of the
pyerrors package [67–69]. Significant autocorrelations are present at small lattice spacing,
and we reliably take them into account for all observables considered in this work.

2.6 Finite-volume correction

Finite-volume effects are sizeable in the long-distance regime of the isovector correlation
function. The origin of these effects lies in the discrete nature of the low-lying multi-pion
spectrum when the theory is formulated in finite volume. Accordingly, it is mandatory to
apply a correction for finite-size effects lest the latter become dominant in the final error
budget.

As in our previous works [18, 35], we employ two methods to correct our data for
finite-size effects. Based on the electromagnetic form factor of the pion in the spacelike
region, the method by Hansen and Patella (HP) [70, 71] is expected to work especially
well in the short and intermediate distance regions. The Meyer-Lellouch-Lüscher (MLL)
formalism is based on the timelike pion form factor [72] and expected to be most successful
in the long-distance region, where only a few states contribute significantly in the spectral
decomposition of the correlation function.

We follow our strategy from [18] and apply the Hansen-Patella method to correct the
isovector correlation function for source sink separations below t∗ = (mπL/4)

2/mπ. From
then on, we employ the MLL formalism. Accordingly, the latter dominates the correction
for (ahvpµ )LD close to the physical value of the pion mass.

Motivated by its phenomenological success and simplicity, we use the vector-meson-
dominance (VMD) parameterization of the pion form factor in the HP volume correction,
Fπ(−Q2) = M2

VMD/(Q
2 +M2

VMD), while the Gounaris-Sakurai (GS) parameterization is
used in the MLL method. In order to make the form factor consistent on the space- and
time-like sides, we proceed by matching the value of the VMD form factor with the GS one
at virtuality Q2 = M2

ρ , where Mρ is the ρ meson mass entering the GS parameterization.
The VMD and GS parameterizations then agree to within one percent for all virtualities
0 ≤ Q2 ≤ 0.8GeV2. As a result, when comparing the corrections that are predicted by the
HP and MLL formalisms with each other, we find that they are consistent at the level of
5% and that any discontinuity in the finite-size correction on G(3,3)(t) at the time t = t∗ is
a very small effect in comparison to the correction itself.

As in [18, 35], we also correct for the effect from kaons propagating in the finite box,
which is relevant for ensembles close to the SU(3) symmetric point on the chiral trajectory
where Tr[Mq] = const. We use the HP formalism to compute the corresponding correction.

– 13 –



0 1 2 3
t [fm]

−0.5

0.0

0.5

1.0

∆
G

(3
,3

) (t
)K̃

(t
)/
m
µ

×10−5 D251 vs. N200

FSE, data

FSE, HP

FSE, HP&MLL
0.0 0.5 1.0 1.5

t [fm]

−3

−2

−1

0

∆
G

d
is

c(
t)
K̃

(t
)/
m
µ

×10−6 N101 vs. H105

FSE, data

FSE, HP

FSE, HP&MLL

Figure 2. Illustration of finite-volume effects on the integrand for the light-connected and discon-
nected contributions. Black diamonds denote effects computed from lattice QCD in two volumes.
Blue upward triangles show corrections predicted by the HP method, while red downward triangles
represent corrections using the MLL method beyond t⋆, indicated by the vertical dotted line for
the respective smaller volume. Left: Light-connected contribution for ensembles D251 and N200.
Right: Disconnected contribution for ensembles N101 and H105.

While we previously corrected the data for the entire finite-size effect before performing
the chiral-continuum extrapolation, we now follow a different procedure set out in [14]. We
first apply the finite-volume correction on all ensembles to match a common reference value
of mπL and then extrapolate the results to the physical point. By choosing a reference value
of mπL close to the one corresponding to our physical pion mass ensembles, we minimize
the correction that is applied to our most important data. Furthermore, to facilitate the
comparison with the results of [14] without the need for a finite-volume correction with the
associated uncertainty, we define our reference target to be

(mπL)
ref = (mπ0)phys · 6.272 fm ≈ 4.290 . (2.24)

The correction from this reference value to the infinite-volume limit is performed in the
continuum.

We find an excellent agreement of the HP&MLL method with the effects that we see in
our data. This is illustrated in figure 2, where we show in black the differences between the
integrands for the isovector contribution for ahvpµ as computed on the ensembles D251 and
N200 with mπ ≈ 286MeV. Both ensembles differ only in their spatial extent and feature
(mπL)

D251 = 5.9 and (mπL)
N200 = 4.4. The statistical uncertainty of this difference is

mainly driven by the smaller box N200. Together with the finite-volume effect from the
data, we show the corresponding finite-volume correction as predicted by our models. The
blue data set denotes the correction as given by HP, whereas the orange data uses HP up
to t∗ and MLL from then on. Both methods agree very well with each other and also – as
far as can be judged given the statistical uncertainties – with the lattice data.

On the right hand side of figure 2 we show a similar comparison for the disconnected
contribution in the (u, d, s) quark sector on the ensembles N101 and H105 at a similar
pion mass but coarser lattice spacing, corresponding to the effect from (mπL)

H105 = 3.9 to
(mπL)

N101 = 5.8. We use the same models, with the appropriate prefactor −1
9 [73, 74], to
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predict the difference. Again, an excellent agreement between the prediction and the data
for the finite-size correction can be observed in the region where the statistical uncertainties
of the data are still small. We note that, while this test further increases our confidence
in the correction, it will not be applied in our analysis since we work with the isoscalar
contribution, where the leading finite-volume effects of light-connected and disconnected
contributions cancel. As we only correct for finite-size effects from the isovector, the agree-
ment between the prediction in the right panel of figure 2 and the lattice data is evidence
for the smallness of these effects in the isoscalar channel.

For the final conversion of our continuum results at physical quark masses from the
reference volume specified in eq. (2.24) to infinite volume, we use the HP correction up to
t∗ and MLL from then on. The GS parameters for the pion form factor are taken from
the dedicated calculation on ensemble E250 described in appendix D and a forthcoming
publication [75]. The VMD mass entering the HP method is based on the pion charge
radius rπ = 0.659(4) fm from [76] and we do not find any significant deviation if we instead
match to the GS form factor as described above.

The correction applied is

(ahvpµ )LD(L = ∞)− (ahvpµ )LD(Lref) = 16.7(1.5) . (2.25)

The absolute uncertainty we have assigned to it is mainly based on the sensitivity of the
correction to the values of the GS parameters as well as to the difference to the next-to-
next-to-leading order chiral perturbation theory expression given in [77], which we find to
be on the order of 0.2. We have also estimated the finite-size effect associated with higher
channels. Specifically, we have studied the π+π−π0π0 channel, approximating it as an ωπ

channel. From here, using the cross-section measurement [78], we have estimated the finite-
size effect in the approximation that there are discrete, non-interacting ωπ0 energy levels
on the torus, finding an absolute effect on ahvpµ in the range 0.2 to 0.3.

In addition to the finite-size effects affecting the isovector channel, we have also consid-
ered those affecting the isoscalar channel. One expects, on one hand, a contribution from
K̄K states, which we take into account via the HP formalism. These effects are of order
exp(−mKL). There are however also finite-size effects of order exp(−mπL), associated
mainly with the three-pion channel. As pointed out in [14], these are heavily suppressed
in the chiral power-counting compared to the isovector channel; indeed it takes three pions
and three derivatives to form an isoscalar current, ϵµναβ∂νπ+∂απ−∂βπ0 [79, 80]. We expect
the numerically leading effect to come from a slight shift of the finite-volume energy level
associated with the ω meson, and possibly with the higher-lying three-pion states. In the
former case, a lattice study [81] of energy levels in the isoscalar channel has recently ap-
peared for a pion mass of 200 or 300MeV; no statistically significant shift of the lowest-lying
level was found between L = 2.5 fm and L = 3.7 fm. In the case of the three-pion states
above one GeV, we approximate them as being mainly in a ρπ configuration and estimate
the associated finite-size effect in the same way as in the ωπ case described in the previous
paragraph; however, the corresponding e+e− → π+π−π0 cross-section is a factor of about
three smaller at those energies than e+e− → π+π−π0π0, further reducing the importance
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of this effect. Based on the above discussion, we do not include any finite-size correction
for the isoscalar channel, but assign an absolute uncertainty of 0.3 to this effect.

3 Results

In this section, we describe our calculation of (ahvpµ )LD in isospin-symmetric QCD. Com-
bining the result with our earlier determinations of (ahvpµ )SD [22] and (ahvpµ )ID [18] allows
us to present an updated result for ahvpµ with respect to [34]. As in our earlier work, we
prefer to perform an isospin decomposition of the electromagnetic current and first present
the computation of the isovector and isoscalar contributions to (ahvpµ )LD. To facilitate the
comparison with other groups, we also provide results for individual flavour components.
Based on an estimate for the leading isospin-breaking effects, we compute an updated value
of ahvpµ that can be directly compared to experiment.

3.1 The isovector contribution

The isovector contribution dominates by far the central value and the uncertainty of ahvpµ

and (ahvpµ )LD. Therefore, its precise computation is the main focus of this work. As ex-
plained in section 2.4, we use a combination of noise reduction methods to compute the
isovector correlation function to high accuracy, especially at close-to-physical pion masses
where the signal-to-noise problem is enhanced.

Here, we focus specifically on the combination of noise reduction techniques applied on
ensemble E250 at (slightly smaller than) physical value of the pion mass. Whereas stochastic
sources have been utilized to determine the isovector correlation function on this ensemble
in [34], we now employ LMA to maximize the extractable information in the long-distance
tail from the gauge ensemble. The computation is described in detail in appendix C, and
the expected dominance of low modes in the tail is highlighted in figure 12. When used in
combination with the bounding method, we find that LMA alone allows us to reduce the
uncertainty on ahvpµ from 2.2% in ref. [34] to 0.8% in this work. In figure 3 we show the
integrand to compute (a3,3µ )LD on E250, where the black diamonds denote the integrand
computed from the LMA correlation function.

Recalling that the isovector correlator in the long-distance regime is dominated by
two pions, we have also performed a dedicated study to determine the spectrum of the
lowest-lying two-pion states and their overlap with the isovector current (see appendix D
for an in-depth description). The coloured data points in figure 3 show the accumulated
contributions of an increasing number of two-pion states to the TMR integrand. We find
that four states saturate the correlator at a source-sink separation of about 1.5 fm. We note
in passing that the largest energy level that enters this reconstruction is slightly above the
mass of the ρ meson. As stated already in section 2.4, the correlation function that has been
computed using LMA is more precise at this distance. However, since the signal-to-noise
ratio deteriorates exponentially in the LMA correlation function whereas it stays basically
constant for the correlator reconstructed from two-pion states, it is clear that there exists
a distance above which the reconstruction is more precise. For our specific calculation, this
happens for t ≳ 2.4 fm.
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Figure 3. The integrand to compute a3,3µ on the physical mass ensemble E250. The black diamonds
are based on the correlation function that is computed using LMA. The coloured data show the
reconstructed integrand from Nππ states. The vertical dotted line denotes the distance where we
change from the LMA to the spectroscopy data set.

