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Abstract

WallGo is an open-source software designed to compute the bubble wall velocity in first-order cosmo-

logical phase transitions. Additionally, it evaluates the energy budget available for generating grav-

itational waves. The main part of WallGo, built in Python, determines the wall velocity by solving

the scalar-field(s) equation of motion, the Boltzmann equations and energy-momentum conservation

for the fluid velocity and temperature. WallGo also includes two auxiliary modules: WallGoMatrix,

which computes matrix elements for out-of-equilibrium particles, and WallGoCollision, which per-

forms higher-dimensional integrals for Boltzmann collision terms. Users can implement custom models

by defining an effective potential and specifying a list of out-of-equilibrium particles and their inter-

actions.

As the first public software to compute the wall velocity including out-of-equilibrium contributions,

WallGo improves the precision of the computation compared to common assumptions in earlier com-

putations. It utilises a spectral method for the deviation from equilibrium and collision terms that

provides exponential convergence in basis polynomials, and supports multiple out-of-equilibrium par-

ticles, allowing for Boltzmann mixing terms. WallGo is tailored for non-runaway wall scenarios where

leading-order coupling effects dominate friction.

While this work introduces the software and the underlying theory, a more detailed documentation

can be found in https://wallgo.readthedocs.io.

http://arxiv.org/abs/2411.04970v1
https://wallgo.readthedocs.io
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Program summary

License: GNU General Public License 3 (GPLv3)

Operating system: Any operating system; tested macOS 11–15, Ubuntu 18–24 and Windows 10–11.

Program title: WallGo [v1.0.0]

Program obtainable from: https://pypi.org/project/WallGo

Documentation link: https://wallgo.readthedocs.io

Developer’s repository link: https://github.com/Wall-Go/WallGo

Programming languages: Python

Nature of problem: Computing terminal velocities of expanding bubble walls for first-order phase

transitions, as coupled sets of scalar field, hydrodynamic and Boltzmann equations.

Solution method: The scalar-field equations are solved as a variational problem with an ansatz, and

the Boltzmann equations are solved using a spectral decomposition.

Restrictions: Python version 3.10 or above.

Program title: WallGoCollision [v1.0.0]

Program obtainable from: https://pypi.org/project/WallGoCollision

Documentation link: https://wallgocollision.readthedocs.io

Developer’s repository link: https://github.com/Wall-Go/WallGoCollision

Programming languages: C++ and Python

Nature of problem: Computing collision integrals for Boltzmann equations in a spectral expansion.

Solution method: Adaptive Monte-Carlo integration.

Restrictions: Python version 3.10 or above. Source builds require a C++17 compliant compiler and

CMake 3.18 or newer.

Program title: WallGoMatrix [v1.0.0]

Program obtainable from:

https://resources.wolframcloud.com/PacletRepository/resources/WallGo/WallGoMatrix

Developer’s repository link: https://github.com/Wall-Go/WallGoMatrix

Programming languages: Mathematica

External routines/libraries: DRalgo [1] and GroupMath [2].

Nature of problem: Computing 2-to-2 scattering matrix elements for arbitrary quantum field theories.

Solution method: Matrix elements are constructed by building coupling tensors for a given model, and

contracting these with kinematic factors appropriately.

Restrictions: Tested on Mathematica versions 12, 13 and 14.
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1. Introduction

Cosmological first-order phase transitions (FOPTs) are exciting possible processes in the early universe.

They might have played a role in generating the asymmetry between matter and antimatter (e.g. in

electroweak baryogenesis [3–7], or alternatives [8–10]), and they could also have sourced gravitational

wave (GW) signals that can be observed with the next generation of GW detectors [11–14]. It is

well-known that the two candidate processes of the Standard Model (SM) of particle physics, the

electroweak phase transition [15–20] and the QCD phase transitions [21, 22], are in fact cross-overs.

There are, however, many possibilities for extending the SM to render these phase transitions first

order (see e.g. [13] and references therein for a number of examples). Moreover, a significant part of

the energy budget of the universe is in dark matter and energy, and phase transitions could have also

occurred in dark sectors, with possibly observable GW signatures [23–25].

The expansion velocity of bubbles generated during a FOPT, denoted vw, is a crucial parameter

for predicting GW signals. Variations in vw can lead to changes of up to two orders of magnitude

in predicted GW amplitudes [13, 26, 27], and the spectral shape of the GW spectrum is also highly

sensitive to vw [28–32]. Studies [33, 34] suggest that if LISA detects a GW signal from a FOPT,

vw may be the most accurately reconstructible parameter. Accurate predictions of GW spectra are

essential to distinguish signals from FOPTs amid astrophysical sources in data from observatories like

LISA [35]. Furthermore, the wall velocity can significantly impact predictions for the value of the

matter-antimatter asymmetry [36–38], which can determine whether a model can successfully explain

the observed asymmetry. In alternative mechanisms for baryogenesis, e.g. [9,10,39], and dark matter

generation [40,41] during phase transitions, the baryon and dark matter abundances are also expected

to depend on vw.

The wall velocity is determined as the speed at which the outward pressure, resulting from the

pressure difference between the phases, is balanced by the friction and backreaction from the plasma.

In practice, finding vw (and the wall width) requires solving the scalar-field(s) equation of motion,

the Boltzmann equations for the particles in the plasma, and the energy-momentum conservation

equations for the fluid velocity and temperature profile. Early work on computing the wall velocity

employed a so-called ballistic approximation [42, 43], which assumes that the mean free path of the

particles is much larger than the wall width. The authors of [44,45], were the first to self-consistently

solve the scalar field and Boltzmann equations, including leading-log collision terms. For additional

calculations of vw using similar methods, see e.g., [46–49].

The approach of [44, 45] describes deviations from equilibrium in the distribution functions via

the chemical potential µ, deviation of the temperature δT , and fluid velocity δv. By taking three

moments of the Boltzmann equations, a set of equations for µ, δT and δv is obtained. However, as

noted in [50, 51], the so-obtained equations contain a singularity around the sound speed. In [51], it

was demonstrated that this singularity stems from the linearisation of the background solution. To

improve the description of the out-of-equilibrium contribution, the authors introduce a generalised
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fluid ansatz, and solve the Boltzmann equations for a larger set of moments. In contrast, [52] adopts

an alternative approach using a spectral method to describe deviations from equilibrium, thereby

eliminating the need for a linearisation of the background distribution. We adopt this latter approach

in our work.

Due to the difficulty of computing the wall velocity, it is often guessed or treated as a free parameter.

Estimates can be made by assuming local thermal equilibrium (LTE) [53–55], or by considering a

large jump in degrees of freedom [56]. The LTE assumption has been shown to provide a reasonable

approximation for the Standard Model coupled to a singlet [52], and should offer an upper bound on

vw. Further improvement in determining vw requires accounting for out-of-equilibrium effects.

WallGo provides an automated computation of the wall velocity for user-defined models.

The software package consists of a main part and two auxiliary modules:

• WallGo finds vw by solving the equations of motion of the scalar fields, and the Boltzmann

equations of the out-of-equilibrium particles.

• WallGoMatrix computes the 2 → 2 matrix elements for user-specified particles and interactions.

• WallGoCollision computes the collision integrals in the spectral basis.

WallGo allows readers to largely reduce the uncertainty related to the wall velocity in predictions of

the GW signal and the baryon or dark matter abundance. Additionally, it will help to identify the

largest sources of uncertainty in vw, offering guidance for future studies aimed at further minimizing

these uncertainties. A detailed examination of these uncertainty sources will be addressed in future

work.

In addition to being the first publicly available numerical code for solving the wall velocity with

out-of-equilibrium effects for user-defined models, WallGo also provides several options that improve

the computation beyond commonly used approximations in the literature:

• Matrix elements and collision terms: WallGo computes matrix elements and collision terms

for arbitrary particles and interactions, enabling analysis beyond the typical focus on only the

out-of-equilibrium top quark and strong interactions.

• User-defined potential: The effective potential is fully customizable, allowing calculations beyond

leading order. Higher-order corrections to the potential, shown to significantly affect aspects of

phase transitions [57–62], will be explored in future work.

• Mixing in collision terms and Boltzmann equations: When multiple particles are out of equi-

librium, WallGo incorporates mixing in the collision terms and Boltzmann equations (cf. sec-

tion 3.4). This is in contrast to the conventional moment expansion where interaction rates

replace collision terms [45].
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• Spectral method for convergence: WallGo uses the spectral method introduced in [52], which

parameterises the deviation from equilibrium on a basis of polynomials. For a sufficiently large

basis of polynomials, the solution converges exponentially, which we expect to be a relevant

improvement over the common three-moment Boltzmann equation method.

• Computation of the gravitational wave energy budget: WallGo can directly compute the efficiency

factor used in the prediction of the GW power spectrum [13,27,32,63], by solving the hydrody-

namics equations with the fully model-dependent equation of state. This removes the need to

map onto a simplified equation of state [26,64,65].

This version of WallGo has been developed to deal with weak to moderately strong phase transitions,

where the leading-order pressure from out-of-equilibrium particles and the hydrodynamic backreaction

are sufficient to compensate the driving force. For stronger phase transitions, this source of friction

might not be sufficient to stop the wall from accelerating. The question whether the wall “runs away”

in this scenario, or whether it is slowed down by next-to-leading-order contributions to the friction,

has been a matter of active discussion in recent literature [66–72]. We leave the inclusion of these

next-to-leading order contributions to the friction for a future version of WallGo.

This paper is organised as follows. Section 2 describes how to install WallGo and how to run a first

simple model. In section 3, we detail the physics underlying the computation of the wall velocity.

Section 4 overviews the different parts of the software package and their interactions with each other.

In section 5, we describe convergence tests. We demonstrate some examples and compare to the

literature in section 6, and conclude in section 7.

2. Installation and running

The main WallGo Python package can be installed directly with pip, by running the following listing

L.1

pip install WallGo

from the command line, and then imported as any other Python package. A first example of how to

use WallGo follows in section 2.1. A collection of other example models is found at https://wallgo.

readthedocs.io.

The WallGo package requires collision integrals as input, loaded from files. Some pre-computed

collision files can be found on the repository, in the folder Models. Beyond this, installing the

WallGoCollision package enables the computation of new collision integrals, and is also available

using pip,

L.2

pip install WallGoCollision

6
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Example usage is also found within the collected example models at https://wallgo.readthedocs.

io.

Finally, the WallGoCollision package requires 2-to-2 scattering matrix elements as input. The

WallGoMatrix Mathematica package allows for computing these for generic models. To install this

package, one must also install GroupMath [2] on which it depends. This can be done automatically by

setting

L.3

WallGo`WallGoMatrix`$InstallGroupMath=True

in Mathematica before loading WallGoMatrix. The latter can be installed by running the following

L.4

PacletInstall["WallGo/WallGoMatrix"]

after which the package can be loaded with

L.5

<<WallGo`WallGoMatrix`

A number of matrix element calculations for example models can be found in the examples folder of

the WallGoMatrix GitHub repository.

2.1. Defining a simple model

Defining a model in WallGo requires a few different ingredients: a scalar potential, a list of the particles

in the model together with their properties, and the matrix elements for interactions between these

particles. The matrix elements are used to compute the collision integrals in WallGoCollision. The

collision integrals are then loaded into WallGo for the wall velocity computation.

We will now describe a simple example which demonstrates how to compute the wall velocity

with WallGo. The relevant file can be found in Models/Yukawa/yukawa.py. Collision integrals are

contained in Models/Yukawa/CollisionOutput_N11. These have been obtained by running the file

Models/Yukawa/yukawaWithCollisionGeneration.py. Generating matrix elements and collisions

will be further discussed in section 4.

Concretely, let us consider a simple model of a real scalar field φ coupled to a Dirac fermion ψ via

a Yukawa coupling. Its interaction Lagrangian is given by

L = −1

2
∂µφ∂

µφ− σφ− m2

2
φ2 − g

3!
φ3 − λ

4!
φ4 − iψ̄ /∂ψ −mf ψ̄ψ − yφψ̄ψ . (2.1)

In this case, the scalar field may undergo a phase transition, with the fermion field contributing to

the friction for the bubble wall growth.
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The first step to implement this model into WallGo is to define a specific model class, inheriting

from the base class WallGo.GenericModel.

L.6

import pathlib

import numpy as np

import WallGo

from WallGo import Fields, GenericModel, Particle

class YukawaModel(GenericModel):

"""

The Yukawa model, inheriting from WallGo.GenericModel.

"""

def __init__(self) -> None:

"""

Initialize the Yukawa model.

"""

self.modelParameters: dict[str, float] = {}

# Initialize internal effective potential

self.effectivePotential = EffectivePotentialYukawa(self)

# Create a list of particles relevant for the Boltzmann equations

self.defineParticles()

# ~ GenericModel interface

@property

def fieldCount(self) -> int:

"""How many classical background fields"""

return 1

def getEffectivePotential(self) -> "EffectivePotentialYukawa":

return self.effectivePotential

# ~

def defineParticles(self) -> None:

"""

Define the out-of-equilibrium particles for the model.

"""

self.clearParticles()

# === left fermion ===

# Vacuum mass squared

def psiMsqVacuum(fields: Fields) -> Fields:

return (
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self.modelParameters["mf"]

+ self.modelParameters["y"] * fields.getField(0)

) ** 2

# Field-derivative of the vacuum mass squared

def psiMsqDerivative(fields: Fields) -> Fields:

return (

2

* self.modelParameters["y"]

* (

self.modelParameters["mf"]

+ self.modelParameters["y"] * fields.getField(0)

)

)

psiL = Particle(

"psiL",

index=1,

msqVacuum=psiMsqVacuum,

msqDerivative=psiMsqDerivative,

statistics="Fermion",

totalDOFs=2,

)

psiR = Particle(

"psiR",

index=2,

msqVacuum=psiMsqVacuum,

msqDerivative=psiMsqDerivative,

statistics="Fermion",

totalDOFs=2,

)

self.addParticle(psiL)

self.addParticle(psiR)

The scalar potential is used both for determining the free energy of homogeneous phases and for the

shape and width of the bubble wall. In principle, the potentials determining these two phenomena are

different, as the former is coarse grained all the way to infinite length scales, while the latter can only

consistently be coarse grained on length scales shorter than the bubble wall width [73]. Nevertheless,

at high temperatures and to leading order in powers of the coupling, these two potentials agree.

At high temperatures, the leading-order effective potential of our simple model is

V eff(φ, T ) = −π
2

20
T 4 + σeffφ+

1

2
m2

effφ
2 +

1

3!
gφ3 +

1

4!
λφ4 , (2.2)

where we have defined the effective tadpole coefficient and effective mass as

σeff = σ +
1

24
(g + 4ymf )T

2 , m2
eff = m2 +

1

24
(λ+ 4y2)T 2 . (2.3)
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The implementation in WallGo is as follows: one defines a class, here EffectivePotentialYukawa

which inherits from the base class WallGo.EffectivePotential. This definition must contain a

member function called evaluate which evaluates the potential as a function of the scalar fields and

temperature.

L.7

class EffectivePotentialYukawa(WallGo.EffectivePotential):

"""

Effective potential for the Yukawa model.

"""

def __init__(self, owningModel: YukawaModel) -> None:

"""

Initialize the EffectivePotentialYukawa.

"""

super().__init__()

assert owningModel is not None, "Invalid model passed to Veff"

self.owner = owningModel

self.modelParameters = self.owner.modelParameters

# ~ EffectivePotential interface

fieldCount = 1

"""How many classical background fields"""

effectivePotentialError = 1e-15

"""

Relative accuracy at which the potential can be computed. Here the potential is

polynomial so we can set it to the machine precision.

"""

# ~

def evaluate(self, fields: Fields, temperature: float) -> float | np.ndarray:

"""

Evaluate the effective potential.

