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Abstract

Based on a previously derived superstring model possessing a cosmological sector that mimics

Starobinsky inflation, we analyze several questions addressed in the recent literature: the generation

of an effective R2-term, the stability of the sgoldstino , the modular symmetry of the inflaton

potential and the large distance swampland conjecture. We first show that the presence of the

string dilaton stabilizes the sgoldstino direction in the supersymmetric case and no modification

of the Kähler potential is needed. This is a generic property of a large class of Starobinsky type

models within the framework of no-scale supergravity. We then present an explicit example of a

string derived inflaton potential where the large values of the inflaton field during inflation imply

a decompactification of two extra dimensions, while the scale of inflation is generated by higher

order α′-corrections via expectation values that cancel the D-term of an anomalous U(1) symmetry

and break the modular symmetry of the scalar potential. As a result, the scale of inflation is much

lower than the compactification scale which at the end of inflation is fixed at the free-fermionic

self-dual point at an (approximate) supersymmetric minimum.
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I. INTRODUCTION

It is well known that R + αR2 gravity [1] provides an inflationary model that lies at

the heart of the observations of CMB temperature anisotropy spectrum [2]. It is therefore

legitimate to ask if and how this simple model can be generated as an effective field theory

out of a fundamental theory of quantum gravity, such as string theory. There are several

questions that can be posed.

• The first puzzle is that the theory contains a scalar degree of freedom that is not present

in Einstein gravity [3]. Obviously, the string spectrum cannot change discontinuously

by a quantum correction either in the inverse string tension α′, or in the string coupling.

The well known solution to this puzzle is that the scalar, often called the scalaron, can

be alternatively described from a standard 2-derivative action of a minimally coupled

scalar field with a very particular potential [4]

V (φ) =
1

8α

(

1− e−
√

2
3
φ
)2

, (1)

where φ is the scalaron (or inflaton in the context of inflation). The potential expo-

nentially approaches a constant at large field values and has a minimum at φ = 0 with

zero vacuum energy. The inflaton mass at the minimum is mφ = 1/
√
6αMP . This

potential is the basis of the Starobinsky model of inflation. 1

• The second puzzle is that the asymptotic constant which defines the scale of inflation

should be at least 5 orders of magnitude less that the Planck scale. The mass scale

mφ is fixed from the normalization of the CMB anisotropy spectrum,

As =
V (φ∗)

24π2ǫ∗M
4
P

=
3m2

φ

8π2M2
P

sinh4(φ∗/
√
6) , (2)

where the second equality in Eq. (2) is specific to the Starobinsky model. In (2),

ǫ∗ = 1
2
M2

P (dV/dφ)
2/V 2

∣

∣

φ∗

, and φ∗ = 5.35 is the value of the inflaton field at the

horizon exit scale, k∗ = 0.05 Mpc−1 corresponding to the last 55 e-foldings of inflation,

before the exponential expansion ceases at φend ≃ 0.62. This leads to a tilt in CMB

spectrum given by ns = 1 − 6ǫ∗ + 2η∗ = 0.9649, where η∗ = M2
P (d2V/dφ2)/V |φ∗

1 Field values will always be normalized to the reduced Planck mass with MP = 2.4× 1018 GeV.
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and the tensor-to-scalar ratio, r = 16ǫ∗ = 0.0035. The Planck determined value of

As = 2.1× 10−9 implies that mφ ≃ 1.25× 10−5MP .

• The third puzzle is that during inflation, the inflaton takes super-Planckian values that

break the validity of the effective field theory, implying by the distance swampland

conjecture the appearance of a tower of ‘light’ states with masses exponentially small

in the proper distance with an exponent of order unity in four-dimensional Planck

units [5]. This tower is in general connected to the decompactification of extra dimen-

sions or to a string tower [6] implying that the ‘light’ particles contain massive spin-2

states, which should be heavier than the Hubble constant during inflation by unitarity

(Higuchi bound) [7]. This leads to an extra constraint on the inflation scale.

• An additional puzzle is more specific to supersymmetric formulations of the Starobin-

sky model described by no-scale supergravity [8–12]. In these constructions of the

Starobinsky potential, a second (complex) scalar field must be included in addition to

the inflaton (which is of course also complex), [8, 10]. Then, for successful inflation,

the other three scalar degrees of freedom must be stabilized. If for example, we asso-

ciate the inflaton with the real part of the ‘volume modulus’ T (as in [8]), in addition

to the pseudoscalar, the second field, denoted here as C must have a positive mass

squared with 〈C〉 = 0. However, in minimal constructions, m2
C < 0 during inflation.

• As we will discuss below, a solution to the previous puzzle involves the inclusion of a

third complex scalar which can be associated with the string dilaton. Then it is natural

to ask, how the inclusion of the dilaton appears in the original R +R2 formulation.

Our aim therefore is to identify in the string spectrum a scalar that shares very similar

properties to the scalaron, having controllable quantum corrections, with the additional

degrees of freedom stabilized. We will attempt to provide answers to all of the above

questions.

