
A
TL

-L
A

R
G

-P
R

O
C

-2
02

4-
00

4
28

O
ct

ob
er

20
24

Prepared for submission to JINST

TWEPP2024 - Topical Workshop on Electronics for Particle Physics
30 September 2024 to 4 October 2024
Glasgow, UK

Machine Learning for Real-Time Processing of ATLAS
Liquid Argon Calorimeter Signals with FPGAs

Johann Christoph Voigt on behalf of the ATLAS Liquid Argon Calorimeter group
IKTP, TU Dresden, Germany

E-mail: johann_christoph.voigt@tu-dresden.de

Abstract: To deal with the higher pileup after the high-luminosity upgrade of the LHC, the
ATLAS liquid argon calorimeter readout electronics will be replaced. 556 Intel Agilex-7 FPGAs
will be installed as part of the off-detector electronics, enabling a more sophisticated digital energy
reconstruction. Instead of using a linear optimal filter like the current readout, we evaluated the
use of recurrent and convolutional neural networks. These artificial neural networks are trained on
signal-enriched simulated detector pulses for a set of representative cells. The network size is limited
to approximately 500 multiply-accumulate operations per detector cell. They show improvements
in energy reconstruction especially for the case of overlapping signal pulses, as they will appear
more often under high-luminosity conditions. An FPGA prototype firmware has been developed
for both RNNs and CNNs, that supports processing the required number of 384 detector cells on
one FPGA. This uses a low-level VHDL approach to minimize the resource usage. The ANN
architecture is fixed at compile time, but the weights are configurable per cell. The compilation
results show that such a neural network based readout is feasible with the available hardware. This
is possible through the use of time multiplexing, i.e. by running the FPGA at a multiple of the
40 MHz input data frequency.

Keywords: Calorimeters, Electronic detector readout concepts, Data processing methods

mailto:johann_christoph.voigt@tu-dresden.de

Contents

1 ATLAS Liquid Argon Calorimeter after Phase-II Upgrade 1

2 Digital Readout 2
2.1 Current Plans and Requirements 2
2.2 Artificial Neural Network Architectures 2
2.3 Training and Performance 3

3 FPGA Firmware 4
3.1 VHDL Implementation of RNN and CNN Inference 4
3.2 Testing the Firmware on Stratix-10 Development Kit 4

4 Summary and Outlook 5

1 ATLAS Liquid Argon Calorimeter after Phase-II Upgrade

The liquid argon (LAr) calorimeters are a set of sampling calorimeters used by the ATLAS detector
[1] in the electromagnetic barrel and end-cap region with a pseudorapidity |𝜂 | up to 3.2, as well as
in an |𝜂 | range of 1.5 to 4.9 for the hadronic end-cap and forward calorimeters.

During the upcoming Long-Shutdown 3 of the LHC [2], the calorimeter readout electronics
will be replaced as part of the larger Phase-II upgrade project [3] of the ATLAS detector. This is
necessitated mainly by the increased pileup at a projected mean number of simultaneous collisions
per bunch crossing (BC) ⟨𝜇⟩ of up to 200, as well as the increase in the targeted first-level trigger
accept rate of 1 MHz.

Figure 1. The raw LAr pulse has a triangular shape with a
duration in the order of 500 ns. This is amplified and shaped
into a bipolar pulse and sampled every 25 ns (i.e. at 40 MHz)
before being digitized. The energy deposited in the detector cell
is encoded in the amplitude of the pulse. [4]

The LAr calorimeters consist of a total of 182 468 detector cells, which will each be read
out individually at the LHC BC frequency of 40 MHz. Figure 1 shows a typical LAr pulse.
This constitutes the input to the off-detector side of the readout. Here, away from the radiation
environment, the new LAr signal processor system will be equipped with 556 Intel Agilex-7 FPGAs
to compute the energy deposited in the calorimeter cells in real-time.

– 1 –

2 Digital Readout

2.1 Current Plans and Requirements

The current readout electronics use an Optimal Filter (OF) [5] for the energy reconstruction. The
filter calculates a weighted sum over 4 samples using filter coefficients, that optimize the signal-to-
noise ratio. The new readout is designed to reconstruct the cell-level energies in real-time with the
full granularity.

