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Abstract. In the search for stochastic gravitational wave backgrounds (SGWB) of cos-
mological origin with LISA, it is crucial to account for realistic complications in the noise
and astrophysical foreground modeling that may impact the signal reconstruction. To ad-
dress these challenges, we updated the SGWBinner code to incorporate both variable noise
levels across LISA arms and more complex foreground spectral shapes. Our findings sug-
gest that, while moderate variations of the noise amplitudes have a minimal impact, poor
foreground modeling (i.e., templates requiring many free parameters) significantly degrades
the reconstruction of cosmological signals. This underlines the importance of accurate mod-
eling and subtraction of the astrophysical foregrounds to characterize possible cosmological
components. To perform this more challenging analysis, we have integrated the JAX frame-
work, which significantly improves the computational efficiency of the code, in the SGWBinner
code, enabling faster Bayesian likelihood sampling and more effective exploration of complex
SGWB signals.
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1 Introduction

The Laser Interferometer Space Antenna (LISA) [1] is a pioneering space-based gravita-
tional wave (GW) observatory under development by the European Space Agency (ESA)
in collaboration with NASA, planned to be launched in 2035. Unlike current ground-based
detectors [2–5], which are limited to higher-frequency GW signals, LISA is specifically de-
signed to observe the milli-Hz frequency band, opening a completely new window for GW
astronomy. The observatory will consist of three satellites that approximately orbit at the
vertices of an equilateral triangle with sides about 2.5 million kilometers long. By monitoring
the relative displacements among the three satellites, LISA will perform three correlated in-
terferometry measurements, allowing it to detect tens of thousands of resolvable GW events.
These include mergers of Stellar Origin Binary Black Holes (SOBBHs), Compact Galactic
Binaries (CGBs) mostly composed of Double White Dwarfs (DWDs), Super Massive Black
Holes (SMBHs), and Extreme Mass Ratio Inspirals (EMRIs) [6, 7].

Beyond resolvable sources, numerous weak and unresolvable signals will superimpose
incoherently generating a stochastic GW background (SGWB) [6, 8–14]. At least two guar-
anteed components will contribute to the astrophysical SGWB in the LISA band. Below a
few milli-Hz, the dominant contribution will come from CGBs [15, 16]. At higher frequencies,
another contribution is expected from SOBBH mergers [17]. Moreover, recent studies have
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explored contributions from extreme mass-ratio inspirals (EMRIs) in the 1-10 mHz frequency
range [11] and extragalactic double white dwarf (DWD) systems [13]. All these components,
typically referred to as “confusion noise”, will act as an additional noise source in the data
stream, affecting the measurements of all other signals LISA will be sensitive to1. Therefore,
characterizing the astrophysical SGWB is crucial to LISA data analysis.

In addition to the astrophysical GWs, LISA will potentially be sensitive to cosmological
SGWBs, which might be generated by several early universe phenomena [19, 20]. Commonly
and actively discussed sources for the LISA band include inflation [21, 22], cosmological first-
order phase transitions (FOPTs) [23–29], cosmic string networks [30–32], and scalar induced
GWs [33–36](see also [37] for a review and reference therein). The detection and characteri-
zation of the cosmological contribution would allow us to probe high-energy particle physics
beyond the Standard Model and early universe cosmology. Achieving this, however, requires
precise fitting of all resolved sources and reconstruction of the astrophysical contributions.
One approach currently under investigation within the consortium is the simultaneous fit-
ting of overlapping transient signals, noise components, and cosmological signals, known as
a “global fit” scheme in the LISA data analysis [38–43].

A natural key question is how well LISA will distinguish cosmological SGWBs from
the instrumental noise and astrophysical SGWBs (often mentioned as foreground in this
context) when realistic complications in the noise and astrophysical foreground modeling
are present. Typically, it is customary to assume stationarity, Gaussianity, and the perfect
knowledge of the spectral shape of these components in simulating LISA data. 2 Many
analyses assume static and equal arm lengths, as well as uniform noise amplitudes at each
link connecting the spacecraft, allowing the noise spectrum to be characterized by only two
parameters [22, 28, 32, 45–50]. Although these assumptions reduce the complexity of the
problem, they are not expected to hold in practice. Therefore, it is crucial to account for
realistic complications in the noise and foreground modeling to quantify their impact on
reconstructing the possible cosmological signals. The issue has recently been a topic of
active discussion in the literature. For noise modeling, the effect of unequal arm length
and noise amplitudes on the reconstruction was recently investigated in Ref. [51] (see also
Refs. [52–54] for earlier studies on the effect of unequal noise levels in the different links)
and that of time-varying noise amplitudes in Ref. [55]. Refs. [56, 57] explored template-
based signal reconstruction while maintaining a template-free approach for the instrumental
noise. Instead, a weakly parametric approach using flexible noise and astrophysical SGWB
templates was proposed in Ref. [58].

In this study, we try to put forward the understanding of how realistic complications in
the noise and foregrounds affect the signal reconstruction. For this purpose, we specifically use
the SGWBinner code [46, 48] to simulate the LISA data stream and perform a full likelihood
sampling. We first re-investigate the effect of unequal noise amplitude on signal parameter
inference using newly implemented signal templates [22], instead of the flat power-law used
in Ref. [59]. We then consider a more general parametrization for the foreground spectral
shape [60] in order to quantify how the signal reconstruction is affected by the simultaneous
determination of the foreground spectra. We note that these two extensions involve a larger

1As recently shown in [18], even a loud SGWB of cosmological origin can affect the parameter estimation
significantly.

2It is also common to work with purely stochastic components, assuming that all the transients are success-
fully removed from the data by the global fit. See Ref. [44] for the application of simulation-based inference
to the SGWB search performed by LISA in the presence of transient signals.
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number of parameters than the existing analyses done with the code [22, 28, 32, 46, 48],
increasing the computational cost of the sampling process. To mitigate such an increase in
the computational cost, we have integrated the JAX library [61] into the existing code, which
accelerated the code of a factor up to 10 with respect to its previous version.

This paper is organized as follows. In Sec. 2, we review the formalism for modeling
the LISA data stream and introduce the noise and foreground modeling used in our updated
SGWBinner code. We then summarize the analysis scheme of the SGWBinner code. In Sec. 3,
we report the result of new analyses performed with the accelerated code. The effect of un-
equal noise level and unfixed foreground shape on the signal parameter inference is discussed
in Sec. 3.1 and Sec. 3.2, respectively. Finally, Sec. 4 is devoted to the discussion of these
results.

2 LISA data modeling and analysis in SGWBinner

In this section, we illustrate our model for the data LISA will collect. After briefly reviewing
some aspects of the SGWB search with LISA, we discuss the noise and foreground model
adopted in our analysis. Then we present the key ingredients of the SGWBinner code [46, 48]
and its analysis routine, whose implementation closely follows the description and notation
provided in this section.

2.1 SGWB search with LISA TDI channels

LISA will monitor the fractional Doppler frequency shifts induced by GWs on photons trav-
eling along the arms of the detector. In this context, the path connecting two satellites is
typically dubbed “link”. To suppress laser frequency noise, which is expected to be several
orders of magnitude greater than the required sensitivity [1], LISA will employ Time-Delay
Interferometry (TDI) [62–70]. TDI is a post-processing technique to combine the six link
measurements into data channels where laser frequency noise is strongly suppressed. Since,
for simplicity, we assume equal and static arm lengths, the so-called first-generation TDI
variables suffice to achieve laser noise cancellation 3.