An example of such a model that was shown to address partially the first two puzzles [13]

was constructed within the free-fermionic formulation of four-dimensional (4d) heterotic

stings [14, 15] whose low energy spectrum is N = 1 supersymmetric and contains a flipped

SU(5) × U(1) gauge group and three chiral families of quarks and leptons [16–18]. The

gauge group breaking to the Standard Model occurs in a first order phase transition at a
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temperature lower than the inflation scale, implying that during inflation, the SU(5)×U(1)

grand unified gauge group is unbroken [19]. The inflaton can then be identified with the

superpartner of a state that mixes with the right-handed neutrinos according to the proposal

of refs.[10, 12, 20, 21]. The advantage of the free-fermionic formulation is that all string

moduli are fixed at the self-dual (fermionic) point where extra symmetries arise, either local

or discrete, while part of the string effective action is calculable to all orders in the inverse

string tension α′-expansion [22–24]. Moreover, the presence of an anomalous U(1), which is

a general property of the Heterotic chiral models, leads to a set of vacuum expectation values

(VEVs) for Standard Model singlet fields, satisfying the F- and D-flatness conditions, whose

magnitudes are fixed by a natural small parameter set by the one loop anomaly [25]. This

defines a perturbative way to compute a new vacuum away from the initial free-fermionic

one, creating calculable hierarchies in the low-energy masses and couplings [26–31].

The flipped SU(5) × U(1) string model was shown [13] to possess an inflationary sec-

tor consisting of the two necessary superfields: one contains the inflaton and the other

the goldstino as its F-auxiliary component spontaneously breaks supersymmetry, in close

analogy to those linearizing R + R2 supergravity [8]. The corresponding two-derivative ef-

fective action was computed exactly at the string tree-level producing a scalar potential of

Starobinsky type and having the same form with its supersymmetrization in R + R2. The

inflation scale is generated at 6th order in the perturbative expansion originated by the U(1)

anomaly mentioned above and it is naturally at the right range of energies as required by

observations.

As noted above, one of the major issues in supersymmetrizing R2 is that the scalar

component of the goldstino superfield (sgoldstino) is unstable during inflation; its mass is

tachyonic destabilizing slow-roll inflation [10, 11]. A common approach of this problem is

to modify the goldstino dependence of the Kähler potential leading one to abandon the nice

geometric formulation of the Starobinsky model and to an arbitrariness of its supersymmetric

generalization [10, 11, 32, 33]. One of the main results of our analysis is that this instability

is absent in the presence of the string dilaton which despite its spectator role, modifies

the sgoldstino-dependence of the scalar potential and quite generally turns its mass-squared

positive at the global minimum and during inflation.

Another issue specific to large-field inflation, such as in the Starobinsky model, is the

breakdown of validity of the effective field theory and the appearance of a tower of light states
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according to the Swampland distance conjecture. To be concrete, we test this conjecture in

the flipped SU(5)×U(1) string model, whose two-derivative effective action in the inflation

sector is exact to all orders in α′, and analyze its consequences to inflation. We find that the

tower of light states corresponds to a Kaluza-Klein (KK) tower of two internal dimensions

with a compactification scale around two orders of magnitude below the string scale, which

in this construction is of the same order as the species scale (or the six-dimensional gravity

scale). This is much higher than the inflation scale which is generated at higher order in

perturbation theory away from the free-fermionic point, as described above. Finally, the

inflaton is associated with an SL(2, Z) modular symmetry which is spontaneously broken

by the VEVs which cancel the U(1) anomaly and thus the scalar potential is not modular

invariant. Despite this fact, we find a similar prediction as in other frameworks that relates

the number of e-folds during inflation with the number of species [34].

Based on the above example, in this work we analyze several questions addressed in

the recent literature, such as the generation of an effective R2-term, the stabilization of

the additional scalars, the large distance swampland conjecture [35–37] and the modular

symmetry of the inflaton potential [34, 38], answering all of the puzzles we described above.

In what follows, we first briefly review the construction of the Starobinsky potential from

R + R2 gravity (with and without a dilaton), its supersymmetrization, and briefly review

an explicit model [13] in Section II. Then, in Section III, we show how the inclusion of the

dilaton stabilizes the sgoldstino at the global minimum. We generalize this mechanism to a

wider class of no-scale models in Section IV and discuss the conditions where stabilization is

maintained away from the minimum, during inflation. We discuss the implications of these

models for the large distance conjecture in Section V. We summarize our results in Section

VI.