As a potential improvement over the baseline OF, we propose the use of small artificial neural
networks (ANNs) for the digital energy reconstruction [6]. The inference will be executed on the
FPGAs in real-time, which sets constraints on the possible network architectures and firmware
implementation. The latency budget available for the energy calculation is approximately 150 ns,
since the results are used as input to the ATLAS trigger system. For an ANN, this means that the
number of layers should be as small as possible. On the firmware side, this necessitates a well
optimized pipeline. One FPGA is required to process the 40 MHz input streams from up to 384
detector cells in parallel. The possible size of the neural networks is thus severely limited to the
order of 500 multiply-accumulate (MAC) operations. This assumes time multiplexing, in order to
partially serialize the processing of the detector cells and reduce the required number of parallel
firmware instances of the ANN, as further detailed in section 3. The targeted Intel Agilex-7 FPGA
has dedicated multiplication units, that can execute two simultaneous multiplications when using
18-bit fixed-point numbers. Quantization aware training can be used to specifically train networks
for this bit width.

The compilation of the firmware is in itself already a time-intensive process. To reduce the
compilation effort and make the deployment easier, it is planned to only have a single compiled
firmware version that is used for all 556 FPGAs. This mandates that the ANN weights can be loaded
over an Ethernet connection during runtime. Furthermore, all detector cells will be processed by
the same network architecture. The common approach, when deploying ANNs on FPGAs, of
extensively using pruning is therefore not viable, as one would have to guarantee that all network
weights used for any detector cell can be pruned in the same way. Pruning would also conflict with
the multiplexing approach.

2.2 Artificial Neural Network Architectures

Figure 2 shows the structure of a vanilla RNN cell. The full RNN consists of 5 of these cells with 8
internal dimensions each and a dense neuron that extracts the output at the last cell. This results in
a total of 368 multiplications. The network operates in a sliding window mode, where at every BC
the network is reinitialized and each RNN cell is provided one input sample out of the sequence.
The field of view, i.e. the number of samples included in the calculation of one output value, is
therefore 5. If necessary, this can later be extended using a dense layer preceding the first RNN cell
to better compensate the influence of previous pulses.

The CNN consists of two layers, where the first layer operates on the input data and can make
use of parallel filters. With dilation, this network reaches a larger field of view of 22 BC. The
network shown contains approximately 100 MAC operations. Both networks use a rectified linear
unit (ReLU) as activation function, as it is cheap to implement on FPGAs and generally very suitable
for regression problems.

– 2 –

Vanilla Cell

Vector to Matrix
Multiplication

R

St ReLU
Tt+1

n

n x n
St+1

Scalar to Vector
Multiplication

n

n

n

xt+1 WB

n

n Field of View = 22

kernel = 7

dilation = 1

feature maps = 7

Bias

t0 t-1 ... t-6

kernel = 6

dilation = 3

feature maps = 1

Input ...

Output

Conv 1

...
...

... En
e

rg
y

R
e

co
n

st
ru

cti
o

n
 Conv 2 ...

...

t-21

...
...

...

Figure 2. Left: Structure of a vanilla RNN cell. The state vector of the previous cell 𝑆𝑡 is multiplied with
the recurrent kernel weight matrix 𝑅. The digitized input sample 𝑥𝑡+1 is multiplied with the kernel weight
vector 𝑊 . The internal state vector 𝑇 𝑡+1 is the sum of these and a bias. This is passed through the ReLU
activation to obtain the new state vector 𝑆𝑡+1. [7]
Right: Architecture of a 2-layer CNN. The input sequence at the bottom is densely screened by the first layer
with dilation 1. The last layer increases the field of view to 22 BC by sparsely screening the output of the
first layer with a dilation of 3. [8]

2.3 Training and Performance

The networks are trained on signal-enriched simulated detector sequences with pileup. This allows
the use of the true deposited energy as a training target. The training is done with Keras [9] using
the QKeras extension for quantization.

