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1 Introduction and Summary

Zamolodchikov’s composite TT operator [1] generates a deformation of 2d QFTs which is
irrelevant but solvable [2–4]. This means that certain quantities, such as the S-matrix,
the partition function, and the energy spectrum, are known explicitly in terms of the seed
theory. These results have impacted several fields in theoretical physics: they have been
investigated from the point of view of effective and non-critical string theory [2, 5–11], they
have broadened our understanding of integrable theories [3, 4, 12–17], and they are related
to deformations of AdS/CFT [18–27] as well as holography beyond AdS [28–33].

Since the TT deformation is irrelevant, it allows us to explore a class of theories that
flow to a given (undeformed) QFTIR in the IR. In the UV, on the other hand, these theories
differ radically from conventional field theories defined within the Wilsonian paradigm. For
instance, based on properties of the deformed correlation functions, symmetry generators,
and the S-matrix, it has been argued that the theory does not respect locality at scales
smaller than the one set by the dimensionful deformation parameter [34–39]. We will refer to
theories of this type, that are only local at sufficiently large distances, as “quasi-local”. The
subject of this work is to investigate how TT -deformed theories are organized, by leveraging
the structure preserved by the deformation to investigate their locality properties.

We restrict our attention to the deformation of two-dimensional CFTs. More specifi-
cally, we consider the TT deformation perturbatively in the canonical operator formalism.
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We calculate the Hamiltonian and the stress tensor (including their off-diagonal compo-
nents) up to third order in the deformation parameter, and the KdV charges up to first
non-trivial order. We express them as functions of the free Virasoro generators of the un-
deformed CFT. As we will explain in detail, this requires a careful account of ordering
ambiguities and regularization.

We take as the definition of the TT deformation that it relates a family of actions,
parameterized by λ, through the flow equation

∂λS =
1

2π

∫
d2x detTλ , (1.1)

where Tλ is the energy momentum tensor of the deformed theory and S|λ=0 is the action of
the Euclidean seed CFT. As a composite operator, detTλ naively contains divergences from
operator collisions and is only completely defined after regulation and subtraction. However,
Zamolodchikov [1] showed that these divergences are not without structure. Instead they
always take the form of total derivatives, implying that some quantities have a “universal”
deformation in the sense that they can be computed without reference to how detTλ has
been regulated.

In particular, (1.1) leads unambiguously to an equation for the energy spectrum [3, 4],
the solution of which is given by the square root formula

Eλ =
1

2λ

(√
1 + 4λE0 − 4λ2P 2 − 1

)
, (1.2)

where E0 and P are the energy and momentum eigenvalues of the undeformed theory. Other
quantities however, such as the full Hamiltonian operator, are not necessarily universal
in the above sense: they may depend on the details of the regularization and the total
derivatives added to detTλ. We take an a priori agnostic stance and find indications that,
for example, the stress tensor is non-universal. One can gain some intuition for these issues
by noting that, classically, eq. (1.1) implies the equations

∂λHλ = detTλ + (total derivatives) , ∂λPλ = (total derivatives) , (1.3)

for the Hamiltonian and momentum densities. Assuming that they continue to hold quan-
tum mechanically,1 the total time derivatives, meaning commutators with the deformed
Hamiltonian, will affect the integrated Hamiltonian (although they leave the spectrum in-
variant). There may therefore be a non-trivial family of Hamiltonians that provide TT
deformations of the same theory, in the sense that the action satisfies eq. (1.1), correspond-
ing to different regularized definitions of the deforming operator.2

The explicit regularization scheme we will use is to convolve local operators with a
sufficiently smooth “smearing” function so that all singularities are regularized. We lay out

1Later, in section 2.3, we check that these equations are indeed satisfied at the quantum level.
2When renormalizing composite operators, a difference in scheme can produce a different operator. For

example, in the bc system one could define the operator (TT )(σ) by normal ordering the mode operators,
: TT :, or by subtracting Wick contractions of the 2-point functions. Though both will define a finite local
operator, matrix elements of these operators will differ; see e.g. exercise 2.13(a) of [40].
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our conventions in appendix A. As we will see, this regularization of operators allows us to
elegantly parameterize the ambiguity in how the composite TT operator is defined, and it
preserves the structure we use to organize our calculations.3

Our goal is to construct the deformed Hamiltonian operator within perturbation theory.
This means that we work within the Hilbert space of the seed CFT and seek to construct an
operator on that Hilbert space which, at each order in λ, is local, Hermitian, and reproduces
the spectrum (1.2). We will express all operators in terms of the Virasoro modes of the
undeformed CFT.4 To systematically construct the most general Hamiltonian operator, we
first introduce an auxiliary operator,

H̃λ =
1

2λ

(√
1 + 4λH0 − 4λ2P 2 − 1

)
, (1.4)

which we dub the “fake” Hamiltonian. Here H0 and P are the Hamiltonian and momentum
of the seed CFT. This operator is clearly non-local, in the sense that it is not the integral
of a local density. However, it is a well-defined operator5 which does not suffer from any
ordering ambiguities or contact divergences, and it has the spectrum (1.2).

The true, (quasi)-local Hamiltonian Hλ of the deformed theory must be related to the
fake Hamiltonian H̃λ by a unitary transformation in order to have the spectrum (1.2). In
other words, there must exist some anti-Hermitian operator Xλ such that

Hλ = e−λXλH̃λe
λXλ . (1.5)

The operator e−λXλ maps the energy and momentum eigenstates of the seed CFT to the
energy and momentum eigenstates of the deformed Hamiltonian Hλ.6 The requirement of
unitarity implies that the latter remain orthonormal.

We construct Xλ order by order in λ by demanding Hλ commutes with the undeformed
momentum7 and that it is local at each order in perturbation theory. The latter condition
is consistent with both exact and quasi-locality of the full Hamiltonian. The distinction
between the two is that the number of derivatives appearing in the Hamiltonian of a truly
local theory is globally capped, whereas their number increases with each order in pertur-
bation theory for quasi-local theories. There exists a different type of non-locality, which
is directly visible in perturbation theory. For example, the operator Xλ itself cannot be
a local operator since it maps the non-local operator H̃λ to the local operator Hλ. The
operator e−λXλ generates the flow of states |n⟩λ = e−λXλ |n⟩ and is the integral of a local
operator over a full Cauchy slice [41, 42]. This is not in contradiction with “locality” of

3Although we will obtain regularized expressions, they do not necessarily remain finite when we take
the regulator away. To make them finite, we would need to add counterterms and subtract the divergences.
We will not work out the details of this renormalization procedure here.

4This should imply no loss of generality, since the seed Hamiltonian H = L0 + L0 and the deformation
operator are also constructed only from the seed theory’s Virasoro modes.

5This operator is not Hermitian for λ < 0 but perturbation theory is not sensitive to this.
6As such, Xλ is related to the generator of the flow of states in [41, 42]. They coincide at lowest order in

λ. Furthermore, the operator Xλ can be seen as the quantum equivalent of generator of a classical canonical
transformation. For a related discussion, see [43].

7This is the assumption that, even quantum mechanically, the TT flow leaves the momentum operator
invariant.
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the theory, which is determined by the locality of the Hamiltonian operator, not by any
notion of locality in the operators needed to produce states from the vacuum.8 Part of the
motivation for this work is to determine whether the Hamiltonian and KdV charges are free
of this type of non-locality, and are indeed quasi-local.