To combine the two sets of data, we follow one of the methods that have been explored
in our previous work [34] and replace the directly computed correlation function with the
reconstructed one beyond a specific source-sink separation where the reconstructed corre-
lation function is more precise. We note that neglected contributions from higher states
are even less significant for these larger source-sink separations. Four-pion states have been
shown to be numerically irrelevant in [82], since their overlap with the isovector correlator
is very small. The combination of the two data sets allows us to further reduce the relative
uncertainty of a3,3µ on this ensemble by a factor of two to 0.4% (excluding the uncertainty
of the scale setting quantity). Since ensemble E250 has close-to-physical quark masses, this
result provides a strong constraint for the chiral-continuum fit and has a direct influence
on the attainable precision at the physical point. The second ensemble where we employ
spectroscopy data is D200 with mπ ≈ 200MeV. With respect to the previous application in
[34], we have added an LMA computation of the isovector correlation function. The combi-
nation of both methods reduces the statistical uncertainty by about 25% on this ensemble,
compared to pure LMA.

Across our set of 34 gauge ensembles, we reach a precision of 0.35%−1.5% for a3,3µ and
0.55%−2.4% for (a3,3µ )LD (see table 7 for an overview of results). We find that high-precision
results on ensembles with close-to-physical pion masses are crucial to constrain our global
fit in the relevant region of the parameter space. For most of the ensembles with lattice
spacings a ≤ 0.05 fm, autocorrelations limit the attainable precision such that longer Monte
Carlo chains are needed to reduce the uncertainties.

As outlined in section 2.5, we scan over a variety of fit forms and data selections
to determine our final result at the physical point from a model average. For the chiral
dependence, see eq. (2.21), we find that fits without a chirally divergent term do not lead
to acceptable fit quality, which is why we exclude them from the model average. The term
1/Xπ in fch,2 is only used in conjunction with log(Xπ) in fch,1, following an observation in
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Figure 4. Chiral-continuum extrapolation of the isovector contribution to (ahvpµ )LD. Left: Illus-
tration of the best fit according to the AIC to the data based on the improvement scheme set 2 and
the LL discretisation. The data points denote the result for each ensemble, corrected for a deviation
from the physical value of z. The black line denotes the chiral dependence in the continuum limit
and the grey area the statistical uncertainty. The coloured lines correspond to the chiral dependence
at non-zero lattice spacing. Right: Approaches to the continuum limit for four sets of data based
on the improvement schemes of set 1 and 2 and the LL and LC discretizations of the current based
on a scan over fit models. Each line shows the result from one single fit and the opacity of the lines
corresponds to the weight of the fit in the model average. Dashed vertical lines indicate the lattice
spacings used in this work. The conversion to fm has been performed for illustrative purposes only.

[55] that this combination could be favoured for pion masses below the physical point. This
leads to five different ansätze for the chiral behaviour that are combined with eight ansätze
for the continuum extrapolations and four subsets of the data.

Upon inspecting the different classes of fits with their respective model weights, we
make the following observations. Fits that only include a single term to parameterize the
lattice spacing dependence generally have good quality and are thus preferred over fits that
include higher-order lattice artifacts, which however have a non-negligible model weight.
Fits that include mass-dependent cutoff effects favour slightly larger values of (a3,3µ )LD at
the physical point than fits without this extra term. Varying the anomalous dimension Γ̂

does not lead to significant changes in the fit quality or the result in the continuum limit.
However, fits with a non-zero anomalous dimension prefer slightly smaller values of (a3,3µ )LD.

The chiral behaviour is tightly constrained by the precise data point of the E250 ensem-
ble at physical pion mass. Two parameters are sufficient to describe the chiral behaviour
with good fit quality. The inclusion of a third parameter to parameterize the dependence
on the squared pion mass leads to an insignificant shift towards larger values of (a3,3µ )ID.

The left-hand side of figure 4 depicts the chiral-continuum extrapolation with the high-
est model weight for the LL discretization of the vector current, using set 2 of the im-
provement and renormalization coefficients. No cuts in the data have been applied in this
instance. The data are adjusted for deviations from zphys and presented alongside the eval-
uation of the chiral behaviour at finite lattice spacing (shown by the coloured lines) and
in the continuum limit (represented by the grey error band). As can be seen from the
figure, the chiral dependence is well constrained over the full range of pion masses. This
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includes the region mπ < 230MeV or y < 0.04, respectively, which is sampled by eleven
gauge ensembles and exhibits a strong curvature.

The panel on the right-hand side of figure 4 illustrates the continuum extrapolation
at physical quark masses for each of the fits included in the model average across four
data sets. Each fit is represented by a line whose opacity corresponds to the weight in the
model average for the respective data set. The local and conserved discretizations of the
vector current show only marginal differences. Comparing sets 1 and 2, a small difference is
observed at finite lattice spacing, which, as anticipated, disappears in the continuum limit
where all extrapolations are in close agreement.

For the coarsest lattice spacing, the relative size of the cutoff effects is about 10%,
while the extrapolation from the finest lattice spacing is very small. We note that replacing
the scale setting quantity by, for instance,

√
t0 or w0, has a significant impact on the

magnitude of the cutoff effects. From this observation, we infer that the relative cutoff
effects between (ahvpµ )LD and the scale setting quantity dominate over the intrinsic cutoff
effects of (ahvpµ )LD itself. More precise data points at the two finest lattice spacings will
help to further constrain the continuum extrapolation.

Our final result in the reference volume, based on the LL discretization and set 2 is

(a3,3µ )LD(Lref) = 362.0(3.7)stat(2.7)syst[4.6] . (3.1)

We note that statistical uncertainties dominate over the systematic uncertainties from the
variation of the fit models. The final uncertainty of the long-distance, isovector contribu-
tion in finite volume, reported in square brackets and obtained by adding statistical and
systematic uncertainties in quadrature, is at the level of 1.3%. Combining the result of
eq. (3.1) with the finite-volume effects that have been computed in eq. (2.25) for the isovec-
tor channel, we obtain

(a3,3µ )LD = 378.7(3.7)stat(3.1)syst[4.8] . (3.2)

3.2 The isoscalar contribution

At the SU(3) symmetric point, where light and strange quark masses are equal, the quark-
disconnected contribution from light and strange quarks vanishes, and the isoscalar contri-
bution is trivially related to the isovector one. As one approaches the physical values of
quark masses, a strong signal-to-noise problem is observed, since the absolute error of the
quark-disconnected correlation function remains constant as a function of the source-sink
separation. As described in section 2.4, we employ the bounding method to obtain reliable
estimates for (a8,8µ )LD.

In contrast to the isovector case, where some of our most precise data points are at
small pion masses, we find that statistical uncertainties in the isoscalar channel grow towards
physical quark masses. However, the chiral dependence in the isoscalar channel is much
more benign, as the singular behaviour of light-connected and disconnected contributions
in the isoscalar channel cancels, as do the leading finite-size effects. We perform a small
finite-size correction of the strange-connected contribution, which is relevant only at or near
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Figure 5. Same as figure 5 for the isoscalar contribution.

the SU(3)-symmetric point, where the kaon mass is relatively small (mKL ≥ 5.1 across all
of the ensembles entering the final fits).

To describe the chiral dependence of the isoscalar contribution, we only include terms
that do not diverge in the chiral limit and find the variation of the results for different
ansätze to be mild. Fits that include mass-dependent cutoff effects are strongly favoured
by the AIC and lead to smaller results at the physical point, compared to fits with pure
a2 cutoff effects. Models with non-zero anomalous dimension have very similar fit quality
compared to fits with Γ̂ = 0 and lead to slightly larger results in the continuum limit.

The left-hand side of figure 5 shows our best fit for set 2 and the LL discretization, which
employs two terms to describe the chiral dependence of the data. The dependence on the
variable z (see eq. (2.20)), which is expected due to the strange-quark mass content of the
isoscalar contribution, is well described by the linear term in our fit ansatz and constrained
by the four ensembles on the chiral trajectory where the strange quark mass is kept near
its physical value.

The scan over the different ansätze to perform the continuum extrapolation is depicted
on the right hand side. Again, the variation between the different discretization prescrip-
tions is negligible in the continuum. Based on the model average, we find

1

3
(a8,8µ )LD = 44.5(1.2)stat(1.1)syst(0.3)FV[1.6] , (3.3)

for the isoscalar contribution, including the numerically irrelevant estimate of 0(0.3) for
the finite-volume correction, see section 2.6. Statistical and systematic uncertainties have
a similar size and the combined uncertainty is at the level of 3.6%, mainly driven by the
statistical noise encountered for the quark-disconnected contribution.

3.3 Further contributions

The charm-connected contribution at long distances is very small since the correlator falls off
quickly and, as described below, we find that its contribution to the total (ahvpµ )LD is smaller
than the overall error. For our evaluation of the long-distance contribution, we employ the
same data set as the one that has been used in [18, 22]. The charm quark is partially
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quenched in the sea of light and strange quarks, and we tune the hopping parameter to
reproduce the Ds meson mass at finite lattice spacing (see appendix A). Statistical noise is
irrelevant and we simply sum the integrand in the long-distance region. In line with [18, 22]
we use the LC correlation function to compute the final result since it exhibits more benign
cutoff effects. Our result

(ac,cµ )LD = 0.01409(35)stat(60)syst[69] , (3.4)

is negligibly small with respect to the full (ahvpµ )LD and even the charm-connected con-
tribution to ahvpµ , which arises predominantly from the short- and intermediate-distance
windows.

Effects from charm-disconnected contributions have been shown to be numerically irrel-
evant already for the short-distance contribution in [22] such that we do not consider them
here. We have estimated the effect from missing charm loops in our computation in ap-
pendix C of [18] and section H of [22] and expect them to be irrelevant in the long-distance
regime compared with the uncertainties reported here. Note also that the RBC/UKQCD
collaboration has investigated the effect of charm quenching on (ahvpµ )ID and did not find
a numerically relevant contribution [21]. Furthermore, no evidence for a charm quenching
effect on the quantity r1 defined from the static potential is seen at the 1% level when
comparing the results of [83] and [84] (the scale being defined by fπ in both cases; see
the discussion in [85]). Dedicated studies of charm quenching effects on generic low-energy
observables in [86, 87] find an effect at the level of 0.2%. We include this effect as additional
uncertainty in our final estimate for (ahvpµ )LD.