"""

# getting the field from the list of fields (here just of length 1)

fields = WallGo.Fields(fields)

phi = fields.getField(0)

# the constant term

f0 = -np.pi**2 / 90 * (1 + 4 * 7 / 8) * temperature**4

# coefficients of the temperature and field dependent terms
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y = self.modelParameters["y"]

mf = self.modelParameters["mf"]

sigmaEff = (

self.modelParameters["sigma"]

+ 1 / 24 * (self.modelParameters["gamma"] + 4 * y * mf) * temperature**2

)

msqEff = (

self.modelParameters["msq"]

+ 1 / 24 * (self.modelParameters["lam"] + 4 * y**2) * temperature**2

)

potentialTotal = (

f0

+ sigmaEff * phi

+ 1 / 2 * msqEff * phi**2

+ 1 / 6 * self.modelParameters["gamma"] * phi**3

+ 1 / 24 * self.modelParameters["lam"] * phi**4

)

return np.array(potentialTotal)

The EffectivePotential stores the model parameters for use in evaluating the potential. It is

possible to override other member functions when defining EffectivePotentialYukawa, such as the

initialisation function, or to add additional member functions and variables, though we have not done

so in this simple example.

Once these two classes have been defined, we can now set up the WallGoManager and run WallGo

to compute the bubble wall speed. What follows now, would be the content of the main function of

the model file. First, we perform some initialisations.

L.8

manager = WallGo.WallGoManager()

# Change the amount of grid points in the spatial coordinates

# for faster computations

manager.config.configGrid.spatialGridSize = 20

# Increase the number of iterations in the wall solving to

# ensure convergence

manager.config.configEOM.maxIterations = 25

# Decrease error tolerance for phase tracing to ensure stability

manager.config.configThermodynamics.phaseTracerTol = 1e-8

pathtoCollisions = pathlib.Path(__file__).resolve().parent / pathlib.Path(

f"CollisionOutput_N11"

)

manager.setPathToCollisionData(pathtoCollisions)
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model = YukawaModel()

manager.registerModel(model)

We modify the default value of the spatial grid, the maximum number of iterations in the solution

of the equation of motion and the error tolerance of the phase tracer. We specify the location of

the pre-computed collision files. Now that we have registered the model, we need to provide input

parameters, and a number of settings for the computation of the wall velocity.

L.9

inputParameters = {

"sigma": 0.0,

"msq": 1.0,

"gamma": -1.2,

"lam": 0.10,

"y": 0.55,

"mf": 0.30,

}

model.modelParameters.update(inputParameters)

manager.setupThermodynamicsHydrodynamics(

WallGo.PhaseInfo(

temperature=8.0, # nucleation temperature

phaseLocation1=WallGo.Fields([0.4]),

phaseLocation2=WallGo.Fields([27.0]),

),

WallGo.VeffDerivativeSettings(

temperatureVariationScale=1.0,

fieldValueVariationScale=[100.0],

),

)

In this model, inputParameters directly contain the parameters appearing in the potential and the

interactions. In a more realistic scenario, the inputParameters would correspond e.g. to physical

particle masses and interaction strengths. In the WallGo.PhaseInfo object, we provide the nucleation

temperature and the positions of the high-temperature and low-temperature phase. The positions of

the phases do not need to be exact. temperatureVariationScale and fieldValueVariationScale

are parameters that are used in the construction of an interpolated free energy and when computing the

derivatives of the potential. A reasonable choice is the difference between the critical and nucleation

temperature and the value of the vacuum expectation value (VEV), respectively.

Now we can compute the wall velocity. First, we return an estimate of the wall velocity in LTE,

computed from hydrodynamics only. Then, the wall velocity is obtained by solving the scalar equation
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of motion. The first computation ignores the contribution from the out-of-equilibrium fermions, and

is therefore very close to vwLTE. Lastly, the wall velocity with out-of-equilibrium contributions is

computed.

L.10

# ---- Solve wall speed in Local Thermal Equilibrium (LTE) approximation

vwLTE = manager.wallSpeedLTE()

print(f"LTE wall speed: {vwLTE:.6f}")

solverSettings = WallGo.WallSolverSettings(

bIncludeOffEquilibrium=False,

# meanFreePathScale is determined here by the annihilation channels,

# and scales inversely with y^4 or lam^2. This is why

# meanFreePathScale has to be so large.

meanFreePathScale=5000.0, # In units of 1/Tnucl

wallThicknessGuess=10.0, # In units of 1/Tnucl

)

results = manager.solveWall(

solverSettings

)

print(f"Wall velocity without out-of-equilibrium contributions {results.wallVelocity:.6f}")

solverSettings.bIncludeOffEquilibrium = True

results = manager.solveWall(

solverSettings

)

print(f"Wall velocity with out-of-equilibrium contributions {results.wallVelocity:.6f}")

3. Theoretical background for the terminal wall velocity of an expanding bubble

This section provides an overview of the theoretical background relevant to FOPTs1 and the bubble

wall velocity.

3.1. Effective potential and thermodynamics

Cosmological phase transitions can occur when the free energy, or effective potential, transitions from

a higher to a lower energy state at some temperature. In the Standard Model for example, the Higgs

1While, in principle, many such phase transitions could occur in the history of our universe, we will always focus on

a single transition in this work.
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field does not break the Electroweak symmetry at high temperatures, but it will transition to a state

where the symmetry is broken as the Universe cools.

The temperature at which two minima of the free energy are degenerate is called the critical tem-

perature, Tc. If the degenerate minima are separated by a barrier at the critical temperature, the

phase transition will be of first order, and usually proceeds via the nucleation of bubbles. Around

Tc, the nucleation rate is immensely exponentially suppressed, and barely any nucleation takes place.

However, the exponential suppression shrinks quickly as the temperature decreases, allowing for the

phase transition to take place. For the computation of the wall velocity, one is usually interested in

the temperature at which non-trivial phase-transition dynamics take place, such as most of the bubble

growth and the collisions of hydrodynamic shock fronts. A good estimate for this temperature is the

percolation temperature, Tp, at which ∼ 1/e fraction of the Universe is in the metastable phase [74,75].

Below, we will refer to the temperature of interest as the nucleation temperature, Tn.
2 The compu-

tation of the temperature of interest is beyond the scope of this work and it is an input parameter

for WallGo. We refer the reader to [77–82] for numerical tools and to [83–87] for the theoretical and

computational framework for the high-temperature nucleation rate.

Let us now discuss the effective potential in more detail. We define the scalar fields as φ =

(φ1, φ2, · · · )T . We will denote the temperature-dependent effective potential as V eff(φ, T ), and it

is given by

V eff(φ, T ) = V0(φ) + Vhigher order(φ, T ) , (3.1)

where V0 denotes the zero-temperature, tree-level potential, and Vhigher order contains higher order

corrections, e.g. the temperature-dependent loop corrections. We will denote the field values that

minimise the potential at Tn as vHT(Tn) and vLT(Tn) for the high-temperature and low-temperature

phases respectively.

In earlier computations of the wall velocity [45,52,88], Vhigher order was approximated by a one-loop

effective potential augmented with (in some cases) thermally resumed masses. In recent years, it has

become clear that the one-loop effective potential often does not give accurate predictions for phase

transition parameters such as the nucleation temperature and the phase transition strength [57, 58],

and higher-loop corrections have to be included. The effective potential determines the critical and

nucleation temperature, but also enters in the equation of motion of the scalar field, as we will see in

section 3.2, and therefore directly affects the value of the wall velocity. As WallGo does not restrict

the shape of the potential, we can now study the effect of these higher loop corrections on the wall

velocity for the first time. This will be discussed in a separate publication.

We can describe the hot plasma in the early Universe in terms of the pressure, which is obtained

2Strictly speaking, Tn and Tp are not identical, as Tn corresponds to the temperature where the average number of

bubbles per Hubble volume is exactly 1. The two quantities are usually very close [13], except in models with a large

amount of supercooling [75,76], for which WallGo is anyway not applicable.

14



by evaluating the effective potential at its minima,

pHT(T ) = −V eff(vHT(T ), T ) , pLT(T ) = −V eff(vLT(T ), T ) . (3.2)

Other thermodynamic quantities such as the enthalpy density w, the entropy density s, the energy

density e and the speed of sound cs follow from the relations

w(T ) = T
dp

dT
, s(T ) =

w(T )

T
, e(T ) = T

dp

dT
− p , c2s =

dp/dT

de/dT
. (3.3)

3.2. The scalar equation of motion and the thermal plasma

The (classical)3 equation of motion (EOM) for scalar fields φi, coupled to the thermal plasma is:

∂2φi +
∂V eff(φ, T )

∂φi
+
∑

a

∂m2
a

∂φi

∫

p

1

2E
δfa(pµ, ξ) = 0 , (3.4)

where
∫

p
=
∫ ddp

(2π)d
, d = 3, and the sum runs over all particle species in the plasma and δfa denotes

the deviation from the equilibrium distribution function. The equilibrium contributions of all plasma

particles have been absorbed in V eff , which equals the potential of eq. (3.1).

It is useful to choose a coordinate system that follows the expanding bubble. As such our δfa only

depends on the momentum pµ and the distance from the wall

ξ = −ūµwxµ , (3.5)

where the 4-velocity ūµw is perpendicular to the 4-velocity uµw of the wall, viz.

ūµw = γw(vw, 0, 0, 1) , uµw = γw(1, 0, 0, vw) . (3.6)

The last term in eq. (3.4) is the friction caused by out-of-equilibrium particles. Since the friction

term is proportional to the field-derivative of the mass, in a SM-like plasma, the dominant contribution

comes from the top quark, the electroweak gauge bosons and possibly the scalar fields.

The temperature and fluid-velocity profiles must be solved simultaneously with the scalar-field

equations of motion, as the equation of motion depends explicitly on the temperature profile. To this

aim, we obtain two additional equations from energy-momentum, T µν , conservation in the wall frame

(here, the wall is assumed to be planar and moving in the z-direction)

T 30 = wγ2plvpl + T 30
out = c1 ,

T 33 =
1

2
(∂zφi)

2 − V eff(φ, T ) + wγ2plv
2
pl + T 33

out = c2 , (3.7)

3Fundamentally all fields participating in the phase transition and the particles are quantum. Nevertheless, over

sufficiently large distances and times t, L ≫ T−1, scalar fields behave classically [89–91]. This follows since low-energy

E ≪ T modes are Bose-enhanced, and thus behave classically in accordance with the correspondence principle.
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where vpl denotes the local plasma velocity, and γpl the corresponding Lorentz factor. The out-

of-equilibrium components of the energy-momentum tensor, T 30
out and T 33

out, are obtained from the

following moments of the out-of-equilibrium particle distributions (see [52] for details)

∆a
mn(ξ) =

∫

p

1

E
Em

pl p
n
z,plδf

a(pµ, ξ) , (3.8)

where Epl is the energy and pz,pl the momentum in the z direction measured in the plasma frame.

The boundary conditions, c1 and c2 are obtained by solving the hydrodynamic equations for the given

Tn and vw (cf. e.g. [26,92–94]). These macroscopic hydrodynamic boundary conditions correspond to

ξ → ±∞ for the microscopic description of the bubble wall. In contrast, when finding the boundary

conditions in the macroscopic context of hydrodynamics, they correspond to the temperature and fluid

profile immediately behind and in front of the infinitely thin wall.

The previous discussion demonstrated how the δfa need to be known to solve the equation of

motion of the φi as well as the temperature and velocity profile. Let us assume that we have obtained

a solution for δfa and the corresponding T 30
out, T

33
out. It is most convenient to solve the equations for

φi, T and vpl in the rest frame of the bubble wall, where the profiles are simply a function of ξ = z.

A common approach is to describe the profiles of the fields that undergo the phase transition by a

Tanh-ansatz:

φi(z) = vHT,i +
vLT,i − vHT,i

2

[

1− tanh

(
z

Li
+ δi

)]

, (3.9)

where Li denotes the wall width, δi the offset (the center of the profiles does not need to coincide).

The Tanh-ansatz does not solve the scalar EOM eq. (3.4) exactly, but in most known cases the impact

of this approximation on the value of the wall velocity is small; see e.g. [45, 95]. WallGo uses the

Tanh-ansatz, with the intention to make it optional in a future version.

There exist several procedures to determine the parameters Li and δi that give the best solution to

the EOM. We chose here to minimise the action that gives rise to the EOM (3.4)

S =

∫

dz

[

1

2

∑

i

(∂zφi)
2 + V eff

(
φ, T̄

)
− V eff

(
φ̄, T̄

)
+
∑

a

m2
a∆̄

a
00

]

. (3.10)

The functions T and ∆ will, in general, depend on the scalar fields. However, to recover the appropriate

EOMs during the minimisation procedure, these need to be independent of φi. Therefore, we replace

them by T̄ and ∆̄a
00, which are the same functions computed using a fixed scalar field profile φ̄i. To

find a solution with the correct T and ∆a
00, the minimisation procedure can be repeated iteratively,

each time with updated T̄ and ∆̄a
00 computed with the previous estimation of φi until convergence is

attained. Note, that the −V eff
(
φ̄, T̄

)
term does not have an effect on the minimisation as it is just a

constant. It is there to make the integral over z ∈ (−∞,∞) convergent.

One can show that minimising S with respect to δi and Li is equivalent to solving the moment
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equations

Pi =

∫

dz
∂φi
∂δi

(EOM) = 0 , (3.11)

Gi =

∫

dz
∂φi
∂Li

(EOM) = 0 . (3.12)

The first one can be interpreted as the pressure on the φi wall, as it controls the position of the φi

wall with respect to the other walls. The second is the gradient of pressure in the wall, and controls

the wall thickness.

From this representation in terms of moment equations, it becomes clear that the minimisation

procedure is not sufficient to ensure that the total pressure on the wall Ptot =
∑

i Pi vanishes, since

we need to enforce δ1 = 0 to fix the center of the wall. There is therefore no corresponding P1 = 0

equation. However, once the action is minimised with respect to Li and δi>1, Ptot becomes purely a

function of vw and one can finally solve

Ptot(vw) = 0 , (3.13)

where it is understood that the Li and δi>1 are chosen as to minimise S.

Finally, even for vanishing δfa, the wall still feels a backreaction force from the plasma that gets

heated [53, 54, 96, 97]. For deflagration and hybrid solutions (wall velocity smaller than the so-called

Jouguet velocity vJ), this backreaction force is an increasing function of vw, but for detonation so-

lutions, it decreases with vw, see e.g. [52, 54]. In many cases, this hydrodynamic backreaction effect

is already sufficient to obtain a static deflagration or hybrid solution.4 For the xSM, it was even

shown that the local thermal equilibrium (LTE) approximation gives a reasonable estimate of the wall

velocity [52]. However, as seen for the Standard Model with a light Higgs mass in section 6.2 and the

Inert Doublet Model in section 6.3, the wall velocity is significantly overestimated in LTE.

3.3. Boltzmann equations for the plasma particles

As argued before, we need to know the distribution functions of the plasma particles to solve the

scalar-field equation of motion. As the out-of-equilibrium friction is proportional to the derivative of

the particle mass, the particles with the greatest shift in their masses are expected to give the dominant

contribution to the friction. Nevertheless, light quarks and gluons will still affect the friction indirectly.

For example, out-of-equilibrium gluons help top quarks to equilibrate, as the gluon has a much larger

cross-section and can act as a catalyst for the quarks.

4Simulations of [98] suggest that this static solution does not always get reached in a dynamical simulation, and the

wall would in fact run away without additional friction effects.
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We will write the distribution function as5

fa(p, ξ) = faeq(p, ξ) + δfa(p, ξ) , faeq =
1

exp [pµu
µ
pl(ξ)/T (ξ)] ± 1

∣
∣
∣
∣
Ea=p2+m2

a

, (3.14)

with the plus sign for fermions, and the minus sign for bosons. For now, we will assume that the

temperature T and fluid profile uµpl, as well as the scalar field profile are all known (in practice the

Boltzmann equation and the scalar field, temperature and fluid equations are solved iteratively).