II. SUPERSYMMETRIZATION OF R2 AND THE STRING DILATON

A. The Starobinsky model

For pedagogical reasons, we first briefly review the classical equivalence between the

Starobinsky model R + αR2 and a scalar-tensor theory with a particular scalar potential.
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Therefore we consider the action

S =

∫

[d4x]
√−g

(

1

2
R +

α

2
R2

)

. (3)

To transform the action to the Einstein frame, we first introduce a Lagrange multiplier Φ

identifying the scalar curvature R with a scalar field χ:

S =

∫

[d4x]

{

1

2
R + Φ(R − χ) +

α

2
χ2

}

, (4)

where the brackets in the integration measure include the density factor
√

| det g| and in

our conventions the signature of the metric is mostly positive. Again, we remind the reader

that we work in reduced Planck mass units. We proceed by integrating over χ which has a

Gaussian dependence:

S =

∫

[d4x]

{

1

2
(1 + 2Φ)R − 1

2α
Φ2

}

(5)

and perform a Weyl rescaling of the metric

g̃µν = e2Ωgµν = (1 + 2Φ) gµν , (6)

to find:

S =

∫

[d4x]

[

1

2
R̃ − 3

(1 + 2Φ)2
∂µΦ∂µΦ− Φ2

2α(1 + 2Φ)2

]

. (7)

After a field redefinition, φ =
√

3/2 ln(1 + 2Φ) we arrive at the standard form of the

Starobinsky scalar potential:

S =

∫

[d4x]

{

1

2
R− 1

2
(∂φ)2 − 1

8α

(

1− e−
√

2/3 φ
)2
}

, (8)

where the indices of partial derivatives are contracted with the metric in shorthand notation.

This action now contains the Starobinsky potential in Eq. (1).

Note that in all steps above from (4) to (8), no constraint on the parameter α was used

and the above result is valid also if α is field dependent.

Indeed, this observation is very important in order to introduce the string dilaton whose

VEV determines the string coupling gs. Since the string spectrum is determined at tree-

level, the dilaton dependence in the string frame should be a common factor of the string

effective action acting as 1/g2s :

Sstring frame =

∫

[d4x]e−2ϕ

{

1

2
R[G] + 2(∂ϕ)2 + Lmatter

}

, (9)
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where G is the string frame (σ-model) metric, ϕ is the dilaton with 〈eϕ〉 = gs, while Lmatter

denotes a matter Lagrangian independent of ϕ, as are the last two terms of (8). One can

then go to the Einstein frame by a Weyl rescaling of the metric G = e2ϕg, leading to:

Sstring =

∫

[d4x]

{

1

2
R[g]− (∂ϕ)2 − 1

2
(∂φ)2 − e2ϕ

8α

(

1− e−
√

2/3φ
)2
}

, (10)

where the parameter α can now be treated as a numerical constant. Reversing the manipu-

lations we have used to pass from (4) to (8), one rewrite (10) in a geometric form:

Sstring =

∫

[d4x]

{

1

2
R[g]− (∂ϕ)2 +

α

2
e−2ϕR2

}

. (11)

Note that the dilaton exponent is consistent with a tree-level R2 which is (globally) scale

invariant and does not change under metric rescalings (modulo four-derivative interactions).

B. Supersymmetrization

The supersymmetrization of R+αR2 has been performed in [8, 32, 33]. One might naively

expect to be able to describe it in the context of ordinary N = 1 supergravity coupled

to a chiral multiplet corresponding to a super-Lagrange multiplier, following a procedure

similar to the one described above in the bosonic theory. It turns out however, that one

needs to introduce two Lagrange multipliers chiral superfields.2 The reason is the the scalar

curvature appears in the upper component of a chiral superfield R [39] and therefore R2

does not contain R2. The latter appears in a D-term of RR̄ whose linearization requires

two super-Lagrange multipliers. The result is an N = 1 supergravity theory coupled to

two chiral multiplets, T , and C with a Kähler potential of the no-scale type [40–42] and

superpotential given by:

K = −3 ln(T + T̄ − CC̄) , W = MC

(

T − 1

2

)

(12)

where M2 = 3/(2α) 3. The scalar component of the superfield T corresponds to the

Starobinsky inflaton with TR = ReT = 1
2
e
√

2/3φ, with the same scalar potential (1) when

TI = ImT = C = 0. The superfield C contains the goldstino during inflation, as can be seen

from the linear term in the superpotential (12).

2 This is related to comment made earlier regarding the construction of the Starobinsky potential in no

scale supergravity requiring (at least) two chiral superfields [10].
3 Parallels between the R+ αR2 theory and no-scale supergravity were discussed in [12, 43–46]
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In fact, the full scalar potential is given by:

V =
M2

12(T + T̄ − CC̄)2
{

1− 2(T + T̄ ) + 4T T̄ + [8− 4(T + T̄ )]CC̄
}

. (13)

With the above relation between TR and φ with C = 0, one immediately recovers the

Starobinsky potential. The potential has a global supersymmetric minimum at zero energy

at (the self-dual point) TR = 1/2 (φ = 0), TI = C = 0. The mass of the inflaton at the

minimum is given by mφ = M/3. As discussed above, for this model to reproduce CMB

data, we require M = 3.75 × 10−5MP and as noted earlier, φ∗ = 5.35 corresponding to

TR ≃ 40 for N∗ = 55.

Note that C is tachyonic during inflation creating an instability. Indeed the mass-squared

of C and TI read:

m2
C =

T + T̄

3

∂2V

∂C∂C̄

∣

∣

∣

∣

C=C̄=0

= M2 1 + 2(T + T̄ )− 2(T 2 + T̄ 2)

18 (T + T̄ )2

m2
ImT =

(T + T̄ )2

3

∂2V

(∂ImT )2
=

2

9
M2 , (14)

where the factors (T+T̄ )/3 and (T+T̄ )2/3 come from the normalization of the kinetic terms.