3.4 Flavour decomposition

To allow for cross-checks of the various contributions to (ahvpµ )LD among different lattice
calculations, we also perform an analysis of the strange-connected contribution that enters
our final result via the isoscalar contribution in eq. (3.3). After performing the model
average, we find

1

9
(as,sµ )LD = 17.73(17)stat(13)syst[21] . (3.5)

By combining this result with eq. (3.1), eq. (3.3) and eq. (2.25) we determine the discon-
nected contribution in the infinite-volume limit as

(ahvpµ )LDdisc = −15.3(1.2)stat(1.2)syst[1.6] . (3.6)

To complete the set of results according to their decomposition in terms of quark flavours,
we note that the light-quark connected contribution is obtained by multiplying the isovector
contribution of eq. (3.2) by 10/9.

3.5 The long-distance contribution

We combine our results for isovector, isoscalar and charm-connected contributions in eqs. (3.2,
3.3, 3.4) in the infinite-volume limit to obtain

(ahvpµ )LD = 423.2(4.2)stat(3.3)syst(0.8)Q[5.4] , (3.7)
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S

O fπ fK mπ mK mDs

(a3,3µ )LD −1.8982 −0.0277 −0.5737 −0.2816 –

(a8,8µ )LD −2.0891 +0.1691 +0.0948 −1.6577 –

(ac,cµ )LD +0.6830 +1.6446 −0.0695 +0.0675 −10.5355

(ahvpµ )LD −1.9190 −0.0061 −0.5005 −0.4322 −0.0004

Table 2. Dimensionless scheme dependencies of observable O with respect to the quantity S

according to eq. (3.9).

for the long-distance contribution to ahvpµ in isospin-symmetric QCD, where we include an
additional uncertainty due to the quenching of the charm quark, denoted by the subscriptQ.
Our hadronic scheme is defined by

fπ = 130.56MeV, fK = 157.2MeV,

mπ = 134.9768MeV, mK = 495.011MeV, mDs = 1968.47MeV . (3.8)

More details can be found in appendix A. The conversion to other schemes can be easily
performed using the information collected in table 2, where we list the dimensionless scale
dependencies

S

O

∂O

∂S
, (3.9)

for O = (a3,3µ )LD, (a8,8µ )LD, (ac,cµ )LD, (ahvpµ )LD and each quantity S that is used to define
the scheme. As anticipated, the dependence on fK is strongly suppressed in the dominant
contributions with respect to the dependence on fπ. For the numerically irrelevant charm-
connected contribution, the scale dependence is dominated by the tuning of the valence
charm quark mass. Small changes in the scheme can be performed a posteriori given the
information provided in the table. To convert our results to a scheme that employs a
different quantity to set the scale, such as the Ω baryon mass, the derivative of fπ and fK
with respect to this quantity must be determined.

Currently, there is only one other result [88] for the isovector contribution to (ahvpµ )LD,
while no further results currently exist for the isoscalar contribution. Before proceeding to
comparisons, we comment on the dependence of the results on the chosen hadronic scheme
that defines isoQCD. First, we remark that, on CLS ensembles, determinations of the flow-
scale t0 via the physical quantities (fK + 1

2fπ) (1.0% precision, [36]), mΞ (0.6%, [37]),
mΩ (0.22%, [89]) and mN (0.6%, [90]) yield consistent results within their respective un-
certainties. Among the determinations by different collaborations of the flow scales t0 and
w0 in terms of various input quantities (mΩ, fπ, . . . ), however, somewhat more variation
is observed. In particular, the determinations of t0 from [84, 91] are significantly lower
than that of [92], even though all three use Nf = 2 + 1 + 1 simulations and rely on fπ
as input quantity. There is mild evidence that flow scales determined with Wilson-type
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Figure 6. Overview of results for the light-connected contribution to (ahvpµ )LD. Open symbols
denote the results in the BMW20 scheme whereas results that are shown by filled symbols have
been computed in the Mainz and RBC/UKQCD worlds, respectively.

fermions [36, 37, 92] are systematically larger than those obtained with staggered quarks,
including the result in [14] for w0 that defines the BMW20 scheme. At present, this makes
it difficult to quantitatively address the question of the hadronic scheme dependence in the
physical values of t0 and w0. However, the dependence of (ahvpµ )LD on the hadronic scheme
could be relevant due to its high precision, its enhanced sensitivity to the scale setting and
relatively large contributions from isospin-breaking corrections. The size of the latter is
not yet precisely known, and care is needed when combining results from different isoQCD
schemes.

In figure 6 we compare our results for (a3,3µ )LD in our preferred scheme eq. (3.2) and in
the BMW20 scheme eq. (A.7) with the recent determination by RBC/UKQCD [88] in their
RBC/UKQCD18 scheme and in the BMW20 scheme [14]. We find excellent agreement
between the two calculation when the same scheme is employed.2 This is a reassuring
indication of universality between two different lattice actions in the pure long-distance
regime of ahvpµ and strengthens our confidence in the reliability of lattice QCD results for this
quantity. However, the results differ noticeably when a different scheme is employed. While
this is not unexpected in isospin-symmetric QCD, it is clear that any scheme dependence
would have to be compensated upon properly including isospin-breaking effects.

We stress that we observe sizeable higher-order cutoff effect when w0 is used to set
the scale, leading to larger overall uncertainties in the continuum limit. This is why we
have chosen fπ and fK in 2 + 1-flavour QCD as scale-setting quantities, as outlined in
appendix A. By contrast, the BMW20 scheme is based on the Ω-baryon mass computed in
2 + 1 + 1-flavour QCD+QED, which is used to determine the value of w0 at the physical
point. When the latter is used as input in our calculation in order to connect to the BMW20
scheme, we observe a shift in the central value of our result. We cannot presently resolve
whether this shift is entirely explained by the different choice of scale.

2In this comparison, the contribution of the scale uncertainty to the error is not included.
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O (ahvpµ )SD (ahvpµ )ID (ahvpµ )LD ahvpµ

ahvpµ 68.76(0.21)(0.38) 236.60(0.79)(1.13) 423.2(4.2)(3.3) 728.6(4.3)(3.6)[5.5]

a3,3µ 43.06(0.05)(0.21) 186.30(0.75)(1.08) 378.7(3.7)(3.1) 608.1(3.7)(3.3)[5.0]
1
3a

8,8
µ 13.86(0.16)(0.78) 47.41(0.23)(0.29) 44.5(1.2)(1.1) 105.8(1.3)(1.4)[1.9]

4
9a

c,c
µ 11.53(0.17)(0.23) 2.89(0.13)(0.03) 0.0141(4)(6) 14.4(0.2)(0.2)[0.3]

1
9a

s,s
µ 9.07(0.01)(0.06) 27.68(0.18)(0.22) 17.73(0.17)(0.13) 54.5(0.3)(0.3)[0.4]

adiscµ 1.3(2.6)(4.1)·10−3 −0.81(0.04)(0.08) −15.3(1.2)(1.2) −16.1(1.2)(1.2)[1.6]

Table 3. Contributions to ahvpµ in units of 10−10 in the infinite volume limit and isospin symmetric
QCD as computed in [18, 22] and in this work. Note that the light-connected contribution that is
conventionally quoted can be obtained from 10

9 a
3,3
µ .

3.6 Full hadronic vacuum polarization contribution

Having computed (ahvpµ )LD in isoQCD, we can combine it with our results from [18] and
[22] which, without the inclusion of isospin-breaking effects, read

(ahvpµ )SD = 68.76(21)stat(38)syst[44] , (3.10)

(ahvpµ )ID = 236.60(79)stat(1.13)syst[1.38] . (3.11)

We take the small correlation between the three observables into account when summing
them. It is worth noting that we have used the intermediate scale setting quantity

√
t0

from [36] in our computation of (ahvpµ )SD. Since it has been determined from fKπ using the
exact same values for fπ and fK as the ones that were used for (ahvpµ )ID and (ahvpµ )LD, see
appendix A, we can consistently combine the three windows. As our final result for ahvpµ in
isospin-symmetric QCD as defined in appendix A, we quote

(ahvpµ )isoQCD = (ahvpµ )SD + (ahvpµ )ID + (ahvpµ )LD

= 728.6(4.3)stat(3.6)syst(0.8)Q[5.6] . (3.12)

Similarly, the light-quark connected contribution, which dominates in the final result, is
obtained by summing the results for the isovector contribution listed in the second row of
Table 3 and multiplying by 10/9:

(ahvpµ )ud, conn = 675.7(4.1)stat(3.7)syst[5.5] . (3.13)

The electromagnetic and strong isospin-breaking corrections to these results are discussed
in the next subsection.

We quote the results in eqs. (3.12) and (3.12) only in the fπ scheme because we did not
determine the short and intermediate-distance window observables in the scheme of [14]. In
their recent work [21] the RBC/UKQCD collaboration found only slight variations of these
quantities between the BMW20 and their own scheme which, however, also employs mΩ to
set the scale.
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Figure 7. Compilation of lattice results for the light-quark connected contribution ahvp,udµ in
isospin-symmetric QCD (left panel) and the total hadronic vacuum polarization contribution in-
cluding isospin-breaking effects (right panel). Our results are represented by green circles and the
green vertical band. Different discretizations of the quark action are denoted by circles (Wilson
fermions) [34, 93], triangles (staggered fermions) [14, 15, 17, 24, 94], squares (domain wall fermions)
[26, 88] and diamonds (twisted-mass Wilson fermions) [95]. Data-driven evaluations [1, 23] are rep-
resented as open red circles. In the right panel we show the current experimental average [12, 13, 96]
as the grey vertical band, while the data-driven estimate from the 2020 White Paper is shown as
the red band. The recent estimate by BMW-DMZ [24] is based on a combination of lattice and
data-driven evaluations.

For all quark-connected flavour contributions we find excellent agreement with our
previous work [34], albeit with significantly reduced uncertainties. In the case of the quark-
disconnected contribution, we observe an upward shift that can be understood from the fact
that only a small fraction of the current data set was available in [34] and an extrapolation
to physical quark masses had to be performed. This increase in the quark-disconnected
contribution is the main reason for the shift in the central value of ahvpµ between [34] and
this work that, however, is entirely within the uncertainty of [34].

In the left panel of figure 7 we compare our results for the light-quark connected con-
tribution to other recent calculations. Our result for ahvp,udµ in our preferred scheme is
compatible with the recent high-precision result of RBC/UKQCD [88]. There is a clear
difference with the 2021 result of the BMW collaboration [14]. Unfortunately, BMW did
not provide an updated value for this contribution in their most recent publication [24]. As-
suming that the shift between their two results for ahvpµ is mainly due to the light-connected
contribution, the difference would be reduced accordingly. We note that our result is in clear
tension with the evaluation from the data-driven dispersive approach in [23], regardless of
whether the exclusive channel analysis of ref. [7] or [6] are used for the latter.
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Figure 8. Overview of diagrams relevant for QED corrections.