We will assume that deviations from equilibrium are small |δfa| ≪ faeq, which will greatly simplify

the computation (the validity of this assumption can be checked in WallGo). While such nonlinear

contributions were also considered in [99], their effect on the wall velocity was small for the benchmarks

considered there.

The evolution of the distribution function in the wall frame is given by the Boltzmann equation

(

pµ∂µ +
1

2
∇m2

a · ∇p

)

fa(p, xµ) = −Ca[f ] , (3.15)

where the second term denotes the classical force term that the particles experience due to the mass

change caused by the passing wall. The collision term Ca of particle a describes the interactions

between the particles in the plasma and ensures that the distributions relax to equilibrium far away

from the wall.6 Here, f without a superscript refers to the full set of distribution functions. The

dependence of the collision term on the particle distribution functions makes this system very difficult

to solve in practice. In turn, the assumption that the δfa are small allows for linearising the Boltzmann

equations which greatly simplifies the problem. After the linearisation, the Boltzmann equation in

terms of ξ becomes
(

−pµūµw∂ξ −
1

2
∂ξ(m

2
a)ū

µ
w∂pµ

)

δfa = −Clin
ab [δf

b] + Sa , (3.16)

where the source term Sa contains the contributions from the equilibrium distribution

Sa =
(

pµū
µ
w +

1

2
∂ξ(m

2
a)ū

µ
w∂pµ

)

faeq , (3.17)

and the definition of the collision term Clin
ab [δf

b] can be found in eq. (C.2). The linearised Boltzmann

equation contains mixing in the collision term. Hence, particle b in eq. (3.16) is not necessarily equal

to particle a, and we imply a sum over index b. This mixing effect is usually not considered in

computations of vw.

To render the Boltzmann equations in a numerically solvable form, we follow the procedure devel-

oped in [52]. This procedure differs from the seminal work of [45] in the description of the distribution

5Particles such as the Higgs, quarks, and transverse gluons develop gauge-invariant poles at large momenta p
2 ∼ T 2;

these can be interpreted as thermal masses. In defining fa,eq, we have implicitly included all such thermal masses to

one-loop. See [91] for a discussion on avoiding double-counting.
6Far away from the wall, the masses are constant in time, and the equilibrium distribution solves the Boltzmann

equation exactly.
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functions which uses the so-called fluid ansatz and takes three moments of the Boltzmann equations to

obtain kinetic equations for the quantities that parameterise the deviation of equilibrium: the chemi-

cal potential, the temperature, and the fluid velocity.7 In [52] however, the distribution functions are

expanded on the orthogonal basis of Chebyshev polynomials, Ti, and read

δfa(χ, ρz, ρ‖) =
M∑

i=2

N∑

j=2

N−1∑

k=1

δfaijkT̄i(χ)T̄j(ρz)T̃k(ρ‖) , (3.18)

where the compact coordinate χ corresponds to the distance from the wall ξ, ρz to the momentum

perpendicular to the wall pz, and ρ‖ to the momentum parallel to the wall p‖, mapped to the interval

[−1, 1]. See the end of this subsection and eq. (3.29) below for details). The number of basis poly-

nomials in the spatial direction is M and in the momentum direction is N . Utilizing the so-called

restricted Chebyshev polynomials

T̄i(x) =







Ti(x)− T0(x), i even ,

Ti(x)− T1(x), i odd ,
(3.19)

T̃i(x) = Ti(x)− T0(x) , (3.20)

ensures that the δfa vanish for ξ, pz → ±∞ and p‖ → ∞. The convergence of the approximation by

expanding in polynomials is exponential in the number of basis polynomials (this is demonstrated in

section 5.1). Thus, one can approximate the δfa with any desired accuracy.

The virtue of this parameterisation is that the Boltzmann equation reduces to an algebraic equation

of the coefficients δfaijk, viz.

∑

i,j,k

{

∂ξχ
[

Pw∂χ − γw
2
∂χ(m

2)(∂pzρz)∂ρz

]

T̄i(χ)T̄j(ρz)T̃k(ρ‖)δf
a
ijk

+ T̄i(χ)Clin
ab

[

T̄j(ρz)T̃k(ρ‖)
]

δf bijk

}

= Sa(χ, ρz , ρ‖) . (3.21)

The algebraic equation has (M−1)(N−1)2 coefficients, δfaijk, from the parametrisation in eq. (3.18).

They can be uniquely fixed by demanding that the algebraic equation holds on a discrete grid of points,

(χ(α), ρ
(β)
z , ρ

(γ)
‖ ):

χ(α) = − cos
(πα

M

)

, α = 1, · · · ,M − 1 , (3.22)

ρ(β)z = − cos
(πβ

N

)

, β = 1, · · · , N − 1 , (3.23)

ρ
(γ)
‖ = − cos

( πγ

N − 1

)

, γ = 0, · · · , N − 2 . (3.24)

7This approach was generalised to a larger number of moments in [51].
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This precise choice for the grid points ensures the exponential convergence of the spectral method [52,

100]. See fig. 3 below for a numerical example.

With the choice of the grid, (χ(α), ρ
(β)
z , ρ

(γ)
‖ ), the algebraic equation simply becomes a (dense) matrix

equation,8
(

L[α, β, γ; i, j, k]δab + T̄i(χ
(α))Cab[β, γ; j, k]

)

δf bijk = Sa[α, β, γ] , (3.25)

in the indices {α, β, γ} and {i, j, k}, and where repeated indices are summed. Here, we have defined

the Liouville operator, the collision operator and the source as

L[α, β, γ; i, j, k] ≡ ∂ξχ
(α)
[

P(α,β,γ)
w ∂χ − γw

2
∂χ(m

2)(α)(∂pzρ
(β)
z )∂ρz

]

T̄i(χ
(α))T̄j(ρ

(β)
z )T̃k(ρ

(γ)
‖ ) , (3.26)

Cab[α, β; j, k] ≡ Clin
ab

[

T̄j(ρ
(α)
z )T̃k(ρ

(β)
‖ )
]

, (3.27)

Sa[α, β, γ] ≡ Sa

(
χ(α), ρ(β)z , ρ

(γ)
‖
)
. (3.28)

The derivatives of the basis polynomials arising can be re-expressed in terms of linear combinations

of basis polynomials.

Now that we have the Boltzmann equation in a numerically solvable form, let us discuss the mapping

between compact and physical coordinates in WallGo. For the momentum directions, these are the

same as in [52],

ρz(pz) = tanh
( pz
2T

)

,

ρ‖(p‖) = 1− 2 exp
(

−
p‖
T

)

. (3.29)

This ensures that the solution vanishes exponentially as |p| → ∞, with a decay length of T .

In the spatial direction, WallGo uses a more sophisticated mapping than [52] to better model the

different scales involved in the solution. The solution of the Boltzmann equation should decay expo-

nentially with decay lengths l± when ξ → ±∞, with l− 6= l+ in general (we refer to these regions as

the tails). Furthermore, the source term is only nonzero within the bubble wall, |ξ|<∼Lwall, where

Lwall is the width of the whole wall. The mapping is therefore constructed in such a way that these

three scales are properly resolved.

In practice, the scales l± are estimated from the wall velocity and the parameter meanFreePathScale,

which must be provided by the user; see section 5.2 for details on how to choose this parameter prop-

erly. Then, WallGo estimates the parameter LGrid ∼ Lwall from the field profiles φi(ξ). The mapping

also depends on the parameters smoothing and ratioPointsWall, which control how smooth the

transition between the different regions is and the approximate ratio of points used to resolve the wall

in the interval ξ ∈ [−LGrid, LGrid]; see section 5.3 for more details.

8The ordering of the indices here is the same as in WallGo. Note, that the index ordering in WallGoCollision is

transposed, i.e. Cab[α, β; j, k] → Cab[j, k;α, β].
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3.4. Collision terms

In the Boltzmann equation for a given particle species labelled by a, the collision term describes the

rate at which particles a with given momentum P1 are lost and created due to elastic and inelastic

scattering processes. In principle, there exist collision processes which take an initial a particle and

Nin − 1 other particles into a final state of Nout particles, i.e. a process Nin → Nout. However, at

leading logarithmic order, only 2 → 2 scatterings contribute [101–103]; see section 3.4.1.

The linearised collision terms are linear functionals acting on a set of distribution functions. In

principle, these distribution functions carry all the quantum numbers of the corresponding particles,

but in cases where certain quantum numbers are irrelevant to the scattering, they can safely be

averaged over, e.g. for helicity in QCD. We label the distribution functions by an index a, b, c, .., each

denoting a group of degrees of freedom, potentially averaged some quantum numbers. Then, the

linearised collision term appearing in eq. (3.21) is given by

Clin
ab [T̄j(ρz)T̃k(ρ‖)] =

1

4

∑

cde

∫

p2,p3,p4

1

2E22E32E4
(2π)4δ4(P1 + P2 − P3 − P4) (3.30)

× |Mac→de(P1, P2;P3, P4)|2faf cfdf e
(
δabF

c
a + δcbF

a
c − δdbF

e
d − δebF

d
e

)
T̄j(ρz)T̃k(ρ‖) ,

where ρz and ρ‖ are the momenta of the b-particle. We have also introduced the notation

F a
b =

eEa/T

(f b)2
. (3.31)

By denoting Pa = (Ea,pa), the particles {a, c, d, e} carry four-momenta {P1, P2, P3, P4} in that order.

|Mac→de(P1, P2;P3, P4)|2 are (squared) matrix-elements averaged over the degrees of freedom specified

by index a and summed over all other degrees of freedom specified by c, d, e,

|Mac→de(P1, P2;P3, P4)|2 ≡
1

Na

∑

ai∈a

∑

ci∈c

∑

di∈d

∑

ei∈e
|Taici→diei(P1, P2;P3, P4)|2 , (3.32)

where T is a normal scattering amplitude. The factor of 1
Na

arises from the definition of fa as the

occupancy of a-particles, averaged over the set of unimportant quantum numbers labelled by ai. The

choice of quantum numbers to average over depends on the physical model and situation considered.

Considering gluons, for example, here ai could run over its possible helicities and colours, in which

case Na = 16. Instead considering a left-handed top-quark, averaging over colour and particle and

antiparticle gives Na = 6.

The factor of 1
4 on the right hand side of eq. (3.30) is the product of two factors of 1

2 : one from

the usual relativistic invariant momentum integration factor 1
2Ea

, and the other which is a symmetry

factor if d and e are identical, or a factor which compensates the double-counting in the sum over

species if d and e are different [101,103].

The challenge is now to evaluate the 9-dimensional momentum integral for all n2p(N−1)4 components

of the collision tensor on the grid; see eq. (3.27). The number of out-of-equilibrium particles is denoted
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as np. Fortunately, the task becomes easier because half of the components of Clin
ab [T̄j(ρz)T̃k(ρ‖)] are

redundant,

Clin
ab [T̄j(−ρz)T̃k(ρ‖)] = (−1)jClin

ab [T̄j(ρz)T̃k(ρ‖)] , (3.33)

which follows from the properties of the Chebyshev polynomials. Moreover Clin
ab [T̄j(0)T̃k(ρ‖)] = 0 for

odd j, or when ρz = ρ‖ = 0. In the absence of vacuum masses, the momenta can be rescaled as

Pi → Pi/T , such that the temperature only appears as a pre-factor in front of the collision term:

Clin
ab [δf

b] = T 2Ĉlin
ab [δf

b] . (3.34)

We will use this rescaling in WallGo and leave the inclusion of vacuum masses to future work.

Out of the nine integration dimensions, four are trivial due to the momentum-conserving δ-function.

In appendix C, the final form of the collision integral is derived. The remaining integrals are performed

using a Monte Carlo method, see appendix C.

3.4.1. The leading-logarithmic approximation

In the integration of collision terms, kinematic enhancements can increase the parametric size of

certain terms over the naive expectation based on counting powers of couplings. In particular, the

dominant processes involve 2 → 2 scatterings of small angle θ, for which the cross-section behaves as

dσ ∼ dθ
θ . Thermal screening softens the divergence at small θ, and leads to a multiplicative O(| log g|)

logarithmic enhancement dependent on the screening length [101–103].

State-of-the-art wall velocity computations use the leading-log approximation when calculating the

collision rates [52]. Such an approximation correctly accounts for all terms which are logarithmically

enhanced due to the small angle scatterings, and may truncate or otherwise distort terms which

are not so enhanced. We adopt one particular, common implementation of the leading-logarithmic

approximation, wherein masses of the external particles are neglected, and internal lines are regulated

by asymptotic thermal masses.9 This approximation was found to lead to an overestimate of the quark

diffusion constant by 50% [102], consistent with the expected O(| log g|−1) relative errors.

Asymptotic thermal masses result from soft resummation on the lightcone. Such resummation

becomes necessary when not all momentum components are taken as soft (Pµ ∼ gT ) but rather

P 2 ∼ (gT )2 [103,104] and therefore close to the lightcone. This also happens in a hard regime where

P ∼ T which is the case for the hard momenta assumed in the matrix elements. The corresponding

resummation near the lightcone gives rise to a modified dispersion relation ω2 = k2 + m2
∞, where

we denote m∞ as the corresponding asymptotic mass. For scalars, asymptotic and (static) thermal

masses coincide but are genuinely different for vector fields and fermions and at LO are

m2
V ,∞ =

1

2
m2

D , m2
q,∞ = 2m2

q , (3.35)

9In some of our model files, we deviate from this prescription to reproduce results obtained in the literature.

22



where mD is the corresponding Debye mass and mq the standard fermionic thermal mass. See [105]

for the asymptotic masses of vector fields at LO and NLO for generic models. If not stated otherwise,

we employ asymptotic masses throughout our analyses.

Going beyond leading logarithmic accuracy introduces a number of new phenomena and compu-

tational difficulties [102, 103]. Collision integrals for naively forbidden 1 → 2 scatterings must be

included, momentum dependence and scalar field background dependence must be resummed in the

particle self-energies, and gauge and fermion fields experience non-local Landau damping. Including

these effects is beyond the scope of the current work, but we foresee an investigation of effects beyond

leading logarithmic approximation in an upcoming publication.

4. What happens in the code

WallGo consists of three parts:

• WallGoMatrix, a Mathematica code that determines the matrix elements,

• WallGoCollision, a C++ code (with Python wrapper) that computes the collision integrals,

• WallGo, the Python code that that solves the Boltzmann equations and equations of motion of

the scalar field(s).

Detailed documentation of the code can be found in the online documentation, https://wallgo.

readthedocs.io. In this section, we will merely give a compact overview of the different parts of the

code and how they depend on each other.

4.1. WallGoMatrix

WallGoMatrix is a Wolfram Mathematica tool that generates matrix elements needed for out-of-

equilibrium computations in the WallGo framework. In WallGo, users can supply their own matrix

elements or generate them using WallGoMatrix. The model generation in WallGoMatrix is based on

DRalgo [1]. The procedure to generate matrix elements is:

(i) Loading packages: WallGoMatrix requires the files WallGoMatrix.m, matrixElements.m, and

modelCreation.m along with its dependency on GroupMath. Load the package by setting the

directory and using the command <<WallGoMatrix’.

(ii) Defining the model: Define gauge groups (e.g., SU3 and SU2) and particle representations.

Fermion and scalar representations are specified using their Dynkin coefficients.

(iii) Spontaneous symmetry breaking: The tool supports spontaneous symmetry breaking by

defining the VEV of scalars. Use the command SymmetryBreaking[vev] to display an indexed
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Figure 1: Diagram showing the main parts and functions required to compute the bubble wall velocity

for a given particle physics model. The main WallGo package solves for the wall velocity with input

from the WallGoCollision package, which in turn has input from the WallGoMatrix package.

list of particles according to their symmetry-breaking-induced masses. This command is needed

if couplings are VEV-dependent or if one wants to use the CreateParticle command.