Denoting the single link measurement as ηαβ(t), where αβ ∈ {12, 23, 31, 21, 32, 13} rep-
resenting the pairs of satellites αβ (with the laser emitted from the satellite β at time t−Lαβ/c
and recorded at time t in satellite α), the commonly used Michelson TDI combinations
{X,Y,Z} are expressed as

X ≡ (1−D13D31)(η12 +D12η21) + (D12D21 − 1)(η13 +D13η31) , (2.1)

with Y and Z being cyclic permutations of X. Here Dαβ is the delay operator acting on any
time-dependent function x(t) as Dαβ x(t) = x(t− Lαβ). Notice that in practice, TDI can be
understood as the operation of 3×6 matrix on the six single link measurements (regardless of
the generation) [51, 56] that returns the three TDI channels in a given basis. In the following,
we assume equal arms, i.e., we take Lαβ = L = 2.5× 109m.

It is convenient to combine the TDI variables to obtain the so-called AET basis [52, 71],
defined as

A ≡ Z−X√
2

, E ≡ X− 2Y + Z√
6

, T ≡ X+Y+ Z√
3

, (2.2)

3For the realistic orbit where arm lengths vary over time, one can utilize the second-generation TDI
variables [59, 67, 68, 70] While we did not test it explicitly, we expect that, under the same hypotheses, the
main conclusions of our analysis to remain valid also for the second-generation variables.
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which, in the limit of equal arms and equal noises, can be shown to be orthogonal (i.e., to
have vanishing cross-correlations). Moreover, due to its symmetric structure, the T channel
strongly suppresses GW signals at small frequencies, where it is effectively noise-dominated.
For this reason, the T channel is typically referred to as a null channel, which can be used for
noise monitoring. While these properties, make the AET basis particularly convenient for
SGWB searches, for the moment let us proceed with an arbitrary basis to keep the generality
of our discussion.

We denote with di(t) the three time-domain data streams, where i runs over the channels
of the TDI basis. For notational convenience, we model it as a real-valued function on
the interval [−τ/2, τ/2] with τ being the duration of a data segment. Then, the Fourier
transforms of the data streams are

d̃i (f) =

∫ τ/2

−τ/2
dt e2πiftdi (t) . (2.3)

Throughout this paper (and also in the code), the data is assumed to be ‘perfect’ residuals.
That is, all transients including loud deterministic signals and glitches in the noise are as-
sumed to be subtracted from the time stream through some appropriate methods within the
LISA global fit scheme [38–43]. After this procedure, the data only contains the noise ñν

i and
the residual stochastic signals s̃σi

d̃i(f) =
∑
ν

ñν
i (f) +

∑
σ

s̃σi (f), (2.4)

where ν, σ run over the different noise and signal components, respectively. Assuming that
all these components obey stationary and Gaussian statistics, the ensemble average of the
Fourier modes is characterized by

⟨ñν
i (f)ñ

ν∗
j (f ′)⟩ = 1

2
δ
(
f − f ′)P ν

N,ij(f) , ⟨s̃σi (f)s̃σ∗j (f ′)⟩ = 1

2
δ
(
f − f ′)P σ

S,ij(f) , (2.5)

where we define the one-side power-spectral density (PSD) (for i = j) and cross-spectral
density (CSD) (for i ̸= j) of noise and signal components P ν

N,ij(f) and P σ
S,ij(f), respectively.

Note that by definition, these are Hermitian matrices with respect to the indices ij. Assuming
all these components to be uncorrelated with one another, we obtain

⟨d̃i(f)d̃∗j (f ′)⟩ = 1

2
δ
(
f − f ′) [∑

ν

P ν
N,ij(f) +

∑
σ

P σ
S,ij(f)

]
≡ 1

2
δ
(
f − f ′) [PN,ij(f) + PS,ij(f)] ,

(2.6)

where PN,ij(f), PS,ij(f) are the total noise and signal PSDs and CSDs.
At this point, let us introduce the response functions for isotropic SGWB signals

Rij(f) [48]. Under the assumption of equal and static arm, the response functions can
be expressed as

Rij(f) = 16 sin2
(
f

fc

)(
f

fc

)2

R̃ij(f) , (2.7)

where we have introduced the detector characteristic frequency fc ≡ (2πL/c)−1 ≃ 19mHz
and again i, j are TDI indexes. The last factor in this equation, i.e., the R̃ij(f), encodes
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the projection of the tensorial structure onto the geometry of the detector. Approximated
expressions for this quantity for the XYZ and AET TDI basis are reported, e.g., in [48, 72],
where one finds that, under the assumptions stated above in this section, R̃ij(f) is diagonal
in the AET basis. The responses project the SGWB (in either strain Sσ

h (f) or Omega units
Ωσ
GW(f)) onto the data PSDs and CSDs as

PS,ij(f) = Rij(f)
∑
σ

Sσ
h (f) = Rij(f)

3H2
0

4π2f3

∑
σ

h2Ωσ
GW(f), (2.8)

where H0 is the present Hubble constant and h is the normalized one as H0/h ≃ 3.24×10−18

1/s. It is common practice to predict the primordial SGWB signal in terms of h2ΩGW(f);
therefore, for later convenience, we define

PΩ
N,ij(f) =

4π2f3

3H2
0

PN,ij(f) . (2.9)

In the following, we will give more detailed descriptions of the noise sources in the two TDI
bases {X,Y,Z} and {A,E,T}, and of the astrophysical foregrounds which are included in
h2Ωσ

GW(f).

2.1.1 LISA noise model

As discussed in the previous section, the TDI variables are designed to eliminate the dominant
laser frequency noise. In a simplified approach, the residual noise components (dubbed
secondary noise) that enter into each TDI channel can be grouped into two effective quantities,
namely, “Optical Metrology System” (OMS) noise and “Test Mass” (TM) noise. The former
accounts for noise in the readout frequency, due, for example, to laser shot noise, while the
latter is associated with the random displacements of the test masses caused, for example,
by local environmental disturbances. Introducing the transfer functions for these two noise
sources T ν

ij,αβ(f) (for details, see, e.g., [48, 51, 59, 73]), which project those contributions

onto the TDI channels, 4 the total noise power spectrum can be expressed as

PN,ij(f) =
∑
ν

P ν
N,ij(f) =

[
T TM
ij,αβ(f)S

TM
αβ (f) + T OMS

ij,αβ (f)SOMS
αβ (f)

]
. (2.10)

Our current knowledge of the LISA noise is based on the LISA Pathfinder [74] and labora-
tory tests. Since the precise determination of noise properties is one of the main technical
challenges of the future LISA mission and lays beyond the scope of the current work, as
customary in the literature, we assume stationary, Gaussian, and uncorrelated noises at each
link with identical spectral shapes given by [75]

STM
αβ (f) = 7.737× 10−46 ×A2

αβ

(
fc
f

)2
[
1 +

(
0.4mHz

f

)2
][

1 +

(
f

8mHz

)4
]

× s , (2.11)

SOMS
αβ (f) = 1.6× 10−43 × P 2

αβ

(
f

fc

)2
[
1 +

(
2mHz

f

)4
]

× s , (2.12)

4Note that Greek indices run over the satellite pairs and are summed according to the Einstein summation
convention.
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where Aαβ and Pαβ are parameters characterizing the amplitudes of the TM and OMS noises
in the different links. In App. A, we present the full expressions of PN,ij for the first-generation
TDI variables in the XYZ and AET bases.

