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The high luminosity upgrade of the LHC (HL-LHC) will see a massive increase in the instantaneous
luminosity leading to up to 200 proton-proton collisions in each bunch crossing (pileup) demanding
higher performance from the LHC detectors’ electronics and real-time data processing. The
ATLAS Liquid Argon (LAr) calorimeter, which measures the energy of particles from LHC
collisions, employs dedicated data acquisition electronic boards based on FPGAs, to process large
data volumes with low latency. The optimal filtering algorithm currently used for the energy
reconstruction has been found to suffer significant performance degradation under high pileup
conditions. We show that small recurrent or convolutional neural networks can surpass the
performance of the optimal filter. Prototype implementations of the inference code in VHDL
indicate that deploying these networks on FPGAs is feasible, with the resulting firmware fitting
onto the planned Intel Agilex devices. The complete design can process 384 detector cells per
FPGA by integrating parallel instances of the firmware with a latency smaller than 125 ns.
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1. Introduction9

The ATLAS [1] detector is a multipurpose detector designed to study a wide variety of10

phenomena produced in high energy particle collisions at the LHC [2], taking place every 25 ns11

(40 MHz). The high luminosity phase of the LHC (HL-LHC) starting from 2029 will result in an12

increase of the pileup leading to 140–200 simultaneous proton-proton collisions ⟨µ⟩ observed by13

ATLAS on average. The ATLAS liquid argon (LAr) calorimeter measures the energy of photons,14

electrons, and positrons as they pass through the LAr cells causing ionization. The generated pulse15

in each cell is shaped, and the resulting bi-polar pulse is digitized and used by a linear optimal16

filtering (OF) algorithm [3] to infer the deposited energy. The pulse shape spanning about 2517

bunch crossings (BC) is susceptible to distortions caused by energy deposits from a previous BC18

in the high-pileup scenario of the HL-LHC. Most of the LAr readout electronics will be updated to19

accommodate for increased trigger rate and acceptance of events from consecutive BCs. Each of the20

278 off-detector electronic boards connected to the front-end by optical fibers will be fitted with two21

Intel Agilex FPGAs to process signals from all the 182468 LAr cells at 40 MHz. Artificial neural22

network (ANN) based algorithms are being developed to replace the OF to mitigate the effects of23

overlapping pulses in LAr energy reconstruction.24

2. Energy reconstruction25

Figure 1: (left) Schematic view of a small sector of the barrel calorimeter in a plane transverse to the LHC
beams. (right) Shaped and digitized LAr pulse. The dots indicate an ideal position of samples separated by
25 ns [4].

The LAr calorimeters are comprised of accordion-shaped copper-kapton electrodes positioned26

between lead absorber plates and the system is immersed in liquid argon (Figure 1). The induced27

pulse height due to ionization is proportional to the energy deposited in each calorimeter cell, while28

the pulse peaking time is used to measure the arrival time of the incident particle by OF. A previous29

study [5] has established that both convolutional neural networks (CNNs) and recurrent neural30

networks (RNNs) outperform OF, especially when there are overlapping pulses. This article further31

explores the applicability of these two architectures as viable replacement of OF on the FPGAs.32
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The ANNs are trained using data generated with AREUS [6] which combines electronic noise33

and low-energy deposits from an average pileup of 140 with signals of energy up to 5 GeV injected34

randomly with a mean interval of 30 BCs. It simulates the response of a LAr calorimeter cell in the35

middle layer of the barrel at pseudorapidity 𝜂 = 0.5125 and azimuthal angle 𝜙 = 0.0125.36

2.1 Convolutional neural networks37

Figure 2: The CNN architecture used for
LAr energy reconstruction in [5].

The CNN operates on the continuous time-
series data coming from the ADC samples of
one detector cell. It uses one-dimensional fil-
ters and consists of a two-staged architecture
shown in Figure 2 where the first two layers
are trained to tag energy deposits above the
noise threshold. After a concatenation layer,
the tag output and the input sequence are pro-
cessed by the second stage of the CNN for
energy reconstruction. A rectified linear unit
(ReLU) [7] is used as the activation function.
The input sequence lengths are 28 ADC sam-
ples and 13 ADC samples, respectively, for
the three-layer and four-layer CNN variants.

