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We argue that dielectric haloscopes like MADMAX, originally designed for detecting axion dark

matter, are also very promising gravitational wave detectors. Operated in resonant mode at fre-

quencies around O(10GHz), these detectors benefit from enhanced gravitational wave to photon

conversion at the surfaces of a stack of thin dielectric disks. Since the gravitational wave is relativis-

tic, there is an additional enhancement of the signal compared to the axion case due to increased

conversion probability of gravitational waves to photons in the vacuum between the disks. A gravita-

tional wave search using a dielectric haloscope imposes stringent requirements on the disk thickness

and placement, but relaxed requirements on the disk smoothness. An advantage is the possibility

of a broadband or hybrid resonant/broadband operation mode, which extends the frequency range

down to O(100MHz). We show that strain sensitivities down to 10−21 Hz−1/2 × (10GHz/f) will

be possible in the coming years for the broadband setup, while a resonant setup optimized for

gravitational waves could even reach 3× 10−23 Hz−1/2 × (10GHz/f) with current technology.

I. INTRODUCTION

High frequency gravitational waves (GWs) are a

unique window to probe rare exotic astrophysical events

such as light primordial black hole mergers [1] or light

boson superradiance around primordial black holes [2],

as well as cosmological processes in the very early Uni-

verse [3]. The challenges that have to date prevented

any detection above the 100Hz band probed by LIGO,

VIRGO, and KAGRA [4–6] lie in the very small GW am-

plitude characteristic of sources in this frequency band

and the resulting need for extremely sensitive detec-

tors [3].

Many detector concepts have been put forward re-

cently, several of them based on techniques used in ax-

ion searches [7–14]. In this article we propose to use

a dielectric haloscope, such as MADMAX [15–17], as

a high frequency GW detector. Dielectric haloscopes

consist of a stack of thin disk with large dielectric con-

stant placed in a static external magnetic field. A coher-

ent non-relativistic dark matter axion field sources elec-

tromagnetic (EM) waves at the surfaces of these disks.

These waves propagate orthogonal to the disk surfaces

until they reach a receiver placed at one end of the stack.

If the disk separation is tuned to the axion mass, the

electromagnetic waves sourced at the different disks in-

terfere constructively, boosting the signal by the number

of disks.

Remarkably, while this technology promises world-

leading bounds for axions in the frequency range 10–

100GHz in the next years, it turns out to be ar-

guably better-suited to search for signals from relativis-

tic sources, such as gravitational waves, in a similar fre-

quency range. This can be traced back to two different

resonant phenomena. First, similar to the axion case, the

detector geometry including in particular the disk sepa-

ration and thickness, can be tuned to obtain constructive

interference between EM waves sourced at the surface of

the different disks. We will refer to this setup as the res-

onant operation regime of the dielectric haloscope. The

specific requirements on disk placement, thickness and

smoothness differ from the axion case and will be dis-

cussed in detail. Second, since both the GW and the

photon are massless, the GW-to-photon conversion in

vacuum (i.e. between the disks) occurs on resonance [18]

at all frequencies – photons generated at different space-

time points interfere constructively. Compared to the

axion case, this leads to an additional ωℓ ≫ 1 enhance-

ment of the signal, where ω is the frequency of the GW

and ℓ the detector length. This leads to competitive sen-

sitivities operating in a broadband configuration with-

out dielectric disks, relying exclusively on the GW-to-

photon conversion in vacuum. As a result, we will con-

sider three different operation modes: the resonant and

broadband modes mentioned above, as well as a hybrid

resonant/broadband mode.