For simplicity, most studies in the literature assume the noise amplitudes to be identical,
i.e., Aαβ = A and Pαβ = P , and according to the ESA mission specifications the face
values are A = 3 and P = 15. In this case, noise spectra reduce to STM

αβ (f) = STM(f,A)

and SOMS
αβ (f) = SOMS(f, P ) and in the AET basis, PN,ij(f,A, P ) becomes diagonal, with

identical AA and EE components (see Eq. (A.3)). As the signal response also becomes
diagonal, the numerical evaluation of the likelihood function is simplified in this basis (see
Sec. 2.2). However, the equal noise and equal arm length assumptions are quite idealized. As
for the former, one can naturally imagine the presence of small differences among the noises
in the six links. Regarding the latter, it is known that, with realistic orbits, LISA will not
be perfectly equilateral with non-static arm-lengths that vary at the percent level [76] (see
also Appendix A of [77]).

To simulate the LISA SGWB search with a more realistic noise property, the effect of
unequal noise amplitude and unequal arm length on the signal parameter inference has been
recently studied in Ref. [51]. For a flat power-law signal, it has been shown that the amplitude
reconstruction is almost unaffected. As reported in Sec 3.1, we performed analyses under the
same assumptions of different noise amplitudes in the different spacecrafts and tested them
for different cosmological signals.

2.1.2 Astrophysical foregrounds

As already mentioned in Sec. 1, apart from possible cosmological sources, there are at least
two guaranteed components contributing to the astrophysical SGWB signal in the LISA
band, i.e., the SGWB from CGBs and SOBBHs. Consequently, in the following, we assume
the total signal power can be expressed as

h2ΩGW(f) = h2ΩGal
GW(f) + h2ΩExt

GW(f) + h2ΩCosmo
GW (f), (2.13)

where the first two components represent those astrophysical “foregrounds” and the last
one represents the contribution from cosmological sources. We leave the inclusion of other
possible contributions (e.g., from EMRIs [11] and DWDs [13]) in our code to future work.
In the remainder of this section, we provide the templates for these foreground components
implemented in the SGWBinner code that have recently been used in Refs. [22, 28, 32].

Galactic foreground

After the removal of loud signals produced from the population of CGBs in the galactic
disk [78], there remains a strong stochastic component consisting of the unresolved sub-
threshold mergers of CGBs (mostly, DWDs). Due to the angular dependence of the response
functions and the yearly orbit of LISA, this component, dubbed Galactic foreground, is known
to have an annual modulation. In principle, this feature can be used to separate the Galactic
component from the other contributions considered to be stationary, e.g., by properly taking
into account the variation in each chunk [29, 53, 77]. However, reconstruction with such a
procedure is inevitably sensitive to uncertainties due to the non-stationarity of noise and data
gaps. Therefore, instead of adopting such a strategy, we only consider the signal integrated
over the whole sky and observation time TObs. As the effect of those uncertainties is expected
to be mitigated with the average, this approach can be considered as a conservative one.
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This integrated contribution can be described by the following empirical model studied
in Ref. [60]:

h2ΩGal
GW(f) =

1

2

(
f

1Hz

)nGal

e−(f/f1)α
[
1 + tanh

fknee − f

f2

]
h2ΩGal , (2.14)

where the value of f1 and fknee depends on the total observation time TObs as

log10(f1/Hz) = a1 log10(TObs/year) + b1 ,

log10(fknee/Hz) = ak log10(TObs/year) + bk . (2.15)

The exponential factor e−(f/f1)α is due to the loss of stochasticity at higher frequency where
less signals are superimposed at the same time [60]. The last tanh term is modeling the
expected complete subtraction of CGBs signal at frequencies f > fknee. Based on Ref. [60],
we adopt the fiducial values a1 = −0.15, b1 = −2.72, ak = −0.37, bk = −2.49, α = 1.56,
f2 = 6.7 × 10−4Hz, log10(h

2ΩGal) = −7.84 and nGal = 2/3, which is expected from the
superposition of inspiraling binaries.

In the previous analyses reported in Refs. [22, 28, 32], only the amplitude parameter
h2ΩGal was fitted in the signal reconstruction, assuming a complete knowledge of its spectral
shape. Given the uncertainty of the above empirical model, we relax such an assumption
and, in our analysis, in addition to h2ΩGal, we also vary nGal, f1, f2, fknee and α. The effect
of fitting these parameters on the signal reconstruction is discussed in Sec. 3.2.

Extra-galactic foreground

The other astrophysical component in eq. (2.13), referred to as Extra-galactic foreground, is
the incoherent superposition of all the extra-galactic compact object mergers. The contribu-
tions from SOBBHs and binary neutron stars (BNS) in their inspiral phase, which cannot be
individually resolved by LISA [79], are estimated through the observation of ground-based
detectors [80, 81]. Due to the relatively uniform distribution of the sources and the limited
angular resolution of LISA, this foreground can be well modeled as an isotropic SGWB signal
with the power-law shape [17, 79]:

h2ΩExt
GW(f) = h2ΩExt

(
f

1mHz

)nExt

, (2.16)

where h2ΩExt and nExt are the amplitude (at 1mHz) and tilt of the spectrum. From the recent
observation by LIGO-Virgo-KAGRA collaboration, the magnitude of the SGWB signal from
SOBBHs and BNS is estimated as ΩExt = 7.2+3.3

−2.3×10−10 at f = 25Hz [12, 80]. Extrapolating
this amplitude in the LISA frequency band5, we adopt the fiducial value log10(h

2ΩExt) =
−12.38 and nExt = 2/3.

Once again, previous studies only considered h2ΩExt as a free parameter to be fitted
together with cosmological parameters. Similarly to the galactic component, we also vary
nExt in our analysis and discuss its effect in Sec. 3.2.

5Several subtleties will have to be addressed to make this model more accurate. It is for instance not
obvious that the different resolution power of LISA and LIGO-Virgo detectors play no relevant role, or that
the binary eccentricity evolution is a minor effect (see, e.g., Refs. [82, 83]).
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2.2 Mock data analysis with the SGWBinner code

In this section, we summarize the data analysis scheme implemented in the SGWBinner code,
for more details see [48]. Let us start with the data generation. As described in Refs. [46, 48],
given the total observation time TTot and duty cycle Dc of the experiment the code computes
the effective observation time TObs = Dc×TTot and generates data in the frequency domain for
a given number of segments Nd with duration τ = TObs/Nd. That is, Nd Gaussian realizations
for the signal, noise, and foregrounds are generated at each frequency bin fk (the frequency
band is assumed to cover the whole LISA band [3 × 10−5, 0.5]Hz with spacing ∆f = 1/τ),
with zero mean and variances defined by their respective power spectral densities. The data
d̃si (fk), where s indexes segments, are redefined into a new set D̄k

ij ≡
∑Nd

s=1 d
s
i (fk)d

s∗
j (fk)/Nd

by averaging over time segments. To lower the numerical complexity, the code then performs
coarse-graining over the frequency with inverse variance weighting, producing a data set Dk

ij

where k runs over a smaller set of frequency bins fk
ij (namely, the coarse-graining reduces the

number of bins, increasing their size). Notice that Dk
ij retains statistical properties similar

to those of D̄k
ij . Similarly to Refs. [22, 28, 32, 48], we set τ = 11.4 days (corresponding to

∆f = 10−6Hz) and Nd = 126 in our analysis, implying TObs = 4 effective years of data.
After generating simulated data employing the noise models described above (as well

as the signal templates that we discuss below) the code attempts to reconstruct signals
and estimate their errors by working on the posterior distribution for the model parameters
defined as

p(θ⃗|D) ≡ π(θ⃗)L(D|θ⃗)
Z(D)

, (2.17)

where L(D|θ⃗) is the likelihood of the data D, π(θ) is the prior for the parameters θ⃗, and
Z(D) is the model evidence. Here the vector of parameters θ⃗ is expressed as

θ⃗ ≡ {θ⃗cosmo, θ⃗n, θ⃗fg}, (2.18)

where the components represent signal, noise, and foreground parameters, respectively. In
practice, in Refs. [22, 28, 32, 48], the cosmological parameters were assumed to be template-
dependent (see App. D), and only two noise (i.e., θ⃗n = {A,P}) and two foreground param-
eters (i.e., θ⃗fg = {log10(h2ΩGal), log10(h

2ΩExt)}) were considered. As anticipated, we will go
beyond the latter assumptions.