It follows that TI has a large positive mass-squared and we can safely set TI = 0. In this

case, C becomes tachyonic for TR > (
√
2 + 1)/2 ≃ 1.2. This corresponds to φ ≃ 1.1 < φ∗,

making the inflationary trajectory unstable to any fluctuations in the C (or C̄) direction.

One way to cure this instability during inflation is to modify the Kähler potential by adding

a quartic (CC̄)2 in the argument of the logarithm [10, 12, 21, 47–50]. But this comes at the

expense of losing the geometric interpretation of the (supersymmetric) Starobinsky model.

We discuss an alternative solution to the stabilization C in Section III.

C. An explicit string model

Here we present a short review of the string model [13], constructed within the free-

fermionic formulation of 4d heterotic superstrings, that shares similar properties (although

not identical) with the R2 supergravity model described above. In particular, it contains

the dilaton which is perturbatively undetermined, although all other moduli are fixed at the

fermionic self-dual point where extra symmetries (gauge and discrete) appear. For making

the comparison transparent, it is therefore convenient to change the field variables T and C
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to an appropriate ‘charged’ or ‘symmetric’ basis y and z:

T =
1

2

(

1 + y

1− y

)

; C =
z

1− y
, (15)

so that (12) becomes:

K = −3 ln
(

1− |y|2 − |z|2
)

; W = Mzy(1 − y) (16)

and the inflationary region of large TR is mapped to the boundary of the Kähler domain

|y| → 1 while C = 0 corresponds to z = 0. The scalar potential (13) in these coordinates

becomes:

V =
M2

3

|y|2|1− y|2 + |z|2(1− 2(y + ȳ) + 3|y|2)
(1− |y|2 − |z|2)2 (17)

Along the direction yI = z = 0 we can redefine yR = tanh(φ/
√
6), where y ≡ yR + iyI and φ

is the canonically normalized inflaton. We then obtain the same potential as in Eq. (1) with

M2 = 3/(2α) (as it must, since we simply performed a field redefinition). Now, φ∗ = 5.35,

corresponds to yR ≃ 0.975.

As noted, successful inflation requires yI = z = 0, and therefore these directions must be

stable. Although the direction yI = 0 is stable, z is tachyonic during inflation, and must be

stabilized as was the case for C in the former basis.

The Kähler potential of the string model is [13]:

Kstring = − ln(S + S̄)− 2 ln
(

1− |y|2
)

− 2 ln

(

1− 1

2
|z|2

)

, (18)

which is similar, but somewhat different from (16) and was shown to be exact at the string

tree-level, to all orders in α′. The superpotential is unchanged from (16) and the inflation

mass scale M is generated at 6th order of non renormalizable terms, via non-trivial VEVs of

SU(5)×U(1) singlets driven by the anomalous U(1). If we ignore for now the contribution

from the dilaton, S, the resulting scalar potential, although not identical, shares the same

properties as the potential (1). In this case it is given by

V = M2 4|y|2|1− y|2 + 2|z|2(1− 2(y + ȳ) + 2|y|2 + 2(y + ȳ)|y|2 − 3|y|4) + |y|2|1− y|2|z|4
(1− |y|2)2(2− |z|2)2 .

(19)

For yI = z = 0, this potential reduces dramatically to

V = M2 y2R
(1 + yR)2

. (20)

9



Then redefining yR = tanh(φ/2), we obtain a Starobinsky-like potential

V =
M2

4
(1− e−φ)2 . (21)

The mass of the inflaton at the minimum φ = 0 is in this case mφ = M/
√
2. Moreover, the

amplitude of primordial density perturbations during inflation is similar to Eq. (2)

As =
M2

12π2
sinh4(φ/2) , (22)

which gives M = 1.75 × 10−5MP . The pivot scale for this model is φ∗ = 4.75 which then

determines ns = 0.9645, very close to the value in the Starobinsky model, and r = 0.0024

which is slightly lower than that in the Starobinsky model.

The potential (21) is actually part of a larger class of models known as α-Starobinsky or

no-scale attractor models [10, 50–56]. In the context of no-scale supergravity, we can replace

the coefficient of the logarithm in Eqs. (12) and (16), 3 → 3α. Indeed, it was shown in [10],

that for a potential ∝ (1−e−
√

2/3αφ)2 leads to a value of ns independent of α, whereas r ∝ α.

It is clear then that the R + R2 construction requires α = 1, whereas the model described

by Eq. (18) corresponds to α = 2/3 and accounts for the difference in the predicted value

of r.

However, as in the previous example, we see that z is tachyonic during inflation. The

mass squared of z is

m2
z =

∂2V

∂z∂z̄

∣

∣

∣

∣

z=z̄=0

= M2 1− 2(y + ȳ) + 4|y|2 − |y|4
2(1− |y|2)2 . (23)

Along the yI = 0 direction, it is easy to see, that z is tachyonic for y >
√
2− 1, i.e. during

inflation. As we will see in the next section, this problem can be resolved when we include

the ln(S+S̄) term in Eq. (18). While the mass-squared of yI is not constant during inflation,

yI = 0 is always a minimum.

