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The simulation of Monte Carlo (MC) events is a crucial task and an indispensable ingredient for
every physics analysis. Geant4 is the state-of-the-art tool used for detailed simulations of the
ATLAS detector, which however requires large CPU resources. To reduce the CPU needs, which
in turn enables the production of higher statistics MC samples, ATLAS has developed a strong
program to replace parts of the simulation chain by fast simulation tools. These developments
pave the way towards High Luminosity LHC when resources will be even scarcer. Among those
tools is AtlFast3, which utilises a combination of Generative Adversarial Networks (GANs)
and sophisticated parametrisations for the fast simulation of showers in the electromagnetic and
hadronic calorimeters. For the Run 3 MC campaign, various improvements of AtlFast3 were
developed, for example a refinement and extended usage of the GANs and a better model of the
punch through of showers into the muon system. Consequently, the performance of AtlFast3 in
Run 3 is better than ever. ATLAS also aspires to use fast simulation in the inner detector. FATRAS
is a tool that approximates particle interactions with the material through physics formalisms. An
integration of FATRAS with the experiment-independent common tracking software (ACTS) is
also in development. Track overlay is a technique to speed-up the production of MC samples
that include additional interactions (pile-up) aside the hard-scatter interaction. The idea is to
reconstruct pile-up tracks before they are merged with the hard-scatter, which reduces CPU needs.
Machine learning techniques are used to ensure this method can even be applied in dense tracking
environments. This talk will discuss the status of the development of these tools as well as their
performance in terms of physics modelling and computing resources.
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1. Introduction

The ATLAS experiment [1] at the Large Hadron Collider (LHC) relies heavily on Monte Carlo
(MC) simulations to model detector responses and interpret physics events. Currently, around 70%
of ATLAS’s grid CPU time is consumed by MC production, mainly for full detector simulations
using Geant4 [2]. As the LHC enters the High-Luminosity era (HL-LHC), which will deliver
unprecedented complex events with up to 200 proton-proton interactions per bunch crossing, the
demand for both computing and storage will rise significantly. This trend is evident in the projected
annual CPU consumption and tape storage needs, as shown in Figure 1. Fast simulations offer
a more efficient alternative, balancing accuracy and speed, and are essential for meeting these
challenges and ensuring sufficient event sample production in future physics analyses.
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Figure 1: Projected evolution of compute (left) and tape (right) usage, under the conservative (blue) and
aggressive (red) R&D scenarios. The black lines indicate the impact of sustained year-on-year budget
increases. Taken from [3].

2. Fast Calorimeter Simulation

One of the most CPU-intensive components of the Geant4 simulation in the ATLAS ex-
periment is the calorimeter shower simulation, accounting for nearly 80% of the total simulation
time. AtlFast3 [4, 5] provides a fast solution that replaces the slow propagation and interaction
of particles inside the calorimeters with the direct generation of energy deposits based on an un-
derlying parameterisation. First introduced in Run 2 and further improved for Run 3, AtlFast3
simplifies the complex geometry of the calorimeter and combines two complementary techniques:
FastCaloSimV2, a parametric approach for shower development, and FastCaloGANV2, which
leverages generative adversarial networks (GANs). Together, these tools aim to replicate the accu-
racy of the full Geant4 simulation while achieving significant speed-ups.

The parametrisation used for FastCaloSimV2 and the training of GANs is derived from
simulations of single particles with Geant4. These simulations encompass various particle types,
including photons and electrons for electromagnetic showers, as well as charged pions for hadronic
showers; in the case of FastCaloGANV2, protons are also included. To ensure comprehensive
coverage, the parameterisation is obtained for 100 linearly spaced bins spanning up to |𝜂 | < 5.
Additionally, energy ranges are sampled across 17 logarithmically spaced energy bins.
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FastCaloSimV2 employs a separate parameterisation for longitudinal and lateral shower devel-
opment. Longitudinally, the energy deposited in layers is decorrelated using Principal Component
Analysis (PCA), while laterally, the average shower profile is parameterised as 2D probability
density functions. In contrast, FastCaloGANV2 uses a more sophisticated approach, involving
600 GANs - one for each particle type and energy bin, conditioned on true momentum. These
GANs are trained to reproduce energy deposition in the calorimeter’s voxels, layers, and the total
calorimeter energy in a single step. Voxels are small 3D grid units that group the calorimeter hits,
and their granularity is optimised to be finer than the calorimeter cells, thereby improving model
accuracy. The network architecture and hyperparameters are finely tuned for optimal performance.
During simulation, hits are generated based on the selected technique, particle type, and energy,
with additional corrections applied to ensure results align with Geant4 accuracy.