The likelihood employed in the code reads [22, 28, 32, 48]

lnL(D|θ⃗) = 1

3
lnLG(D|θ⃗) + 2

3
lnLLN (D|θ⃗) . (2.19)

with

lnLG(D|θ⃗) = −Nd

2

∑
i,j

∑
k

n
(k)
ij

[
Dth

ij (f
(k)
ij , θ⃗)−D(k)

ij

Dth
ij (f

(k)
ij , θ⃗)

]2

, (2.20)

lnLLN (D|θ⃗) = −Nd

2

∑
i,j

∑
k

n
(k)
ij ln2

[
Dth

ij (f
(k)
ij , θ⃗)

D(k)
ij

]
, (2.21)

where the indices i, j run over the TDI channels, the index k runs over the coarse-grained

data points, and n
(k)
ij represents the number of points within bin k for the cross-spectrum

of channels i and j. Here the theoretical model for the data including all SGWB and noise
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components reads Dth
ij (f, θ⃗, n⃗) ≡ Rij h

2ΩGW(f, θ⃗cosmo, θ⃗fg)+PΩ
N,ij(f, θ⃗n). Assuming the equal

and static arm length and equal noise, the previous studies worked in the AET basis as Dij

become diagonal. Notice that when these assumptions are violated, which will be the case
with real data, the analysis only involving the diagonal parts becomes suboptimal. This issue
will be addressed in Sec. 3.1.

In practice, the SGWBinner code allows both template-free (or bin-by-bin) reconstruc-
tion [46, 48] and template-based reconstruction [22, 28, 32]. While the former agnostic search
is flexible, it is (obviously) suboptimal for reconstructing any given template. The present
study is concerned only with template-based signal reconstruction, also bearing in mind the
possibility that a previous agnostic search has provided support for a specific frequency shape
of the signal, that has the potential to be well described by the template under consideration.
While the code supports both Fisher analysis and Bayesian inference with likelihood sam-
pling, in this work, we only perform the latter. For this purpose, we used the nested sampler
Polychord [84, 85], via its Cobaya interface and visualized the results using GetDist [86].
Note that when fitting the simulated data, the same noise model used to generate the data
is applied. This is particularly crucial for LISA, where noise calibration must be done si-
multaneously with the reconstruction of the signals, meaning any differences between the
instrumental noise and the model could introduce bias. This issue will have to be closely
monitored in future upgrades of the code.

When the number of parameters is large, the sampling can be computationally very
expensive. This is the case for our study where we loosen the assumptions made on the noise
and foregrounds. Namely, we fit 12 parameters for the noise instead of 2 as reported in Sec. 3.1
and 6 additional parameters for the foregrounds as in Sec. 3.2, respectively. In order to obtain
better predictions within a reasonable computation time, we worked on the acceleration of
the sampling process in the SGWBinner code. As described in App. C, the sampling is now
accelerated up to 10 times both for template-free and template-based reconstruction, highly
benefiting the analyses that we describe below.

3 Assessing the impact of unequal noise and foreground modeling

In this section, we present the result of our new analyses based on the more complex noise and
foreground models discussed in Sec. 2.1. In the examples below, we adopted the log-normal
bump model (see Eq. (D.1)) as a proxy for the cosmological signal. The reason for the choice
of this template is twofold. Firstly, it describes an increase in the SGWB power only over
a limited range of frequencies, as it might have been caused by a number of cosmological
mechanisms [22] active only at those frequencies (for instance, a sudden episode of particle
production during inflation, leaving a marked signal only at the scales that left the horizon
at that moment). Therefore, analyses with this template can provide generic suggestions for
scenarios that source GWs in a finite time and predict a peaked spectrum. Secondly, despite
its simplicity, this template suffices to highlight the impact of unequal noise amplitudes and
more elaborate foregrounds in measuring the template parameters.

Following Ref. [22], we hereafter assume the log-uniform priors for those signal parame-
ters as h2Ω∗ ∈ [10−30, 10−5], ρ ∈ [10−2, 10], f∗ ∈ [10−5, 10−1]Hz. On the other hand, similarly
to Refs. [22, 28, 32, 48], we assume Gaussian priors for noise amplitudes (both in the un-
equal case of Sec. 3.1 and in the equal case of Sec. 3.2) and the foreground amplitudes. For
the priors of noise amplitudes, we set the means to be the fiducial values and the standard
deviations to be 20% of the fiducial values. For the foreground amplitudes log10 h

2ΩGal and
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log10 h
2ΩExt, we set the means to be the fiducial values and the standard deviations to be

0.21 and 0.17, respectively.

3.1 Unequal noise amplitudes

For this analysis, we implemented the general expressions of noise spectrum reported in
eq. (2.11)– (2.12) into the SGWBinner code. Notice that in this generalized scenario, the
AET basis remains diagonal in the signal but not in the noise part (see App. A for the
non-vanishing elements of the noise cross-spectrum). As a consequence, excluding the off-
diagonal terms, which contain additional information on the noise, results in a sub-optimal
estimation of the noise parameters. Since there are non-zero correlations between the noise
and signal parameters, this approach will also degrade the precision with which the signal
parameters are determined. In this sense, our analysis, which is carried out in the AET
basis without including the off-diagonal terms is suboptimal. In this work, for simplicity,
we restrict ourselves to this suboptimal analysis, leading to results that can be seen as
conservative. Similarly to Ref. [51], we set the fiducial values of the noise parameters Aαβ

and Pαβ (with {αβ} ∈ I = {12, 23, 31, 21, 32, 13}) to

Aαβ = {3.61, 3.02, 2.87, 3.43, 2.65, 3.45},
Pαβ = {14.00, 16.93, 9.43, 21.55, 17.04, 20.83},

(3.1)

which were drawn from Gaussian distributions centered on the fiducial values A0 = 3 and
P0 = 15, respectively, with standard deviations equal to 20% of the fiducial values. From the
values in Eq. (3.1), the compressed data was generated as discussed in Sec. 2.2. In doing so,
we assume time-independent statistical properties of the noise. At the end of this subsection,
we will comment on the potential effects of time variations in noise amplitudes.