III. STABILIZATION AND THE ROLE OF THE DILATON

In this section, we will first see that the inclusion of the dilaton can stabilize the C (or

z) degrees of freedom in the supersymmetric version of R + R2 for all inflaton field values

including during inflation. We will then show that the inclusion of S can also stabilize the z

degree of freedom in the model described by Eq. (18). This solution requires of course that

10



the dilaton itself is stabilized which goes beyond the scope of this paper though we comment

on this before concluding.

The presence of the string dilaton can be incorporated in a straightforward way, following

the steps (9)-(11) within the bosonic theory above. More precisely, the string dilaton is part

of a chiral superfield S with SR = e−2ϕ, while SI is the universal axion, dual to a 2-index

gauge potential. It follows that the dilaton dependence amounts a modification of the Kähler

potential (12) by an extra term K → K + δK given by:

δK = − ln(S + S̄) . (24)

The resulting scalar potential (using the superpotential in Eq. (12)) is modified as:

V =
M2

12(S + S̄)(T + T̄ − CC̄)3
×

{

(T + T̄ )|2T − 1|2 + 2CC̄
[

1 + 2(T + T̄ )− 2(T 2 + T̄ 2)
]

+ 4(CC̄)2(T + T̄ − 2)
}

(25)

Along the direction TI = C = C̄ = 0, the potential reduces to

V =
M2

48(S + S̄)

(1− 2TR)
2

T 2
R

, (26)

which after the transformation TR = 1
2
e
√

2/3φ is the potential in Eq. (1) but now divided by

(S + S̄).

It can now be easily seen that the tachyonic direction of the sgoldstino C is lifted and no

instability is present during inflation. Indeed the C and TI masses now become:

m2
C

∣

∣

∣

∣

C=0

= M2 5− 2(T + T̄ )− 4(T 2 + T̄ 2) + 12T T̄

36(S + S̄)(T + T̄ )2

m2
TI
=

2

9(S + S̄)
M2 , (27)

so that for TI = 0, C is not tachyonic:

m2
C

∣

∣

∣

∣

TI=0

=
M2

36(S + S̄)T 2
R

[

(

TR − 1

2

)2

+ 1

]

> 0 . (28)

Therefore, the presence of the dilaton can cure the instability in the sgoldstino direction and

no modification of the Kähler potential is needed. During inflation, the inflaton mass is

m2
φ

∣

∣

∣

∣

C=TI=0

≃ − M2

9(S + S̄)
e−

√
2
3
φ∗ (29)

11



in the limit φ∗ ≫ 1. It follows that C and TI are much heavier and can be set to zero, ie.

placed at their minima. The potential still has a supersymmetric global minimum at zero

energy at TR = 1/2, TI = C = 0 where S is a flat direction. Of course, the dilaton has to

be stabilized fixing the string coupling otherwise the scalar potential during inflation is runs

away in the dilaton direction.

For completeness, we provide the potential in the y, z variables

V =
M2

3(S + S̄)

|y|2|1− y|2(1− |y|2) + |z|2(1− 2(y + ȳ) + 4|y|2 − |y|4 − |z|2(1− 2(y + ȳ) + 3|y|2))
(1− |y|2 − |z|2)3 ,

(30)

which not surprisingly gives us again the Starobinsky potential (modulo the factor of (S +

S̄)−1) when yR = tanh(φ/
√
6).

Let us now return to the string model with the Kähler potential given in Eq. (18) including

the dilaton.

V = M2 4|y|2|1− y|2 + 2|z|2(1− 2(y + ȳ) + 4|y|2 − |y|4) + |y|2|1− y|2|z|4
(S + S̄)(1− |y|2)2(2− |z|2)2 . (31)

which reduces to Eq. (21) using yR = tanh(φ/2) along z = z̄ = yI = 0 with the multiplicative

factor (S + S̄)−1.

As in the case of the Starobinsky model, we see that the mass-squared of z and yI are

m2
z

∣

∣

∣

∣

z=0

= M2 1− 2(y + ȳ)− 2|y|2(y + ȳ) + 6|y|2 + |y|4
2(S + S̄)(1− |y|2)2 (32)

m2
yI

∣

∣

∣

∣

z=0

= M2 (1− yR + 2y2R)

1 + yR
> 0 . (33)

It is easy to see that for yI = 0

m2
z

∣

∣

∣

∣

yI=0

=
M2

2(S + S̄)

(1− yR)
2

(1 + yR)2
> 0 (34)

is clearly positive definite thus stabilizing the z-direction all along the inflationary trajectory.