38

2.2 Recurrent neural networks39

RNNs are a family of neural networks
adapted for processing sequential data. They
contain simple or complex internal structures
to control the flow of information to the next
step in the sequence using NN layers. Fig-
ure 3 illustrates the operation of RNN in the
sliding window mode, where the ADC sam-
ple sequence from the calorimeter is split
into overlapping sub-sequences of length of
five. Each of the five RNN cells of the
network takes a sample value of the sub-
sequences as input. The network is com-
puted at every bunch crossing on the current
input window, and the energy is extracted
through a dense neuron connected to the last
cell. Two types of RNN, the complex Long
Short Term Memory (LSTM) and the simple
Vanilla RNN, have been tested.

Figure 3: The RNN architecture in sliding window
mode [5].

40

41
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2.3 Performance42

The transverse energy (ET) resolution from various ANNs for energy deposits 3𝜎 above the43

noise level (> 240 MeV) is shown in Figure 4. The ANNs perform better than the OF with44

MaxFinder as evident from the smaller bias on the mean and the better standard deviation. The45

main improvement happens in areas with overlapping events, as shown in Figure 5. Networks using46

more samples from past events yields a better correction for overlapping events.47

Figure 4: ET resolution for ET above 3𝜎
noise level [5].

Figure 5: Resolution as a function of the time interval between
two high energy deposits (Gap) [5].

48

3. Implementation on FPGA49

The CNNs are implemented using Very High-speed integrated circuit hardware Description50

Language (VHDL). The firmware has a modular structure, where the number of layers and the51

parameters for each layer can be configured at compile time. Model architecture parameters are52

automatically extracted from Keras output. It is designed to support pipelining and time-division53

multiplexing, running at twelve times the sampling frequency and processing twelve detector cells54

cyclically.55

FPGA implementation for the RNNs was prototyped with the Intel high-level synthesis56

(HLS) [8] compiler which enabled a detailed study of the effects of rounding in different parts57

of the network. FPGAs works most efficiently with 18 bit fixed point numbers, while the training58

happens in 32 bit floating point numbers. Different rounding or truncation strategies have been59

evaluated, as can be seen in Figure 6 (left) to minimize the effect of quantization of the arithmetic60

operations.61

Several instances of the neural network are needed to process all the channels. However,62

for every compilation, each instance is placed differently on the FPGA due to randomization63

(Figure 6 (right)). This complicates the optimization of the timing critical paths needed to reach64

higher frequencies, and thus, higher multiplexing. A direct VHDL implementation of the RNN65

was created based on the initial HLS-inspired design to facilitate low-level optimizations such as66
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Figure 6: (left) Resolution of the transverse energy (ET) computed in firmware with respect to the one
computed in software. For each test, the letters I, W, and D indicate that rounding (RND) is applied for the
internal data category, the weights, and the input/output data, respectively, while the truncation (TRN) mode
is applied by default in all other categories [9]. (right) Random placement of network components on the
FPGA before VHDL optimization.

Figure 7: (left) Schematic view of the optimized placement of the Vanilla RNN showing the 5 RNN cells and
the dense layer with respect to the memory and DSP lines inside the FPGA. (right) Constrained placement
of network components on the FPGA after VHDL optimization. Each colour represents a cell in the RNN
sequence.

reuse of common results between RNN cells or custom placement constraints, as can be seen in67

Figure 7. Thus, all instances of the neural network can be forced to have the same hardware68

implementation, which simplifies the optimization of the critical paths and minimizes the distance69

between connected cells. The network can be compiled multiple times incrementally so that for70
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Table 1: FPGA resource estimates for the Intel Stratix 10 and Agilex FPGAs.

FPGA Network Multiplexing Channels Fmax [MHz] ALMs DSPs
Stratix-10 RNN (HLS) 10 370 393 90% 100%

RNN (VHDL) 14 392 561 18% 66%
2-Conv CNN 12 396 415 8% 28%
4-Conv CNN 12 396 481 18% 27%

Agilex 2-Conv CNN 12 396 539 4% 13%
4-Conv CNN 12 396 549 9% 12%

each iteration, the parts that meet the timing constraints are retained and only the violating regions71

are recompiled. Table 1 shows the FPGA resource estimates as a percentage of total available72

resources for the Intel Stratix-10 and Agilex devices. The RNN firmware with 28 network instances73

has been shown to be able to run at 560 MHz with a multiplexing of 14 and a latency of 116 ns [9].74

4. Summary75

Both CNN and RNN have been found to outperform the OF algorithm for energy reconstruction76

in the ATLAS LAr Calorimeter, particularly in the regions of overlapping pulses. Studies to quantify77

the effect on object (electrons, photons) reconstruction and physics performance are underway. The78

placement of the full firmware required to process 384 cells per FPGA has been shown to be feasible79

for both architectures through VHDL implementation.80
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