For the log-normal bump signal, we set the values of parameters as

{log10 h2Ω∗, log10 f∗, log10 ρ∗} = {−12,−2.7,−0.8} (3.2)

to have a relatively low signal-to-noise ratio (SNR) ∼ 20. Then, using only the diagonal part
of the TDI covariance, we run the analysis for signal parameters, foreground amplitudes, and
12 noise amplitudes. In Fig. 1, we show the triangle plot of the 2D-marginalized posterior of
signal parameters, foreground amplitudes, and unequal noise amplitudes respectively. Since
we found no significant correlation between the noise amplitudes and the others, and for
aesthetic reasons, we plotted them separately. For the noise amplitudes, one can see the
appearance of degeneracy in (A13, A31), (A21, A23), (A12, A32) and (P13, P31). In fact, this
is predicted as they appear similarly to each other in the expressions of the unequal noise
spectrum (A.7). We expect these degeneracies to be (at least partially) resolved once the
off-diagonal terms are included in the analysis. In the top-right inset, on the other hand,
we visualize the injected and reconstructed signal, noise, and foregrounds with their 68 and
95% C.L. error bands. As a reference, the power-law sensitivity (PLS) [46, 87] for SNR = 10
is shown with the black solid line. Notice that although the reconstruction errors for each
noise amplitude parameter are relatively large, the sensitivity itself is precisely determined
and error bands are too small to be visible. The errors for the galactic component are also
barely visible.

One key question is to what extent the suboptimality affects the signal parameter esti-
mate. We explored this by generating and analyzing “idealized” equal noise data using the
same signal and foreground parameter values. To set a similar SNR with that of unequal
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Figure 1. 2D posterior distribution for signal parameters and foreground amplitudes (top panel),
unequal amplitudes of TM (bottom left panel) and OMS (bottom right panel), respectively, derived
from the data with unequal noise amplitudes. In the corner plot, the yellow and red dots, and
corresponding vertical lines, show the injected parameters and their reconstructed mean values. Dark
and light orange regions represent 68% C.L. and 95% C.L. respectively. The top-right inset visualises
the injected and reconstructed signals, with 68 and 95% C.L. error bands, and the LISA PLS (solid
black). The error bands on the galactic foreground and instrumental noise are too small to be visible.
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Figure 2. 1D-marginalized posterior for the signal parameters and foreground amplitudes. Here we
compare the three cases: I) equal noise data fitted with equal amplitudes (solid red line), II) unequal
noise data fitted with equal amplitudes (green dashed line), III) unequal noise data fitted with unequal
amplitudes (blue dot-dashed line). A comparison of I) and II) shows the effect of suboptimality, and
a comparison of II) and III) shows the effect of incorrect fitting.

noise data, here we set the root mean squared (RMS) value of Eq. (3.1) for the equal am-
plitudes as (A,P ) = (3.19, 17.13). As a reference, we also performed equal noise fitting on
the unequal noise data. To compare the uncertainties in the signal parameter reconstruc-
tion, we marginalized the posterior over the remaining parameters. In Fig. 2, we show the
1D-marginalized posterior of the signal parameters and also foreground amplitudes for the
equal noise data fitted with equal amplitudes (red, eq-eq), the unequal noise data fitted with
equal amplitudes (green, uneq-eq) and the unequal noise data fitted with unequal amplitudes
(blue, uneq-uneq). Overall, the posterior distributions are well peaked around the fiducial
values.

By comparing the eq-eq (red) and uneq-uneq (blue) cases, we find that the error, or
the width of distribution, of signal parameters increases by only a few 10% at most. While
there is a similar increase in the uncertainty for ΩGal, the error for ΩExt remains effectively
unchanged. Although not shown here, a similar behavior was observed for larger values of
the signal amplitude, e.g., SNR ≃ 100. This result is consistent with Ref. [51], which shows
that unequal noise amplitudes and suboptimality have little effect on signal reconstruction.
We believe that this is because the frequency dependence of the noise correlations is well
distinguishable from that of the signal. Indeed, in the full triangle plot, we did not observe any
significant correlation between the noise amplitudes and the signal parameters, or between
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the noise amplitudes and the foreground amplitudes. In other words, the perfect knowledge of
the noise spectrum makes the signal parameter reconstruction robust against the amplitude
inequality and the suboptimality. As we will see below, in Sec. 3.2, relaxing the assumption on
the knowledge of the foreground spectral shape affects more the parameter reconstruction.
We also expect that the reconstruction in the unequal noise and unequal amplitudes case
could be improved (and hopefully get closer to the equal noise and equal amplitudes case)
once we include the off-diagonal parts of the covariance matrix.

Interestingly, the incorrect fitting, i.e., uneq-eq case (green), shows a slightly worse
estimate than the uneq-uneq case as the distributions of the former are still concentrated
around the injected values and spread out only by a factor of a few. We believe this is
due to the unequal amplitudes (3.1) only moderately fluctuating around their RMS values.
With this moderate inequality, AA and EE noise spectra (A.7) are well approximated by
the equal noise spectrum (A.3) with the RMS amplitudes, which are well determined by the
TT-channel. This situation could be altered if there is a drastic inequality in the amplitude
parameters that change by orders of magnitude. This would make the unequal noise spectrum
significantly different from the equal noise spectrum, resulting in a worse and possibly biased
estimate in the uneq-eq case.

Finally, let us comment on the time variation of noise amplitudes. After cutting the full
data stream into segments sufficiently short for the noise to be effectively stationary, noise
non-stationarities would reduce to a modulation of the total noise amplitude on a segment-
by-segment basis. As demonstrated in Ref. [55], an appropriate strategy that leverages these
noise variations would effectively improve the overall constraint power. In this sense, our
forecasts on the signal reconstruction errors in Fig. 2 are conservative.

3.2 Foregrounds with unfixed shape parameters

Most previous studies included only the foreground amplitudes in the data analysis. For
this reason, in this section, we inspect the consequences of going beyond such an assumption
and vary all foreground parameters together with the cosmological ones. To highlight the
effect of unfixed shape parameters, we assumed the equal noise amplitudes Aαβ = A = 3 and
Pαβ = P = 15.

For illustrative purposes, we again consider the log-normal bump model as the cosmo-
logical signal. We first analyze the data with signal parameters

{log10 h2Ω∗, log10 f∗, log10 ρ} = {−10,−2.7,−0.8}. (3.3)

We assume log-uniform priors for all the foreground parameters, i.e., {nGal, f1, f2, fknee, α, nExt},
centered around the fiducial values reported in Sec. 2.1.2 and with width equal to 10% and
20% of the fiducial value. In Fig. 6, we show the full-posterior distribution for the 20% case.
A strong correlation between ΩGal and nGal, and between ΩExt and nExt can be observed. The
correlation between ΩExt and nExt mainly originates from a non-optimal choice of the pivot
frequency around which the power-law is anchored, which enhances the degeneracy between
the two parameters. For the galactic foreground, the correlation between ΩGal and nGal sug-
gests that these parameters are mainly determined by the signal in the lower frequency range,
which are not significantly influenced by the higher-frequency parameters α, f1, f2, fknee, that
define the high-frequency cut-off. So, at low frequency, we find a power-law like situation,
affected by a similar degeneracy as for the extragalactic contribution.

Similarly to Fig. 2, in Fig. 4, we compare 1D-posterior for the signal and foreground
parameters marginalized over all the other parameters. In both figures, the red line denotes
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Figure 3. Triangle plot for the signal and foreground parameters including the 6 unfixed shape
parameters. The range of log-uniform prior for those parameters is taken to be 20% of the fiducial
values. The color scheme is the same as in Fig. 1.

the case where the foreground shape is fixed. The unfixed cases are represented by the blue
and green lines, which are respectively for 10% and 20% prior width. In contrast to the
unequal noise case shown in Fig. 2, we observe a significant increase (up to one order of
magnitude depending on the parameters) in the uncertainties of the reconstruction.