Moreover during inflation, the inflaton mass is given by (see (21))

m2
φ

∣

∣

∣

∣

C=ImT=0

≃ − M2

2(S + S̄)
e−φ (35)

and as before z and yI are much heavier and can be set to zero, as yI = 0 is always minimum

of the potential (for z = 0). Thus, the need for quartic corrections to the Kähler potential

is removed. In the next section, we will consider some general conditions for which the

inclusion of the dilaton will lead to the stabilization of the sgoldstino.
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IV. GENERALIZATION IN A WIDER CLASS OF NO-SCALE SUPERGRAVITY

MODELS

In the previous section, we saw that the simple inclusion of the dilaton in the Kähler po-

tential provided a positive mass-squared contribution to the sgoldstino, removing its tachy-

onic behavior. This was shown explicitly for the Starobinsky and string-derived model. In

this section, we show how this occurs in wider class of models.

Let us consider first the Kähler potential given in Eq. (12). Let us further take a super-

potential of the form

W = MCf(T ) . (36)

The scalar potential is

V =
M2

3(T + T̄ − CC̄)2
[

|f(T )|2 + |C|2
(

(T + T̄ )|fT |2 − 2(f f̄T̄ + f̄fT )
)]

. (37)

As before, TR will be associated with the inflaton. Then along the direction TI = C = 0,

the scalar potential is simply

V =
M2

12T 2
R

f(T )2 . (38)

With this ansätz, both TI = 0 and φ = 0 are extrema. For TI = 0, to be a minimum,

f 2
T − ffTT must be positive (fT = df/dT ). This is of course true for the Starobinsky model

derived from Eq. (12) with f(T ) = T − 1/2. For the sgoldstino, the direction C = 0 is also

an extremum, and the condition for a minimum (along TI = 0) is f 2 − 4TffT + 2T 2f 2
T > 0.

However, during inflation or wherever the potential is nearly flat, TfT ≃ f in which case

m2
C = −M2

6T 3
R

f(T )2 T = TR , (39)

that is during inflation, C is necessarily tachyonic, requiring some form of stabilization if

inflation is to occur.

Note that this model is equivalent to a ‘dual’ model obtained by replacing in the superpo-

tential (36), f(T ) with f̃(T ) = (λT )2f( 1
λT

), with λ an arbitrary constant. This can be easily

seen using the fact that T → 1/(λ2T ) and C → C/(λT ) amounts to a Kähler transformation

K → K + 3 ln(λT ) + 3 ln(λT̄ ). In the case of f(T ) = T − 1/2, choosing λ = 2, one finds

that f̃(T ) = 2T (T − 1/2) and the canonical field is TR = 1
2
e−

√
2/3φ.

A similar property holds for α-attractors with Kähler potential

K = −3α ln(T + T̄ − CC̄) . (40)
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A superpotential of the form [52]

W =
√
αMCf(T )(2T )

(3α−3)
2 , (41)

will reduce to Eq. (38) along TI = C = 0. The relation between T and the canonical φ is

altered to T = 1
2
e
√

2/3αφ. For the choice f = T − 1/2, the potential becomes

V =
M2

12

(

1− e−
√

2/3αφ
)2

. (42)

The condition for TI to be a minimum is now altered. It is f 2
T − ffTT + 3

2
(α− 1)f 2/T 2 > 0.

For the (α)-Starobinsky choice f = T − 1/2, TI = 0 is always a minimum if α ≥ 1. For

1/3 < α < 1, there is a tachyonic instability appearing at small TR < 1/4 corresponding

to φtach < − ln 2/
√
2. However, this instability is actually never reached as during its

oscillations |φtach| > φend, where the latter is the inflaton field value when exponential

expansion ends and oscillations begin. For α = 1, φend ≃ 0.62, whereas for α = 1/3,

φend ≃ 0.49 and the amplitude of oscillations decreases with each oscillation as |φ|2 ∝ a−3,

where a is the cosmological scale factor. For α < 1/3, there is another tachyonic instability

which occurs at large T and hence may occur during inflation. The condition for C = 0

to be a minimum is unchanged from the previous set of models, and during inflation, the

mass-squared of C is still given by (39). 4

The inclusion of the dilaton can stabilize the C = 0 direction in both of the above

generalizations. Starting again with the superpotential (36), and Kähler potential

K = −3 ln(T + T̄ − CC̄)− ln(S + S̄) (43)

the scalar potential is modified and becomes

V =
M2

3(S + S̄)(T + T̄ − CC̄))3
[

(T + T̄ )|f(T )|2 + 2|C|2
(

|f(T )|2−

(T + T̄ − |C|2)(f f̄T̄ + f̄fT ) +
1

2

(

(T + T̄ )2 − |C|2(T + T̄ )
)

fT f̄T̄

)]

, (44)

which reduces to (38) modulo the factor of (S + S̄)−1 for C = 0. Although the extremal

condition for TI = 0 is unchanged, the condition for a minimum at C = 0 is now 5f 2 −
8TffT + 4T 2f 2

T > 0. But now during inflation, using TfT ≃ f , instead of (39), we have

m2
C =

M2

24SRT
3
R

f(T )2 T = TR , (45)

4 For the dual model, TI = 0 is always a minimum so long as α ≥ 1/3. For smaller α < 1/3, there is again

a tachyonic instability, which now occurs at small TR, which in this case is during inflation.
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which is positive definite.