0 20 40 60 80 100 120
BC

0

10

20

30

E T
 [G

eV
]

AREUS Simulation
EMB Middle (,) = (0.5125, 0.0125)

=140

ADC samples
Hit energy
OF with MaxFinder

0 20 40 60 80 100 120
BC

0

10

20

30

E T
 [G

eV
]

ADC samples
Hit energy
2-Conv CNN

Figure 3. Compari-
son of OF (top, red) and
CNN (bottom, red) energy
reconstruction for an ex-
ample sequence simulated
with ⟨𝜇⟩ = 140. The ADC
samples (black) shown are
the input for the networks
and the true hit energy is
the desired output. [8]

Figure 3 shows an example sequence in terms of true deposited energy and the resulting ADC
sequence, which is the input to the networks. One can see that the optimal filtering approach
combined with a maximum finder works very well for isolated hits (e.g. at BC 89). However,
the ANNs show increased accuracy for the case of overlapping pulses (e.g. at BC 5 and 64), in
particular the case of energy deposits within the undershoot of a preceding pulse. [6]

– 3 –

3 FPGA Firmware

3.1 VHDL Implementation of RNN and CNN Inference

The first version of the RNN inference firmware [6] uses Intel’s high-level synthesis (HLS) language.
This allowed further studies into the effects of rounding and truncation in different parts of the
network [7]. This version supports multiplexing. By running the FPGA at a multiple of the
frequency of the input data, every RNN firmware block can process the input from multiple
detector cells in a serial manner, therefore reducing the required number of parallel instances of
the RNN firmware block on the FPGA. Since this firmware did not meet the requirements, the
RNN inference has also been implemented in the low-level VHDL language. Further reductions in
resource consumption and improvements of the maximum clock frequency are possible through the
reuse of common results between RNN cells, manual placement constraints, as well as incremental
compilation, where RNN instances that do not meet the timing constraints are recompiled, while
the rest of the larger layout is preserved. The CNN inference has been implemented in VHDL
directly and also utilizes multiplexing to reduce the number of required instances. With a targeted
multiplexing factor of 12, this requires a clock frequency of 480 MHz. The firmware is custom-
tailored for Intel Stratix and Agilex FPGAs, by manually assigning all multiplications to the digital
signal processors (DSPs) available for this purpose. This is best achieved with 18-bit fixed-point
numbers for both the network weights and the data. The DSPs can be chained together for efficient
MAC cascades, like they appear in the CNN structure. The particular architecture of the CNN is
described by a configuration file, which fixes the structure at compilation time. This configuration
is automatically generated from the Keras output files obtained from the training.

Table 1. Estimates of the resource usage for Intel Stratix-10 (reference 1SG280HU2F50E2VG) and Agilex-7
(reference AGIC040R39A2E2VR0) FPGAs. [10]

FPGA Network #MACs Multiplex. #Cells 𝑓max ALMs DSPs

Stratix-10
RNN (HLS) 368 10× 370 393 MHz 90 % 100 %
RNN (VHDL) 368 14× 392 561 MHz 18 % 66 %
CNN 91 12× 396 415 MHz 8 % 28 %

Agilex-7 CNN 91 12× 396 539 MHz 4 % 13 %

Table 1 summarizes the resource consumption and maximum clock frequency of the different
firmware versions as reported by the Intel Quartus compiler. Initial development was targeting the
Straix-10 FPGA, but the project switched to the Agilex-7 later. The VHDL versions show that the
resource usage, especially in terms of Adaptive Logic Modules (ALMs), of a full design supporting
at least 384 detector cells is low enough to also fit the other required components of the larger
firmware project on the same FPGA. DSPs are not as critical, as they will be almost exclusively
used by the ANNs. With the final board using the Agilex FPGA, the demonstrated timings are
sufficient for the planned time multiplexing factor for both RNNs and CNNs.

3.2 Testing the Firmware on Stratix-10 Development Kit

To show that the developed firmware also works on hardware, test projects have been set up for
both architectures. They combine the ANNs with memory blocks to store example input data for

– 4 –

Stratix-10

RNN

RAM:
- Input
- Weights

NIOS

RAM
- Output

PLL

PC

JTAG

Figure 4. Schema of the wrapper firmware project to test RNN (left) and CNN (right) on a devkit.

the network, as well as the resulting output. In case of the RNNs, the input and output memory
blocks can be accessed from a NIOS soft-processor, that is connected via JTAG to a PC. The CNN
prototype uses a control interface based on IPbus [11] to access the memory blocks over an Ethernet
connection. Both demonstrator projects have been successfully run on a Stratix-10 development kit
and the results match the expectations. While the RNNs run at 560 MHz, a reduced clock frequency
of 125 MHz has been used for the CNNs so far. Running the CNNs at their nominal frequency of
480 MHz is planned for tests on an Intel Agilex development board.