We find that, while the space of unitary transformations (1.5) is naively large, the
requirement of locality is severely restrictive. Up to third order in λ, beside a choice in
regulation scheme, there is a 1-parameter family of local Hamiltonians with the spectrum
(1.2). This family is compatible with an ordering of the Hamiltonian

Hλ =

∫
dσ

2π

1

2λ

(√
1 + 4λH0 − 4λ2P2

0 − 1
)
+O(c), (1.6)

where O(c) indicates terms proportional to the central charge. In the special case where
c = 0 and the seed CFT is the free boson, this Hamiltonian coincides with Nambu-Goto
theory, as was already argued in [4, 18, 43].9 However, we find that when c ̸= 0 there are
new terms which are essential and cannot be removed by a change in regularization scheme.
When the full Hamiltonian is written as Hλ = H0+λH1+λ

2H2+ · · · our result in terms of
the undeformed Virasoro modes is given in eqs. (2.13), (2.19) and (2.23). As a cross check,
we compute directly the deformed energy spectrum of an arbitrary primary state in section
2.2.

Given our family of Hamiltonians, we proceed to check whether there exists a conserved
stress tensor such that the integral of Ttt yields the Hamiltonian, and whether such a stress
tensor satisfies the TT flow equation. The answer to both questions is affirmative; (1.3)
can be satisfied for some choice of the total derivative terms. We find that the choice
of total derivatives in (1.3) depends on the same coefficients parametrizing the family of
Hamiltonians obtained from (1.5). This step therefore enables us to link the ambiguity in
the deformed Hamiltonian to an ambiguity in the definition of the detTλ operator.

The calculation of the stress tensor serves not only as a cross-check of our results, but
also gives us access to the Hamiltonian and momentum density operators, which contain
more information than the integrated quantities. In particular, we can check the validity
of the “TT trace equation”

TrT + 2λdetT = 0 . (1.7)

We show that this equation can indeed be satisfied up to second order for certain additional
choices of the total derivative ambiguities.

The process of constructing a conserved stress tensor that satisfies the flow equations
(1.3) could have been performed independent of the construction (1.5). Remarkably, the
space of Hamiltonians obtained using conservation coincides exactly with the results of the
unitary transformation. However, the result of this method is an expression for the full stress

8Indeed this is the case even in scattering where creation/annihilation operators are related to the local
fields by a Fourier transform. This situation is also familiar from three-dimensional gauge theories [44]
where monopole operators cannot be expressed in a local way using the gauge field.

9Even when related to more general, non-critical string theory, the total central charge including contri-
butions from the ghosts and Liouville term adds up to 0 [10].
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tensor, not just the integrated Hamiltonian, so it is more complicated and requires a larger
set of coefficients to parameterize the total derivative ambiguities. We can interpret some
of these as the freedom to add λ-dependent improvement terms to the stress tensor, while
others correspond to genuine ambiguities that already appear in the unitary transformation.

With the unitary transformation e−λXλ mapping the energy and momentum eigenstates
of the undeformed CFT to those of the deformed theory, we can ask how it acts on the
KdV charges I(k)0 . We define the “conjugated KdV charges”10

Î(k) ≡ e−λXλI
(k)
0 eλXλ , (1.8)

which are generically non-local. They have the same spectrum as the undeformed charges,
rather than the predicted TT -deformed spectrum [12, 42]. It is clear that the conjugated
charges all remain conserved and pairwise commuting. At least to low order in perturbation
theory, we show that it is possible to construct functions of the Î(k) which are (quasi)-local
and have the desired spectrum.

It is interesting to consider more general deformations to which these techniques can be
applied; to this end we study the most general class of theories for which the deformed spec-
trum depends on the undeformed eigenvalues of the KdV charges. We consider generalized
fake Hamiltonians, constrained only by dimensional analysis. This class of deformations
still involves only the Virasoro models of the undeformed theory, and hence the deformed
energy spectrum will depend only on the stress tensor sector of the theory. With these more
general fake Hamiltonians, we again analyze whether a unitary transformation exists such
that the new Hλ in (1.5) is a (quasi)-local charge. We find that locality imposes restrictions
on the allowed deformations.

The rest of this work is organized as follows. In section 2 we set the stage for our
approach. We calculate Xλ and Hλ to third order in λ in section 2.1. In section 2.2 we
perform a direct check of our result by computing the perturbative spectrum of Hλ on
a primary state in the undeformed CFT. Finally, in section 2.3 we construct a conserved
stress tensor such that Ttt reproduces Hλ and check that it satisfies the flow equations
(1.3), allowing us to directly relate the ambiguity in the deformed Hamiltonian Hλ to an
ambiguity in the definition of the renormalized detTλ operator. We additionally check the
trace equation (1.7) and find that it holds to O(λ2).

In section 3 we study the infinite tower of KdV charges. We show that to leading order
in λ one can find functions of the conjugated charges which are local and have the expected
spectrum.

Finally, in section 4 we consider fake Hamiltonians which are general functions of the
KdV charges and ask which of these Hamiltonians can be related to a local Hamiltonian by
a unitary transformation. We find that locality presents a strong constraint on the space
of possible deformations.

10These “conjugated KdV charges” are not to be confused with the higher KdV analogs of the fake
Hamiltonian (1.4). We note that these conjugated KdV charges agree at first order with the “flowed
charges” of [42], but they differ at higher orders due to the λ-dependence of Xλ.
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2 Locality, spectrum and conservation

We will consider the TT deformation of a Euclidean 2d seed CFT on the cylinder with
stress tensor components T and T , from which we may define the Virasoro mode operators

T (σ) =
∑
n∈Z

Lne
inσ, T (σ) =

∑
n∈Z

Lne
−inσ , (2.1)

where σ ∼ σ + 2π is the angular direction on the cylinder. They obey the algebra11

[Lm, Ln] = (m− n)Lm+n +
c

12
m3δm+n. (2.2)

With these definitions, H0 = L0 + L0 and P = i(L0 − L0) are the Hamiltonian and
momentum of the seed CFT. We assume they are local, by which we mean that there
exist densities H0(σ) and P0(σ) which are local functionals of the fundamental fields in the
theory, such that

H0 =

∫
dσ

2π
H0(σ), P =

∫
dσ

2π
P0(σ) . (2.3)

Since the TT deformation can be written purely in terms of the stress tensor, we use these
ingredients to analyze the stress tensor sector of the deformed theory, independent of the
specific CFT we started with.

Throughout this work, dimensional analysis plays an important role in restricting the
operators allowed to appear at each order in perturbation theory. Our seed theory is a CFT
on the cylinder, where the only dimensionful scale is the circumference, 2πR, though we have
set R to unity to simplify expressions. Naively, since the integrand of (1.1) does not depend
on R, the circumference is also not expected to enter the deformation of the Hamiltonian
and momentum densities.12 Noting the length dimensions [λ] = 2, [T ] = [T ] = −2, the
requirement that the Hamiltonian density13 have dimension [Hλ] = −2 then places severe
restrictions on the combinations of T, T , and their derivatives that can appear at each
order: at each order in λ the TT -deformed Hamiltonian is a polynomial in stress tensor
components of the seed CFT.14

We have been careful to indicate that the above argument is the naive conclusion
because detTλ is a composite operator and must be renormalized. Regulators generally

11The more familiar central extension c
12
m(m2 − 1) on the plane is related by a shift in L0. We comment

on the importance of this shift in Section 2.1.4.
12Results based on the flow equation for semi-classical operators in [42] may alter this expectation.

However, in this paper we use the absence of R in the densities as a minimal asumption, and find that a
solution indeed exists. It would be interesting to compare the results we obtain here more directly with the
semi-classical flow equation.

13Throughout this section we do dimensional analysis at the level of the densities rather than the inte-
grated quantities for convenience. Working with the integrated quantities would involve giving summations
an effective dimension.