AtlFast3 integrates the strengths of both FastCaloSimV2 and FastCaloGANV2, selecting
the most appropriate algorithm based on the properties of the shower-initiating particles, as can be
seen in Figure 2 left. Geant4 continues to be used for simulating particles in the inner detector,
for muons, and for very low-energy hadrons in the calorimeters. High-energy hadrons, which may
interact late or not at all in the calorimeter, can create a spray of secondary hadrons that reach the
muon spectrometer - a phenomenon known as punch-through, which is now modelled based on a
deep neural network (DNN) tool.

The computational performance of AtlFast3 was evaluated across six different physics pro-
cesses. AtlFast3 demonstrates significant speed advantages over Geant4, being 3 to 15 times
faster depending on the specific process (Figure 2 right). The most substantial improvements are
observed in processes involving the highest energy particles.
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Figure 2: The collection of tools that constitute AtlFast3 (left) and the mean CPU time per event for Fast
Calorimeter Simulation (AtlFast3) and Full Simulation (Geant4) measured in standardized HS23 seconds
(right). Taken from [5] and [6].

The physics performance of AtlFast3 is assessed by comparing the modelling of reconstructed
quantities and key kinematic variables between AtlFast3 and Geant4. Accurate modelling is
achieved for various metrics, including the number of constituents for the leading jet (Figure 3 left),
and variables commonly used in jet-tagging algorithms, such as the energy-correlation-function
ratio D2 (Figure 3 right). Overall, AtlFast3 and Geant4 agree within a few percent for most
observables used in physics analyses. Therefore, AtlFast3 is suitable for a wide range of analyses,
including both signal and background studies.

3



The Fast Simulation Program of ATLAS at the LHC Martina Javurkova

0 5 10 15 20 25 30

N

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
U

ni
t N

or
m

al
iz

ed ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

0 5 10 15 20 25 30
Leading-Jet Number of Constituents

0.6
0.8

1
1.2
1.4

A
F

3/
G

4 0 1 2 3 4 5 6 7 8 9 10

Entries

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

U
ni

t N
or

m
al

iz
ed ATLAS Simulation Preliminary

<2.5 TeV,R 1.0 jets
T

=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

ATLAS Simulation Preliminary
<2.5 TeV,R 1.0 jets

T
=13.6 TeV, 1.8<ps

G4
Hybrid
FastCaloSim V2
FastCaloGAN V2

0 1 2 3 4 5 6 7 8 9 10

2Jet D

0.6
0.8

1
1.2
1.4

A
F

3/
G

4

Figure 3: The number of constituents for the leading reconstructed jet (left) and D2 variable (right) in di-jet
events with 1.8 < 𝑝T < 2.5 TeV are compared across different simulation methods. The results are shown
for samples simulated with Geant4 (black circles), FastCaloSimV2 (green upward-pointing triangles),
FastCaloGANV2 (blue downward-pointing triangles), and AtlFast3 (red squares). Taken from [7].

3. Fast Track Simulation

When using AtlFast3, most of the computational time is consumed by simulating the inner
detector with Geant4. To address this, efforts are focused on optimising this part of the simulation.
FATRAS (Fast ATLAS Track Simulation) [8] plays a key role in this optimisation by using a
simplified detector geometry, where the material properties of detector volumes are projected onto
layer surfaces. Additionally, fast algorithms are employed to parameterise material effects. Current
studies show that FATRAS can reproduce Geant4 results with about 10% accuracy (Figure 4).
While good agreement, mostly within statistical uncertainties, is achieved for electromagnetic
processes (Figure 4 left), FATRAS yields substantially better resolution, differing from Geant4
by about 10% across the pseudorapidity range (Figure 4 right). This discrepancy arises from
FATRAS’s inability to simulate rare hadronic interactions that produce tracks with large impact
parameters. Ongoing improvements aim to reduce this discrepancy to 1%.
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Figure 4: Transverse energy (𝐸T) of electrons (or positrons) in 𝑍 → 𝑒𝑒 events for tracking detector
simulation (left) and transverse impact parameter (𝑑0) resolution of tracks as a function of pseudorapidity
(𝜂) in 𝑡𝑡 events (right) with FATRAS (open markers) and Geant4 (full markers). Taken from [9].
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Further progress is being made by integrating FATRAS into the ACTS (A Common Tracking
Software) [10] framework. ACTS is an experiment-independent software package designed for
particle reconstruction in high-energy physics. This integration is expected to make FATRAS
thread-safe, enabling multi-threaded simulations across the entire ATLAS detector. At present,
FATRAS combined with AtlFast3 is approximately three times faster (in semi-leptonic top-quark
pair events) than AtlFast3 alone, as can be seen in Figure 5.
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Figure 5: The mean CPU time per event for Fast Calorimeter Simulation (AtlFast3, abbreviated as AF3),
Fast Calorimeter + Fast Tracking Simulation (AtlFast3 combined with FATRAS, referred to as AF3F) and
Full Simulation (Geant4) measured in standardized HS23 seconds. Taken from [11].