As summarized in App. B, we performed similar analyses for the same log-normal tem-
plate with varying the peak position f∗. By comparing Figs. 4, 7 and 8, one can see that the
reconstruction error of the signal parameters tends to increase with more overlap between
the galactic foreground and the signal. This is somewhat expected since the high-frequency
cut-off of the galactic foreground and the bump signal have quite similar shapes in frequency,
making it hard to separate their relative weights. Indeed, a correspondent increase in the
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Figure 4. 1D-marginalized posterior for the signal parameters (top panel) and foreground amplitudes
(bottom panel) with foreground shape parameters fixed (red solid line) and unfixed (green dashed
line, blue dot-dashed line). The green lines are for the case where 10% width is assumed while the
blue lines are for a 20% width.

correlation between the signal parameters and the shape parameters {α, f1, f2, fknee} is
observed in Figs. 3, 5 and 6.

Moreover, we notice that the reconstruction error of the galactic amplitude ΩGal is
less sensitive to the degree of overlap between the signal and the galactic foreground. As
mentioned earlier, ΩGal is strongly correlated with nGal. Since the signals we consider do
not mask the lower frequency part, the ability to determine the degenerated set {ΩGal, nGal}
is considered to be comparable in all the three cases. Therefore, the degradation in the
estimation of ΩGal is mostly contributed by the degeneracy with nGal (the same applies to
ΩExt and nExt). We expect that if we consider a broader peak for the signal, covering both
the lower and higher frequency parts, we will see a further increase in the reconstruction
errors of both the signal parameters and the foreground amplitudes. Indeed, in the case of
Fig. 7 where the bump signal masks the extragalactic component, the error in ΩExt is the
largest compared to the other cases where the error is determined solely by the contribution
from nExt. While this discussion generally applies to peaked signals, a dedicated analysis will
be needed for signals with more complex spectral shapes.

4 Discussion

In this work, we have studied the effects of unequal noise amplitudes and unfixed foreground
shapes on the reconstruction of cosmological SGWBs with LISA. In previous studies utilizing
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the SGWBinner code, the following assumptions were made to simplify the analysis: i) static
and equal arm lengths, ii) uniform noise amplitudes at each link, and iii) perfect knowledge
of the spectral shapes of foregrounds. Given that the assumptions of equal noise amplitudes
and perfect knowledge of spectral shapes are not realistic, we relax assumptions ii) and iii) to
test their impact on the capabilities of LISA to measure SGWBs of cosmological origin. This
more complicated scenario, and, in particular, the higher dimensionality of its parameter
space, leads to an increase in the computational cost of the analysis. To overcome this, we
have updated the SGWBinner code using the JAX library, resulting in the acceleration of the
sampling process as summarized in App. C.

While the impact of (static) unequal arm lengths and unequal noise amplitudes was
explored in Ref. [51], the analysis was limited to a flat power-law signal with relatively large
SNR (order 100). For this reason, in the present work, we have extended this analysis using
some of the templates for cosmological SGWBs implemented in the SGWBinner code [22,
28, 32]. In particular, in Sec. 3.1, we have studied the case of a peaked signal with a
relatively low SNR (order 10). Consistently with Ref. [51], our results show that a moderate
(and reasonable) level of inequality between the noise amplitudes does not affect the signal
reconstruction significantly. Thus, we conclude that the results of Ref. [51] hold (with only
minor modifications) also for different and more complicated signal shapes, which might also
be more feeble. Once again, we stress that, as in Ref. [51], our analysis relies on the diagonal
terms of the correlation matrix, which makes it suboptimal. We leave the implementation of
the full analysis, which requires some code restyling, to future works.

In Sec. 3.2, we have discussed the impact of less restrictive foreground templates com-
pared to the ones used in previous studies. Again, as a proxy for a cosmological SGWB, we
have considered a log-normal bump with relatively low SNR and fixed it so that it partially
overlaps with the high-frequency cut-off of the galactic component (see App. B for the case
with no overlap). In this case, we found an order of magnitude increase in the uncertainties
on both the signal and foreground parameters compared to the simplified scenario. As for
the signal parameters, the degradation originates from the degeneracy with the parameters
determining the position and shape of the high-frequency cutoff in the galactic component.
On the other hand, the degradation in the determination of the amplitude of the galactic
component originates from its fairly strong correlation with the tilt parameter. Given the
significance of the degradation in the parameter uncertainties, these results highlight the
importance of precisely modeling the spectrum of the foreground contribution.

Before concluding, we discuss the recent upgrades implemented in the SGWBinner code
and outline potential future developments. The enhancement of parts of SGWBinner code
with the JAX framework allows for GPU/TPU acceleration with the XLA compiler, which
can substantially speed up the analysis and facilitates huge data handling. For example,
this would be relevant to investigate, e.g., anisotropic SGWBs or non-stationarities in the
signal or the noise. For previous studies on these topics see [55, 77, 88–92]. Moreover,
JAX compatibility allows for further code upgrades. For example, automatic differentiation,
which was not used in the present analysis, provides access to the derivatives of likelihood
with respect to any of the parameters. While this could also be useful in the Fisher analysis,
it is worth noting that powerful Bayesian inference algorithms such as Hamiltonian MC and
variational inference can be used because both methods rely on efficient gradient computation.
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A Noise power spectrum for equal arm length

In this appendix, we report the expressions of the noise auto- and cross-spectra both in XYZ
and AET basis for equal arm length. To simplify the expressions, we define x ≡ f/fc. For the
equal noise amplitudes, the total power spectral density for the noise PSDs become [48, 59, 73]

PN,ii(f,A, P ) = 16 sin2 x
{
[3 + cos(2x)]STM(f,A) + SOMS(f, P )

}
, (A.1)

and the noise CSDs are

PN,ij(f,A, P ) = −8 sin2 x cosx
[
4STM(f,A) + SOMS(f, P )

]
, (A.2)

where i, j ∈ {X,Y,Z} and i ̸= j. Therefore, each TDI channel observes equivalent correlated
noise in the XYZ basis. On the other hand, the PSDs in the AET basis read

PN,AA(f,A, P ) = PN,EE(f,A, P ) = PN,XX(f,A, P )− PN,XY(f,A, P )

= 8 sin2 x
{
4
[
1 + cosx+ cos2 x

]
STM(f,A) + [2 + cosx]SOMS(f, P )

}
,

(A.3)
and

PN,TT(f,A, P ) = PN,XX(f,A, P ) + 2PN,XY(f,A, P )

= 16 sin2 x
{
2 [1− cosx]2 STM(f,A) + [1− cosx]SOMS(f, P )

}
,

(A.4)

with vanishing CSDs PN,ij(f,A, P ) = 0 for i ̸= j so that the noise covariance matrix is
diagonal.