14Since we work within perturbation theory, we do not comment on the possible resummation of the
Hamiltonian into some local, but non-polynomial, functional. In the special case c = 0, this resummation
is known to occur classically [4].
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include a scale, the simplest example of this is point splitting where the splitting distance
can be turned into a dimensionless parameter by introducing factors of R. Throughout
this work we use versions of operator smearing, as reviewed in appendix A. But as we
will see, since this R-dependence can enter only through the regulator, the violation of our
dimensional analysis can be controlled.

2.1 Unitary Transformation

While the fake Hamiltonian (1.4) is well-defined, e.g. it contains no ordering issues, it is
non-local since it is a non-linear functional of integrated quantities. It is also diagonalized
by the same basis of energy and momentum eigenstates as the seed theory, which is not the
case for the TT -deformed Hamiltonian [41–43].

A Hamiltonian with more desirable properties must be unitarily related to the fake
Hamiltonian (1.4) since their spectra match.15 The space of possible real Hamiltonians Hλ

describing the TT spectrum can then be spanned by the operators

Hλ = e−λXλH̃λe
λXλ , (2.4)

where Xλ is some anti-unitary operator. Since the TT deformation acts trivially on the
undeformed momentum, we will also need to require that

P = e−λXλPeλXλ , (2.5)

implying [P,Xλ] = 0. It also follows that [Hλ, P ] = 0.
Expanding functions of λ as Fλ = F0 + λF1 + λ2F2 + λ3F3 + · · · to third order in λ,

equation (2.4) yields

H0 − H̃0 =0 ,

H1 − H̃1 =[H̃0, X0] , (2.6)

H2 − H̃2 =[H̃0, X1] + [H̃1, X0] +
1

2

[
[H̃0, X0], X0

]
,

H3 − H̃3 =[H̃0, X2] + [H̃2, X0] + [H̃1, X1] +
1

2

[
[H̃1, X0], X0

]
+

1

2

[
[H̃0, X1], X0

]
+

1

2

[
[H̃0, X0], X1

]
+

1

6

[[
[H̃0, X0], X0

]
, X0

]
.

In the remainder of this section we solve these equations order by order to determine Hi

and Xi.
Before we proceed, let us comment on an ambiguity in Xλ. We can modify the unitary

transformation as

e−λXλ → e−λXλe−λOλ , [Oλ, H̃λ] = 0 , (2.7)
15To match spectra, we strictly only require the real and fake Hamiltonans to be related by a similarity

transformation. However, it is always possible to demand that the eigenvectors of H be orthonormal, so
there is no loss in generality demanding the transformation be unitary.
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and equation (2.4) remains unchanged. Any operator Oλ, not necessary local, that com-
mutes with both the Hamiltonian and momentum H0 and P has this property. In turn,
this produces an ambiguity in the definition of Xλ

X0 → X0 +O0 ,

X1 → X1 −
1

2
[X0,O0] +O1 , (2.8)

X2 → X2 −
1

2
[X1,O0] +

1

2
[X0,O1] +

1

12
[X0, [X0,O0]] +

1

12
[O0, [O0, X0]] +O2 ,

and similarly at higher order.

2.1.1 First order

At first order, the calculation is straightforward, but we begin by treating it in detail to
demonstrate our approach.

As described in the beginning of this section, if H1 is to come from a local density,
that density must have length dimension −4. Building operators out of T , T , and their
derivatives, it is clear that, schematically, the only operators which can appear take the
form T 2, TT , T

2, and T ′′, T
′′. The final two operators are total derivatives16 and hence will

not contribute to H1. Using (2.1) to write all such operator contributions in terms of the
Virasoro modes, we would obtain the general operator17

H1 =
∑
n∈Z

(
g
(1)
2,0LnL−n + g

(1)
1,1LnLn + g

(1)
0,2LnL−n

)
. (2.9)

Classically, (2.9) is the most general local charge built out of the Virasoro modes. Quantum
mechanically, this object is plagued by UV divergences and ordering ambiguities. One might
be tempted to try parameterizing the possible operator orderings, but this quickly becomes
cumbersome at higher order and one has no guarantee that the resulting operator will be
a finite, well-defined operator.

A more elegant, and computationally useful, solution is to introduce a smearing reg-
ulator, which we review in Appendix A. In terms of the Virasoro modes, this means we
multiply our operators by products of Fourier modes of a smearing function18 wn to write

H1 =
∑
n∈Z

(
g
(1)
2,0LnL−n + g

(1)
1,1LnLn + g

(1)
0,2LnL−n

)
wn. (2.10)

When doing this we necessarily involve higher derivative orders through wn than allowed
for by the naive version of dimensional analysis described at the beginning of this sec-
tion. However, as we noted there, arbitrary R-dependence is only allowed to enter via the
regulator so there is no tension between those arguments and the use of a regulator here.

16Their contribution to the density can, however, be understood as improvement terms. Some properties,
e.g. the trace equation, are sensitive to such contributions, we as will see in section 2.3.

17Note we also demand [H1, P ] = 0, as discussed previously.
18We require that w−n = wn and w0 = 1. Example regulators with these properties include the heat

kernel wn = e−ϵ|n| and cutoff wn = θ(|n| < N). The particular choice will not be important for our results.
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An immediate advantage of explicitly including the regulator wn is that it gives us a
way to think about the other operator orderings not explicitly represented in (2.10). Firstly,
integrating a smeared product of stress tensor components will only ever produce a sum
over all integers and a string of Virasoro modes, and never orderings in the sum such as∑

m>n. Any other ordering operation will either reduce to a reindexing, which we are always
allowed to do since our sums are regulated to be finite, such as wnLnL−n → wnL−nLn, or
should be regarded as equivalent to a change of scheme, and hence parameterized by the
choice of regulator wn.

With our demands on Hλ now imposed at first order, we can ask whether there exists
an operator X0 solving the constraint (2.6). We can characterize, in general, when this
type of problem has a solution. Since the constraints (2.6) are linear, we can investigate
the generic problem

Ln1 · · ·LnNLm1 · · ·LmM = [L0 + L0, X0]. (2.11)

By inspection, this has solution

X0 = − 1

n1 + · · ·+ nN +m1 + · · ·mM
Ln1 · · ·LnNLm1 · · ·LmM +O0 , (2.12)

whenever n1+ · · ·+nN +m1+ · · ·+mM ̸= 0 and for any operator O0 that commutes with
both L0 and L0, since X0 is to commute with P . If n1 + · · · + nN +m1 + · · · +mM = 0,
then a solution for X0 does not exist.

Demanding existence ofX0 and (2.6) immediately implies g(1)2,0 = g
(1)
0,2 = 0 and g(1)1,1 = −4

so the first order Hamiltonian is uniquely determined to be

H1 = −4
∑
n∈Z

LnLnwn , (2.13)

and the solution for X0 is19

X0 = 2
∑
n̸=0

1

n
LnLnwn +O0. (2.14)

We note that X0 is non-local. This should be expected since it defines a map between a
non-local operator, the fake Hamiltonian, and a local one, H1. By inspection, the most
general form of (2.6) is

O0 = iα2,0L0L0 + iα1,1L0L0 + iα0,2L0L0

+
∑
n̸=0

1

n

(
fLnL−n + fLnL−n

)
wn. (2.15)

Note that there is no requirement of locality in this expression, so products of L0 and L0

are allowed. However, we do demand that Xλ be anti-Hermitian, which requires all the
undetermined constants to be real.