3.7 Electromagnetic and strong isospin-breaking effects

In the following, we present the status of our calculations of the electromagnetic and strong
isospin-breaking effects. While not complete, these calculations of some of the dominant
diagrams already allow us to estimate the full correction without the associated uncertainty
dominating the final error budget.

An overview of the diagrams involving internal photons is shown in figure 8. They are
classified by the number and type of quark loops involved, with five classes identified: fully
connected (4), and the classes (2+2), (3+1), (2+1+1), and (1+1+1+1). We have computed
the connected part of the quark-mass insertion, as well as the connected QED diagrams
(4)a and (4)b on the lattice, with the photon propagator evaluated in lattice regularization
and infrared-regulated by removing the spatial zero mode on each timeslice [18, 22, 97–100].
These diagrams exclusively involve single-quark loops and form a UV-finite set.

In addition, we have computed the (2+2)a diagram [101], consisting of two (valence)
quark loops connected by an internal photon, down to physical quark masses [102]. This
diagram is UV-finite and has been computed with a photon propagator evaluated in the
continuum and infinite volume using the coordinate-space approach from [103]. At small
pion masses, it is found to be dominated by the charged pion loop. The observation that the
ππγ vertex only involves the isovector part of the electromagnetic current leads to two non-
trivial homogeneous relations between the charged pion loop contributions to the various
classes of diagrams. Neglecting the diagrams of the classes (2+1+1) and (1+1+1+1), one
then arrives at the following partition of the charged pion loop among the diagrams [104],

aπ loop,(4)
µ =

34

81
aπ loop
µ , (3.14)

aπ loop,(2+2)
µ =

75

81
aπ loop
µ , (3.15)

aπ loop,(3+1)
µ = −28

81
aπ loop;
µ . (3.16)

The quantity aπ loop
µ refers to the pion loop contribution, which, at the simplest level (i.e.

without a pion form factor), could be estimated using scalar QED. The three coefficients
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Figure 9. Chiral extrapolation of the isospin-breaking corrections to the physical pion mass based
on eqs. (3.17) and (3.18). Open circles denote the fully connected (4) and filled diamonds the (2+2)a
diagrams. The dotted vertical line denotes the physical value of y.

multiplying aπ loop
µ sum to unity. This partition is used below.

We derive an estimate for the full QED correction by extrapolating simultaneously
the single-quark-loop diagrams and the diagram (2+2)a; the remaining QED diagrams,
consisting of at most two quark loops, are estimated based on the charged pion loop. The
QED diagrams containing three or more quark loops are neglected. Indeed, they are 1/N2

c

suppressed compared to the fully connected diagrams. Both the BMW 2020 calculation [14]
and the calculation of the light-by-light scattering contribution [104] found them to be small.

We use the superscript 1γ∗ to denote contributions that contain one internal photon,
including the required counterterms. These contributions are one-photon irreducible, i.e.
they are part of the leading-order HVP contribution to aµ in the standard nomenclature [1].
The charged pion loop, computed with a pion form factor of the vector-dominance form
M2

V /(Q
2 +M2

V ), has been found to behave like 1/m3
π in the mass range of 135 to 300MeV

in a continuum calculation in scalar QED [102]. Based on this observation, our ansatz for
a combined fit reads

ahvp1γ
∗,(4)

µ =
34

81

A

m3
π

+ bm2
π + c+ 0.22 log

m2
V

m2
π

, (3.17)

ahvp1γ
∗,(2+2)a

µ =
50

81

A

m3
π

+ d , (3.18)

where A, b, c and d are fit parameters. The logarithmic term corresponds to the neutral
pion exchange contribution [103], including its 34/9 enhancement factor in the connected
part [105].3 The importance of this term is marginal.

To account for cutoff, finite-volume, and higher-order quark mass effects, we explore
multiple fit models and combine them in a model average. Our fits extend the ansatz in

3In principle, the same contribution with a coefficient −25/34 · 0.22 = −0.16 should be added to the
(2+2)a diagram, however here we know that this contribution is largely compensated by the η and η′

contribution [102, 106].
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eqs. (3.17 – 3.18) by incorporating terms for cutoff effects and additional components to
parameterize the pion mass dependence in the ahvp1γ

∗,(2+2)a
µ contribution. We also apply

cuts on lattice spacing, pion mass, and Lmπ, and average over both local-local and local-
conserved discretizations of the current for the fully connected contribution.

Figure 9 shows the chiral dependence of each of the two contributions in the continuum
according to the best fit in the model average, represented by the black line and the gray
uncertainty band. The open circles indicate data from fully connected diagrams, while the
filled diamonds denote the (2+2)a contribution. The chiral dependence of the connected
contribution near the physical pion mass, marked by the vertical line, is highly constrained
by the curvature of the (2+2)a contribution. Our final estimate is given by4

ahvp1γ
∗

µ = −3.6(2.6)(1.1)(3.2)[4.2]. (3.19)

The first two contributions to the total uncertainty are the statistical and systematic un-
certainties as obtained from the model average. The third quoted error corresponds to the
central value of the connected part ahvp1γ

∗,(4)
µ . We assign this uncertainty to our result to

account for missing contributions from electrically charged sea quarks, as well as poten-
tial systematic effects from our parameterization based on the pion loop. Indeed, due to
the observed cancellations between diagrams, in particular between the connected and the
(2+2)a diagram, the size of the connected diagrams provides a conservative estimate of the
total uncertainty.

Combining our evaluation of ahvpµ in isoQCD from eq. (3.12) with eq. (3.19), we obtain

ahvpµ = 724.9(5.0)stat(4.9)syst[7.0] , (3.20)

for the full leading-order hadronic vacuum polarization contribution to aµ. Our result is in
tension with the data-driven evaluation of the 2020 White Paper at the level of 3.9σ but
yields a SM prediction for the entire aµ that agrees with the current experimental average.

4 Conclusion

We have performed a fully blinded, high-precision determination of the long-distance con-
tribution, (ahvpµ )LD, to the leading-order hadronic vacuum polarization contribution of the
muon g − 2. After combining the result with our previous calculations of the short- and
intermediate-distance window observables [18, 22], we have obtained the entire HVP con-
tribution in isospin-symmetric QCD with a total precision of 0.77% and a good balance
between statistical and systematic uncertainties.

Compared to ref. [34], we have improved the precision of our estimate for ahvpµ in
isospin-symmetric QCD by a factor 2.6. The key ingredients that allowed us to reach that
level of precision were the addition of several high-statistics gauge ensembles at fine lattice
spacing and close-to-physical quark mass, as well as the application of state-of-the-art noise
reduction techniques to mitigate the exponential loss of signal in the long-distance regime.

4Ignoring the log term from the outset would have yielded an irrelevant shift of −0.2.
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Figure 10. Squared uncertainty of our final estimate for ahvpµ in eq. (3.20). Each of the three con-
tributions can be divided into statistical (dark colours) and systematic uncertainties (light colours)
that are displayed in the inner circle.

Furthermore, to quote a result for ahvpµ that can be straightforwardly compared with
the data-driven result, we have determined electromagnetic and strong isospin-breaking
corrections. The resulting estimate, shown in eq. (3.20), has a relative precision of just
under 1% and corroborates the strong tension observed between lattice calculations and
data-driven evaluations derived from e+e− hadronic cross sections published prior to the
result by CMD-3.

For our current result, the pie chart in figure 10 shows the squared uncertainties asso-
ciated with the short, intermediate and long-distance window observables along with the
isospin-breaking corrections. It is obvious that our efforts must focus on improving the pre-
cision for both the long-distance contribution and the isospin-breaking corrections. While
the latter are small in absolute terms, they nevertheless make a sizeable contribution to the
error.

While we still have a long way to go to reach our long-term goal of reducing the overall
error to the level of about 0.2%, there is room for improvement: We are currently extending
the set of gauge ensembles at fine lattice spacings, with a special focus on the ensemble
F300 at physical value of the pion mass. This will allow us to further constrain mass-
dependent and mass-independent cutoff effects in future analyses, which is crucial given
that higher-order cutoff effects or modifications of the leading-order effects by non-zero
anomalous dimensions cannot be excluded with our current data set. We also aim for
improving the precision of our estimates for the isospin-breaking corrections by extending
our lattice calculations beyond the electroquenched approximation. This includes the effect
of isospin-breaking on scale setting, which is the subject of current investigations [107].
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A The hadronic scheme

Care has to be taken when working in isospin-symmetric QCD with respect to the definition
of the physical point of the theory, since this definition is ambiguous. As soon as isospin-
breaking effects are incorporated, this ambiguity is lifted. The exact definition of the
scheme thus has an impact on the size of the isospin-breaking corrections. For a meaningful
comparison of multiple independent calculations in isoQCD the exact definition of the
physical point has to match, if the precision is of the order of these corrections.

In line with our calculations of the short and intermediate distance contributions to
the HVP, we define our scheme for isoQCD via the conditions

mπ = (mπ0)phys, 2m2
K −m2

π = (m2
K+ +m2

K0 −m2
π+)phys, (A.1)

corresponding to

mπ = 134.9768(5) MeV , mK = 495.011(10) MeV , (A.2)

together with the pion decay constant in the isospin-symmetric theory [85, 112]

fπ = 130.56(14) MeV . (A.3)

As outlined in section 2.5, we employ the combination fKπ to correct for small deviations
from the chiral trajectory on the CLS ensembles in our data set. Here, we employ the
value fK = 157.2(5) MeV [85, 112] to define the physical point. It implies a ratio fK/fπ
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that is consistent with the latest lattice determinations [92, 113, 114]. As can be inferred
from table 2, the dependence on fK is largely suppressed with respect to the dependence
on fπ. The charm quark, included in the partially quenched approximation, is fixed via the
condition

mDs = 1968.47MeV . (A.4)

We parameterize the sea quark mass dependence of observables via the dimensionless com-
binations of eq. (2.20).

To be able to compare our result in isoQCD with that of [14], we also evaluate all
observables in this work in the BMW20 scheme, defined by

mπ = 134.9768(5) MeV , Mss = 689.89(49)MeV , w0 = 0.17236(70) fm , (A.5)

whereMss is the meson with two mass-degenerate quarks with the mass of the strange quark
and w0 is computed from the gradient flowed gauge field [115]. As quark mass proxies in
this scheme, we use the variables

ρ2 = w2
0m

2
π ∝ ml, , ρ4 = w2

0(m
2
π +

1

2
M2

ss) ∝ 2ml +ms , (A.6)

and parameterize the lattice spacing with w0/a as measured on our ensembles.