4 Summary and Outlook

It has been shown in previous studies [6] that both RNNs and CNNs can outperform the OF,
especially for the case of overlapping signals. For both architectures, an FPGA implementation
using VHDL has been developed to demonstrate the feasibility of this new signal filtering approach
using the FPGAs that will be deployed as part of the Phase-II upgrade. The low occupancy of the
firmware on the Agilex FPGA, combined with its higher possible clock frequencies, motivate the
training of larger networks in the future. The behaviour of both implementations has been verified
on development boards. Going forward, the ANN firmware will be further integrated into the larger
firmware project of the LAr off-detector readout. Separate studies on how the neural network based
readout influences the reconstruction of physics objects, like electrons or jets, have been started.

Acknowledgments

This work was in part supported by the German Federal Ministry of Education and Research within
the projects 05H19ODCA9 and 05H24OD9 and by the DFG fund "NFDI 39/1" in the framework
of the PUNCH4NFDI consortium. The project leading to this publication has received funding
from Excellence Initiative of Aix-Marseille Université - A*MIDEX, a French “Investissements
d’Avenir” programme, AMX-18-INT-006 and from the French “Agence National de la Recherche”,
ANR-20-CE31-0013. This work received support from the French government under the France
2030 investment plan, as part of the Excellence Initiative of Aix-Marseille University - A*MIDEX
(AMX-19-IET-008 - IPhU).

© 2024 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

– 5 –

References

[1] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, Journal of
Instrumentation 3 (2008) S08003.

[2] L. Evans and P. Bryant, LHC machine, Journal of Instrumentation 3 (2008) S08001.

[3] ATLAS Collaboration, ATLAS Liquid Argon Calorimeter Phase-II Upgrade: Technical Design
Report, Tech. Rep. CERN-LHCC-2017-018. ATLAS-TDR-027, CERN, Geneva (Sep, 2017),
https://cds.cern.ch/record/2285582.

[4] ATLAS Collaboration, ATLAS liquid-argon calorimeter: Technical Design Report, Tech. Rep.
CERN-LHCC-96-041, CERN, Geneva (1996), https://cds.cern.ch/record/331061.

[5] W. Cleland and E. Stern, Signal processing considerations for liquid ionization calorimeters in a high
rate environment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 338 (1994) 467.

[6] G. Aad, A.-S. Berthold, T. Calvet, N. Chiedde, E.M. Fortin, N. Fritzsche et al., Artificial neural
networks on FPGAs for real-time energy reconstruction of the ATLAS LAr calorimeters, Computing
and Software for Big Science 5 (2021) .

[7] G. Aad, T. Calvet, N. Chiedde, R. Faure, E. Fortin, L. Laatu et al., Firmware implementation of a
recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter
of the ATLAS experiment, Journal of Instrumentation 18 (2023) P05017.

[8] ATLAS LAr Calorimeter Group, “Public liquid argon calorimeter plots on upgrade.”
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade.

[9] F. Chollet et al., “Keras.” https://keras.io, 2015.

[10] Voigt, Johann Christoph, Machine learning for real-time processing of ATLAS liquid argon
calorimeter signals with FPGAs, EPJ Web of Conf. 295 (2024) 09025.

[11] C.G. Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose, A. Thea et al., IPbus: a flexible
Ethernet-based control system for xTCA hardware, Journal of Instrumentation 10 (2015) C02019.

– 6 –

https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08001
https://cds.cern.ch/record/2285582
https://cds.cern.ch/record/2285582
https://cds.cern.ch/record/331061
https://cds.cern.ch/record/331061
https://doi.org/https://doi.org/10.1016/0168-9002(94)91332-3
https://doi.org/https://doi.org/10.1016/0168-9002(94)91332-3
https://doi.org/10.1007/s41781-021-00066-y
https://doi.org/10.1007/s41781-021-00066-y
https://doi.org/10.1088/1748-0221/18/05/p05017
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade
https://keras.io
https://doi.org/10.1051/epjconf/202429509025
https://doi.org/10.1088/1748-0221/10/02/C02019

	ATLAS Liquid Argon Calorimeter after Phase-II Upgrade
	Digital Readout
	Current Plans and Requirements
	Artificial Neural Network Architectures
	Training and Performance

	FPGA Firmware
	VHDL Implementation of RNN and CNN Inference
	Testing the Firmware on Stratix-10 Development Kit

	Summary and Outlook