19We note again that this expression agrees with the flow of states operator X of [41, 42] at λ = 0.
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2.1.2 Second order

At the next order there are more operators, but the basic logic is the same. The local
density producing H2 should have length dimension −6. The only operators constructed
from the stress tensor can again be organized by derivative order, schematically

∂0 : T 3, T 2T , TT
2
, T

3
,

∂2 : T 2, TT , T
2
,

∂4 : T, T , (2.16)

where at each derivative order we can sprinkle derivatives in any T or T . The terms with
a single stress tensor factor are total derivatives and hence can be ignored. In terms of the
Virasoro modes, this yields the general form

H2 =
∑
n∈Z

n2
(
g
(2)
2,0LnL−n + g

(2)
1,1LnLn + g

(2)
0,2LnL−n

)
w2
n

+
∑

m,n∈Z

(
h
(2)
3,0LmLnL−m−n + h

(2)
2,1LmLnLn+m

+ h
(2)
1,2Lm+nLnLm + h

(2)
0,3LnLmL−m−n

)
wmwn, (2.17)

where the coefficients are real by Hermiticity. There is some ambiguity in how the regulating
factors are added. The choice we use here is convenient for obtaining the cancellations in
(2.6) required for X1 to exist.20

Imposing (2.6) we find that a solution for X1, and hence the unitary transformation,
only exists when

h
(2)
3,0 = h

(2)
0,3 = 0,

g
(2)
2,0 = g

(2)
0,2 =

c

3
,

h
(2)
1,2 = h

(2)
2,1 = 8. (2.18)

This leaves the coefficient g(2)1,1 undetermined, so at this order there is a 1-parameter fam-
ily of local Hamiltonians which have the expected TT spectrum. This correction to the
Hamiltonian, H2, is

H2 =8
∑

m,n∈Z

(
LmLnLm+n + Lm+nLnLm

)
wmwn

+
c

3

∑
n∈Z

n2
(
LnL−n + LnL−n

)
w2
n + g

(2)
1,1

∑
n∈Z

n2LnLnw
2
n . (2.19)

20In the language of appendix A, at first order we used product smearing, while here at second order we
use operator smearing. As discussed in the appendix, there is nothing inconsistent about this combination
of choices. If one instead chose to use exclusively operator smearing, one would instead find that X1 exists
only if some non-local operators are added to H2 which vanish as the regulator is removed. A similar issue
is encountered in section 2.3, where the smeared stress tensor is only conserved modulo terms that vanish
as the regulator is removed.
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It is useful to note that no reordering of the Ln’s is capable of absorbing the terms pro-
portional to c or g(2)1,1, because they would not produce the factor of n2. Within our setup,
this implies that these terms cannot be absorbed into a redefinition of the regulator or any
counterterm. One could also imagine shifting L0 by a constant, but such a redefinition also
cannot absorb these terms due to the n2 factor.21 We treat such shifts in L0 in detail in
section 2.1.4.

The coefficient g(2)1,1 is not determined by the requirement that the second order spec-
trum matches with the one predicted for TT -deformed CFTs and, as we will see below,
it is also consistent with conservation of the stress tensor. This suggests that there exist
multiple theories which all can be seen as valid TT deformed versions of the original theory
and that the deformed Hamiltonian is not universal in the aforementioned sense. Similar
undetermined constants appear at higher orders and correspond to the freedom to compose
e−λXλ with a local unitary transformation.

It is possible that g(2)1,1 gets determined at higher orders, i.e. that the existence of a
unitarity transformation requires a particular value for this coefficient, but we did not
find any such constraint. We will see in section 2.2 that g(2)1,1 does not change the energy
spectrum, but it does appear in off-diagonal components of the Hamiltonian operator. For
example, for the normalized state |ψ⟩ ∝ L−kL̄−k |h, h̄⟩ built upon a primary state |h, h̄⟩

⟨ψ|H2|0⟩ = g
(2)
1,1k

2 . (2.20)

It is interesting to compare the expression for H2 to the Nambu-Goto Hamiltonian,
which is the classical (and c = 0) result [4],

HNG =

∫
dσ

2π

1

2λ

(√
1 + 4λH0 − 4λ2P2

0 − 1
)
. (2.21)

Expanding, we would find that HNG
2 matches the Hamiltonian above in the special case

c = 0 and g(2)1,1 = 0 with a particular choice of a regulator. One can modify the Nambu-Goto

Hamiltonian to reproduce the new terms by adding λ2

4 g
(2)
1,1(H′2

0 + P ′2)− cλ2

6 (H′2
0 − P ′2). It

would be interesting to understand how the terms proportional to c impact the holographic
interpretation of the TT deformation. It is not clear how these terms, expressed as a
function of the undeformed stress tensor, relate to the calculations that have appeared in
the holography literature, which are phrased in terms of the fundamental fields instead.

As for the unitary transformation (2.4) that maps the fake Hamiltonian into eq. (2.19),
we find

21For the special case of the free scalar, one could consider reorderings of the oscillators ϕk inside Ln =∑
k ϕn−kϕk. However, these can only produce shifts of L0.

– 11 –



X1 = −
∑

m,n ̸=0
m+n̸=0

m+ n

mn
wmwn(LmLnL̄m+n + Lm+nL̄mL̄n)

− 4
∑
m̸=0

wm

m

(
LmL̄0L̄m + LmL0L̄m

)
−
∑
n̸=0

n

2
g
(2)
1,1LnLnwn − 1

2
[X0,O0] +O1 , (2.22)

for any O1 which commutes with both L0 and L̄0. One can easily see that the above
expression is anti-Hermitian using L†

n = L−n and L̄†
n = L̄−n for any choice of anti-Hermitian

Oi.

2.1.3 Third Order

One proceeds in a similar fashion to the next order, to determine H3 and X2 in (2.6). For
the former we get

H3 = −16
∑
m,n,p

wmwpwm+p

(
LmLnLpL̄m+n+p + 3LmLnL̄pL̄m+n−p + Lm+n+pL̄mL̄nL̄p

)
− 2c

3

∑
m,n

wmwnwm+n(m
2 +mn+ n2)

(
LmLnL−m−n + 3LmLnL̄m+n + 3Lm+nL̄mL̄n + L̄mL̄nL̄−m−n

)
+
∑
m,n

wmwn(m+ n)2
(
g
(3)
2,1LmLnL̄m+n + g

(3)
1,2Lm+nL̄mL̄n

)
+ g

(3)
1,1

∑
n

wnn
4LnL̄n

+ ϵ1
∑
n

wnLnL̄n + ϵ2(L0 + L̄0) + ϵ3 , (2.23)

where g(3)1,2, g
(3)
2,1 and g

(3)
1,1 are free parameters while the terms proportional to ϵi are coun-

terterms. They are given by

ϵ1 = −16

3

∑
m,n

wmwnwm+n(m
2 +mn+ n2) ,

ϵ2 = −2c

9

∑
m,n

wmwnwm+n(m
2 +mn+ n2)2 ,

ϵ3 = − c2

108

∑
m,n

wmwnwm+n

(
(m2 +mn+ n3)2 − 3m2n2(n+m)2

)
.

Similar counterterms appear in the expression for X2, which we have omitted. Hence we
see that the Hamiltonian (2.23) is the classical expression in (2.21) supplemented by terms
proportional to the central charge and counterterms. As before, the Hamiltonian is not
uniquely determined and labeled by three free parameters g(3)1,2, g

(3)
2,1 and g(3)1,1.
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2.1.4 Seed Hamiltonian and the plane

Throughout this work, we assume that our seed CFT has the standard Hamiltonian on the
cylinder. This means we take H0 = L0 + L0 where the Virasoro modes are defined, as in
(2.2), to have central extension of the form c

12m
3δm+n. One may wonder how important

this assumption is to our results, particularly in light of the observation that the original
argument [3, 4] for the deformed spectrum (1.2) applied only on the cylinder and not on
the plane, where the central extension would take the shifted form c

12(m
3 −m)δm+n.