A.1 Results in the alternative scheme

To allow for comparisons in isoQCD without scheme ambiguity, we follow the approach
of [21] and perform a full second analysis using the scheme of eq. (A.5). Compared to our
preferred scheme, we note that the size of the cutoff effects in the contributions to (ahvpµ )LD

is significantly larger and that these have a different sign compared to the case where we
use fπ to make the muon mass in the QED kernel dimensionless. When performing the
continuum extrapolations, fits that parameterize higher order lattice artefacts as well as
mass-dependent cutoff effects are preferred over the other variations.

Due to the larger cutoff effects and the need to include terms that parameterize higher
orders in the Symanzik expansion, we observe larger systematic and statistical uncertainties,
when using w0 to set the scale, compared to the fπ scheme. Our results in the BMW20
scheme are

(a3,3µ )LDBMW20(Lref) = 353.6(4.3)stat(5.2)syst(3.0)scale[7.3] , (A.7)
1

3
(a8,8µ )LDBMW20(Lref) = 42.5(1.8)stat(1.5)syst(0.4)scale[2.4] , (A.8)

1

9
(as,sµ )LDBMW20(Lref) = 16.81(0.14)stat(0.23)syst(0.13)scale[0.29] , (A.9)

(ahvpµ )LDdisc,BMW20(Lref) = −13.6(1.7)stat(1.6)syst(0.1)scale[2.4] . (A.10)

Note that the contribution of the scale to the final error should not enter when comparing
two results in the same scheme. The finite-volume correction in eq. (2.25) has been evaluated
in the continuum limit and may be applied to correct the isovector and disconnected (with
the appropriate scaling factor of −1/9) contributions.
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Figure 11. Continuum extrapolations using w0/a to set the scale. Right: Approaches to the
continuum limit for four sets of data based on the improvement schemes of set 1 and 2 and the LL

and LC discretizations of the current based on a scan over fit models. Each line shows the result
from one single fit and the opacity of the lines corresponds to the weight of the fit in the model
average. Dashed vertical lines indicate the lattice spacings used in this work.

B The blinding strategy

To describe our blinding strategy, it is useful to recall the master formula for the time-
momentum representation of ahvpµ (see eq. (2.1))

ahvpµ =
(α
π

)2 ∫ ∞

0
dt G(t) K̃(t;mµ), (B.1)

where the kernel function K̃(t;mµ) is obtained by convoluting the momentum-space kernel
K(Q2;mµ) defined in [116] with a time-dependent function [25]

K̃(t;mµ) = 4π2
∫ ∞

0
dQ2K(Q2;mµ)

[
t2 − 4

Q2
sin2(Qt/2)

]
. (B.2)

A simplified form of K(Q2;mµ) is given by

K(Q2;mµ) =
1

m2
µ

(√
4m2

µ

Q2 + 1− 1

)3

4

(√
4m2

µ

Q2 + 1 + 1

)√
4m2

µ

Q2 + 1

. (B.3)

Our approach to blinding is based on suitable modifications of the TMR kernel, which,
when convoluted with (unmodified) numerical data for the current correlator, converge to
the same result at the physical point, up to a multiplicative factor.

B.1 Modified kernel

One set of modified TMR kernels at a fixed value of t is defined via the function

K̃bld(t; a;m;B; c) = 4π2B

∫ (π/a)2

0
dQ2K(Q2

lat(Q, a);m)
[
t2 − 4

Q2
lat(Q, a)

sin2(Qt/2)
]
,

(B.4)

– 32 –



Set B s ℓ[fm] σ [fm−2] c1 c2

I 1.03628 + 0.80 −2.54 0.35 0.48
II 0.94348 − 0.73 +4.11 0.14 0.38
III 1.00971 − 0.84 +1.41 0.62 0.23
IV 0.96732 + 0.94 −0.92 0.45 0.55
V 1.02756 + 0.78 +1.82 0.26 0.69

Table 4. Parameters of the modified kernels I through V used for analyzing the lattice QCD data.

where

Q2
lat(Q, a) = c2

(
c1

1

2a
sin(2Qa) + (1− c1)

1

a
sin(Qa)

)2
+ (1− c2)

(2
a
sin(Qa/2)

)2
. (B.5)

We restrict the value of c1 and c2 to

0 ≤ c1 ≤ 1, 0 < c2 < 0.7. (B.6)

Indeed, c2 should not be chosen too large, to ensure that Qlat remains large as Q→ π/a.
Concretely, we take the following steps: One “kernel set” is defined by a choice for the

values of c1, c2, σ and ℓ. Then the quantities to be analyzed are

BaHVP,bld
µ (+1, ℓ, σ, c) =

(α
π

)2
lim
a→0

∫ ∞

0
dt G(t, a) K̃bld

(
t; a tanh

( t
ℓ

)
;mµ(1 + σa2);B; c

)
.

(B.7)
Reasonable values of the parameters are

0.75 ≲ ℓ ≲ 1.0 fm, −4 ≲ σ[fm−2] ≲ 4. (B.8)

We also consider

(2−B)aHVP,bld
µ (−1, ℓ, σ, c) (B.9)

=
(α
π

)2
lim
a→0

∫ ∞

0
dt G(t, a)

(
2K̃(t;mµ)− K̃bld

(
t; a tanh

( t
ℓ

)
;mµ(1 + σa2);B; c

))
,

which reverses the sign of the deviation of K̃bld from K̃ at a given t. The test is based on
the expectation that

ahvp,bldµ (s, ℓ, σ, c) = ahvpµ , ∀(s = ±1, ℓ, σ, c) (B.10)

at the physical point. The parameters of the five modified kernels used in the analysis of
the lattice QCD data computed on the CLS ensembles are listed in table 4.

For the purpose of testing our blinding procedure, we generated five additional kernels
(VI–X) that were used together with synthetic data for the vector correlator G(t). For the
latter we used the phenomenological model of [25] supplemented by an artificial pion mass
and lattice spacing dependence. Indeed we were able to verify that the results obtained
for kernels VI–X agreed with each other and the input in the continuum limit and at the
physical pion mass.

– 33 –



C The vector correlator from low-mode averaging

The computation of an all-to-all estimator for the vector-vector correlation function, taking
into account all possible pairs of source and sink, is prohibitively expensive in a large-scale
lattice QCD computation. Low-mode averaging as introduced in ref. [43, 44] is based on
the computation of the low eigenmodes of the Dirac operator to allow for an all-to-all
sampling of the low mode contribution to the correlation function. If this contribution has
a dominant weight in the long-distance tail, where the signal to noise problem hinders the
reliable extraction of the correlator, it allows to significantly increase the available statistics
in the most important region.

C.1 Low modes of the Dirac operator

We work with O(a) improved Wilson fermions, see ref. [27] for the exact definition of the
Dirac operator D, and focus on the hermitian operator

Q = γ5D , (C.1)

where we suppress the flavour index of the massive Dirac operator and assume to work with
light quarks in the following. Its inverse Q−1 can be expressed via the eigenmodes of Q,
denoted by vi, via

Q−1 =

N∑

i=0

1

λ i
vi · v†i , (C.2)

where N is the dimension of the operator and λi are the real eigenvalues. The eigenmodes
with the NL smallest (in magnitude) eigenvalues are referred to as the “low modes”. We
define the projectors

PL ≡
NL∑

i=0

vi · v†i , PH ≡ 1−PL . (C.3)

on the space of the low modes and the corresponding orthogonal space. These allow to
express D−1 via

D−1 = Q−1(PL +PH)γ5 =

N∑

i=0

1

λi
vi · v†i γ5 +Q−1PHγ5 , (C.4)

and to split it into low and high mode contributions of Q.

C.2 Mesonic correlation functions

The computational challenge that is addressed in this appendix is the precise computation of
a quark-connected, zero-momentum two-point function. After integrating out the fermions,
we write

CΓAΓB
(x0, y0) = −

∑

x,y

⟨tr [ΓAS(x, y)ΓBS(y, x)]⟩gauge , (C.5)
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with the source and sink positions y and x, respectively, the trace tr that acts in colour and
spin space and the gamma matrices ΓA and ΓB. In this work, these matrices are equal to
γi or γ0γi, were the latter combination is needed for the O(a) improvement of the current.
Furthermore, we include the conserved (point-split) vector current in this work, but refrain
from extending the notation for the sake of clarity in this appendix. The quark propagators
S are defined via

∑

y

D(x, y)S(y, z) = 1δx,z . (C.6)

Based on eq. (C.4), each of the two propagators in eq. (C.5) can be exactly split into a low
and a high mode contribution,

S(x, y) =
N∑

i=0

1

λi
vi(x) · v†i (y)γ5 + SH(x, y) , (C.7)

where SH(x, y) is the propagator in the high mode space. Correspondingly, the correlation
function can be decomposed into four terms which we denote as,

CΓAΓB
(x0, y0) = C

(ee)
ΓAΓB

(x0, y0) + C
(re)
ΓAΓB

(x0, y0) + C
(er)
ΓAΓB

(x0, y0) + C
(rr)
ΓAΓB

(x0, y0) . (C.8)

The “eigen-eigen” contribution is purely built from the low modes of the Dirac op-
erator such that both propagators can be expressed in terms of the low modes and the
corresponding eigenvalues,

C
(ee)
ΓAΓB

(x0, y0) = −
NL∑

i,j

∑

x,y

1

λiλj

〈
[v†jγ5ΓAvi](x)[v

†
i γ5ΓBvj ](y)

〉
. (C.9)

Since the eigenmodes are lattice wide objects, this contribution can be computed in an
all-to-all fashion without any further inversion of the Dirac operator. With the cost being
purely due to contractions, it is possible to average over all source and sink positions.

The “rest-rest” contribution is defined only in the orthogonal subspace of the low mode
space. It can be written as

C
(rr)
ΓAΓB

(x0, y0) = −
∑

x,y

⟨tr [ΓASH(x, y)ΓBSH(y, x)]⟩ , (C.10)

where the only difference with respect to eq. (C.5) is the occurrence of the high mode
propagator SH. From a computational perspective, compared to a standard evaluation of
the correlation function in eq. (C.5), the operator γ5PHγ5 is applied to the source before
each inversion of the Dirac operator. The correlation function can be sampled with standard
methods.