In the following, we first calculate in Section II the

oscillating electromagnetic (EM) field induced by a grav-
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itational wave in vacuum and in a medium with a dielec-

tric constant ϵ > 1. In Section III we then establish the

transfer matrix formalism we use to calculate the magni-

tude of the EM fields anywhere inside a dielectric halo-

scope apparatus. The formalism allows us to take into

account all reflection and interference effects. We use

these results in Section IV to estimate the magnitude of

the GW-induced EM flux reaching a receiver in a fully-

resonant setup. We then demonstrate in Section V how

a particular placement of the dielectric disks allows for

performing a simultaneous resonant and broadband ex-

periment covering different GW frequency bands, and we

discuss the possibility of disk-less (broadband-only) oper-

ation. In Section VI we estimate the expected sensitivity

of MADMAX in the various different operational modes,

before concluding in Section VII. Further details are pro-

vided in the appendices. Appendix A lists our normal-

ization conventions, Appendix B comments on the use of

the transverse traceless frame in the high-frequency limit,

Appendix C provides further details on the derivation

of key quantities entering the transfer matrix formalism,

Appendix D discusses the full angular dependence of our

solutions and finally Appendix E discusses the sensitiv-

ity of our proposed setup to mergers of light primordial

black holes.

II. GW INDUCED ELECTROMAGNETIC

FIELDS

Our proposal closely follows the concept of dielectric

axion haloscopes such as MADMAX [15–17], which con-

sist of a stack of dielectric disks placed inside a static

magnetic field Be = B0êz parallel to the disk surfaces.

A receiver is placed at one end of the stack in a field-

free region. A two-disk cartoon of the setup is shown in

Fig. 1, with the thickness of the disks inflated for clarity.

In close analogy to the axion, an incoming GW sources an

effective current [8, 9, 19, 20], which can be expressed in

terms of an effective magnetization and polarization [9],

jeff = ∇×M eff + Ṗ eff . (1)

For gravitational waves, P eff = 0 and M eff = −hTT
ij Bj

0.

Here we work in the transverse traceless (TT) frame for

the gravitational wave, where the metric perturbation

can be written as hTT
ij = (h+ê+ij+h×e×ij) e

−iω(t−k̂·x) with

the unit tensors ê+ij and ê×ij satisfying êλij ê
ji
λ′ = 2δλλ′ .

Choosing the TT frame is convenient since we will be

considering frequencies far above the relevant mechani-

cal resonance frequencies of the experimental setup, such

that all constituents of the setup can be considered as

free-falling in their response to GWs, see Appendix B for

details. Maxwell’s equations now read

∇ ·E = 0 , ∇×B − ϵĖ = jeff , (2)

∇ ·B = 0 , ∇×E + Ḃ = 0 , (3)

where ϵ is the dielectric constant and we have set the

magnetic permeability (µ) to unity. Note that these

equations apply to isotropic materials. If one were to

consider anisotropic materials, new terms in the inhomo-

geneous Maxwell’s equations would appear at O(h) due

to the effect of the GW on the dielectric tensor. While the

LaAlO3 perovskite the MADMAX collaboration plans

to use for their disks [17] is mildly anisotropic [21, 22],

we leave the detailed investigation of the effect of such

anisotropies to future work.

Assuming an isotropic material, we obtain a particular

solution to these equations for ϵ ̸= 1 and k̂ in the x–z

plane,1

Ep
m =

cθB0

ϵ− 1
(h×p̂+ h+ŝ) e

−iω(t−k̂·x) , (4)

Here θ is the angle between the incoming GW and the

symmetry axis of the detector, cθ = cos θ = k̂ · êx.2 The

unit vectors ŝ = êy and p̂ = k̂× ŝ denote the direction of

the s (“senkrecht” meaning “orthogonal” to the plane of

incidence) and p (“parallel” to that plane) polarized com-

ponents of the electric field. The corresponding magnetic

field is obtained immediately from Eq. (3). In vacuum,

ϵ = 1, we find the particular solution

Ep
v = −B0

2

[
iωx(h×p̂+ h+ŝ) + h×sθk̂

]
e−iω(t−k̂·x) .

(5)

One can immediately verify that Eqs. (4) and (5) solve

Eqs. (2) and (3). To obtain the solutions in Eqs. (4)

and (5), we used an ansatz proportional to an exponen-

tial function reflecting the time and space dependence of

the source term jeff, allowing in the vacuum case for a

1 The more general solution for a GW with arbitrary incoming
direction for which two angles, θ about the y-axis and ϕ about
the z-axis, are required is given in Appendix D.