To make this precise, we phrase the question in terms of modifying the seed Hamiltonian
to

H0 = L0 + L0 +
c

12
q , (2.24)

where q is a real constant and the modes Ln and Ln are still the ones appropriate to the
cylinder, obeying (2.2).

Alternatively, we could define the shifted modes L′
n and L′

n by L′
n = Ln for n ̸= 0 and

L′
0 = L0 +

c
24q, and similarly for the barred sector, so that

H0 = L′
0 + L

′
0 . (2.25)

These modes obey the Virasoro with a different form of the central extension,

[L′
m, L

′
n] = (m− n)L′

m+n +
c

12
m(m2 − q)δm+n. (2.26)

The special case q = 1 would be equivalent to taking the Hamiltonian (2.25) on the plane. It
is important to note that on general grounds one would expect the TT flow to be sensitive
to this type of change since the flow depends non-linearly on the seed theory, so this
modification is not necessarily trivial.22

Our previous arguments proceed in largely the same manner, with the exception that
there are new operators we can add to our local Hamiltonians H1 and H2, because q carries
units of energy.23 At first order, we can add the operators

q2, qL′
0, qL

′
0. (2.27)

However, it is straightforward to check that (2.6) sets the coefficients of all these operators
to zero at first order, so locality is insensitive to the change in the seed Hamiltonian at this
order.

At second order the new operators are

q3, q2L′
0, q

2L
′
0, q

∑
L′
nL

′
−n, q

∑
L′
nL

′
n, q

∑
L
′
nL

′
−n. (2.28)

22It would, however, be trivial if we selected H0 = L0 + L0 and instead wrote it as H0 = L′
0 + L

′
0 −

c
12
q. Clearly, the seed Hamiltonian is unchanged and this amounts to a local “field” redefinition. A local

redefinition will not change our conclusions about locality, and this can be checked directly (though it makes
intermediate steps messier).

23Recall that we have chosen the dimensions of the Virasoro modes such that c is dimensionless.
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But now we find that a solution does not exist when we try to impose (2.6) – after exhausting
all of our freedom to fix the free coefficients we are left with

H2 − H̃2 −
(
[H̃0, X1] + [H̃1, X0] +

1

2
[[H̃0, X0], X0]

)
=
qc

3
(L′

0
2 + L

′
0
2). (2.29)

Since the operator on the right commutes with H̃0, it cannot be absorbed into a contribution
to X1. Since it is not local, it cannot be absorbed into our ansatz for H2. Hence we conclude
that there is no local Hamiltonian with the spectrum (1.2) unless either c = 0 or q = 0.

Motivated by these restrictions, one can further ask more generally about what class
of fake Hamiltonia H̃λ are unitarily equivalent to a (quasi)-local Hamiltonian. We take up
this question in section 4.

2.2 Perturbative Energy Spectrum

As a cross-check of our results, we can directly compute the perturbative energy spectrum
of Hλ = H0+λH1+λ

2H2+ · · · . Since we started from the fake Hamiltonian and applied a
unitary transformation, the expected TT -deformed energy spectrum is guaranteed to come
out by construction. However, we verify this result explicitly to illustrate that the terms
proportional to c are necessary to obtaining the correct spectrum, implying that these
deviations from the Nambu-Goto Hamiltonian are necessary in the presence of non-zero
central charge. In general, this would be a complicated problem in degenerate perturbation
theory. But if we restrict to the special case of a primary state |h, h⟩, we shall see that the
problem at second order, where a sum over degenerate states would first enter, simplifies
significantly.

At first order we compute

E
(1)

h,h
= ⟨h, h|H1|h, h⟩ = −4hh , (2.30)

which matches the first order expansion of (1.2).
At second order, we first note that all states outside the Verma module constructed

atop |h, h⟩ are orthogonal to it. Within the Verma module, we can choose the states
|h, h⟩, Ln|h, h⟩, Ln|h, h⟩, and LnLm|h, h⟩ to be orthogonal to all further descendent states,
which we denote by |N,N⟩. Then since

⟨N,N |H1|h, h⟩ = −4
∑
n∈Z

wn⟨N,N |(LnLn|h, h⟩) = 0 , (2.31)

vanishes by orthogonality, H1 has no matrix elements connecting the primary to the further
descendent states |N,N⟩. Indeed, the same is true for the states Ln|h, h⟩, Ln|h, h⟩ and
LnLm|h, h⟩ with n ̸= m. Hence, to second order perturbation theory it is sufficient to
sum only over intermediate states of the form NnLnLn|h, h⟩ where Nn is a normalization
factor24. With this, we compute

E
(2)

h,h
= ⟨h, h|H2|h, h⟩+

∞∑
n=1

|Nn|2

E
(0)

h,h
− E

(0)

h+n,h+n

|⟨h, h|LnLnH1|h, h⟩|2. (2.32)

24It is straightforward to show 1
Nn

=
√

(2nh+ c
12
n3)(2nh+ c

12
n3).
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It is straightforward to compute these terms and find

⟨h, h|H2|h, h⟩ = 8hh(h+ h)+
1

18

∞∑
n=1

n(24h+ cn2)(24h+ cn2)w2
n

∞∑
n=1

|Nn|2

E
(0)

h,h
− E

(0)

h+n,h+n

|⟨h, h|LnLnH1|h, h⟩|2 = − 1

18

∞∑
n=1

n(24h+ cn2)(24h+ cn2)w2
n. (2.33)

Thus, the correction to the energy spectrum is

E
(2)

h,h
= 8hh(h+ h). (2.34)

This result matches the TT spectrum (1.2). Importantly, the cancellation required to pro-
duce this answer occurs directly at the summand level, so we don’t need to make explicit use
of the regulator to obtain eq. (2.34).25 This is a general feature we expect of the “universal”
TT -deformed observables, such as the energy spectrum, that they are independent of the
regulation scheme.

2.3 Current Conservation

To get more fine-grained access to the TT -deformed theory, we can calculate the full stress
tensor densities that give rise to the (integrated) Hamiltonian we obtained above. The
essential requirement we need to impose is the fact that it is conserved. We find that the
resulting densities satisfy the flow equation eq. (1.3), for a particular choice of the total
derivative terms.

In fact, as alluded to in the introduction, imposing the flow equation along with conser-
vation of the stress tensor provides an independent way to derive the deformed Hamiltonian.
This is the perspective we take in this subsection. It turns out that this approach leads to
the same class of Hamiltonians as in Section 2.1.

The conservation equations Ḣλ + P ′
λ = 0 = Ṗλ +K′

λ, where Kλ ≡ Tσσ, are compatible
with the Virasoro algebra (2.2) in the undeformed CFT if we identify Ȯ = −[Hλ,O] and
O′ = −[P,O]. We parameterize the total derivatives in (1.3) by the functions A,B, C, and
D with prefactors chosen so that they are Hermitian,

∂λHλ = HλKλ − P2
λ +A′ + iḂ , ∂λPλ = iC′ − Ḋ . (2.35)

As before, we have been somewhat cavalier in writing the product of coincident local oper-
ators on the right-hand side of eq. (2.35), ignoring issues of ordering, divergences etc. We
address these explicitly in perturbation theory by our smearing procedure, keeping in mind
that the fundamental justification comes from Zamolodchikov’s argument [1]. As explained
in appendix B, this argument can be extended to all orders in perturbation theory.