The “rest-eigen” and “eigen-rest” contributions each contain a low and a high mode
propagator and thus connect the two spaces. We can write

C
(re)
ΓAΓB

(x0, y0) = −
NL∑

i

∑

x,y

1

λi

〈
v†i (x) γ5ΓA SH(x, y)ΓB vi(y)

〉
, (C.11)

C
(er)
ΓAΓB

(x0, y0) = −
NL∑

i

∑

x,y

1

λi

〈
v†i (y) γ5ΓB SH(y, x)ΓA vi(x)

〉
, (C.12)
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and notice that for ΓA = ΓB, the two functions are trivially related. The explicit inversion
of the Dirac operator is performed in the high-mode space. We note that in some works,
this contribution is not explicitly computed but instead estimated as bias correction, see
e.g. [77]. As we will point out below, we find that the dedicated computation is vital for
precision in our case.

C.3 Even-odd preconditioning

The dimension of the eigenproblem and with it the memory requirement of the computation
can be reduced by a factor of two when considering the even-odd preconditioned Dirac
operator D̂, as pointed out for Wilson quarks in ref. [117]. We define the Schur complement
of the asymmetric even-odd preconditioning of the hermitian Dirac operator [118],

Q̂ = Qee −QeoQ
−1
oo Qoe with Q̂ = γ5D̂ , (C.13)

and work with its eigenmodes, with support only on the even points of the lattice, to define
the projectors

P̂L ≡
NL∑

i=0

v̂i · v̂†i , P̂H ≡ 1− P̂L , (C.14)

such that the even-odd preconditioned Dirac operator can be expressed as

D̂−1 = Q̂−1(P̂L + P̂H)γ5 =
N∑

i=0

1

λ̂i
v̂i · v̂†i γ5 + Q̂−1P̂Hγ5 . (C.15)

For computing the correlation function of appendix C.2, the eigenmodes need to be pro-
jected back onto the space of the full Dirac operator. When even-odd preconditioning is
used for the inversion of the Dirac operator, the projection operator can be inserted after
projecting to the even lattice sites and before performing the inversion.

C.4 Computational details

Four tasks contribute dominantly to the effort of computing correlation functions with
our implementation of LMA. These are the cost to compute a sufficiently large number of
eigenmodes, the contraction for the “eigen-eigen” contribution, the inversion of the Dirac
operator and the preceding projection to the high-mode space. In this subsection, we point
out the specific setup that we have used in our computation after an extensive tuning
towards optimal performance for the problem at hand.

Since the precise computation of the long-distance tail of the vector-vector correlation
function is hindered by the signal-to-noise problem, this is the region where we want to
make use of the all-to-all sampling of the “eigen-eigen” contribution. We have optimized
the setup such that in this region, starting at a source-sink separation of about 1.5 fm,
the central value and the variance of the full correlation function are dominated by the
contribution of C(ee). This choice ensures that all information of the gauge fields is used
to sample the long-distance tail and all noise stems from the fluctuations of the gauge field
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Id T [fm] L [fm] mπ [MeV] N

C101 8.1 4.1 222(2) 384
D150 10.9 5.4 131(3) 608
D450 9.6 4.8 219(2) 608
D451 9.6 4.8 219(1) 608
D452 9.6 4.8 156(2) 640
D251 8.1 4.1 286(1) 480
D200 8.1 4.1 202(1) 480
D201 8.1 4.1 202(2) 480
E250 12.2 6.1 131(1) 800
J303 9.4 3.1 260(1) 288
J304 9.4 3.1 263(1) 288
E300 9.4 4.7 177(1) 704
F300 12.6 6.3 136(1) 800

Table 5. Overview of ensembles where low-mode averaging has been used to compute the isovector
correlation function. The volume is given by T × L3, and mπ is the pion mass. N denotes the
number of eigenmodes of Q̂ that have been used in the computation.

configurations. It has a direct impact on the cost of the calculation because a sufficiently
large number of eigenmodes has to be computed and the remaining correlation function,
especially the mixed contributions, have to be known precisely enough not to spoil the
signal. We note that a similar strategy has been chosen in ref. [14].

Solving the eigensystem. A large number of eigenmodes has to be computed to achieve
low mode dominance in the long distance tail. This number varies significantly across the
ensembles that have been included in this study. On the one hand, the number of modes
with an eigenvalue below some fixed threshold scales with the lattice volume [119]. On the
other hand, the dominance of the low modes is enhanced when the quark mass is lowered
towards the chiral limit. In this work, these are competing effects since the volumes of the
ensembles are increased as the pion mass is lowered.

One of the questions that determine whether LMA can be implemented cost-effectively,
is if a sufficiently large number of eigenmodes can be computed with reasonable cost. We
have observed that a first estimate for the number of eigenmodes can be found by requiring
that the modulus of the largest eigenvalue of the low modes is of the order of the strange
quark mass (or half of it when even-odd preconditioning is used). For the largest lattices in
this work, at physical value of the pion mass, this amounts to computing 800 eigenmodes.
Table 5 collects the number of eigenmodes that has been used for each of the ensembles
where LMA has been applied.

For the solution of the hermitian eigenproblem, we utilize the Krylov-Schur algorithm
in the implementation of the SLEPc package [120, 121] which relies on PETSc [122, 123].
When used on its own, we observe that a large number of iterations is needed to solve
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the eigensystem, resulting in a prohibitively large cost. The key ingredient for the effi-
cient computation of the eigenmodes in this work is the use of a shift-and-invert spectral
transformation: Instead of solving the equation

Q̂v̂ = λ̂ v̂ , (C.16)

we solve for

Q̂−1v̂ = θ v̂ where θ = 1/λ̂ . (C.17)

This transformation has the effect of dramatically enhancing the convergence properties of
the solver such that only a small number of iterations is necessary, between four and eight
in our setup, with more than half of the modes converging in the first iteration. In turn,
the Dirac operator has to be inverted for each of the vectors in the search space. We thus
shift the work from the eigensolver of SLEPc to the deflated solver of the openQCD package
[124, 125] and are able to profit from the physics informed optimizations of the solver. With
a sufficiently well tuned setup, about 2 inversions have to be performed to compute one
eigenmode. We have found this cost to scale linearly in the region of up to 1000 eigenmodes
that we have explored in the context of this work.

Computing the eigen-eigen contribution. We have to compute the local-local and
local-conserved vector-vector and vector-tensor currents for the full set of correlation func-
tions that is used in this work. Efficient contraction routines are needed in order to keep
the computational effort at a reasonable level and symmetries in the correlation function
of eq. (C.9) can be utilize to reduce the number of contractions. On ensembles with an-
tiperiodic boundary conditions, a full four-volume average can be performed. In contrast,
on ensembles with open boundary conditions in the time direction, all pairs of source and
sink where one of the two is in the boundary region has to be discarded from the average.
The determination of the boundary region is performed at the stage of the analysis, based
on the data that has been obtained for all source positions.

Computing the rest-rest contribution. The rest-rest contribution of eq. (C.10) can be
computed with standard methods and we choose spin diluted stochastic time slice sources
[126] for the computation. Since this contribution dominates at short distances only, it can
be easily computed to the desired precision. To reduce the computational effort, we use
the truncated solver method [127]. We perform low-precision solves on O(100) stochastic
sources per configuration and correct for the small bias with a handful of high-precision
solves. We note that the setup has been chosen such that the bias is completely negligible
with respect to the statistical uncertainty for all relevant source-sink separations. A pro-
jection onto the high-mode space has to be performed before each inversion. On ensemble
E250, the cost for one projection is about half of the cost of one truncated solve. Therefore,
there is a limit to the computer time that can be gained with the truncated solves. It could
be expected that the solves on the deflated sources are significantly faster than standard
solves, given the large number of eigenmodes that is projected out. However, we find the
improvement to be marginal when the openQCD solver, which is based on inexact deflation
[124], is used to solve the Dirac equation.
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Figure 12. LMA computation on ensemble E250 at physical quark masses. Left: Integrand of
a
(3,3)
µ (black) and the three contributions of the LMA computation. Right: Variances of the three

contributions normalized by the variance of the full correlation function.

Computing the rest-eigen contribution. The rest-eigen and eigen-rest contributions
of eqs. (C.11– C.12) provide a computational challenge, because a significant effort has to be
made to compute it precisely enough such that its statistical uncertainty is small compared
to that of the “eigen-eigen” contribution. As for the “rest-eigen” contribution, stochastic
sources may be used for the computation. When inserted at the appropriate place, all Dirac
structures can be computed from a single source, at the cost of contractions with all low
modes. A sufficiently large number of sources has to be employed to reduce the stochastic
noise. Due to the projection and contraction cost, the truncated solver method cannot be
applied as efficiently in this case.

We have found the ansatz that has already been used in ref. [43] to be most effective
for our purpose. It amounts to projecting an eigenmode to a specific source time slice
before multiplying it with the appropriate Dirac matrix, projecting out the eigenmodes
and inverting. The solution is then contracted with the eigenmode. This operation has
to be performed for each Dirac matrix and eigenmode, leading to a very large number of
inversions that makes up the largest fraction of the computational cost. To reduce the
computational burden, we follow the approach of ref. [14] and perform truncated solves
[127, 128]. The small bias, again negligible with respect to the statistical uncertainty, is
corrected by computing high-precision solves on a small number of eigenmodes that are
selected via Monte Carlo sampling.

This approach to compute the “rest-eigen” and “eigen-rest” contributions (which are re-
lated to each other) takes into account some of the all-to-all information of the eigenmodes.
If performed for each source time slice, the result would indeed be an exact all-to-all esti-
mator.

Synthesis Despite the significant computational effort, we have found low-mode averag-
ing to be more efficient in computing the long-distance tail of the vector-vector correlation
function than stochastic sampling, if the quark mass is small enough.5 A bit surprisingly,

5For our ensembles with pion masses above 300MeV, where the correlation function can be precisely
computed with stochastic methods, LMA is not more efficient.
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after optimizing the solution of the eigensystem and the contractions, the computation of
the mixed contribution of low and high modes turned out to be the most costly part of our
computation.

In figure 12 we show on the left hand side the integrand to compute the light-connected
contribution to ahvpµ on ensemble E250. The total, denoted by the black diamonds, is
composed of the sum of the three coloured data sets. It is apparent that the low-mode
contribution dominates for source-sink separations t > 1.4 fm. On the right hand panel
of figure 12 we show the time dependent variance of each contribution, normalized by the
sum of the three. Whereas the variance of the eigen-eigen contribution dominates the total
in the long-distance regime, the variance of the rest-eigen contribution is non-negligible
although the contribution to the isovector correlation function is small.

D I = 1 ππ scattering at physical pion mass

At relatively late times, we can further improve on the LMA correlator by replacing it with
the spectral reconstruction of the isovector component. The LMA correlator, despite its
precision, nevertheless suffers from an exponential loss in signal-to-noise; the reconstruction,
in contrast, benefits from a constant signal-to-noise ratio and is therefore guaranteed to beat
the LMA correlator eventually. For the E250 ensemble, the improvement from switching to
the reconstructed current correlator occurs around t ≈ 2.5 fm.