(iv) Specifying particles: Particles that can be taken in- or out-of-equilibrium are specified by cre-

ating their representations and grouping them into distributions using e.g. the CreateParticle

command. For example, left- and right-handed quarks, gluons, and scalar Higgs particles can

be defined this way. See listing L.39 or the example 2scalars.m for scenarios that bypass the

CreateParticle command.

(v) Generating matrix elements: Matrix elements for specific particles are generated with the

command ExportMatrixElements. Options for normalisation, truncation at leading logarithmic

24

https://github.com/Wall-Go/WallGoMatrix/blob/main/examples/2scalars.m


order, and output formats (e.g., .json, .txt) are available through the OptionPattern.

The corresponding main functions of WallGoMatrix are documented in appendix A. Appendix B

details the internal computation of the matrix elements. Here, we exemplify a typical matrix element

file which can be used to compute the collisions—for QCD given in the example qcd.m. In this

scenario, only the top quark is out-of-equilibrium, and only strong interactions are included in the

matrix elements.

The WallGoMatrix default format is .json and consists of two main keys pointing to arrays

L.11

{

"particles": array,

"matrixElements": array

}

The particles array contains a list of particle objects, where each particle is defined by its index and

name

L.12

"particles":[

{

"index": number,

"name": string

}

]

While the naming does not need to match the naming in the WallGo model file, the indexing should.

For QCD this corresponds to

L.13

"particles":[

{

"index":0,

"name":"Top"

},

{

"index":1,

"name":"Gluon"

},

{

"index":2,

"name":"LightParticle"

}

]
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where the LightParticle contains all light quarks.

The matrixElements array contains objects that define the interactions between external particles,

the matrix elements. Each object has the following properties:

L.14

"matrixElements":[

{

"externalParticles": array[number],

"parameters": array[string]

"expression": string

}

]

The order in the externalParticles array corresponds to the particles a, c, d, e in eq. (3.30). Strictly

speaking, only the out-of-equilibrium particles need to appear on the first index. Matrix elements with

in-equilibrium particles on the first index will simply be ignored. For the example of QCD, [0,1,0,1],

denotes scattering of a top quark with a gluon. Concretely, the output corresponds to

L.15

"matrixElements":[

{

"externalParticles":[0, 0, 0, 0],

"parameters":["gs","mg2"],

"expression":"(16*gs^4*(_s^2 + _t^2))\/(3*(mg2 - _u)^2) + (16*gs^4*(_s^2 + _u^2))\/(3*(mg2 -

_t)^2)"

},

{

"externalParticles":[0, 1, 0, 1],

"parameters":["gs","mg2","mq2"],

"expression":"(-64*gs^4*_s*_u)\/(9*(mq2 - _u)^2) + (16*gs^4*(_s^2 + _u^2))\/(mg2 - _t)^2"

},

{

...

},

{

"externalParticles":[1, 1, 1, 1],

"parameters":["gs","mg2"],

"expression":"(18*gs^4*(_s - _t)^2)\/(mg2 - _u)^2 + (18*gs^4*(_s - _u)^2)\/(mg2 - _t)^2"

}

]

The strong coupling constant, gs, is the only relevant coupling and must match the corresponding

name in WallGo. If other couplings or parameters are involved, they must be specified for each matrix

element. The Mandelstam variables are represented by _s, _t, _u, while mq2, mg2 denote the masses of

quarks and gluons in the propagators. In the leading-log approximation, these masses can be treated
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as thermal masses.

4.2. WallGoCollision

Collision integrations are typically by far the most computationally intensive part of the WallGo wall

velocity pipeline. WallGoCollision performs the integrations and related operations in native C++

for maximal performance and versatility. WallGoCollision compiles to a Python extension module

for seamless interoperation with the main WallGo package, but can also be used as a pure C++ library.

The purpose of WallGoCollision is to compute elements of the collision tensor (3.27). Integrals

on different grid points are fully independent and parallelise trivially. WallGoCollision supports

OpenMP for parallel evaluation with shared memory, and has been tested on up to 96 cores.

To compute collision integrals with WallGoCollision, the user has to

(i) Create a PhysicsModel object containing your particle and model parameter definitions. This

should include all particles and parameters that appear in your collision matrix elements, in-

cluding any light species that can be approximated as remaining in equilibrium but still appear

as external particles in collision processes involving out-of-equilibrium particles.

(ii) Load in matrix elements to the model in a symbolic form. The Mandelstam variables have to

be denoted as _s, _t, _u. The assumed physics conventions are as in (3.32). The output files of

WallGoMatrix can be used directly as long as the model definition is compatible.

(iii) Use the model to create a CollisionTensor object and pass it the size N of your momentum

grid. CollisionTensor holds the integrals in an unevaluated but otherwise ready form.

(iv) Call computeIntegralsAll() from your CollisionTensor object to perform the integrations.

Once finished, the results can be stored in binary .hdf5 format and loaded into the WallGo

Boltzmann solver.

Unless otherwise specified, all classes described in this section can be found in the WallGoCollision

Python module, and in the wallgo namespace in native C++ application programming interface (API).

Model definition in step (i) is done by filling in a ModelDefinition helper object and passing it

to the PhysicsModel constructor. Parameters must be defined as (name, value) pairs; for example,

to define symbol “g” with initial value 0.42: modelDefinition.defineParameter("g", 0.42). Any

appearance of the symbol g in matrix elements will then be replaced with value 0.42 during collision

integration. Dimensionful parameters must always be given in units of the temperature. In particular,

particle masses appearing in propagators of matrix elements are also treated as “model parameters”

and must be given as dimensionless, floating point numbers.

A particle species is defined by passing a ParticleDescription object to your ModelDefinition

instance. A ParticleDescription consists of a unique string name, unique integer identifier, match-

ing the index of the matrix element file, type specifier (boson or fermion) and a flag for keeping the
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particle species in thermal equilibrium. The last property can be used to reduce the number of collision

integrations for models containing particle species for which deviations from equilibrium are negligible.

The default behavior is to treat all particles as ultrarelativistic (Ei = |pi| during integration). This

allows for heavy performance optimisations in collision integration. To go beyond the ultrarelativistic

approximation, you can specify a mass function that computes the mass-square of this particle species

from given model parameters, again in units of the temperature.

WallGoCollision performs the integrations using the Vegas algorithm [106] which is an adap-

tive Monte Carlo integrator.10 Configuration settings for the integrator are available in the class

IntegrationOptions, including the upper limit to use for momentum integration and error toler-

ances for the Monte Carlo method. They can be passed to a CollisionTensor object by calling its

setIntegrationOptions() function.

Examples of collision generation can be found in the WallGo Models folder. In all these exam-

ples, the collision generation and the computation of vw are combined, though they can also be run

independently.

Limitations The release version of WallGoCollision comes with the following limitations regarding

the physics content:

• Only 2 → 2 collision processes are supported.

• All momentum dependence in the matrix elements must be expressed in terms of the Mandelstam

variables s, t and u.

• All physics parameters that appear in the matrix elements must be constant, floating point

valued numbers. Dimensionful parameters must be given in units of the temperature. Concretely,

WallGoCollision works in units of T = 1. The limitation is thus that parameters that vary

along the momentum or position grid are not supported.

The first two limitations are important for going beyond the leading logarithm approximation. The

relevance of the third limitation is model dependent.

4.3. WallGo

Now that the collision terms have been computed, WallGo can be used to compute the wall velocity.

In this subsection, we will discuss certain details of this computation. The computation is performed

by a number of classes, such as Thermodynamics, EOM, BoltzmannSolver, etc. The user does not need

to keep track of all these classes, as this is done by the WallGoManager class, which initialises them in

the appropriate order. In what follows, we will refer to the instance of the WallGoManager as manager.

We will now give some more details about the computation, mainly focussing on the steps the

user needs to perform for computing the wall velocity. A more detailed documentation can be found

10Internally we use the GSL [107] implementation of Vegas.
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in https://wallgo.readthedocs.io, which will also be up to date with the most recent release of

the code. For illustration, we also refer the users to the examples in the Models folder. Note, that

most of the examples rely on the file Models/wallGoExampleBase.py, which gives a template for the

computation with a specific model.

Configuration To compute vw, WallGo needs a number of model-independent configuration set-

tings, such as the size of the grid on which the momentum and position are discretised, and er-

ror tolerances. These are stored in a Config object in the WallGoManager class, which is ini-

tialised with reasonable default values with WallGo.Config(). This class contains an instance of

the smaller dataclasses ConfigGrid, ConfigEOM, ConfigHydrodynamics, ConfigThermodynamics and

ConfigBoltzmannSolver, which contain settings for the corresponding class. Each individual set-

ting can be accessed with, for example, config.configGrid.momentumGridSize. Users can also read

in a custom configuration file by running config.loadConfigFromFile(<Path to configuration

file>). See the Models/ManySinglets/manySingletsConfig.ini file for a concrete example of a

configuration file that can be loaded by Config. It also contains a list of all the parameters stored in

the Config class. The user’s custom configuration file should have the same format as this example

(note that if some settings are absent from the file their value will not be updated compared to their

default value), which can be found in the source code and the online documentation. WallGo throws

an error and crashes if the path is not correct. Let us also stress that the number of Chebyshev

polynomials momentumGridSize must always be odd.

Setting up the WallGoManager To prepare the manager to compute the wall velocity, the user

must call manager.setupThermodynamicsHydrodynamics(),11 which creates and initialises the ob-

jects Thermodynamics and Hydrodynamics required for the calculation. This function takes as pa-

rameter a PhaseInfo object (to be described in the next paragraph) and a VeffDerivativeScales

object. This data class contains the two model-dependent quantities

• temperatureVariationScale: the temperature scale over which the potential changes by O(1)

(often Tc − Tn is a good estimate). This number is used to estimate the step size in the phase

tracer and when taking the temperature derivatives of the potential. If it is chosen too large,

WallGo could crash as the phase tracer tries to probe a region where the phase no longer exists.

It might also falsely return a run-away wall. If it is chosen too small, the phase tracing will take

longer than necessary. In both cases, the temperature derivatives will become less accurate.

• fieldValueVariationScale: the field scale over which the potential changes by O(1). This

can be given as an array with the length of the number of fields, or as a single float. Usually,

the value of the VEV is a good estimate. Choosing a too large or too small value will result in

11The object manager.config must contain the desired settings before calling this function. The settings can be

changed individually or by loading a configuration file (see discussion in the previous paragraph).
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inaccuracies in the derivatives, though the effect should be minimal dependence if the order of

mangitude is correct.

These parameters are used by WallGo to ensure that it uses an optimal step size when computing the

derivatives of the effective potential by finite differences.

Phase information WallGo needs to know between which two phases the phase transition takes

place, and at what temperature. This input is provided via a WallGo.PhaseInput object, which is a

data class, holding the nucleation temperature, and the (approximate) values of the VEVs of all fields

in the two phases. The high-temperature (outside) phase is listed before the low-temperature (inside)

phase. Once manager.setupThermodynamicsHydrodynamics() has been called, the precise position

of the phases is then determined. It is verified that the phases are not identical, and that the potential

energy of the low-temperature phase is smaller than the potential energy of the high-temperature

phase. If any of these conditions fails, an error will be thrown and the computation cannot continue.

Note, that it is the responsibility of the user to choose an appropriate nucleation temperature, as

WallGo does not perform additional checks.

WallGo now traces the positions of the fields in the minima for the two phases as a function of the

temperature. This serves two purposes. First, it determines for both phases the temperature range

for which they exist, obtaining a maximum and minimum temperature for both. Second, it constructs

an interpolated function of the value of the effective potential along the way, which speeds up the

computation. To limit the time spent on this step, the phases are not traced over their entire range

of existence. The minimum and maximum temperature are determined by the configuration file. If a

too small maximum temperature is chosen, the wall velocity might not be found (WallGo will print a

warning if the choice of maximum temperature restricts the range of vw).

Registration of the model and the effective potential The user needs to define a model, and

register it with the WallGoManager by running manager.registerModel(model). The model inherits

from the abstract base class GenericModel. It needs to have the following properties:

• outOfEquilibriumParticles: a list of all the out-of-equilibrium particles that enter the friction

and Boltzmann equations. See section 2.1 for a concrete example of an object of the Particle

class. The particles are labeled by a string identifier, e.g. "top". The index should correspond

to the index in the corresponding matrix elements file. msqVacuum denotes the mass squared

without thermal corrections and msqDerivative its field-derivative. statistics should be equal

to "Boson" or "Fermion". totalDOFs is the total number of degrees of freedom. E.g. tor a top

quark with only SU(3) interactions this would be 12, but if we distinguish left-handed and right-

handed top quarks they would both have 6 DOFs. The particles are added to the model with

the GenericModel member function addParticle.
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• fieldCount: property function that returns the number of (scalar) fields participating in the

phase transition.

• getEffectivePotential: a member function which returns the effective potential for the field(s)

undergoing the phase transition (see below).

Typically, users will add additional functions and properties to the model, such as modelParameters

and a function converting input parameters to model parameters.

The effectivePotential is also constructed by the user. It should have the same fieldCount as

the model and it should have a member function evaluate, which gives the value of the potential as

a function of the field(s) and temperature. Usually, the potential uses the same modelParameters as

the model, but this is implemented by the user. The effectivePotential should also contain an

estimate of the relative error of the potential in effectivePotentialError. Note, that it is important

to include field-independent contributions to the effective potential (e.g. the T 4 contribution). These

terms are essential for a correct description of the hydrodynamics of the plasma. Initialisation of the

potential class is done inside of the model.

Some functions that are commonly used in the construction of the effective potential are collected in

src/PotentialTools/EffectivePotentialResum, such as the Coleman-Weinberg potential and the

one-loop thermal functions Jb,f . See e.g. the Inert Doublet and xSM model files for examples. The

xSM model file also demonstrates how one can load a custom table for the Jb,f (we do not advise this

in principle, since WallGo has its own interpolation tables, but we can imagine that this is useful for

comparing to other implementations).

Computation of the wall velocity The wall velocity and wall parameters can now be computed.

For deflagration or hybrid solutions, one calls manager.solveWall(WallSolverSettings), where

WallSolverSettings is a data class containing the parameters

• bIncludeOffEquilibrium: boolean which determines whether the out-of-equilibrium contribu-

tions should be included (True) or not (False),

• meanFreePathScale: an estimate of the longest mean free path of out-of-equilibrium plasma

particles, given in units of 1/Tn. This number is used to estimate the extent of the solution for

δf (see section 5.2 for more details). The default value is 50, which is roughly equal to 1/α2
s ,

with αs the strong coupling constant. In models having weaker interactions, this value likely has

to be adjusted.

• wallThicknessGuess: an initial guess of the wall thickness, given in units of 1/Tn. This number

is model-dependent, but should be larger than 1 in order for a gradient expansion for the bubble

wall to be appropriate. The default value is 5.
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The function solveWall relies on the fact that the pressure is an increasing function of vw when

vw < vJ . This ensures that any deflagration or hybrid solution, if it exists, will be unique and can

be bracketed between 0 and vJ .
12 This property allows for the use of fast and robust root-finding

algorithms such as Brent’s method. It is first verified that the pressure at the minimum velocity is

negative, and positive at the maximum velocity. If the minimum pressure is positive, this indicates a

problem in the effective potential, as the low-temperature phase should have lower potential energy

than the high-temperature phase. WallGo will return a WallGoResults object with solutionType =

ESolutionType.ERROR. If the maximum pressure is negative, the friction is not large enough to stop

the wall from accelerating and WallGo will return solutionType = ESolutionType.RUNAWAY as this

typically means that the wall would continue accelerating until reaching runaway speeds. If the

pressures do have the correct sign, the wall parameters are determined by finding the solution which

yields zero pressure on the wall. For every attempted vw, the pressure is computed by solving the

Boltzmann equation and minimising the action (3.10) with a relative error tolerance for the pressure

defined in WallGo.config. The maximum number of iterations for finding the pressure for a particular

value of vw is also specified in WallGo.config.