Similarly for the α-Starobinsky models, the dilaton does not affect the conditions for the

minimization along TI = 0. However, now the condition for minimization along C = 0 is

(2 + 3α)f 2 − 8TffT + 4T 2f 2
T . During inflation, the mass-squared of C becomes

m2
C =

M2

24SRT 3
R

(3α− 2)f(T )2 T = TR . (46)

Thus dilaton stabilization of C requires α > 2
3
.

V. THE SCALE OF INFLATION, LARGE FIELD EXCURSIONS AND THE

TOWER OF LIGHT STATES

It is known that Starobinsky inflation is of large field type implying a breakdown of the

effective field theory at a scale below the Planck mass. In particular, as we mentioned earlier,

the inflaton value at horizon exit φ∗ is about 5 in Planck units, implying the existence of a

tower of light states according to the swampland distance conjecture [5]. In order to identify

the origin and nature of the tower, it is sufficient to focus on the Kähler potential and its

emergence within the string effective action, since the superpotential is suppressed by the

inflation scale proportional to M , which is constrained by observations to be at least 5 orders

of magnitude below the Planck scale. By inspection of its form (18), inflation takes place

near the boundary of the Kähler domain |y| → 1, equivalent to large TR.

Actually, the inverse transformation (15)

y =
2T − 1

2T + 1
, (47)

applied to (18) and to the superpotential (16) yields:

Kstring = − ln(S + S̄)− 2 ln(T + T̄ )− 2 ln

(

1− 1

2
|z|2

)

; W = Mz

(

T − 1

2

)

. (48)

We recall that the y- and z-dependent part of the Kähler potential corresponds to fields

associated with one of the three planes of T 6 which takes the factorized form T 2 × T 2 × T 2,

where all fields are at the free fermionic point. Following the derivation of the N = 1

effective supergravity of four-dimensional superstrings constructed within the free fermionic

formulation and translated in a basis of a Z2 × Z2 orbifold [23, 24], z is an untwisted field

from the third plane while y is twisted in the first two planes [13]. Because of the symmetry
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between all fields defined around the fermionic point, the boundary of the Kähler domain

corresponds by the field redefinition y → T in (47) to a decompactification limit where the

area of the third T 2 (TR) becomes large. Indeed T =
√
G + ib in string units, where G is

the determinant of the two-dimensional metric of the third plane and b is the corresponding

2-index antisymmetric tensor which in 2 dimensions has one element. At the fermionic

point, the complex structure is unity, corresponding to a square torus of radius R, and thus
√
G = R2.

From the Kähler potential (48), one finds the kinetic term for R:

−2
∂T∂T̄

(T + T̄ )2
= −2

(

∂R

R

)2

− 1

2

(∂b)2

R2
. (49)

This can be compared to the action one obtains for R via dimensional reduction of the

Einstein-Hilbert action in 4+ d dimensions compactified on a d-dimensional square torus of

radius R:
1

2
R(4+d) −→ 1

2
R(4) − d(d+ 2)

4

(

∂R

R

)2

. (50)

Agreement of (50) with (49) implies d = 2, consistent with the string theory argument above.

The canonically normalized inflaton field is φ = 2 lnR and takes a value around 5 in Planck

units during inflation, as mentioned above. It follows that RM∗ ∼ e2.5 (corresponding to

TR ≃ 150) where M∗ is the string scale satisfying:

M2
p =

1

g2s
M2

∗
(RM∗)

d . (51)

Thus RM∗ = (gsMp/M∗)
2/d, implying

RMp =
1

gs
(RM∗)

2+d/2 . (52)

As a result, the compactification scale associated to the tower of ‘light’ KK states is R−1 ∼
gse

−7.5Mp which is about four orders of magnitude below the Planck mass, around 1014

GeV. This is well above the scale of inflation (by an order of magnitude) and does not have

any effect in the effective field theory of inflation. Note however that a value of φ ≃ 6

(corresponding to TR ≃ 400) would bring the compactification scale of order of the inflation

scale invalidating the effective field theory. We would like to emphasize that starting with

the Planck determination of ns and noting that in this class of models, ns ≈ 1−2/N∗, where

N∗ ≃ −
∫ φ∗

φend

1√
2ǫ
dφ (53)
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a value of ns ≈ 0.965 implies, a value of N∗ ≈ 55, which in turn implies a value of φ∗ ≈ 5,

the exact number depending on the specific potential which enters the integration through

ǫ(φ). Therefore this class of models, is capable of matching the observational constraints,

while avoiding the swampland.