Expanding eq. (2.35) perturbatively in λ, with Hλ = H0 + λH1 + . . . and similarly for
the other operators, we find to first order that

H1 = H0K0 − P2
0 +A′

0 − i[H0,B0] . (2.36)

25Note that this does not imply that we did not require the regulator implicitly as the manipulations
used at intermediate steps are only justified when sums converge.
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The most general ansatz which is compatible with locality, dimensional analysis, and which
only depends on the stress tensor itself, is

A0 = α0T
′ + ᾱ0T

′
, B0 = β0T

′ + β̄0T
′
, C0 = γ0T

′ + γ̄0T
′
, D0 = ϵ0T

′ + ϵ̄0T
′
. (2.37)

Some combinations of the free coefficients α0, ᾱ0, . . . are determined by the conservation
equation at first order

[H0,H1] + [H1,H0] + P ′
1 = 0 . (2.38)

Using the Virasoro algebra, we find the constraints

α0 + β0 − γ0 − ϵ0 =
c

3
= ᾱ0 − β̄0 + γ̄0 − ϵ̄0 . (2.39)

The other conservation equation, Ṗ+K′ = 0, can be used to determine K1 up to a constant.
The latter represents the usual additive ambiguity to the stress tensor, which is set to 0 by
requiring the standard thermodynamic interpretation, namely ⟨Tσσ⟩ = −∂E

∂R , as is done in
the derivation of the Burgers equation [3, 4]. Altogether, we find

H1 = −4
∑
m,n

LmL̄ne
i(m−n)σ −

∑
m

m2
[
(α0 + β0)Lme

imσ + (ᾱ0 − β̄0)L̄me
−imσ

]
,

P1 = i
∑
m

m2
[( c

3
− α0 − β0

)
Lme

imσ −
( c
3
− ᾱ0 + β̄0

)
L̄me

−imσ
]
, (2.40)

K1 = 12
∑
m,n

LmL̄ne
i(m−n)σ +

∑
m

m2
[
(α0 + β0)Lme

imσ + (ᾱ0 − β̄0)L̄me
−imσ

]
.

The TT trace equation TrT = −2λ detT is obeyed at this order,

H1 +K1 = 8
∑
m,n

LmL̄ne
i(m−n)σ = −2(H0K0 − P2

0 ) . (2.41)

It is interesting to note that the detT operator on the right-hand side of this equation
appears without any derivatives at this order. In our formalism, this operator does not
necessarily coincide with the deformation added to the Hamiltonian H1 (2.36) — it does so
only for α0 + β0 = 0 = ᾱ0 − β̄0. One could choose to impose that these operators coincide
also at higher orders, including derivative terms, but we will not do so here.

The undetermined coefficients α0+β0 and ᾱ0− β̄0 do not impact the integrated Hamil-
tonian and momentum, but due to eq. (2.39) they cannot be chosen in such a way that all
derivative terms in the stress tensor vanish. In fact, this ambiguity was to be expected: it
represents the freedom to add an improvement term ∆Tij = λ(∂i∂j − δij∂

2)f(Tkl) at first
order, with f = −(α0 + β0)T − (ᾱ0 − β̄0)T .

There were no ordering ambiguities at first order: the only product of operators being
proportional to LmL̄n, which commute. Nevertheless, to consistently go to higher orders,
we will consider deforming the theory with a smeared version of the TT operator instead.
One subtlety that arises is that the conservation equation is not identically satisfied before
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taking the regulator away. Rather, using the solution (2.39), the conservation equation
eq. (2.38) becomes

c

3

∑
m

m3(wm − 1)wm(Lme
imσ + L̄me

−imσ)

+ 4
∑
m,n

LmL̄ne
i(m−n)σ(wm − wn)[(2m− n)wm + (m− 2n)wn] = 0 . (2.42)

The first line is a “smeared local operator” that converges to 0 in the weak sense as wn → 1.
The last line is well-defined as a smeared local operator because the Lm commute with L̄n.

The analog of this at higher orders, where we do find terms with nontrivial commutation
relations, is that all singular terms in the OPE cancel before taking the regulator away.26

We can therefore require conservation at second order up to terms that vanish as w → 1.
This procedure yields the following integrated quantities

H2 = 8
∑
m,n

wmwnwm+n(LmLnL̄m+n + Lm+nL̄mL̄n)

+
c

3

∑
m

m2w2
m(LmL−m + L̄mL̄−m) + c1

∑
m

m2w2
mLmL̄m ,

P2 = 0 ,

K2 = −40
∑
m,n

wmwnwm+n(LmLnL̄m+n + Lm+nL̄mL̄n)

− 5c

3

∑
m

m2w2
m(LmL−m + L̄mL̄−m) + c2

∑
m

m2w2
mLmL̄m , (2.44)

where c1 and c2 are undetermined constants like those in eq. (2.37).27 Clearly, c1 is nothing
but the constant g(2)1,1 identified in section 2.1. The unintegrated stress tensor elements are
rather complicated at this order, so we record here only the trace equation after taking

26The canonical example is
∑

m,n(wm − wn)LmLne
i(m+n)σ. This is nothing but∫

dσ1

2π
w(σ1) [T (σ + σ1)T (σ)− T (σ)T (σ − σ1)] . (2.43)

To check whether this is well-defined as an operator, it is sufficient to substitute the universal (divergent)
part of the operator product expansion into this expression and observe that all terms cancel.

27To be precise, they are

c1 = −2c

3
+ 6(α0 + ᾱ0 + β0 − β̄0)− (βT ′T − βTT

′) ,

c2 =
2c

3
− 18(α0 + β0) + 6(ᾱ0 − β̄0)− 16γ0 − 8γ̄0 + 5(βT ′T − βTT

′)− 2(γT ′T − ϵT ′T ) , (2.45)

where βT ′T is the coefficient of T ′
w(x) × Tw(x) in B1 and βTT

′ is the coefficient of Tw(x) × T
′
w(x). The

coefficients γT ′T and ϵT ′T are the coefficients of the former in C1 and D1, respectively. At the end of the
day, we see that the total derivatives added to detT which influence the second order Hamiltonian are Ṫ ′,
Ṫ

′
, T ′′, T ′′, λT ′T , and λTT

′.
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away the regulator28

TrT + 2λdetT |λ2 = c̃2
∑
m,n

mnLmL̄ne
i(m−n)σ , (2.47)

which is consistent with 0 for some choice of the undetermined constants. However, even
if c̃2 is not set to 0, this is a total derivative ∝ ∂z∂z̄(TT ) + O(λ), and can be seen as an
improvement term. Its appearance is consistent with the observations in [25, 26] that, at
least in the case of TT -deformed boundary gravitons which was investigated there, a total
derivative counterterm has to be added to the TT deformation at second order.29

3 KdV Charges and Integrability

In the previous section we showed that we can perturbatively construct a local Hamiltonian
with the energy spectrum given in eq. (1.2). In a CFT, it has been argued that the TT
deformation preserves the infinite tower of the KdV charges [3, 12]. In turn, this shows that
the TT deformation preserves integrability.

In our picture this is automatic since the Hamiltonian is unitarily equivalent to a
function of the undeformed Hamiltonian and momentum (2.4). In the undeformed theory,
the KdV charges are an infinite collection of conserved charges satisfying

[I
(i)
0 , I

(j)
0 ] = 0, [Ī

(i)
0 , I

(j)
0 ] = 0, [Ī

(i)
0 , Ī

(j)
0 ] = 0 . (3.1)

The lowest level ones are I(1)0 = 1
2(H0 + P0) and Ī

(1)
0 = 1

2(H0 − P0). In the deformed the-
ory, one can define analogous charges Î(i) ≡ e−λXI

(i)
0 eλX that are automatically conserved.