The solveWall function returns a WallGoResults object, containing parameters such as the wall ve-

locity and width(s), but also the solution to the Boltzmann equation and the hydrodynamic boundary

conditions. The results for wall velocity, widths and offsets can be assessed via results.wallVelocity,

results.wallWidths and results.wallOffsets, respectively. results.wallVelocityError gives

an estimate of the error of vw, resulting from the finite grid size in the Boltzmann solver. WallGo will

throw a warning if the truncation error is estimated to be large. Whenever this happens, the user

could increase the momentum or position grid size or adjust meanFreePathScale.

To find the wall velocity for a detonation, vw > vJ , one calls manager.solveWallDetonation().

For detonations, the pressure is generally not a monotonous function of vw, and one can therefore find

several solutions with zero pressure. In practice, only the roots with increasing pressure with respect

to vw are stable, so the function will only return these roots in a list of WallGoResults objects. Even

if it is technically possible to have several stable solutions for the same model, most cases will either

have zero or one solution. To avoid loosing time looking for a second root that usually does not

exist, the user can pass the parameter onlySmallest=True, which will force the solver to stop the

calculation after finding the first root with the smallest vw.

Three situations can prevent manager.solveWallDetonation() from finding a solution—each re-

turning a list containing a single WallGoResults object with attribute

• solutionType = ESolutionType.RUNAWAY. If the pressure is consistently negative, the friction

from the plasma is insufficient to stop the wall, leading to a runaway solution. Note, a deflagra-

tion or hybrid solution may exist but will not be returned here.

12The allowed velocity range is determined by Hydrodynamics. In principle it is given by vw ∈ [0, vJ ], but for strong

phase transitions a minimum velocity might exist, and for a limited range of existence of the thermodynamic phases, the

maximum velocity might be smaller than vJ .
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• solutionType = SolutionType.DEFLAGRATION. If the pressure is consistently positive, friction

is too strong to allow for a detonation or runaway solution. Here, the returned object indicates

that only deflagration or hybrid solutions are possible.

• solutionType = ESolutionType.DEFLAGRATION_OR_RUNAWAY. If the pressure is positive at vw =

vJ and negative at vw = 1, and if there is no stable solution (there is however an unstable one),

the outcome is uncertain and would require a time-dependent analysis.13

A third option for the computation of vw is WallGoManager.wallSpeedLTE, which returns an

approximation of the wall velocity, given by local thermal equilibrium, using hydrodynamics only.

This function should give approximately the same result as manager.solveWall(bIncludeOffEq =

False), but is much faster. Note, that this function will never return a detonation solution.

The kinetic energy fraction One of the goals of WallGo is to improve the prediction of GW signals

generated in FOPTs. An essential parameter in this prediction is the energy budget K [13, 27,32,63]

for GWs from sound waves. This quantity describes the ratio of kinetic energy in the fluid to the

energy density of the symmetric phase. It can easily be obtained from the Hydrodynamics module

of WallGo, which returns the related efficiency factor κ via Hydrodynamics.efficiencyFactor(vw).

The energy budget is then obtained from

K =
3αnwn

4en
κ , (4.1)

where the subscript n denotes that the quantity is evaluated at the nucleation temperature. αn denotes

the strength of the phase transition, and we use the definition of [64,65].

Units WallGo works with natural units, but otherwise does not enforce units. The user can thus

choose units that are appropriate for their physics application, by defining the effective potential and

giving input such as the nucleation temperature, mass parameters and field expectation values in the

units of choice (e.g. GeV, TeV). The only constraint is that one has to use the same units throughout

the whole calculation.

Some functions will ask for quantities given in particular units. If that is the case, it will be clearly

stated in the documentation. For example, the WallSolverSettings data class, which is used as

input by manager.setupWallSolver(), requires the meanFreePathScale and wallThicknessGuess

to be given in units of 1/Tn.

13The positive pressure at vw = vJ should in principle stop the wall from accelerating and force it to be a deflagration

or hybrid solution. But if for some reason the wall is able to overcome this pressure barrier (which can happen in a

time-dependent analysis) and reach the region with negative pressure, the wall will become a runaway solution.
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Multithreading To increase performance, WallGo can be run in parallel to analyse multiple models

at once. This can be especially helpful when doing a scan of the parameter space where many

parameter points must be sampled. However, many numpy and scipy functions used by WallGo

use multiple threads by default, which saturates the CPU and makes running WallGo in parallel very

slow. Furthermore, these multithreaded functions must create and destroy threads frequently, which

creates a lot of overhead and renders it quite inefficient. Therefore, we strongly suggest the user to

turn off numpy’s multithreading. This can be done by running the following before importing numpy,

scipy or WallGo:

L.16

import os

os.environ[’OPENBLAS_NUM_THREADS’] = ’1’

when using OpenBLAS, or

L.17

os.environ[’MKL_NUM_THREADS’] = ’1’

for MKL (whether OpenBLAS or MKL is used can be found by running numpy.__config__.show()).

However, some integrated development environments (IDEs) use their own multithreading settings, in

which case the previous command might not work.

5. Convergence tests

As with any numerical solver, usage of WallGo depends on a number of meta-parameters, which

determine the accuracy of the results. These enter both in the calculation of the collision integrals,

and in the solution of the coupled hydrodynamics, scalar field and Boltzmann equations.

In what follows, we test the dependence of the bubble wall speed on all the most relevant meta-

parameters. Unless otherwise stated, we plot the results of these tests for one benchmark point in

the Standard Model with singlet scalar, explained below in section 6.1. Our default benchmark point

(BM1) has

ms = 120 GeV , λhs = 0.9 , λs = 1 , (BM1)

where ms is the singlet mass, λhs the portal coupling and λs the self coupling. The specific implemen-

tation can be found in Models/SingletStandardModel_Z2/singletStandardModelZ2.py.

5.1. Testing convergence in the number of basis polynomials

Perhaps the most crucial meta-parameters are the integer basis sizes M , the spatial basis size or

spatialGridSize, and N , the momentum basis size or momentumGridSize. These must be sufficiently
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Figure 2: Convergence for the bubble wall speed, at our parameter point (BM1) in the xSM, as the

numbers of basis polynomials in the spatial (M) and momentum (N) dimensions are increased. The

rate of convergence is expected to be exponential for sufficiently large N and M . The dot-dashed line

highlights the result for largest N and M . All points with N > 20 were computed on a cluster.

large to resolve the length and momentum scales present in the system. For sufficiently large M and

N , the spectral method that we adopt leads to exponential convergence to the continuum limit.

We estimate truncation error of the spectral decomposition by the magnitude of the last coefficient

in the Chebyshev basis. This follows Boyd’s Rule of Thumb [100], and should give the correct order

of magnitude as long as the convergence in M and N is exponential rather than power-like. For one

benchmark point in the xSM, the deviation of vw as a function of N and M is shown in figure 2. At

this benchmark point, the errors due to finite M and N are reduced to a few percent for M & 20 and

N & 10. Fits of the form δvw(M) = a e−bM and δvw(N) = c e−dN yield reasonably good agreement

with b ≈ 0.15 and d ≈ 0.36 respectively, as can be seen in figure 3. However, these values are not

universal.

For additional insight into the approach to the continuum limit, in WallGo we also solve the Boltz-

mann equation using a finite difference method, in addition to the spectral method. The finite differ-

ence method is accurate up to O(M−2) and O(N−2) and hence its asymptotic convergence is much

slower than the spectral method. It is therefore expected that, for sufficiently large M and N , dif-

ferences between the two methods should be larger than the intrinsic truncation error of the spectral

method. WallGo therefore throws a warning if this is not satisfied, and requests a larger basis set.
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Figure 3: Exponential fits to the rate of convergence for the bubble wall speed, at our parameter

point (BM1) in the xSM, as the numbers of basis polynomials in the spatial (M) and momentum (N)

dimensions increase. In computing these data, the error tolerance for the wall speed calculation was

set to 10−3, establishing a floor for the exponential convergence of the data.

5.2. Dependence on meanFreePathScale

An important parameter that the user has to select is meanFreePathScale. It enters in the Grid

object via the definition of the mapping between the physical spatial coordinates z and the compact

ones χ(z), cf. section 3.3. An optimal choice would be similar to the asymptotic decay length of the

Boltzmann equation’s solution when evaluated at a slow wall velocity. In other words, if the solution

behaves like δf(vw → 0, z → ±∞) ∼ exp(∓z/l), then the optimal choice for meanFreePathScale is

l. With the chosen z → χ(z) mapping and for the optimal choice of the meenFreePathScale, the

solution expressed in the χ coordinates will be a straight line close to the boundaries at χ = ±1.

This ensures that, in the χ coordinates in which the Boltzmann equation is solved, the solution is as

smooth as possible which makes it easier to resolve.

In principle, the asymptotic decay length l of the solution is completely determined by the collision

operator C[f ]. Therefore, the optimal meanFreePathScale should only depend on the matrix elements.

Furthermore, if only strong interactions are included in the matrix elements, a simple estimate gives

us l ∼ 1
α2
sTn

∼ 70/Tn.
14

A simple way to test whether the chosen value of meanFreePathScale is adequate is to plot the

solution of the Boltzmann equation in the χ coordinates. This can be done from a WallGoResults

14If other interactions are included, α2
s can simply be replaced by the relevant couplings. For having the Standard

Model W s out of equilibrium, the relevant couplings would be αwαs. This corresponds to slower decay than decay from

the strong interaction, and is thus relevant to l.
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Figure 4: Left: Value of the function ∆00(χ) for the top quark obtained by solving the Boltzmann

equation with M = 50 and vw = 0.1. Three different values of meanFreePathScale were used (shown

in the legend). Right: Variation of the wall velocity obtained by varying meanFreePathScale with

four different values of M .

object with

L.18

WallGoResults.Deltas.Delta00.coefficients[a]

which returns the values of the function ∆a
00(χ

(α)) on the χ(α) grid coordinates. The latter can be

accessed via

L.19

WallGoResults.Deltas.Delta00.grid.chiValues

The left side of figure 4 shows an example of a solution for the xSM (BM1) where only the top

quark was considered to be out-of-equilibrium, and only including the strong interaction in the matrix

elements. Three solutions are shown, computed with three different values of meanFreePathScale.

Note that all three curves are meant to represent the same physical solution on z; only the mapping

z → χ(z) is different.

From this figure, it is quite apparent that the value meanFreePathScale = 500/Tn is too large to

efficiently represent the solution. The problem is that the solver samples points too far from the wall

where the solution is nearly vanishing. This means that all the points in the intervals χ ∈ [−1,−0.6]

and [0.6, 1] are essentially wasted. It would therefore be possible to get a similar accuracy with a

smaller value of M (and thus a faster calculation) with a better choice of meanFreePathScale. On

the other hand, the value meanFreePathScale = 5/Tn is clearly too small, which causes numerical
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Figure 5: Dependence of vw on different values of smoothing (left) and ratioPointsWall (right) in

the xSM. We used ratioPointsWall = 0.5 in the left plot, smoothing = 0.1 in the right plot, and

meanFreePathScale = 50/Tn for both.

instabilities, appearing as large oscillations in the solution. Here, the solver does not explore the

space far away from the wall, so it cannot resolve the solution’s tails. This causes the solution’s

derivative to become infinite at χ = ±1, ultimately creating these numerical instabilities. Finally, the

value of meanFreePathScale = 50/Tn seems much more adequate (note that it is quite close to our

previous estimate of 70/Tn) as it leads to a smooth solution free from wild oscillations. Furthermore,

the solution only vanishes at χ = ±1 so each point sampled by the solver is actually increasing the

solution’s accuracy.

To understand to what extent the computed wall velocity depends on meanFreePathScale, we vary

it over three orders of magnitude resulting in less than a 2% change in vw; see figure 4 (right) for (BM1).

Even in cases of significant numerical instabilities—such as in the 5/Tn curve of figure 4—the oscil-

lations tend to cancel out, keeping the effect on vw minimal. However, if these instabilities become

excessive, the solution would eventually diverge completely. Therefore, we strongly recommend avoid-

ing these instabilities by choosing an appropriate meanFreePathScale. Additionally, as expected,

increasing M reduces the variation in vw since the larger number of points helps resolve the solution

and makes up for a non-optimal value of meanFreePathScale. Also, all the curves roughly agree on

the wall velocity when meanFreePathScale is between 20/Tn and 100/Tn, indicating that the optimal

value for this model should be in that interval.
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5.3. Dependence on other Grid parameters

We investigate here the effect of the remaining Grid parameters, smoothing and ratioPointsWall,

on the wall velocity in (BM1). The current Grid3Scales (which inherits from Grid) implementation

used by WallGo divides the spatial direction into three distinct regions. The tails of the solution, which

are located in the intervals ξ ∈ (−∞,−LGrid] and ξ ∈ [LGrid,∞) are mapped to the compact intervals

χ ∈ [−1,−ratioPointWall] and χ ∈ [ratioPointsWall, 1], respectively (LGrid is the wall thickness in

the Grid object). The density of points in the tails is set to decay exponentially when ξ → ±∞, with

a decay length set by meanFreePathScale. The density of points in the wall (which is mapped from

ξ ∈ [−LGrid, LGrid] to χ ∈ [−ratioPointsWall, ratioPointsWall]) is set to be roughly constant. The

smoothing parameter controls the transition from one region to the other. In the smoothing → 0

limit, the mapping’s first derivative becomes discontinuous at χ = ±ratioPointsWall. Increasing

smoothingmakes the transitions smoother between the three regions, which removes the discontinuity

introduced by the mapping, but makes the distinction between the regions less clear.

The effect of these two parameters on the wall velocity is shown in figure 5. Varying smoothing by

four orders of magnitude only changes the wall velocity by a maximum of 3%, which shows that the

results are not very sensitive to this parameter. One can still observe that best convergence is attained

with smoothing ≈ 0.1. However, we note that, when meanFreePathScale is much larger than the

wall width, it can be beneficial to increase smoothing up to ∼ 1 to smooth out the large variation of

scales between the different regions. In the right panel of this figure, one can observe that the impact

of ratioPointsWall on the wall velocity is also small, although best convergence is attained when at

least half of the points are used to resolve the wall.

5.4. Dependence on fieldValueVariationScale and temperatureVariationScale

To numerically evaluate derivatives, WallGo needs an estimate of the relevant temperature and field

scale. A poor choice of these parameters might lead to inaccuracies in the interpolated FreeEnergy

object, which can result in problems while solving the wall velocity. The solver might e.g. mistakenly

return a runaway solution, or not be able to find the local thermal equilibrium solution. Typically,

temperatureVariationScale (TVS) can roughly be estimated by the difference of the critical and

nucleation temperatures, and fieldValueVariationScale (FVVS) can be estimated by the VEVs of

the field.

In figure 6 we demonstrate the dependence of vw on these parameters for the Standard Model with

a light Higgs (see section 6.2). For the five different Higgs masses we consider, the difference between

the critical temperature and nucleation temperature is of the order of 0.2 GeV, and the VEV is of

order 60 GeV. In the left panel, we keep the FVVS fixed at 50 GeV, and we vary the TVS from 0.5 GeV

to 5.0 GeV. We see that the value of vw depends only very weakly on the value of the TVS. For a TVS
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Figure 6: Dependence of vw on different values of temperatureVariationScale (TVS, left) and

fieldValueVariationScale (FVVS, right) for the Standard Model with a light Higgs (cf. section 6.2).

of 0.5 GeV however, the wall velocity is not recovered for mh = 34 GeV.15 For a TVS of 5.0 GeV,

WallGo prints a warning:

Warning: the temperature step size seems too large.