A similar argument can be made for the supersymmetric R2 theory with Kähler potential

(43) and superpotential (12)), or equivalently to (16) in the y, z field basis. At C = 0,

the Kähler potential (43) coincides with the one obtained by compactification of the ten-

dimensional supergravity theory on a six-dimensional manifold of volume V =
∏3

1(Ti+ T̄i)
1/2

where Ti are the complex moduli of three mutually orthogonal 4-cycles. In this case [57]

K = −2 lnV = −
∑

i

ln(Ti + T̄i) = −3 ln(T + T̄ ) , (54)

where the last equality is valid when all the three 4-cycles have the same size. One therefore

obtains the kinetic terms:

−3
∂T∂T̄

(T + T̄ )2
= −12

(

∂R

R

)2

− 3

4

(∂b)2

R4
, (55)

where now T = R4 + ib in string units. Agreement between (55) with (50) now implies

that d = 6, consistent with the argument above. It follows that the canonically normalized

inflaton field is now φ = 2
√
6 lnR, while the compactification scale of six extra dimensions

is found using (55) for d = 6 to be R−1 ∼ gse
−5Mp which is about three orders of magnitude

below the Planck mass, around 1015 GeV. In this case, the effective field theory of inflation

breaks around φ ∼ 10 corresponding to TR ≃ 104.

VI. CONCLUSIONS

Inflation has moved from being a paradigm to a testable theory. Predictions for the

space-time curvature and tilt of the CMB anisotropy spectrum have been tested, and agree

remarkably well with one of the first models of inflation, namely the Starobinsky model [1]

based on an extension of Einstein gravity, to one where the gravitational Lagrangian contains

a term quadratic in curvature. On the horizon, is a test (or discovery) of the tensor-to-scalar

ratio of primordial fluctuations, predicted to be roughly an order of magnitude below current

experimental limits.

It is well established that the Starobinsky model can be constructed within the frame-

work of no-scale supergravity [8, 9]. Embedding the theory in the context of string theory
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represents a bigger challenge. For example, the identity of the inflaton (or scalaron in the

R+R2 theory), and the scale of inflation are challenging questions. In addition, since these

constructions inevitably require additional scalar fields, the theory must be stable so that

the inflationary trajectory (in field space) follows that of the Starobinsky model. The model

also necessarily involves large excursions in field space which has been called into question as

to whether such a theory can be derived from string theory or is relegated to the swampland

[5]. Finally, what is the role of the dilaton in Starobinsky inflation? We have attempted to

answer these questions in this work.

We have seen in fact, that the incorporation of the dilaton in the R + αR2 theory is

actually rather straight forward. The parameter α can simply be made field dependent,

with α → αe−2ϕ = αS. The scale of inflation must be determined in a specific model

and here we discussed the free-fermionic construction of [13], where the scale of inflation is

determined at 6th order in the perturbative expansion in α′, so that M ∼ 10−5MP . This

theory is actually Starobinsky like (similar to an α-Starobinsky model of [50, 52, 55] with

α = 2/3). The identity of the inflaton is now associated with the area modulus of a 2-cycle,

T in the string model.

As noted several times, in addition to a (complex)-inflaton, an additional complex scalar

is required. This can be seen from the supersymmetrization of the R + αR2 theory [8], or

from the requirement of achieving inflation within the framework of no-scale supergravity

[10]. All through inflation, the additional directions must sit in stable minima. If the inflaton

is associated with the real part of T , TR, then TI = 0 is automatically fixed. However, the

additional field, C, (associated with the sgoldstino) typically has m2
C < 0 and is in fact

unstable. We have derived here general conditions for which the dilaton can be used to

stabilize the sgoldstino without any additional C-dependent corrections to either the Kähler

potential or the superpotential. We have also shown that in this construction, the necessary

field excursions, φ ∼ 5 and T ∼ 40 are small enough so as to evade the problems which

relegate large field inflation models to the swampland, thus turning the swampland into a

mirage.

Before ending this paper, we comment on the necessity of fixing the VEV and stabilizing

the dilaton. In all of the arguments made above regarding the stabilization of the sgold-

stino C, we had implicitly assumed that the VEV of S was held fixed. However stabilizing

the dilaton is not a new problem [58–63]. Indeed, it was argued [64] that from the equa-
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tions of motion, de Sitter-like solutions and inflation require dilaton self-interactions, and a

stabilization mechanism. It is beyond the scope of this work to resolve this long standing

problem. However, we would like to make a few observations. Adding a function, g(S) to

the superpotential does not work because although the mass-squared of C is positive at the

minimum when TR = 1/2, generally at some large value of TR (i.e., during inflation), it

turns negative upsetting the inflationary trajectory. A possible way out is to separate the

stabilization procedure in two steps by analogy with type IIB flux compactifications, where

the dilaton and complex structure moduli are stabilized in a supersymmetric way prior to

the Kähler class moduli that provide the inflaton potential [65, 66]. Another possibility

would be if some dynamics or supersymmetry breaking in the dilaton sector could provide a

soft mass term for the canonically normalized dilaton ∆V = 1
2
M ′2| lnS/S0|2, then all fields

remain stabilized throughout the duration of inflation. So long as M ′ > M , the dilaton

remains fixed very near S0. We hope to be able to return to this question in future work.

This string-derived realization of inflation, like the Starobinsky model, makes a definite

prediction for the tensor-to-scalar ratio, r ≃ 0.0024. This is slightly lower than the standard

Starobinsky model but still testable in the foreseeable future with the next generation of

CMB experiments.
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