We proceed by reporting the expressions assuming the noise amplitudes at each link
might have different values. In the XYZ basis, the PSDs are given by

PN,XX(f) = 4 sin2 x
{
4
[
STM
21 + STM

31 + (STM
12 + STM

13 ) cos2 x
]
+ SOMS

(21) + SOMS
(31)

}
,

PN,YY(f) = 4 sin2 x
{
4
[
STM
12 + STM

32 + (STM
21 + STM

23 ) cos2 x
]
+ SOMS

(12) + SOMS
(32)

}
,

PN,ZZ(f) = 4 sin2 x
{
4
[
STM
13 + STM

23 + (STM
31 + STM

32 ) cos2 x
]
+ SOMS

(13) + SOMS
(23)

}
,

(A.5)

and the CSDs are

PN,XY(f) = −4 sin2 x
[
(SOMS

(12) + 4STM
(12)) cosx+ iSOMS

[12] sinx
]
,

PN,YZ(f) = −4 sin2 x
[
(SOMS

(23) + 4STM
(23)) cosx+ iSOMS

[23] sinx
]
,

PN,ZX(f) = −4 sin2 x
[
(SOMS

(31) + 4STM
(31)) cosx+ iSOMS

[31] sinx
]
,

(A.6)
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where we define symmetric sum S
TM/OMS
(αβ) ≡ S

TM/OMS
αβ + S

TM/OMS
βα and anti-symmetric sum

SOMS
[ij] ≡ SOMS

ij − SOMS
ji . One can easily check that for the equal level STM

αβ (f) = STM(f,A)

and SOMS
αβ (f) = SOMS(f, P ), Eqs. (A.1) and (A.2) are reproduced. SGWBinner code gener-

ates noise by diagonalizing the noise correlation matrix in XYZ basis. Therefore, all these
equations are used to generate the LISA data stream with unequal noise levels.

In the AET basis, the PSDs read

PN,AA(f) = 2 sin2 x
{
4
[
(STM

21 + STM
23 + STM

(31)) + 2STM
(31) cosx+ (STM

12 + STM
32 + STM

(31)) cos
2 x

]
+
[
(SOMS

(12) + SOMS
(23) + 2SOMS

(31) ) + 2SOMS
(31) cosx

]}
,

PN,EE(f) =
2

3
sin2 x

{
4
[
(4STM

12 + STM
21 + STM

23 + 4STM
32 + STM

(31))

+2(2STM
(12) + 2STM

(23) − STM
(31)) cosx+ (STM

12 + 4STM
21 + STM

32 + 4STM
23 + STM

(31)) cos
2 x

]
+5SOMS

(12) + 5SOMS
(23) + 2SOMS

(31) + 2(2SOMS
(12) + 2SOMS

(23) − SOMS
(31) ) cosx

}
,

PN,TT(f) =
8

3
sin2 x

{
2(STM

(12) + STM
(23) + STM

(31)) [1− cosx]2

+(SOMS
(12) + SOMS

(23) + SOMS
(31) ) [1− cosx]

}
.

(A.7)
Once again, we can see that if we take STM

αβ (f) = STM(f,A) and SOMS
αβ (f) = SOMS(f, P ),

the equal level results in Eqs. (A.3)– (A.4) are reproduced. For completeness, let us also give
the noise CSDs in the AET basis

PN,AE(f) =
2√
3
sin2 x

[
−SOMS

(12) + SOMS
(23) − 4STM

21 + 4STM
23 − 4STM

[31]

+ 2(−SOMS
(12) + SOMS

(23) − 4STM
(12) + 4STM

(23)) cosx+ 4(−STM
12 + STM

32 + STM
[31] ) cos

2 x

−2i
(
SOMS
[12] + SOMS

[23] + SOMS
[31]

)
sinx

]
,

PN,ET(f) =
2
√
2

3
sin2 x

{[
−SOMS

(12) − SOMS
(23) + 2SOMS

(31) + 4
(
−2STM

12 + STM
21 + STM

23 − 2STM
32 + STM

(31)

)
−4

(
STM
12 − 2STM

21 − 2STM
23 + STM

32 + STM
(31)

)
cosx

]
2 sin2

(x
2

)
−3i

(
SOMS
[12] − SOMS

[23]

)
sinx

}
,

PN,TA(f) =
2
√
2√
3

sin2 x
{[

−SOMS
(12) + SOMS

(23) − 4
(
STM
21 − STM

23 + STM
[31]

)
+4

(
STM
12 − STM

32 − STM
[31]

)
cosx

]
2 sin2

(x
2

)
−i

(
SOMS
[12] + SOMS

[23] − 2SOMS
[31]

)
sinx

}
,

(A.8)

where all these vanish for equal noise levels. We can see the appearance of the terms S
TM/OMS
[31]

and the combinations such as STM
12 −STM

32 and STM
21 −STM

23 . These could break the degeneracy
we found in the suboptimal analysis of unequal noise reported in Sec. 3.1. Note that Eqs. (A.6)
and (A.8) agree with the covariance used in Ref. [51] in the equal arm length limit.
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B Assessing the dependency of the results on the peak position

As a complementary to the results in Sec. 3.2, here we show the results for signals peaked at
different frequencies. In particular, we set log10 f∗ = −2.3,−3.0 while keeping the other two
parameters as {log10 h2Ω∗, log10 ρ} = {−10,−0.8}. We refer to the former choice as the ‘less
overlapped case’ and to the latter choice as the ‘highly overlapped case’.

The full triangle plot for the 20% prior width is shown in Fig. 5 and Fig. 6 (less over-
lapped and highly overlapped case, respectively). Similarly to Fig. 4, we compare marginal-
ized 1D-posterior of signal parameters and foreground amplitudes in Figs. 7–8. As expected,
the error in the signal and foreground reconstruction becomes larger when the two compo-
nents overlap more. Also, in this case, the increase of error of signal parameters against the
prior width is larger. Notice that the error of ΩExt is larger for the less degenerate case as
the signal covers the extra-galactic component.

Importantly, despite the small changes in the determination of the signal parameters,
the error on ΩGal remains comparable to the other cases. This indicates that, for the scenarios
considered in this work, the main factor responsible for the increase in the uncertainty on
ΩGal is its degeneracy with the other galactic foreground parameters (and, in particular,
nGal).

C Accelerating SGWBinner code with JAX library

In this appendix, we discuss the acceleration of the SGWBinner code using the JAX library [61],
which offers Just-In-Time (JIT) compilation. We first describe how the JAX framework and
the JIT compilation can accelerate a Python code and how to accommodate it into the
SGWBinner code. Then we report the performance of the accelerated code both for binned
and template-based analysis. Future upgrades enabled by the other features of JAX are
discussed in Sec. 4.

C.1 Accommodating JIT compilation with JAX library

In spite of the flexibility in the coding, Python is affected by a slower execution time as
compared to compiled languages such as C/C++. To overcome this issue, the JAX library
utilizes JIT compilation that traces the execution of a given Python function the first time
it is called and compiles it into a faster executable. Such a process is highly beneficial, for
example, in the sampling where the same likelihood function is called and computed over
an extremely large number of times. This process is handled with the XLA compiler which
is highly optimized for CPU, GPU, and TPU execution. Specifically for JAX which includes
bespoke re-implemented packages such as jax.numpy and jax.scipy, existing Python codes,
e.g., based on Numpy and/or SciPy, can easily be converted to be compatible with the XLA
compiler. Therefore, we prepared a separate version of the existing template bank and
the library for noise rewritten from NumPy to jax.numpy, from which the JIT-compatible
likelihood instance is constructed. With this update, the SGWBinner code is now able to
choose the NumPy-based or the JIT-compilable computation of the likelihood. In practice,
the code performs the binning process with the former and the sampling with the latter,
which is the fastest way to proceed with the current analysis routine.

C.2 Acceleration in the JAX-ed SGWBinner

Here we report the improvement in the speed of likelihood computations. As expected,
no significant differences appear between the posteriors obtained with the original and the
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Figure 5. The same plot as Fig. 3 but for the signal parameters {log10 h2Ω∗, log10 f∗, log10 ρ∗} =
{−10,−2.3,−0.8}.