Try decreasing temperatureVariationScale.

Moreover, the obtained vw for mh = 70 GeV has a large error bar. The latter is a result of WallGo

not recovering the LTE value of vw, which enters in the truncation error estimate. From this graph we

thus conclude that the optimal choice of TVS is ∼ 1 GeV, slightly larger than the difference between

the critical and nucleation temperature for this model.

The right panel of figure 6 shows the dependence on the fieldValueVariationScale, for a fixed

TVS of 1.0 GeV. We see that we can vary the scale over a much larger range than the TVS; the results

between 2.0 and 500 GeV are almost identical, and the differences are much smaller than the truncation

error. If we choose a smaller value for the FVVS, the phase tracer throws an error. We thus conclude

that the VEV is an appropriate choice for the FVVS, but that the solution is not very sensitive to it.

15For this particular point, the correct wall velocity would be recovered by decreasing the tolerance of the phase tracer.

We have however chosen to keep it fixed at 10−6 for the graph.
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6. Examples beyond the most simple one

6.1. Standard model with singlet scalar

A simple model that renders the electroweak phase transition first-order and is still allowed by ex-

perimental data is the singlet scalar extension (xSM). It is obtained by augmenting the SM with a

new scalar field s, which is not charged under the SM gauge group. To simplify the analysis, one can

impose the singlet field to have an additional Z2 symmetry, in which case the effective potential reads

V eff(Φ, s, T ) = µ2hΦ
†Φ+ λh(Φ

†Φ)2 +
1

2
µ2ss

2 +
1

4
λss

4 +
1

2
λhs(Φ

†Φ)s2

+ VCW(Φ, s) + VT (Φ, s, T ) , (6.1)

where VCW is the Coleman-Weinberg potential, VT the thermal potential, and Φ denotes the Higgs

doublet. This model only depends on three new parameters: the singlet mass in the broken phase

m2
s = −λhsµ2h/(2λh) + µ2s, its self-coupling λs, and its coupling with the Higgs λhs.

We follow here the methodology of [52] and choose a renormalisation scheme where VCW does not

change the scalar fields’ VEVs and masses. We then have

VCW =
∑

a

± na
64π2

{

m4
a(Φ, s)

[

log

(
m2

a(Φ, s)

m̄2
a

)

− 3

2

]

+ 2m2
a(Φ, s)m̄

2
a

}

, (6.2)

where the upper sign is for bosons and lower one for fermions, the sum is over all the massive particles

(which we take to be the top quark, the W and Z bosons, the Higgs, the singlet and the Goldstone

bosons), na is their number of degrees of freedom, ma(Φ, s) their field-dependent mass and m̄a their

mass in the broken phase at T = 0. Finally, the thermal potential is given by the one-loop contribution

VT =
T 4

2π2

∑

a

±na
∫ ∞

0
dy y2 log

[

1∓ exp
(

−
√

y2 +m2
a(H, s)/T

2
)]

− g̃π2T 4

90
, (6.3)

where the second term is the thermal contribution from the massless degrees of freedom, with g̃ =

83.25.

To study the stability of WallGo against a wide range of models, we performed a parameter scan

of the xSM. We used the same data points and nucleation temperatures that were computed in [52],

which were obtained with λs = 1, ms ∈ [62.5, 160] GeV and λhs ∈ [0.5, 1.4]. To compute the wall

velocity, we only considered the top quark to be out-of-equilibrium.

We show the result of this scan in figure 7, which shows the wall velocity computed by WallGoManager

.solveWall() on the left side (deflagration and hybrid solutions) and WallGoManger.solveWall

Detonation() on the right side (detonation solutions). In both cases, the corresponding solution did

not necessarily exist for every model. If the net pressure on the wall is always negative in the relevant

velocity interval (shown in red in the figure), the friction with the plasma would not be strong enough

to stop the wall from accelerating and the wall velocity would end up exceeding vJ for deflagration/hy-

brid solutions and becoming ultrarelativistic for detonations. In detonation solutions, there is also a
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Figure 7: Scan of the xSM parameter space where the singlet mass ms and the coupling λhs are varied

with constant λs = 1. The left plot shows deflagration and hybrid solutions and the right plot shows

detonations. The red, black and grey points do not have any solution of the corresponding type. The

legend shows what their wall velocity will be based on the sign of the pressure on the wall.

possibility of having a positive pressure everywhere16 (shown in grey) which indicates that the friction

is too strong to allow solutions with vw > vJ and that these models can only have deflagration or

hybrid solutions. Detonations can also have models with positive pressure at vw = vJ and negative

pressure at vw = 1 with no stable solution (shown in black). A pure static analysis would seem to

indicate that these models would become deflagration/hybrid solutions since they would not be able

to accelerate over the positive pressure at vw = vJ , but time-dependent effects could allow them to

overcome that positive pressure barrier and end up in the region with negative pressure, in which

case it would accelerate to an ultrarelativistic speed. It is unfortunately not possible to conclude with

certainty which one of these outcomes would turn out to be true with the static analysis made by

WallGo.

It can also be seen that certain models exhibit two solutions: one deflagration or hybrid and one

detonation solution. In fact, every model with a detonation solution also has a deflagration or hybrid

one. Again, WallGo is not able to determine which one would be realised in nature because it relies on a

static analysis. On one hand, one could argue that because the wall starts still and then accelerates, it

would be stopped at the first static solution it encounters, which would be the deflagration/hybrid. On

the other hand, these subjouguet solutions sometimes rely on the presence of a shock wave to increase

the friction on the wall. If the shock wave does not have enough time to form before reaching the

16This cannot happen for deflagration solutions because the pressure is always negative at vw = 0, otherwise tunneling

would be impossible and the phase transition would not happen.
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corresponding velocity, the wall could overshoot this first solution and reach the detonation solution

(see [98], but note that no out-of-equilibrium effects are included in this study).

Finally, note that, although it is in principle possible to have several detonation solutions for the

same model, we found no instance of that happening in this scan.

6.2. Standard Model with light Higgs

In [45,46,108], the wall velocity was computed for the Standard Model with a light Higgs mass. The

computations all rely on a moment expansion of δf , and use three moments. We will compare our

results with those obtained by Moore and Prokopec in [45] and Konstandin, Nardini and Rues in [46],

and from now we will refer to these results as MP and KNR respectively. For a sufficiently light

Higgs, the electroweak phase transition becomes first order without addition of new particles. The

wall velocity becomes a function of the Higgs mass only. Lattice computations show that the phase

transition becomes a cross-over for mh & 72 GeV [16,18,109,110], but in the perturbative description

of [45,46,108], the phase transition remains (weakly) first order even for larger Higgs masses as well,

and the maximum value we consider is mh = 80 GeV.

The temperature-dependent effective potential used by MP (and also [108]) is given in eq. (7)

of [45]17

V eff(h, T ) = D(T 2 − T 2
0 )h

2 − CT 2h2 log

(
h

T

)

− ETh3 +
λT
4
h4 , (6.4)

where h denotes the (background) Higgs field. Note that the term proportional to C is absent in the

potential of KNR. The coefficients are given by (note that MP’s expression for E contains a typo)

λT =
m2

h

2v20
− 3

16π2v40

(

2m4
w log

(
m2

w

abT 2

)

+m4
z log

(
m2

z

abT 2

)

− 4m4
t log

(
m2

t

afT 2

))

, (6.5)

D =
1

8v20

(
2m2

w +m2
z + 2m2

t

)
, (6.6)

C =
1

16π2
(1.42g4w + 4.8g2wλT − 6λ2T ) , (6.7)

E =
1

12π

(

4
m3

w

v30
+ 2

m3
z

v30
+ (3 + 33/2)λ

3/2
T

)

, (6.8)

B =
3

64π2v40

(
2m4

w +m4
z − 4m4

t

)
, (6.9)

T0 =

√

1

4D

(
m2

h − 8Bv20
)
. (6.10)

The term proportional to λ
3/2
T in E is absent in KNR’s potential, and E gets multiplied by an overall

17Eq. (7) of MP contains one additional term, proportional to AF . This term is set to zero in the benchmark points

that we compare to. It is also set to zero by KNR.
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Figure 8: Wall velocity as function of a light the Higgs mass, mh, in the Standard model. The results

are obtained by WallGo using the potentials of MP and KNR. The results from MP and KNR are

displayed for comparison.

factor 3/2. The input parameters can be found in [108]

gw =
2Mw

v0
, mw = 80.4GeV , mz = 91.2GeV , mt = 174.0GeV ,

v0 = 246.0GeV , ab = 49.78019250 , af = 3.111262032 . (6.11)

We follow the procedure described by MP and KNR to find the nucleation temperature (this happens

outside of WallGo, we make use of [81]) as a function of mh. Note that MP and [108] use S3/T = 97

as nucleation criterion, whereas KNR use S3/T = 140.

We compute vw with out-of-equilibrium contributions from tops and W - and Z-bosons (the latter

two are treated as a single species, with the mass of the W -boson). We do not allow for out-of-

equilibrium Higgs particles. This approximation is also made in MP and KNR. We obtain the matrix

elements from WallGoMatrix, where we consider the same couplings as MP and KNR. We perform

the computation at N = 11, M = 20 for the two potentials of MP and KNR. Our results and the

results from MP, KNR (we take the results with Tanh ansatz from [45]) are summarised in figure 8.

Before comparing to our results, let us discuss the differences between the results of MP and KNR.

The wall velocity reported by KNR (blue dashed line) is significantly smaller than the values obtained

by MP (magenta solid line). KNR gives two reasons for the difference. First, the potentials and

the nucleation criterion are not identical; we find that the value of the phase transition strength

αn of KNR is a factor 0.61 − 0.95 smaller than the αn of MP, which could partially explain the

smaller velocity. Second, the treatment of the shock front is different: in MP the fluid profile in

front of the wall is approximated by a linearisation of the fluid equations. KNR solve the full fluid

equation (as does WallGo) and argues that they therefore correctly capture the backreaction effect

from heating [53,54,97], whereas [45] do not.
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The results obtained with WallGo, for N = 11, M = 20 are smaller than the ones obtained with

the moment expansion, for both choices of potential (solid green for the potential of MP, pink dashed

for the one of KNR). Part of the difference with MP could be explained by the different treatment

of the hydrodynamics. In addition, MP and KNR use the same matrix elements, but some errors in

those were pointed out in [101], and our matrix elements agree with [101]. We include mixing between

the different out-of-equilibrium species in the Boltzmann equations, which MP and KNR do not. The

method to extract the wall velocity is also slightly different: MP and KNR minimise moments of the

equation of motion, whereas we minimise the action to obtain the wall parameters.

A last prominent difference between our approach and the MP and KNR approach is the different

method used to solve the Boltzmann equations - we expand δf in Chebyshev polynomials rather than

taking a moment expansion. For comparison, we demonstrate our result for N = 5, M = 20 for the

MP potential in dotted light blue, and we see that our value for vw becomes significantly larger (but

still smaller than the result of MP). This begs the question whether the computation of vw obtained

with just two moments has really converged. In [51], the corrections from higher moments to the

friction was computed. The distribution from particles out-of-equilibrium increased with the number

of moments, suggesting that vw decreases with an increasing number of moments. Unfortunately, the

dependence of vw on the number of moments was not computed. It is therefore yet an open question

whether the two methods converge towards the same value of vw, which we leave to future work.

For comparison, figure 8 also shows the local thermal equilibrium result for the potential of MP in

dotted yellow. As expected, vw is larger than with out-of-equilibrium effects included. Unlike for the

xSM, where it was demonstrated in [52] that LTE often gave a reasonable estimate for the full vw,

the LTE result does not give a very good prediction of vw, as the two values are different by about a

factor 3.

6.3. Inert doublet model

The wall velocity was computed for three benchmark points of the Inert Doublet Model in [49], and

we will now compare to the results obtained with WallGo. The corresponding model file can be found

in Models/InertDoubletModel/inertDoubletModel.py. The Inert Doublet Model [111–113] is a

special case of the Two Higgs Doublet Model, where the new doublet has the same SM gauge charges

as the SM Higgs field. In addition, it has a global Z2-symmetry, which prevents tree-level couplings to

the Standard Model fermions. The model can provide a dark matter candidate [113–115], and features

a first-order phase transition in part of its parameter space [116–124].

To make a faithful comparison of vw, we will follow closely the implementation of the effective

potential used in [49]. Note that the computation of [124] suggests that an accurate computation

might require the inclusion of higher-order corrections in the effective potential, but we leave these to

future work. The scalar potential at zero-temperature is given by (note that our normalisation of λ1,2
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BM m̄H [GeV] m̄A, m̄H± [GeV] λL Tc [GeV] Tn [GeV] vw [49] vw [WallGo]

A 62.66 300 0.0015 118.3 117.1 0.165 0.191 ± 0.024

B 65.00 300 0.0015 118.6 117.5 0.164 0.180 ± 0.025

C 63.00 295 0.0015 119.4 118.4 0.164 0.182 ± 0.024

Table 1: Benchmark (BM) input parameters used in [49] and results for vw in [49] and WallGo.

differs from [49])

V0 = µ21Φ
†Φ+ µ22χ

†χ+ λ1(Φ
†Φ)2 + λ2(χ

†χ)2

+ λ3Φ
†Φχ†χ+ λ4Φ

†χχ†Φ+

[
λ5
2
(Φ†χ)2 +H.c.

]

, (6.12)

where Φ denotes the SM Higgs boson, and χ the inert doublet

χ =

(

H+

1√
2
(H + iA)

)

. (6.13)

We have four new degrees of freedom: the CP-even and CP-odd scalars H and A respectively, and

the charged scalars H±. Their zero-temperature masses correspond to

m̄2
H = µ22 +

1

2
(λ3 + λ4 + λ5)v

2 , (6.14)

m̄2
A = µ22 +

1

2
(λ3 + λ4 − λ5)v

2 , (6.15)

m̄2
H± = µ22 +

1

2
λ3v

2 , (6.16)

where v denotes the zero-temperature Higgs VEV. In the following, we will choose λ4 = λ5, such that

m̄2
A = m̄2

H±. The combination appearing in the mass m̄2
H is denoted as 1

2(λ3 + λ4 + λ5) ≡ λL.

We consider a one-step phase transition where the Higgs-field obtains a VEV, Φ = 1/
√
2(0, h)T .

The effective potential for h is given by

V eff(φ, T ) = V0(φ) + VCW(h) + VT (h, T ) . (6.17)

For further details on the implementation, see [49] or the inertDoubletModel.py file. We have

confirmed that we obtain the same critical temperature as [49] with our implemented potential. We

take the value of the nucleation temperature from [49]. The parameters of the three benchmark points

are given in table 1. For all benchmark points, λ2 = 0.1. Note that the running of the couplings is

not considered.

[49] considers the out-of-equilibrium contributions from the top quark, the W - and Z-boson and

the A and H± scalars. The W - and Z-boson are treated as a single species (with the mass of

the W ), and similarly the H± and A are treated as a single species with the mass of the A. The
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Boltzmann equations are solved with a moment expansion as in [45]. The wall is approximated with

a tanh-ansatz. The hydrodynamics equations are solved without linearisation, but the fluid equation

of motion is approximated by the pure radiation-contribution and temperature-independent vacuum

energy difference only (bag equation of state).

We use WallGo to compute the wall velocity for the same out-of-equilibrium particles at a

momentumGridSize = 11 and spatialGridSize = 30. The matrix elements are determined with

WallGoMatrix. We include the same external particles and couplings as in [49], (i.e. we set λ1,2,4,5, gY =

0). We end up with a larger set of diagrams than [49], since certain diagrams were neglected there, for

example interactions between A and W . As position-dependent VEVs are currently not supported in

WallGo, we fix the VEV to be equal to half of vLT(Tn) of benchmark point A.