These charges automatically commute with each other and also with the undeformed Hamil-
tonian, which is a function of I(1)0 and Ī(1)0 . However, such charges are not necessary local,
in the sense that they are not integrals of local operators. The goal of this section is to
argue that there exist combinations of these charges which are local.

In analogy with the Hamiltonian in section 2, we analyze whether there are combina-
tions30

Ĩ
(k)
λ = Ĩ

(k)
λ (I

(0)
i ) , (3.2)

such that
I
(i)
λ = e−λX Ĩ

(i)
0 eλX . (3.3)

28The coefficient is given by

c̃2 = −8c

3
− 8(α0 + β0) + 16(ᾱ0 − β̄0)− 16γ0 − 8γ̄0 − 4(βT ′T − βTT

′)− 2(γT ′T + ϵT ′T ) . (2.46)

29The counterterm added in [25, 26], using dimensional regularization, is ∆TrT = − λ2c20
288π2ϵ

f ′′′f̄ ′′′. The
stress tensor in that theory is T = − c0

12
(f ′2 − f ′′), so this term does not precisely coincide with what we

find here. It would be interesting to investigate if one could instead add only (multiples and derivatives of)
the stress tensor as counterterms in the theory of TT -deformed boundary gravitons. If so, one could expect
the leading term to be of the form (2.47).

30Note again the difference between the “conjugated charges” Îk defined in the previous paragraph and
the “fake KdV charges” Ĩ(k) used here.
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is local. Importantly, such combinations are automatically conserved since they commute
with the deformed Hamiltonian Hλ = I

(1)
λ + I

(1)
λ

[I
(i)
λ , Hλ] = e−λX [Ĩ

(i)
0 , H̃λ]e

λX = 0 . (3.4)

To explore the locality of the above charges, consider the operators

ik =
∑

n1+···+nk+1=0

Ln1 . . . Lnk+1
, k ∈ N . (3.5)

The undeformed KdV charges are combinations of the above operators which are designed to
ensure commutativity and also finiteness. For simplicity we omit the regulator dependence.
We will show that, to first order in λ, there is a function

Ĩ
(k)
λ = Ĩ

(k)
λ (i1, i2, . . . , ik) , (3.6)

such that the operator e−λX Ĩ
(k)
λ eλX is a local charge. We have

e−λXike
λX = ik − λ[X0, ik] +O(λ2) , (3.7)

where X0 is given in (2.14). It is straightforward to evaluate the commutator on the right-
hand side

[X0, ik] =2(k + 1)
∑

n1+···+nk+1=n̄1

Ln1 . . . Lnk+
L̄n̄1 (3.8)

+
(k + 1)c

6

∑
n1+···+nk=n̄1

n̄21 Ln1 . . . Lnk
L̄n̄1 − 2(k + 1)L̄0 ik . (3.9)

The first two terms are local while the last term is a product of two local charges and hence
non-local. However, we can define the following combination

ĩ
(k)
λ = ik + 2(k + 1)λī0 ik +O(λ2) , (3.10)

such that e−λX ĩ
(k)
λ eλX is a local charge. Hence, we can also define local Ĩ(k)λ since these

are combinations of ĩ(k)λ .
We can compare this result with the one obtained in [42]31, where it was showed that,

semi-classically and for c = 0, the physical KdV charges satisfy

∂λI
(k)
λ = [X ′

λ, I
(k)] + 2(k + 1)L̄0I

(k)
λ , (3.11)

for some non-local X ′
λ which coincides with our Xλ at λ = 0. Taking the expectation of

the above equation we get 〈
∂λI

(k)
λ

〉
= 2(k + 1)

〈
L̄0I

(k)
λ

〉
, (3.12)

which exactly matches (3.10) and with the result of [12].
Based on the relation with the semi-classical arguments made in the literature and on

the result we obtained for I(0) and Ī(0), we expect that this method will permit to define
(quasi)-local KdV charges to all orders in λ. It would be interesting to explore this further.

31In our notation, the label k takes all the values in N, while in [42] it takes only odd values.
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4 Generalized Deformations

In the previous section, we showed that the TT deformation has the special property that
its fake Hamiltonian, determined by its spectrum, is unitarily equivalent to a (quasi)-local
Hamiltonian. In this section, we analyze more general deformations with this property. We
study which functions of the conserved charges of the free theory

H̃λ = H̃λ(I
(k)
0 ) , (4.1)

are unitary equivalent to a (quasi)-local Hamiltonian Hλ, in the sense that there is a (non-
local) operator X such that

Hλ = e−λXH̃λe
λX . (4.2)

This kind of generalized deformations are interesting because their spectrum is given by
the spectrum of the undeformed theory similar to the TT case (see (1.2)). As we showed in
section 3, such deformations automatically preserve the infinite tower of KdV charges and
therefore integrability, though this tower is not guaranteed to consist of local operators. In
this section, we only analyze the locality of the Hamiltonian. It would be interesting to
analyze the locality of the KdV charges as well, but we leave this for future work.

Let us begin with the most general expression up to order three in the undeformed
Virasoro generators

H̃λ =L0 + L̄0

+λ(b1L
2
0 + b2L̄

2
0 + b3L0L̄0 + b4I

(2)
0 + b5Ī

(2)
0 )

+λ2
(
c1L

3
0 + c2L

2
0L̄0 + c3L0L̄

2
0 + c4L̄

3
0 + c5L0I

(2)
0 + c6L̄0I

(2)
0

+ c7L0Ī
(2)
0 + c8L̄0Ī

(2)
0 + c9I

(3)
0 + c10Ī

(3)
0

)
+ . . . (4.3)

The second KdV charge is given by

I
(2)
0 =

∑
n∈Z

L−nLnw
2
n + a1L0 + a2 , (4.4)

where we have used an arbitrary regulator wn to regulate the infinite sum, as in section
2.1. We have also inserted two regulator dependent constants ai. Requiring finiteness of
the expectation value within in a primary state when the regulator is taken away, we have
that

a1 = −2
∑
n>0

nw2
n , (4.5)

a2 = − c

12

∑
n>0

n3w2
n . (4.6)

The next KdV charge, I(3)0 is complicated, but ultimately local. Hence at second order in
(4.2) its presence will not impose any constraints – as such we have omitted the expression
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but, in a normal ordering prescription, an expression can be found in [45]. We assume that
the momentum does not change,

Pλ = P0 = i(L0 − L̄0). (4.7)

Notice also that we have allowed terms with non-zero spin, which break Lorentz symmetry.
To fix the coefficients in (4.3) that lead to a local first-order Hamiltonian, we look for

an X0 such that
H1 = H̃1 + [H̃0, X0] . (4.8)

where H̃0 = L0 + L̄0. We immediately conclude that the terms proportional to b4 and b5
are local since both I

(2)
0 and Ī

(2)
0 are integrals of the local currents. On the other hand,

the term L2
0 is not local and it can not be produced by a commutator of L0 + L̄0. Hence,

b1 = 0. Similarly, b2 = 0. We conclude that the most general Hamiltonian to first order is

H̃λ =L0 + L̄0 + λ
(
b3L0L̄0 + b4I

(2)
0 + b5Ī

(2)
0

)
+ . . .

with

Hλ =L0 + L̄0 + λ

(
b3
∑
n

LnL̄nwn + b4I
(2)
0 + b5Ī

(2)
0

)
+ . . .