D.1 Measuring the finite-volume energies and matrix elements

To reconstruct the isovector current correlator ⟨J(t)J†(0)⟩, we employ the correlation func-
tions [52]

⟨[ππ](t) [ππ]†(0)⟩ = Z∗
ππ Zππe

−E(0)t + · · · , (D.1)

⟨J(t) [ππ]†(0)⟩ = Z∗
J Zππe

−E(0)t + · · · , (D.2)

using a set of N different ππ interpolators {[ππ](1), · · · , [ππ](N)}. The set of correlation
functions formed from any two of these N interpolators forms an N ×N correlation matrix
which should, in principle, describe the lowest lying N states.

Given a set of interpolators describing a state of interest (in this case, two pions), we
can form an optimized set of interpolators which approximately project onto particular
excitations of that state by solving the associated generalized eigenvalue problem [129]

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , (D.3)

for the eigenvalues λn(t, t0) and eigenvectors vn(t, t0), where C(t) is a matrix of correlation
functions formed by the outer product of a set of interpolators with itself.

If we consider the case of ππ scattering, then given a set of N interpolators [ππ](n),
the solution to the generalized eigenvalue problem allows us to form a set of N optimized
operators [ΠΠ](n)(t; t0) ≡ ([ππ](t), v(n)(t, t0)) describing N energy levels. Typically one
then determines the energy levels either by fitting the principal correlators (the eigenvalues
of the GEVP) to

λ(n)(t, t0) = e−E(n)(t−t0) + h.o. , (D.4)

– 40 –



or by fitting the rotated correlators (formed from the eigenvectors of the GEVP) to

⟨[ΠΠ](n)(t; td, t0) [ΠΠ](n) †(0; td, t0)⟩ = |Z(n)|2e−E(n)t + h.o. , (D.5)

where td indicates that we have reused the eigenvalues from the solution to the GEVP at
t = td for all times.

The crucial part to either approach, however, is estimating what those higher-order
corrections should be. Naively we expect that the corrections should not be worse than
O(e−tδE) for an arbitrary choice of t0, with δE = minn̸=m |En − Em| the smallest gap
between energy levels in the spectrum [130]. However, the work of [131, 132] show that it
is possible to do better than this provided one is clever about the asymptotic behaviour or
the choice of GEVP parameters (for instance, by imposing the restriction t0/2 > t).

As an example, let us consider the fits to the principal correlators. A result from [131]
is that the higher-order corrections to (D.4) should be parameterized by

ϵ
(n)
λ (t, t0) ∼ O

(
e−(E(N)−E(n))t0e−E(n)(t−t0)

)
+O

(
e−E(N)te+E(n)t0

)
. (D.6)

Therefore, for a fixed choice of t0, a better choice of fit function for the principal correlators
is given by

λ(n)(t, t0) ≈ e−E(n)(t−t0)
[
1 +A+Be−∆E(n)t

]
, (D.7)

where ∆E(n) ≡ E(N) − E(n) ≥ δE(n). This dependence on ∆E(n) rather than δE(n) has
two advantages: (1) since ∆E(n) is larger, the correction is smaller; and (2) it is simpler to
implement the constraint on ∆E(n) in a simultaneous fit to all levels than the constraint
on δE(n).

In this work we advocate the use of “sliding-pivot” fits to the effective masses and
overlaps as motivated by the insights of [131, 132], in which the authors showed that the
corrections to the effective energies and overlaps are described by

ϵ
(n)
E (t, t0) = O

(
e−∆E(n)t

)
+O

(
e−2(∆E(n)−δE(n))t0e−δE(n)t

)
(D.8)

= O
(
e−∆E(n)t

)
when t/2 ≤ t0 < t ,

ϵ
(n)
Z (t, t0) = O

(
e−∆E(n)t0

)
+O

(
e−(∆E(n)−δE(n))t0e−δE(n)t

)
(D.9)

= O
(
e−∆E(n)t0

)
when t/2 ≤ t0 < t .

On the second line, we have shown the correction after restricting the choice of t0 to the
interval shown. Although both reduced expressions are similar, we note that the correction
to the effective masses depends on t while the corrections to the effective overlaps depend
on t0.

Here we take this restriction on t0 seriously: rather than fixing t0 as is often done, we
allow the parameter to vary with t, choosing the value of t0 closest to (but greater than)
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Figure 13. A representative fit to the first four effective masses (left) and effective matrix elements
(right) on E250. The vertical bands denote the fit windows. For the effective matrix elements, we
only fit every other data point, starting with the point right of the left-most dashed, vertical line.

t/2. We then construct/fit the effective masses per/to the following expressions:

E
(n)
eff (t) =

{
log

(
λ(n)(t− 1, ⌈t/2⌉)
λ(n)(t, ⌈t/2⌉)

) ∣∣∣∣∣ t = 4, 5, 6, . . .

}
, (D.10)

E
(n)
eff (t) ≈ E(n)

(
1 +A

(n)
E e−∆E(n)t

)
. (D.11)

We simultaneously fit all N energy levels in order to better constrain the shared parameter
E(N).

Similarly, the finite-volume matrix elements are determined by constructing the follow-
ing effective quantities from the optimized mixed-current correlator ⟨J(t) [ΠΠ](n)†(0)⟩ and
two pion correlator ⟨[ΠΠ](n)(t) [ΠΠ](n)†(0)⟩ and fitting them using the higher-order term
described in (D.9),

Z̃
(n)
J (t) =

⟨J(t) [ΠΠ](n) †(0; ⌈t/2⌉)⟩√
⟨[ΠΠ](n)(t; ⌈t/2⌉) [ΠΠ](n) †(0; ⌈t/2⌉)⟩

(
λ(n)(⌈t/2⌉+ 1, ⌈t/2⌉)
λ(n)(⌈t/2⌉+ 2, ⌈t/2⌉)

)t/2

, (D.12)

Z̃
(n)
J (t) ≈ Z

(n)
J

(
1 +A

(n)
Z e−∆E(n)⌈t/2⌉

)
. (D.13)

Again, we emphasize that the corrections to the effective matrix elements depend on t0,
not t.
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Figure 14. Saturation of the LMA correlator by the reconstructed correlator. The data points
show the relative error of the reconstructed correlator if one normalizes by the LMA correlator
instead of the reconstructed correlator. From the plot, one sees that the 4-state reconstruction
saturates the LMA correlator around 1.2 fm, with the LMA correlator becoming less precise after
2.5 fm or so.

Although the fits to the effective matrix elements contain the energy levels as param-
eters, the fits to the effective masses are significantly more efficient at distinguishing these
energy levels. Therefore, rather than simultaneously fit the effective masses and matrix
elements, we first fit the energy levels using (D.11) before passing the posterior as a prior
into the fit to the matrix elements using (D.13). Representative fits to the energy levels
and matrix elements are shown in figure 13, respectively.

To minimize the systematic bias from our choice of fit windows (tmin, tmax) when fitting
the effective masses and matrix elements, we vary the windows and calculate the posterior
under a model-averaging framework using the Bayesian Akaike information criterion for the
model weights [65, 133]. We find the model space for the spectrum fits to be strongly peaked
around the representative fit shown in figure 13. In contrast, there is some noticeable spread
among the fits to the effective matrix elements.

D.2 Transition Point and Gounaris-Sakurai Parameters

Rather than apply the bounding method [26, 50], we choose to replace the LMA correlator
with the reconstructed correlator after some Euclidean distance. To identify the transition
point, we first verify that the reconstructed correlator saturates the LMA correlator and
then find the point for which the error for the reconstructed correlator is smaller than the
LMA correlator (see figure 14).

We find that including four states is sufficient to saturate the LMA correlator. However,
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we note that including the states above the third excited state causes the reconstructed
correlator to slightly overshoot the LMA correlator at the 1σ level. We therefore avoid
including these states from the reconstruction for a few reasons: (1) after the third excited
state, there is a pronounced decline in data quality, with the fourth excited state no longer
exhibiting an exponential decay in the matrix element at the earliest times; (2) a priori we
do not consider this overshooting to be physical but rather a systematic stemming from
the difficulty of constraining higher-level states; and (3) including the fourth (or higher)
states in our reconstruction has no bearing on the final result, as the contribution from
these states has decayed-off before we reach the transition point near 2.5 fm.

Through this dedicated spectroscopy study, we are able to reduce the uncertainty on
the physical pion mass ensemble E250 by a factor of two. An example application of the
bounding method is shown in figure 1.

To compute the Gounaris-Sakurai parameters, we follow the procedure outlined in
[52, 134]; the only notable deviation is the manner in which we calculate the finite-volume
energy levels and matrix elements. After fitting the phase shifts, we find gρππ = 6.02(30)

and mρ/mπ = 5.76(9).

E Tables

This appendix contains tables 6 to 8 with detailed results for individual gauge ensembles.
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id amπ amK afπ t0/a
2 y z

A653 0.211 84(105) 0.211 84(105) 0.071 44(25) 2.173(7) 0.1110(13) 0.2448(37)

A654 0.166 33(131) 0.227 27(112) 0.067 25(25) 2.194(10) 0.0773(13) 0.2381(38)

H101 0.182 50(71) 0.182 50(71) 0.063 64(30) 2.847(6) 0.1046(9) 0.2274(27)

H102 0.153 83(80) 0.191 35(71) 0.060 44(31) 2.882(12) 0.0809(9) 0.2205(27)

H105 0.121 55(115) 0.202 23(85) 0.057 81(83) 2.886(9) 0.0559(11) 0.2198(29)

N101 0.121 20(56) 0.201 46(35) 0.057 73(35) 2.892(3) 0.0556(6) 0.2182(22)

C101 0.095 70(78) 0.205 84(44) 0.055 11(36) 2.913(5) 0.0378(6) 0.2137(22)

C102 0.096 40(87) 0.217 66(50) 0.055 07(46) 2.870(6) 0.0386(7) 0.2368(25)

D150 0.056 54(94) 0.208 35(35) 0.052 22(30) 2.944(4) 0.0150(5) 0.2049(20)

B450 0.160 81(50) 0.160 81(50) 0.056 85(20) 3.663(13) 0.1020(8) 0.2184(21)

S400 0.135 03(46) 0.170 22(41) 0.053 99(34) 3.692(8) 0.0781(6) 0.2145(20)

N452 0.135 46(30) 0.170 31(26) 0.054 62(15) 3.673(4) 0.0784(4) 0.2150(18)

N451 0.110 64(45) 0.178 22(26) 0.052 29(15) 3.682(7) 0.0568(5) 0.2133(18)