4. Fast Reconstruction

The most CPU-intensive reconstruction algorithm is the inner detector track reconstruction,
which identifies track candidates from tracking detector hits. This process is significantly slowed
down by the presence of pile-up (PU) collisions. Currently, ATLAS uses the MC-overlay model,
where PU collisions are simulated, digitised, and overlaid onto hard-scatter (HS) events during the
digitisation phase. Track-overlay, a new method recently developed, is designed to address this
issue by simulating, digitising, reconstructing, and overlaying PU collisions onto HS events during
the reconstruction phase.

It has been shown that Track-overlay is suitable only in scenarios where hard-scatter (HS) track
reconstruction is not influenced by pile-up (PU) hits, i.e., in processes with less dense environments.
To address this limitation, a Deep Neural Network (DNN) has been developed to assess on an event-
by-event basis whether Track-overlay can be applied, based on features such as the kinematics
of generator-level particles, event topology (e.g., local track density), and PU information. After
incorporating this ML-based decision, this PU model is referred to as Hybrid-overlay.

Preliminary results indicate that 86% of top quark pair events, 94% of QCD multijet events
where the leading jet has 60 < 𝑝

leading jet
T < 160 GeV, and 35% of QCD multijet events with

1.8 < 𝑝
leading jet
T < 2.5 TeV could be processed with Track-overlay, while the remaining events are

processed with MC-overlay. This approach results in negligible degradation in physics performance
compared to MC-overlay, as shown in Figure 6, demonstrating that the Hybrid-overlay decision is
working effectively. Moreover, Hybrid-overlay is expected to increase CPU efficiency in the inner
detector reconstruction by a factor of approximately 1.8, which is promising. Therefore, Hybrid-
overlay is nearing readiness for official MC production.
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Figure 6: Track reconstruction efficiency as a function of the angular distance between the generator-level
particle and the jet axis. This efficiency is examined for low-𝑝T QCD events (left) and high-𝑝T QCD events
(right). All jets are constructed using EM-scale topological clusters and are reconstructed using the anti-𝑘𝑡
algorithm [12] with a radial distance parameter 𝑅 = 0.4. Different PU models are compared, including
MC-overlay (empty circles), Track-overlay (filled circles), and Hybrid-overlay (filled triangles). Taken from
[13].

5. Fast Chain Workflow

With the availability of fast simulation tools, the focus now shifts to how these can be effectively
integrated into large-scale production workflows. One promising approach is the Fast Chain
workflow, which combines various simulation techniques, offering the flexibility to deploy various
simulation scenarios tailored to the physics processes or reflecting current computational needs.
This adaptable workflow not only optimises the simulation process but also enables the direct
generation of outputs for physics analyses without the need to store intermediate files. As a result,
the Fast Chain workflow can bring significant storage space savings and streamlines data handling
in large production environments.

In addition to flexibility and storage efficiency, the Fast Chain workflow can deliver notable CPU
savings. FATRAS, for example, is projected to save 1.2 MHS06 per year, potentially trading this for
over 200 petabytes of tape space when skipping HITS1 and re-running simulations annually. Track-
overlay further is expected to contribute with 0.8 MHS06 per year, making the Fast Chain workflow
a highly efficient solution for managing the simulation workload in the ATLAS experiment.

6. Conclusion

The Fast Simulation Program of ATLAS is designed to offer a more efficient alternative to
the traditional MC production chain, optimising I/O and CPU resource management to meet the
computational demands of future LHC runs. The AtlFast3 simulation, optimised for Run 3,
provides high precision for various physics objects, achieving a 3-15 times speed-up in CPU
performance, making it suitable for a broad range of physics analyses, including both signal and
background studies. It is set to become the default simulation tool for the HL-LHC. FATRAS aims to
further accelerate simulation times by approximately a factor of 3, with ongoing efforts to improve its

1A data format that records the detailed detector hits during particle interactions.

6



The Fast Simulation Program of ATLAS at the LHC Martina Javurkova

physics modelling performance. Additionally, the Hybrid-overlay method enhances CPU efficiency
in inner detector reconstruction by about 1.8 times, with minimal impact on physics performance,
is expected to be implemented later in Run 3. By integrating these advanced simulation tools into
various Fast Chain workflow scenarios, ATLAS may be able to meet its resource requirements
for CPU and storage in the future during the HL-LHC era, ensuring the continued success of its
research endeavors.
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