Xλ =− b3
2

∑
n̸=0

1

n
LnL̄nwn + . . . . (4.9)

Following the same steps, to next order we can conclude that c1 = c4 = c5 = c8 = 0

while the I(3) and Ī(3) are automatically local. The remaining coefficients c2, c3, c6 and c7
can be fixed by requiring the third equation in (2.6). One finds

c2 =
b23
2
, c3 =

b23
2
, c6 = 0, c7 = 0 . (4.10)

We were led to the above by assuming that the regulator dependent constants in (4.4) are
non-zero. In conclusion, we have a family of Hamiltonians parameterized by 5 constants
b3, b4, b5, c9 and c10. To this order, all the parameters except b3 correspond to choosing
a KdV current as a Hamiltonian. The remaining coefficient b3 corresponds to the TT

deformation. It would be interesting to classify all possible generalized Hamiltonians at
higher orders, including the first non-trivial II deformation studied in [3] which appears at
order λ3, but we defer this investigation to future work.
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A Regulation by smearing

Although Zamolodchikov’s argument guarantees that certain observables, like the energy
spectrum and S-matrix elements, will turn out finite, we need regulate several of the inter-
mediate expressions to keep control over the calculation. This also grants us access to more
fine-grained observables, which are not covered by the original arguments.

To illustrate the ambiguities that appear otherwise, we can consider sums like the ones
that appear in the square of the stress tensor,

∑
m,n e

i(m+n)σLmLn. As was already pointed
out in [42], performing a seemingly innocuous relabeling of indices m ↔ n and using the
Virasoro algebra, this term becomes∑

m,n

ei(m+n)σ
(
LmLn + (n−m)Lm+n +

c

12
n3δm+n

)
, (A.1)

which differs from the original by a formally divergent, operator-valued sum.
One physically intuitive way to regulate the theory is by smearing each stress tensor

operator with a window function

T (σ) → Tw(σ) ≡
∫
dy w(y)T (σ − y) =

∑
m

wmLme
imσ , (A.2)

where wm are the Fourier coefficients of w(σ). At the end of the calculation we take away the
regulator by sending w(x) → δ(x) or, equivalently, wn → 1. In order to keep T Hermitian,
we require w−n = w∗

n. Each term in the result (A.1) gets multiplied by wmwn, which makes
the last two terms∑

m,n

(n−m)wmwnLm+ne
i(m+n)σ ,

∑
m

c

12
m3wmw−m , (A.3)

respectively. The latter is finite as long as we require wm to go to zero faster than |m|−3/2 at
large |m|,32 and the former is a finite sum of local operators. If we take a symmetric smearing
function, with w−m = wm, these vanish identically as they are antisymmetric under m↔ n

and m → −m respectively. We conclude that the smeared product Tw(σ)Tw(σ) is defined
unambiguously.

An alternative approach is to define a smeared product, which we can use to regulate
the deforming operator detT . At first order it becomes

T (σ)×w T (σ) ≡
∫
dy w(y)T (σ + y)T (σ − y) =

∑
m,n

wm+nLmL̄ne
i(m−n)σ , (A.4)

With the analogous smearing for T (σ)2, the problematic terms in (A.1) now become∑
m,n

ei(m+n)σ(n−m)wm−nLm+n +
c

12

∑
m

m3w2m . (A.5)

Again imposing w−n = wn and appropriate fall-off conditions for w, this sum vanishes as
an operator due to (anti)symmetry in the summation indices.

32In what follows, we will require it to fall off faster than any power of m.
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When defining composite operators, there is a certain amount of freedom in how we
regulate. The smearing definitions given above have natural implications for locality, so
they make the most sense for us to consider in the present work, but they are not unique.
Indeed, we could define T 3(σ) by Tw(σ)3 just as well as

Tw(σ)
2 ×w T (σ). (A.6)

Of course, in the regulated theory these are distinct operators that will have different
matrix elements, but both are valid regulations of T 3(σ). The fact that a given composite
operator can be regulated in distinct ways corresponds to the familiar ambiguity in finite
part when one subtracts a divergence.

With this ambiguity in mind, in this work we use regulators that are motivated by the
smearings described above, but will not attempt to regulate all operators in exactly one of
these two smearings. Rather, we will prefer to regulate each operator that appears in our
Hamiltonian in a manner that happens to be most convenient for our purposes.

B Zamolodchikov’s argument in perturbation theory

As it is important for the argument in the main text that there exists a well-defined “TT ”
operator at each order in perturbation theory, we will dedicate this appendix to justifying
this in some detail. We closely follow the original arguments in [1] but point out some tacit
assumptions and show how it remains valid when the original theory gets TT deformed.

The starting point is a theory which, in the UV, tends to a unitary 2d Euclidean CFT
that has Hilbert space spanned by normalizable states on circles corresponding to the quasi-
primary and SL(2,C) descendant operators in the theory, which include the conserved stress
tensor. The theory then has a convergent OPE [46]. Following [1], we use this to write

T (z, z̄)T (0, 0)−Θ(z, z̄)Θ(0, 0) =
∑
a

Ca(z, z̄)Oa(0, 0) , (B.1)

where the sum a runs over the aforementioned set of operators Oa associated to the basis of
normalized states |a⟩ that span the Hilbert space. We can split them up into quasi-primaries
Oi(0) that we label with indices i, j . . ., associated to |i⟩ ≡ Oi(0) |0⟩, and their SL(2,C)
descendants Oα(0) with indices α, β . . . and state |α⟩ = Oα(0) |0⟩. The latter contain at
least one derivative. These span two orthogonal subspaces.

Using conservation of the stress tensor, reference [1] proceeds to show that∑
a

∂zCa(z, z̄)Oa(0, 0) =
∑
a

(
cTTa(z, z̄)∂zOa(0, 0) + cTΘa(z, z̄)∂z̄Oa(0, 0)

)
, (B.2)

and similarly for the anti-holomorphic derivative, where cabc are the usual OPE coefficients.
We are primarily interested in the terms in eq. (B.1) which are not SL(2,C) descendants.
To isolate them, we consider the matrix element of eq. (B.2) in between ⟨i| and |0⟩, finding

∂zCi = 0 , (B.3)
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where we used orthogonality of the basis of states to show that the right-hand side, which
contains only inner products between the quasi-primary state ⟨i| and the SL(2,C) descen-
dent states ∂zOa |0⟩ and ∂z̄Oa(0) |0⟩ vanishes. Similarly, we find ∂z̄Ci = 0, so eq. (B.1) can
be rewritten as

T (z, z̄)T (0, 0)−Θ(z, z̄)Θ(0, 0) =
∑
i

CiOi(0, 0) +
∑
α

Cα(z, z̄)Oα(0, 0) . (B.4)

The second term on the right-hand side contains only SL(2,C) descendant operators, in
other words this is a total derivative contribution that potentially diverges as |z| → 0. The
first term is shown to be finite as a result of cluster decomposition [1]. This is the definition
of the TT operator OTT (0) ≡

∑
iCiOi(0), up to derivatives.

To follow the TT -flow through theory space, following the strategy in [3, 4], we should
make sure that these arguments can be performed at each point along the flow. As already
anticipated in those papers, the appearance of shock singularities in the energy spectrum
seems to present an obstacle. Here we will argue that the original derivation is at least
valid in perturbation theory.33

As detailed in the main text, at nth order in perturbation theory, the stress tensor T (n)
µν

is an order n polynomial of the undeformed stress tensor operators T (0)
µν which satisfies the

same conservation equations which were essential to obtain eq. (B.2). Similarly, the states
are expressed as polynomials of their undeformed counterparts. In other words, perturba-
tion theory takes place within the original Hilbert space of the theory. This observation,
together with stress tensor conservation, means that the argument leading to eq. (B.4) goes
through unalterened. In particular, and crucially, it uses the undeformed Hilbert space
inner product. This last property does not seem to be guaranteed beyond perturbation
theory.
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