D450 0.083 46(51) 0.183 93(26) 0.049 77(14) 3.697(6) 0.0356(5) 0.2101(18)

D451 0.083 38(35) 0.193 82(16) 0.050 00(24) 3.665(3) 0.0359(3) 0.2311(18)

D452 0.059 32(59) 0.186 45(18) 0.047 58(15) 3.727(4) 0.0197(4) 0.2056(16)

H200 0.136 25(64) 0.136 25(64) 0.047 75(34) 5.151(33) 0.1000(11) 0.2125(24)

N202 0.134 36(32) 0.134 36(32) 0.048 46(13) 5.153(17) 0.0979(6) 0.2066(16)

N203 0.112 49(27) 0.143 95(23) 0.046 43(16) 5.147(7) 0.0742(4) 0.2064(15)

N200 0.092 21(29) 0.150 65(24) 0.044 20(18) 5.163(7) 0.0540(4) 0.2056(15)

D251 0.092 03(16) 0.150 41(12) 0.044 61(10) 5.164(5) 0.0538(3) 0.2050(14)

D200 0.065 02(28) 0.156 30(17) 0.042 37(20) 5.179(6) 0.0300(3) 0.2026(14)

D201 0.064 98(43) 0.163 08(24) 0.042 63(25) 5.137(8) 0.0302(4) 0.2191(16)

E250 0.042 32(23) 0.159 36(8) 0.040 18(12) 5.202(4) 0.0140(2) 0.2006(13)

N300 0.105 74(30) 0.105 74(30) 0.038 17(16) 8.560(32) 0.0981(7) 0.2072(17)

J307 0.105 47(42) 0.105 47(42) 0.037 85(17) 8.597(31) 0.0979(9) 0.2062(20)

N302 0.087 07(54) 0.113 63(46) 0.036 58(21) 8.526(25) 0.0721(9) 0.2064(22)

J306 0.086 90(19) 0.113 35(19) 0.036 53(13) 8.585(17) 0.0723(4) 0.2054(14)

J303 0.064 67(22) 0.119 63(19) 0.034 39(15) 8.618(14) 0.0447(4) 0.2027(14)

J304 0.065 61(20) 0.131 87(17) 0.034 18(12) 8.500(14) 0.0467(4) 0.2415(16)

E300 0.043 99(12) 0.124 02(9) 0.032 64(12) 8.614(5) 0.0230(2) 0.2020(12)

F300 0.033 81(23) 0.123 58(17) 0.031 68(23) 8.656(5) 0.0144(2) 0.1958(13)

J500 0.081 57(17) 0.081 57(17) 0.029 83(10) 13.964(31) 0.0941(6) 0.1966(14)

J501 0.065 90(23) 0.087 96(24) 0.028 55(15) 13.984(49) 0.0673(6) 0.1952(16)

Table 6. Pseudoscalar masses in lattice units, including finite-size corrections. Estimates of the
gluonic observable t0/a2 and the two dimensionless variables ϕ2 and ϕ4 used in the extrapolation
to the physical point.
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(a3,3µ )LD - Set 2 1
3(a

8,8
µ )LD - Set 2 4

9(a
c,c
µ )LD - Set 2

id (LL) (LC) (LL) (LC) (LL) (LC)

A653 202.5(2.5) 206.2(2.6) 73.33(93) 74.56(94) 0.007 403(46) 0.006 947(33)

A654 216.3(3.4) 219.6(3.4) 51.94(82) 53.23(82) 0.008 36(12) 0.007 856(96)

H101 220.5(2.1) 222.7(2.1) 79.60(81) 80.31(80) 0.008 232(99) 0.007 294(81)

H102 236.1(3.8) 238.2(3.8) 64.4(1.1) 65.0(1.0) 0.008 81(14) 0.007 81(11)

H105 241.3(9.9) 243(10) 51.7(1.7) 52.3(1.6) – –
N101 238.7(4.1) 241.2(3.8) 49.49(77) 50.45(73) 0.009 73(10) 0.008 624(85)

C101 265.0(3.6) 266.9(4.0) 42.9(1.5) 44.1(1.5) 0.010 180(96) 0.009 021(77)

C102 254.9(6.3) 253.6(7.3) 38.7(1.6) 39.5(1.6) – –
D150 312.0(7.8) 313.4(7.8) 35.7(2.9) 36.7(3.0) – –
B450 225.0(2.8) 226.8(3.0) 80.8(1.0) 81.4(1.1) 0.008 530(77) 0.007 462(62)

S400 247.5(3.5) 248.7(3.5) 65.66(82) 66.19(81) 0.008 96(13) 0.007 94(11)

N452 243.6(2.1) 242.8(2.1) 66.00(47) 66.32(46) – –
N451 255.5(3.0) 256.5(3.0) 55.33(75) 55.85(73) – –
D450 270.6(2.3) 271.6(2.3) 45.6(1.1) 46.7(1.1) 0.010 836(95) 0.009 566(75)

D451 263.2(3.2) 264.4(3.1) 40.6(1.3) 41.2(1.2) – –
D452 299.1(4.4) 299.8(4.4) 38.0(2.0) 39.1(2.0) 0.011 301(94) 0.009 963(74)

H200 234.5(4.3) 235.0(4.3) 83.5(1.5) 83.7(1.5) – –
N202 239.7(2.9) 240.7(2.9) 85.9(1.1) 86.2(1.1) 0.008 85(13) 0.007 86(11)

N203 257.1(3.2) 257.8(3.2) 68.88(76) 69.12(76) 0.009 64(12) 0.008 55(10)

N200 265.5(4.6) 265.9(4.6) 56.5(1.1) 57.1(1.1) 0.010 523(95) 0.009 364(80)

D251 265.4(2.2) 265.8(2.2) – – – –
D200 289.2(3.0) 290.1(3.2) 46.1(1.6) 46.5(1.6) 0.011 620(98) 0.010 354(82)

D201 281.8(4.5) 282.3(4.5) 42.7(2.0) 43.4(2.0) – –
E250 341.9(3.2) 342.1(3.2) 37.9(2.2) 38.4(2.2) 0.012 067(86) 0.010 778(69)

N300 232.6(3.3) 232.7(3.2) 83.0(1.2) 83.0(1.2) 0.008 85(17) 0.008 10(15)

J307 252.9(3.9) 253.3(3.9) 90.7(1.5) 90.9(1.5) – –
N302 248.2(4.6) 248.9(4.7) 67.2(1.2) 67.4(1.2) 0.010 05(10) 0.009 213(88)

J306 258.4(5.1) 259.3(5.0) – – – –
J303 274.4(4.5) 274.9(4.5) 53.8(1.2) 54.1(1.2) 0.010 83(12) 0.010 04(11)

J304 262.2(4.7) 262.4(4.7) 45.6(1.4) 46.0(1.4) – –
E300 310.7(5.0) 311.4(5.0) 45.8(2.2) 46.3(2.1) 0.012 204(78) 0.011 226(71)

F300 350.4(9.7) 350.5(9.7) – – – –
J500 253.4(3.3) 254.6(4.0) 90.7(1.2) 91.1(1.4) 0.008 27(25) 0.007 80(23)

J501 265.5(6.1) 263.3(6.8) 68.3(1.4) 68.2(1.5) – –

Table 7. Values of the long-distance isovector, isoscalar and charm-connected contributions in units
of 10−10, for the local-local (LL) and for the local-conserved (LC) discretizations of the correlation
function, as described in the main text. The finite-size correction to (mπL)

ref has been applied to
the isovector contribution.
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id HP&MLL HP Kaon total
A653 −7.60(29) −7.23(39) – −7.60(29)

A654 3.03(14) 2.66(15) 0.541(39) 3.57(14)

H101 −10.70(33) −10.15(52) – −10.70(33)

H102 −4.27(25) −4.14(19) −1.186(90) −5.45(27)

H105 4.07(27) 3.79(43) 0.322(24) 4.39(27)

N101 −6.59(20) −6.36(28) −0.336(22) −6.93(20)

C101 −2.53(13) −2.48(10) −0.0230(13) −2.56(13)

C102 −2.74(14) −2.66(12) −0.0163(20) −2.75(14)

D150 11.33(98) 10.33(34) 0.000 941(42) 11.33(98)

B450 −7.21(21) −6.89(35) – −7.21(21)

S400 −0.278(11) −0.392(28) −0.1142(94) −0.392(14)

N452 −7.73(16) −7.50(31) −1.91(14) −9.64(24)

N451 −5.54(12) −5.39(19) −0.363(24) −5.90(13)

D450 −6.50(16) −6.29(18) −0.0357(19) −6.54(16)

D451 −6.45(14) −6.22(18) −0.0218(12) −6.47(14)

D452 6.85(38) 6.36(19) 0.002 96(14) 6.85(38)

H200 −0.793(34) −0.974(57) – −0.793(34)

N202 −11.08(27) −10.62(48) – −11.08(27)

N203 −5.64(14) −5.49(24) −1.39(10) −7.04(17)

N200 −1.057(34) −1.082(59) −0.0842(57) −1.141(34)

D251 −7.07(11) −6.87(23) −0.378(24) −7.45(12)

D200 1.365(62) 1.267(59) 0.005 85(31) 1.371(62)

D201 1.329(55) 1.228(42) 0.004 05(21) 1.333(55)

E250 3.351(99) 3.164(58) 0.000 090 9(33) 3.351(99)

N300 −5.95(19) −5.71(26) – −5.95(19)

J307 −11.95(50) −11.45(79) – −11.95(50)

N302 0.857(43) 0.711(36) 0.227(18) 1.084(46)

J306 −5.81(23) −5.65(35) −1.340(96) −7.15(25)

J303 1.317(39) 1.216(45) 0.0498(31) 1.367(40)

J304 0.794(23) 0.709(27) 0.015 57(99) 0.810(23)

E300 0.715(13) 0.651(15) 0.000 621(29) 0.716(13)

F300 −0.491(18) −0.480(15) −0.000 014 6(20) −0.491(18)

J500 −7.65(32) −7.27(32) – −7.65(32)

J501 0.572(22) 0.455(31) 0.1218(82) 0.694(24)

Table 8. Overview of finite-volume corrections to (mπL)
ref using fπ to set the scale. The column

denoted by HP&MLL gives the correction using the Hansen-Patella formalism for time separations
smaller than t∗ and using the MLL beyond that point. The column denoted by HP uses only
the Hansen-Patella formalism. The column “Kaon” gives the correction from the Kaon, which is
included in the pion correction on SU(3) symmetric ensembles. The total is computed by the
sum of the columns “HP&MLL” and “Kaon” and enters the numbers for (a3,3µ )LD in table 7. All
uncertainties are statistical.
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