JAX-ed code. For this purpose, we used the speed measurement functionality implemented in
Cobaya [93]. This evaluates the computational speed for a few sets of the parameters (points)
and then discards one result, returning the speed of likelihood computation in the unit of
points per sec. Notice that by discarding one point, this evaluation does not include the time
taken at the initial compilation. Therefore, the improvement in evaluated speed corresponds
to the overall acceleration of the entire sampling process.
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Figure 6. The same plot as Fig. 3 but for the signal parameters {log10 h2Ω∗, log10 f∗, log10 ρ∗} =
{−10,−3.0,−0.8}.

C.2.1 Binned sampling

We first briefly describe the template-free reconstruction. In this case, the injected signal is
fitted by the piece-wise power law model defined on a set of frequency bins:

h2ΩGW

(
f, θ⃗i

)
=

∑
i

10αi

(
f

f∗,i

)nt,i

Θ(f − fmin,i) Θ (fmax,i − f) , (C.1)

where Θ is the Heaviside step function and the index i runs over the bins. Here we define
the pivot frequency of the bin i as f∗,i ≡

√
fmin,i fmax,i, from the minimum and maximum

frequencies in this bin, fmin,i and fmax,i. Having fixed this, the signal in the bin i is fully

parameterized by θ⃗i = {αi, nt,i}. Working with the unnormalized posterior, the number and
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Figure 7. 1D-marginalized posterior of the signal parameters and foreground amplitudes for the less
overlapped case. The color scheme is the same as that in Figs. 4.

Figure 8. The same plot as Fig. 7 but for the highly overlapped case.
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Figure 9. An example of the binned reconstruction of the log-normal bump signal (see Eq. (D.1)).
Here we set the signal parameters as {log10 h2Ω∗, log10 f∗, log10 ρ} = {−10,−2.7,−0.8}. One can see
that the signal is well-fitted except for the outermost bins where the signal is buried in noise.

the width of bins are dynamically adjusted by the algorithm based on the Akaike Information
Criterion (AIC) [48, 94]. Once the number and the width of bins have been fixed, one can
run an MC sampler on the total posterior for all bins and all TDI channel combinations. In
this process, which we call binned sampling, the noise and foreground amplitudes are fitted
simultaneously for all bins, while the signal is fitted bin-by-bin.

Using both the original code and the JAX-ed code, we evaluated the computation speed
of the binned likelihood for two examples to see how much faster the sampling becomes.
The first example is the one shown in Fig. 9, where the log-normal bump signal is injected
with {log10 h2Ω∗, log10 f∗, log10 ρ} = {−10,−2.7,−0.8} and the AIC optimization results in 5
bins. By interfacing Cobaya, we measured a speed of 314 points per sec for the original code
and 3200 per sec for the JAX-ed code. Notice that the acceleration of noise and foreground
computations are implicitly included here. We, therefore, found that compared to the original
code, JAX-ed code provides a gain of about 10 times in this example. We checked that for
more complex signals requiring more bins (e.g., the resonant oscillations model resulting in
17 bins), we still achieve an order 10 improvement in run time

C.2.2 Global sampling

We report here the improvement in the template-based reconstruction, which we call global
sampling. We applied the speed measurement of likelihood computation to the templates
listed in App. D. In Tab. 1, we summarize the speed of likelihood computation both for the
previous version and for our updated code.

Similarly to the binned likelihood, a factor of 10 acceleration is achieved with JAX-ed
code for the first three examples. However, the gain in the broken power law model and the
double peak model are not as significant as the others. On one hand, this may be due to the
increased number of parameters. On the other hand, we found that the JAX-ed code cannot
accelerate as much in computing powers of arrays. This is because XLA is a compiler designed
to speed up linear algebra. Therefore, even with the JAX-ed code, sampling for templates
involving powers of an array in a complex manner takes a relatively longer time.
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Table 1. Summary of the measured speed in the likelihood computation. Here Npar represents the
number of parameters and the speed is in the unit of points per second.

Measured speed (per second) of likelihood computation

Template description Npar old updated

Power law a simple power law with fixed pivot frequency 2 341 3630

Log-normal bump bump with log-normal shape (Eq. (D.1)) 3 334 3830

Excited states bump with periodic sub-peaks (Eq. (D.2)) 3 315 3340

Resonant oscillations log-periodic oscillations (Eq. (D.3)) 4 314 2350

Broken power law power-law changing its slope (Eq. (D.5)) 5 318 1790

Double peak skewed peak at higher frequency (Eq. (D.6)) 7 316 1410

Finally, we note that all these computations are performed on the CPU for compressed
data. JAX outperforms NumPy especially when the code is run on GPU to work with huge
data. In such a situation, e.g., when the SGWBinner code takes into account non-stationarity,
the JAX-ed code would show better performance also for complex templates including the
last two examples.

D Cosmological signal templates

Here we list the cosmological signal templates used to benchmark the likelihood computation
speed. For more detailed descriptions and the analyses, see Ref. [22].

Log-normal bump

h2ΩGW (f) = h2Ω∗ exp

[
− 1

2ρ2
log210

(
f

f∗

)]
, (D.1)

where the parameters θ⃗ = {Ω∗, f∗, ρ} control the height, position, and width of the bump,
respectively.

Excited states

h2ΩES
GW(f, θ⃗cosmo) =

h2Ω∗
0.052

1

y3

[
1− y2

4γ2ES

]2 [
sin(y)− 4

sin2(y/2)

y

]2
Θ(2γES − y) , (D.2)

where we introduce y ≡ fωES/2. The parameters are θ⃗cosmo = {Ω∗, γES, ωES}.
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Resonant oscillations

h2ΩRO
GW(f, θ⃗cosmo) =

{
1 +A1(Alog, ωlog) cos

[
ωlog ln(f/Hz) + θlog,1

]
(D.3)

+A2(Alog, ωlog) cos
[
2ωlog ln(f/Hz) + θlog,2

]}
h2Ωenv

GW(f, θ⃗env) ,

with [95]

A1 =
AlogC1(ωlog)

1 +A2
logC0(ωlog)

, θlog,1 = ϕlog + θlog,1(ωlog), (D.4)

A2 =
A2

logC2(ωlog)

1 +A2
logC0(ωlog)

, θlog,2 = 2ϕlog + θlog,2(ωlog) ,

where C0,1,2(ωlog) and θlog,1,2(ωlog) are numerical functions that depend on the cosmic ex-

pansion at the time the SGWB was produced. The parameters of this model are θ⃗cosmo =
{Ω∗, Alog, ωlog, ϕlog}

Broken power law

h2ΩBPL
GW (f) = h2Ω∗

(
f

f∗

)nt1

[
1 + (f/f∗)

1/δ

2

]δ(nt2−nt1)

, (D.5)

where the parameters are θ⃗cosmo = {Ω∗, f∗, nt1, nt2, δ}.

Double peak

h2ΩDP
GW(f, θ⃗cosmo) = h2Ω∗

[
β

(
f

κ1f∗

)np
[
c1 − f/f∗
c1 − κ1

]np
κ1

(c1−κ1)

Θ

(
c1 −

f

f∗

)

+ exp

[
− 1

2ρ2
log210

(
f

κ2f∗

)]{
1 + erf

[
−γ log10

(
f

κ2f∗

)]}] , (D.6)

where it has seven parameters in total as θ⃗cosmo = {Ω∗, f∗, β, κ1, κ2, ρ, γ}.
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