The last two columns of table 1 compare the obtained values of vw. In all cases, the result of WallGo

is slightly larger than the result of [49], but overall there is a reasonable agreement, with deviations

smaller than 20%. The observed differences are likely caused by the different approaches used in the

Boltzmann equations (taking moments versus the spectral method), the slightly different treatment

of the hydrodynamics of the plasma, and the differences in the matrix elements and corresponding

collision terms. As we included a larger set of matrix elements, this could also explain why we observe

a larger value of vw, as the particles can get slightly closer to their equilibrium distribution, reducing

the corresponding friction.

7. Conclusions

We present WallGo, a Python package for calculating the wall velocity, vw, in first-order cosmological

phase transitions. WallGo includes two auxiliary packages, WallGoMatrix and WallGoCollision.

Together, they perform the entire computation from calculating the matrix elements for in- and out-

of-equilibrium particles, to computing the collision integrals for the Boltzmann equations, to solving

the coupled hydrodynamics, scalar-field equation of motion and Boltzmann equations for the out-

of-equilibrium particles. The model, along with the set of out-of-equilibrium particles, is fully user-

defined. Since the wall velocity significantly affects the predictions for GW spectra and the baryon or

dark matter abundance, WallGo has the potential to enhance future predictions of observables related

to cosmological first-order phase transitions.

In this article, we have presented a quick start guide, theoretical background and a succinct doc-

umentation of the code. A more extensive documentation of the code can be found in https://

wallgo.readthedocs.io. The online documentation will also stay up-to-date with future versions

of WallGo. By varying the number of basis polynomials we demonstrate that the spectral expansion

indeed converges exponentially in section 5. In addition, we show that the wall velocity has only a

mild sensitivity to the other configuration parameters. We also provide examples of tests that the

user can perform to determine whether their obtained value of vw has converged. In section 6, we

demonstrate computations of vw for several BSM models. In section 6.1, we use WallGo to study the
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xSM, demonstrating that WallGo can be used to scan over a parameter space. The results agree with

those obtained earlier in [52].

For the Standard Model with a light Higgs in section 6.2, and the Inert Doublet Model (IDM) in

section 6.3, we compare our results to the results presented in [45, 46] and [49] respectively. In the

case of the Standard Model, we observe that the obtained wall velocities differ significantly from the

values obtained in [45, 46] with our results being almost a factor 2 smaller. For the IDM, we only

deviate from the results of [49] by less than 20%.

A number of factors could explain the significant differences with [45,46] and the milder differences

with [49]: all three references expand the δfa in three moments, which is known to yield a singular

solution at cs [50, 51], due to the linearisation of the background solution. We use the spectral

expansion, which allows us to converge exponentially quickly towards the exact solution for δfa.

Moreover, we do not need to linearise the background solution. Unlike [45, 46, 49], we have included

mixing in the collision terms in the Boltzmann equations. There are also some errors in the matrix

elements used in [45, 46], pointed out by [101]. We also use a slightly larger set of matrix elements

than [49]. Lastly, there are differences with [45] in the treatment of the hydrodynamics outside of the

bubble wall. As pointed out by [46], that treatment incorrectly captures the backreaction force from

heating. Finding the main source of the discrepancy will require a more in-depth comparison, which

will be the topic of future work.

For future versions of WallGo, we foresee several improvements, such as dropping the Tanh-ansatz,

including matrix elements and collision integrals beyond leading logarithmic order, allowing for field-

dependent couplings and masses, and the implementation of a consistent treatment of soft gauge

modes. These improvements involve both technical and theoretical challenges.

Having automated the full computation of the wall velocity, from matrix elements to Boltzmann

equations, WallGo has the potential to greatly improve predictions of FOPT observables. Rather than

being the final verdict in the computation of vw, WallGo opens a new chapter of precision computations

for FOPTs. The automation of the computation will allow us to investigate and address the main

sources of uncertainty which will be a topic of upcoming work after pip installing WallGo.
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A. Using the WallGoMatrix matrix-element generator

In this section, we detail the usage of matrix-element generator WallGoMatrix. Calculations of out-

of-equilibrium contributions require a multitude of matrix elements. These can either be supplied to

WallGo directly, or alternatively generated automatically with WallGoMatrix which is available via

the repositories:

https://github.com/Wall-Go/WallGoMatrix,

https://resources.wolframcloud.com/PacletRepository/resources/WallGo/WallGoMatrix.

A.1. Loading the required packages

The main routines for matrix element generation are collected in the files: WallGoMatrix.m and

matrixElements.m. The model generation of WallGoMatrix utilises DRalgo [1] and GroupMath [2].

We ask the user to cite these references when making use of WallGoMatrix. Before loading the package

it either needs to be installed as in listing L.4 or by placing the WallGoMatrix directory inside the

Wolfram user base directory
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L.20

<UserBaseDirectory>/Applications/WallGoMatrix

where the latter can be found under $UserBaseDirectory in Mathematica. Thereafter, WallGoMatrix

is loaded via

L.21

WallGo`WallGoMatrix`$InstallGroupMath=True;

<<WallGo`WallGoMatrix`

where the flag WallGo`WallGoMatrix`$InstallGroupMath automatically installs GroupMath in the

user base directory.

A.2. Defining the model

We first need to define the model, in the same way as in DRalgo. For the Standard Model without

hypercharge group18 this is done by writing

L.22

Group={"SU3","SU2"};

CouplingName={gs,gw};

The user needs to specify all particles that should be included in the computation of vw; cf. discus-

sion in sections 2 and 4. Just as in DRalgo, this is done by giving the Dynkin coefficients for each

representation. These coefficients allow for handling a general model, but they might be unfamiliar.

GroupMath provides a map to a more familiar notation; for SU(3) one can obtain all representations

up to size 30 [2]

L.23

su3Reps = RepsUpToDimN[SU3,30];

Grid[Prepend[{#,RepName[SU3,#]}&/@ su3Reps,{"Dynkin coefficients","Name"}],

Frame->All,FrameStyle->LightGray]

where a typical representation is the adjoint one with Dynkin index {1,1} and representation R = 8.

As a consequence, the (adjoint) gauge representation of SU(3)× SU(2) is

L.24

RepAdjoint={{1,1},{2}};

where the notation is RepAdjoint = {{SU3dynkin}, {SU2dynkin}}. For fermions and scalars the same

notation as for the vector particles is used.

18We follow the common practice in the wall velocity literature, of ignoring the U(1) contributions. However, this

assumption could also be dropped.
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As an example, we focus on a simplified fermion sector. One generation of quarks consists of one

left-handed SU2-doublet quark and two right-handed SU2-singlet quarks. These are specified as

L.25

Rep1={{{1,0},{1}},"L"};

Rep2={{{1,0},{0}},"R"};

Rep3={{{1,0},{0}},"R"};

RepFermion1Gen={Rep1,Rep2,Rep3};

All three quark generations can now be created by stacking together three copies of RepFermion1Gen,

L.26

RepFermion3Gen={RepFermion1Gen,RepFermion1Gen,RepFermion1Gen}//Flatten[#,1]&;

The Higgs field is similarly specified by

L.27

HiggsDoublet={{{0,0},{1}},"C"};

RepScalar={HiggsDoublet};

The last entry indicates whether the scalar representation is complex ("C") or real ("R"). In the

example of the SU(2) triplet, choosing a real ("R") or complex ("C") scalar representation would

result for the scalar to have three or six degrees of freedom, respectively.

WallGoMatrix takes ordered lists of representations as an input. Generically a fermionic or scalar

Rep will take the form

L.28

Rep={Rep[r1],Rep[r2],Rep[r3],...,Rep[rn]};

The ordering of the indices {r1, . . . , rn} ∈ s ∨ f ∨ v in which representations are stacked for scalars

(s = {s1, . . . , sm}), fermions (f = {f1, . . . , fn}), and vectors (v = {v1, . . . , vo}) respectively, will be

fixed throughout the computation and generation of the matrix elements in the following section; see

e.g. section A.4. In our example of three quark families this corresponds to

L.29

RepFermion3Gen={Rep1,Rep2,Rep3,Rep1,Rep2,Rep3,Rep1,Rep2,Rep3};

Once all particles have been defined, the model can be loaded by writing

L.30

{gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC}=

AllocateTensors[Group,RepAdjoint,CouplingName,RepFermion3Gen,RepScalar];

To distinguish fermions by their masses one has to define Yukawa couplings. An example is the
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left-handed quark representation that splits into one left-handed top and bottom quark, respectively.

The corresponding Yukawa couplings are definable as

L.31

InputInv={{1,1,2},{False,False,True}};

YukawaDoublet=CreateInvariantYukawa[Group,RepScalar,RepFermion3Gen,InputInv]//Simplify;

Ysff=-GradYukawa[yt*YukawaDoublet[[1]]];

The corresponding input invariant is of the form

L.32

InputInv={{s1,f1,f2},{s1c,f1c,f2c}};

where s1 ∈ s and f1, f2 ∈ f are indices that refer to the definition of scalar or fermionic representation

in RepScalar and RepFermion3Gen, respectively. Here, {s1,f1,f2} = {1,1,2} corresponds to

Higgs doublet× Left-handed top-quark× Right-handed top-quark ∼ QLΦ
†tR , (A.1)

and the attribute {s1c,f1c,f2c} = {False,False,True} indicates which of the representations are

unconjugated (True) and conjugated (False). By instead setting f2 = 3, the right-handed top quark

is swapped for the right-handed bottom quark. For the definition of scalar couplings see [1].

Finally, the model is initiated via

L.33

ImportModel[Group,gvvv,gvff,gvss,λ1,λ3,λ4,µij,µIJ,µIJC,Ysff,YsffC];

A.3. Implementing spontaneous symmetry-breaking

After symmetry-breaking, interaction eigenstates and mass eigenstates are generally not the same.

While one can still use the interaction eigenstates from the particle definitions of the previous section,

one can also use the mass eigenstates directly. To this end, WallGoMatrix groups each degree of

freedom of a particle depending on the corresponding mass. We now discuss how to make use of this

feature.

To group particles depending on the symmetry-breaking induced masses, first a vacuum-expectation

value must be defined. In the case of the doublet in the fundamental representation of the SU(2) of

listing L.27, this amounts to

L.34

vev={0,v,0,0};

The vev here has size Length[gvss[[1]]], where gvss is the DRalgo internal vector-scalar trilinear

coupling tensor. The components belonging to each representation can be found by
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L.35

PrintFieldRepPositions["Vector"]

PrintFieldRepPositions["Fermion"]

PrintFieldRepPositions["Scalar"]

which gives {1;;4} for a fundamental SU(2) doublet. For a complex representation (like ours), the

first two indices specify the real-components, and the last two the complex components. Schematically

Φ =

(

vev1+ ivev3

vev2+ ivev4

)

, (A.2)

or correspondingly vev={vev1,vev2,vev3,vev4}. By writing vev={0,v,0,0}, we specify that the

Higgs VEV is of the form Φ = (0, v)T .

After specifying the vev, the representations can be separated via their masses by writing

L.36

SymmetryBreaking[vev];

and subsequently referenced by the CreateParticle command. The information from the output

of SymmetryBreaking can be used to deal field-dependent masses to the particles during the matrix

element generation in section A.5. However, in the context of the WallGoMatrix examples, only

thermal masses are used and therefore calling SymmetryBreaking does not affect the matrix elements.

The command becomes effective, when turning on VEV-dependent couplings. By default, VEV-

dependence is turned off but can be invoked by setting the following option inside SymmetryBreaking

L.37

VevDependentCouplings->True

A.4. Specifying out-of-equilibrium particles

We now specify representations of particles which, during collision integration, can be taken in- or

out-of-equilibrium. For these particles, a complete set of matrix elements with them appearing on the

external legs will be provided.

As an example, we create particles for the left-handed top quark, the right-handed top-quark, the

gluons, the W -bosons, and the scalar doublet, by creating a separate distribution for each of these.

The to-be equilibrium-particles can be grouped in individual distributions or, if they are considered to

be of the same light mass, into a single collective distribution. One such example is grouping together

all quarks except for the top. If also leptons would be included, it is sensible to create a separate

distribution for all left-handed leptons and all right-handed leptons.

By calling SymmetryBreaking[vev], a list of representations and their corresponding masses is

generated only for representations with at least one massive degree of freedom
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L.38

SymmetryBreaking[vev];

Gauge rep 2 splits into particles with mass squared:

{2,1}: (gw2v2)/4

Fermion rep 1 splits into particles with mass squared:

{1,1}: (v yt)/
√
2

{1,2}: 0

Fermion rep 2 splits into particles with mass squared:

{2,1}: (v yt)/
√
2

where, for the quarks, we chose to put the left-handed quark doublet on position 1 of RepFermion3Gen

and the right-handed top quark on position 2; cf. listing L.25. In the above listing, the bracketed integer

indices, {r,m}, indicate the particle with mass Mr[m] of the corresponding representation r ∈ {s, f, v}.
An example is Mr=1[m = 1] = mReptL = (v yt)/

√
2. An entire representation, without distinguishing

mass states, would correspond to writing {r}.

Using this notation, several particles can be grouped together into one distribution using the explicit

list of indices from listing L.35

L.39

{{i1,...,il},"R",M,"particleName"};

where ii ∈ PrintFieldRepPositions[”Field”], with Field ∈ {Vector, Fermion, Scalar}. Alterna-

tively, after having called SymmetryBreaking, one can also use the command

L.40

CreateParticle[{{r1,m1},...,{rn,mn},"R",M,"particleName"];

Above, n is the number of particles grouped into the distribution, R = {F, V, S} is the corresponding par-
ticle species, namely Fermion, Vectors, and Scalars, M the particle mass squared, and "particleName"

the particle name. Specifically, the distribution for the massive left-handed and right-handed quarks,

namely the top quark, can be specified by writing

L.41

(*left-handed top-quark*)

ReptL=CreateParticle[{{1,1}},"F",mt2,"TopLeft"];

(*right-handed top-quark*)

ReptR=CreateParticle[{{2,1}},"F",mt2,"TopRight"]

where mt2 is the squared top-quark mass. Distributions for the gauge-bosons and scalars can similarly

be created by writing

L.42

(*Vector bosons*)

RepGluon=CreateParticle[{1},"V",mg2,"Gluon"];
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RepW=CreateParticle[{2},"V",mW2,"W"];

(*Higgs*)

RepH=CreateParticle[{1},"S",mH2,"Higgs"];

As seen above, in the definition of CreateParticle, several particles can be grouped together and

dealt with in the same distribution.

To generate the matrix elements in section A.5, all particles of the theory defined in section A.2

need to be declared as with CreateParticle[]. Therefore, we group the remaining light quarks into

a single representation

L.43

(*Light quarks*)

LightQuarks=CreateParticle[{{1,2},3,4,5,6,7,8,9},"F",mq2,"LightQuarks"];

with mass squared mq2. By separately stacking together out-of-equilibrium representations via ReptL,

ReptR, RepGluon, RepW, and RepH as well as equilibrium representations via LightQuarks, we create

the two lists of particles that are relevant for collisions in the model, viz.

L.44

ParticleList={ReptL,ReptR,RepGluon,RepW,RepH};

LightParticleList={LightQuarks};

The ordering of the particles can be arbitrary but this numeric ordering (starting from 0) will be

subsequently used in all output of the matrix elements. This is the same index as in the collision

model from section 4.2. Particles of the LightParticleList can never be ingoing in collisions and

they will thus never appear on the first index of the generated matrix element file. The representations

listed in ParticleList can still be assumed to be out-of- or in-equilibrium when using them during

the collision integration in WallGoCollision. If a particle appears on the first index of the matrix

element but it is in-equilibrium, this matrix element will simply be skipped in collision generation.

A.5. Generating the matrix elements

In calculations of the collision operators, we will encounter logarithmic divergences for small-angle

scattering. These are softened by thermal masses. In this tutorial, the top quarks was given the mass

mt2, the remaining fermions the mass mq2, the gluons the mass mg2, theW -bosons mW2, and the scalars

ms2. The matrix elements are then calculated by writing

L.45

MatrixElements=ExportMatrixElements[<filePath>,ParticleList,LightParticleList,OptionPattern];

where its default options are given as
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L.46

OptionPattern={

Replacements->{},

NormalizeWithDOF->True,

TruncateAtLeadingLog->True,

Verbose->False,

Format->"none"};

By default, the generated matrix elements are truncated at leading logarithmic order.

The indices in the elements M[a,c,d,e] of MatrixElements (cf. eq. (3.30)) correspond to the

position indices of the respective particles inside the total list {ParticleList,LightParticleList}.

Each element contains all (squared) matrix elements that contribute with those specific particles.

The matrix-elements are also normalised by the degrees of freedom of the incoming particle, that is

by the degrees of freedom of particle1. By modifying OptionPattern, it is possible to omit this

normalisation factor by setting

L.47

NormalizeWithDOF->False

While there is no default output format of WallGoMatrix, the default input format of WallGo is .json;

see section 4.1. The following formats are implemented:

L.48

Format->{"json","txt","hdf5"}

In some cases, one might generate certain matrix elements that one does not want to include in the

collisions. For example, to include the lepton exchange diagram in W -scattering, the leptons have to

be included in the (light) particle representations, and this will generate matrix elements with leptons

on the second, third and fourth index. If we do not want to include these in the collision computation

(e.g. because of computational costs), we simply do not include the corresponding particles in the

WallGoCollision model. We then only need to provide an input for the lepton asymptotic thermal

mass.

B. General matrix elements

WallGo and specifically WallGoMatrix, employ the leading-logarithmic approximation. To this end,

we take a given (vacuum) matrix-element, and regulate terms that diverge logarithmically via adding

the corresponding (thermal, or rather asymptotic, cf. section 3.4.1) mass. Since we only need vacuum

matrix-elements, we can generate these efficiently. A useful way to do this for general models, is to

use general coupling tensors (see [125–129]) to handle the group algebra; and spinor-helicity methods
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to handle the Lorentz algebra.19 This appendix illustrates the approach by focussing on three specific

scattering processes.

Along these calculations, we first treat all particles as outgoing. All possible particle flows then follow

upon changing the sign of the relevant momenta. Henceforth, we employ the notation (cf. [131])

sij = −(pi + pj)
2 , (B.1)

and label particles as in section A as V for vector bosons, F for fermions, and S for scalars. The

coupling tensors for the different interactions appearing in the calculations below are given by

SiSjV
a : gaij , (B.2)

FIFJV
a : gaIJ , (B.3)

FIFJSi : YiIJ , (B.4)

SiSjSk : λijk , (B.5)

where I, J, L,M describe spinor indices, a, b, c, d vector indices, and i, j, k, l scalar indices.

B.1. Matrix elements for F1F2 → F3F4

We first focus on fermion scattering with a vector or scalar boson as propagator. The contributing

diagrams to the s-, t-, and u-channels of the vector- and scalar-exchange are

−Tλ1λ2λ3λ4 ⊃
λ3,Lλ1,I

λ2,J λ4,M

+

λ3,Lλ1,I

λ2,J λ4,M

+

λ3,Lλ1,I

λ2,J λ4,M

(B.6)

= ga I

J gaM

L
︸ ︷︷ ︸

≡Gs

As
λ1λ2λ3λ4

+ ga I

L ga J

M
︸ ︷︷ ︸

≡Gt

At
λ1λ2λ3λ4

+ ga I

M ga J

L
︸ ︷︷ ︸

≡Gu

Au
λ1λ2λ3λ4

, (B.7)

−Tλ1λ2λ3λ4 ⊃
λ3,Lλ1,I

λ2,J λ4,M

+

λ3,Lλ1,I

λ2,J λ4,M

+

λ3,Lλ1,I

λ2,J λ4,M

, (B.8)

where wiggly lines denote vector bosons, directed lines fermions, and dashed lines scalars. We now

focus only on the u- and t-channels of the vector exchange. The contributing scalar-exchange diagrams

of this scattering process are implemented in WallGoMatrix.

Here, the λ1, . . . , λ4 specify the helicities of the particles. The coupling-tensor ga I
L = ga I

13,L describes

the interactions between two fermions and a vector boson, namely fermion 1 with spinor index I,

fermion 3 with spinor index L, and the vector boson with label a. We treat all particles as Weyl;

19Using Feynman diagrams for expressions with chiral particles is not very practical and the spinor-helicity formalism

has the added advantage that gauge-invariance is manifest [130].
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which means that an upper spinor index always must contract with a lower one in the end—the

hermitian conjugate flips upper and lower signs.

Furthermore, At
λ1···λ4

denotes the Lorentz-structure of the t-channel diagram, and Au
λ1···λ4

of the

u-channel one. Since [p|γµ|p] = 〈p|γµ|p〉 = 0, the amplitudes are only non-zero if two helicities at a

fermion vertex are of opposite sign, leaving six helicity signatures, namely

At,u
++−− , At,u

+−+− , At,u
+−−+ ,

[

At,u
−−++ , At,u

−+−+ , At,u
−++−

]

. (B.9)

Via complex-conjugation, the last three bracketed amplitudes can be related to the first three ones

which reduces the total number of helicity signatures to three.

For the signature A+−−+, the u-channel diagram vanishes as two positive-helicity lines meet, hence

we are left with the t-channel diagram. The signature A+−+− only has a u-channel, and A++−− has

both t and u-channel contributions. The contributions are,

At
+−−+ = + 〈3|γµ|1] [4|γµ|2〉 /s13 = −2 [1 4] 〈2 3〉 /s13 , (B.10)

Au
+−+− = −〈4|γµ|1] [3|γµ|2〉 /s14 = +2 [1 3] 〈2 4〉 /s14 , (B.11)

At
++−− = + 〈3|γµ|1] [2|γµ|4〉 /s13 = +2 [1 2] 〈3 4〉 /s13 , (B.12)

Au
++−− = −〈4|γµ|1] [2|γµ|3〉 /s14 = +2 [1 2] 〈3 4〉 /s14 , (B.13)

where in the second step of eq. (B.10), we used the Fierz identity 〈1|γµ|2] 〈3|γµ|4] = 2 〈1 3〉 [2 4],
[k|γµ|p〉 = 〈p|γµ|k], and the anti-symmetry 〈p q〉 = −〈q p〉. Using that 〈nm〉∗ = [mn] and smn =

〈mn〉 [nm], we find

∣
∣At

+−−+

∣
∣2 = 4s214/s

2
13 ,

∣
∣Au

+−+−
∣
∣2 = 4s213/s

2
14 , Au

++−−
[
At

++−−
]†

= 4s212/s13/s14 ,
∣
∣At

++−−
∣
∣2 = 4s212/s

2
13 ,

∣
∣Au

++−−
∣
∣2 = 4s212/s

2
14 , (B.14)

including the contributions from complex conjugation.

The remaining step is to multiply with the complex conjugate and sum over helicities, particles and

anti-particles, such that

∑

|T |2 = 8(GtG
†
t)
s214 + s212
s213

+ 8(GuG
†
u)
s213 + s212
s214

+ 8(GtG
†
u +GuG

†
t)

s212
s13s14

, (B.15)

where the Gt and Gu are defined in eq. (B.7).

We can now get any amplitude of this type by adapting the signs of some particles as incoming, e.g.

F1F2 → F3F4 : p1, p2 → −p1,−p2 , s13, s14, s12 → t, u, s , (B.16)

F1F̄2 → F3F̄4 : p1, p4 → −p1,−p4 , s13, s14, s12 → t, s, u . (B.17)
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B.2. Matrix elements for S1S2 → F1F2

As before, we initially take all particles as outgoing. The momenta p1, p2 correspond to the scalars S1,

S2, and p3, p4 to the fermions F1, F2. The corresponding diagrams constitute a s-, t-, and u-channel,

viz.

−T00λ3λ4 =

λ3,L0,i

0,j λ4,M

+

λ3,L0,i

0,j λ4,M

+

λ3,L0,i

0,j λ4,M

+

λ3,L0,i

0,j λ4,M

(B.18)

= λijk Y
k L

M As
00λ3λ4

+ gaij g
aL

M As
00λ3λ4

+ Y IM

i YjILA
t
00λ3λ4

+ Y IM

i YjILA
u
00λ3λ4

, (B.19)

where YiIJ are the Yukawa coupling tensors and λijk the cubic scalar coupling tensor. We henceforth

only focus on the vector- and fermion-exchange contributions from eq. (B.19). Since the helicities of

the fermions have to be opposing, we consider T00+−. We can write down the corresponding channels

using 〈p| /P |q] = 〈pP 〉 [P q] and pn |n] = 0, such that

As
00+− = −〈4|1− 2|3]

s12
= +2

〈1 4〉 [1 3]
s12

,

At
00+− = −〈4|1− 3|3]

s13
= +

〈1 4〉 [1 3]
s13

,

Au
00+− = +

〈4|1− 4|3]
s14

= −〈1 4〉 [1 3]
s14

. (B.20)

For simplicity, we only display quadratic contributions at leading logarithmic order and suppress mixed

contributions. The sum of the (possibly) logarithmically divergent matrix elements is

∣
∣T00+−

∣
∣2 ⊃ 4Tr

[(
gaij g

aL

M

)2
]s13s14
s212

+Tr
[(
Y IM

i YjIL
)2
]s13s14
s213

+Tr
[(
Y IM

i YjIL
)2
]s13s14
s214

. (B.21)

The T00−+ process is the same as the above.

B.3. Matrix elements for F1F2 → SV

The corresponding diagrams that contribute to this process are

−Tλ1λ20λ4 =

0,kλ1,I

λ2,J λ4,d

+

0,kλ1,I

λ2,J λ4,d

+

0,kλ1,I

λ2,J λ4,d

(B.22)

= Y I

iJ g
d
ikA

s
λ1λ20λ4

+ Y MI

k gdMJA
t
λ1λ20λ4

+ Y MJ

k gdMIA
u
λ1λ20λ4

. (B.23)

The only non-zero contribution to this process originates from fermions with identical helicity opposed

to the helicity of the vector spin-1 particle. By first considering T++0−, we list the corresponding
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channel contributions

At
++0− =

√
2

[3 4]

[2 3] 〈4|3|1]
s13

, (B.24)

Au
++0− =

√
2

[4 3]

[2 4] 〈3|4|1]
s14

, (B.25)

where we used the external line rule for outgoing spin-1 massless vectors by inserting their polarization

vectors in the spinor helicity notation [131], namely /ǫ−(p; q) =
√
2

[q p] (|p〉 [q|+ |q] 〈p|) and /ǫ+(p; q) =
√
2

〈q p〉 (|p] 〈q|+ |q〉 [p|). The matrix element squared gives the following terms

∣
∣T++0−

∣
∣2 = 2Tr

[(
Y MI

k gdMJ

)2
]s14s13
s213

+ 2Tr
[(
Y MJ

k gdMI

)2
]s13s14
s214

− 2Tr
[(
Y MI

k gdMJ

)(
Y MJ

k gdMI

)†
+
(
Y MJ

k gdMI

)(
Y MI

k gdMJ

)†]
, (B.26)

where the last term contains the contributions from mixed u- and t-channels.

C. Reduction of the collision integral

The integral (3.30) is nine dimensional, but four of the integrals are trivial due to the momentum-

conserving δ-function. This leaves 5 integrals for numerical evaluation. Here we discuss a convenient

parametrisation for use with numerical integrators.20 For generality, we will keep particle masses

explicit, so that Ei =
√

p2i +m2
i . The momentum P1 is a known input, fixed e.g. by giving the ρz, ρ||

momentum components on the grid.

We begin by doing the integral over p4. For this, write

∫
d3p4
2E4

(· · · ) =
∫

d4P4 δ(P
2
4 −m2

4)θ(E4)(· · · ) , (C.1)

and to make use of the newly introduced δ we define a function g(p3) ≡ P 2
4 −m2

4. Then

Clin
ab [δf

b] =
1

4

∑

cde

∫
d3p2 d

3p3 d
3p4

(2π)52E22E32E4
δ4(P1 + P2 − P3 − P4)|M |2P lin[δf b]

=
1

4

∑

cde

∫
d3p2 d

3p3
(2π)52E22E3

δ(g(p3))θ(E4)|M |2P lin[δf b]
∣
∣
∣
P4=P1+P2−P3

, (C.2)

where P lin[δf b] is given by

P lin[δf b] = faf cfdf e
(

δabF
c
a + δcbF

a
c − δdbF

e
d − δebF

d
e

)

δf b , (C.3)

20As discussed in e.g. [132,133], it is possible to perform one more integral analytically, leaving 4 numerical integrals.

However, this requires a nontrivial rotation of the coordinate system in our case, as we work in a frame where P1 is not

aligned along any of the x, y, z axes. We will thus not discuss the 9 → 4 reduction here.
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and we have defined F a
b ≡ eEa/T /f2b .

Next we go to spherical coordinates:

p2 = p2(sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) ,

p3 = p3(sin θ3 cosφ3, sin θ3 sinφ3, cos θ3) , (C.4)

where θi ∈ [0, π] and φi ∈ [0, 2π]. The integral over p3 is done with the remaining δ function:

Clin
ab [δf

b] =
1

4

∑

cde

∫ ∞

0

p22p
2
3dp2dp3

(2π)52E22E3

∫ 2π

0
dφ2dφ3

∫ 1

−1
d cos θ2 d cos θ3 δ(g(p3))θ(E4)|M |2P lin[δf b]

=
1

4

∑

cde

∑

i

∫ ∞

0

p22p
2
3dp2

(2π)52E22E3

∣
∣
∣
∣
∣

1

g′(p(i)3 )

∣
∣
∣
∣
∣

×
∫ 2π

0
dφ2dφ3

∫ 1

−1
d cos θ2 d cos θ3 θ(E4)|M |2P lin[δf b]

∣
∣
∣
p3=p

(i)
3

. (C.5)

Here the i-sum is over non-negative roots p
(i)
3 of g(p3) = 0 and p3 has been fixed by the δ-function.

To find these roots, note that P4 is already fixed in terms of the other momenta:

g(p3) = P 2
4 −m2

4 = (P1 + P2 − P3)
2 −m2

4

= Q+ 2(P1 · P2) + 2p3 · (p1 + p2)− 2
√

p23 +m2
3(E1 + E2) , (C.6)

where Q = m2
1+m

2
2+m

2
3−m2

4. The square root comes from energy E3(p3). We now define p̂3 = p3/p3

and after some algebra, we get a quadratic equation for p3:
(
δ2 − ǫ2

)
p23 + 2κδp3 + κ2 = 0 , (C.7)

with

δ = 2p̂3 · (p1 + p2) ,

ǫ = 2(E1 + E2) ,

κ = 2P1 · P2 +Q . (C.8)

Solving this gives two roots p
(i)
3 of which we only need the non-negative ones. The derivative is given

by

g′(p3) = δ − ǫ
p3
E3

. (C.9)

Using this parameterisation it is now straightforward to integrate eq. (C.5) using e.g. a numerical

Monte Carlo method.

This expression for the root simplifies in the ultrarelativistic limit. Setting Ei = pi one gets that

the only non-negative solution to g(p3) = 0 is

p3 =
p1p2 − p1 · p2

p1 + p2 − p̂3 · (p1 + p2)
(ultrarelativistic limit) (C.10)

and g′(p3) = −2(p1 + p2 − p̂3 · (p1 + p2)).
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