2 In general θ can take on any value, but since the MADMAX
apparatus will be instrumented at one end only, we restrict our-
selves to considering solutions with |θ| < π/2.
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FIG. 1. Schematic setup of a dielectric gravitational wave
detector of length ℓ with only two disks (light blue). The
thickness of the disks is inflated here to show more clearly the
trajectories inside. In reality, d ≪ ℓ, R. The incoming GW
is depicted as dotted green line, the sourced electromagnetic
waves are shown in solid purple. At each disk surface, bound-
ary conditions enforce the presence of both left-moving (Li)
and right-moving (Ri) EM plane waves. The full field at the
receiver Erec(ℓ) is the sum of all the right-moving waves plus
the particular solution of Maxwell’s equations in the presence
of the GW source. We use the transfer matrix formalism de-
scribed in Section III to compute the relevant quantities. The
receiver is depicted as a dipole antenna at the right end of the
setup.

prefactor proportional to x to account for the continu-

ous (resonant) GW to photon conversion, which happens

all along the GW trajectory, and is proportional to the

background magnetic field component perpendicular to

the GW propagation. In practice, resonant conversion

will be limited by an imperfect vacuum, or ultimately

the Euler–Heisenberg contribution to the photon mass

and the backreaction of the electromagnetic wave on the

GW wave equation [18]. All of these effects can be shown

to be irrelevant for a meter-scale experiment. It is im-

portant to keep in mind that Eqs. (4) and (5) are not

unique – one can always add plane waves (i.e. solutions

to the free Maxwell equations) without loss of generality,

see Appendix C for details.

III. TRANSFER MATRIX FORMALISM

In order to match the boundary conditions at the sur-

face of the dielectric disk, Bm = Bv, E∥
m = E∥

v and

ϵE⊥
m = E⊥

v ,
3 we need to add the appropriate plane-wave

3 Here, the superscript ∥ denotes the component of the electric field
parallel to the disk surfaces, and ⊥ stands for the component
perpendicular to them. The subscript m and v are for quantities
in medium (ϵ > 1) and vacuum, respectively.

solutions sourced at the disk surfaces to the particular

solutions from Eqs. (4) and (5). For a system with mul-

tiple boundaries, this is most conveniently implemented

using the transfer matrix formalism. In the following,

our notation follows closely the corresponding derivation

for the axion case in Ref. [16], which we apply to the s

and p-polarized EM waves separately.

We divide the setup into 2Nd+1 regions of constant ϵ,

with the first region corresponding to the vacuum to the

left of the leftmost disk, the second region corresponding

to the interior of the first disk, and so on. In each re-

gion, the EM field is described by a 2-component vector

En = (Rn, Ln), with the upper component describing the

amplitude of right-moving EM waves and the lower com-

ponent that of left-moving EM waves at the left edge of

the n-th-region. Focusing first on propagation, reflection,

and transmission of EM waves in the absence of GWs, the

En are acted upon by 2× 2 matrices that describe prop-

agation (Pv,m) through a vacuum or medium region and

matching across a vacuum-to-medium boundary (Gmv)

or medium-to-vacuum boundary (Gvm). (In what may

be a confusing convention, the second subscript stands

for the region on whose En the matrix is acting, and

the first one for the region it maps onto.) Explicit ex-

pressions for the propagation matrices are obtained from

the free Maxwell equations in vacuum and medium, and

are given in Eq. (C1). The transfer matrices Gmv,vm are

found by solving the boundary conditions at the disk sur-

faces, with the results listed in Eqs. (C3) and (C4). In

the transfer matrix formalism, an EM wave propagating

through a single detector segment, containing a vacuum

region of length D followed by a disk of width d evolves

according to

En+2 = (Gvm · Pm ·Gmv · Pv) · En . (6)

The quantity in brackets, T1 ≡ GvmPmGmvPv, can be

interpreted as an effective single-segment transfer matrix

that describes transmission and reflection on that seg-

ment. For a setup with Nd segments, the plane wave

amplitudes at the right-hand edge of the device are re-

lated to those on the left-hand edge by the Nd-th power

of the single-segment transfer matrix, ENd = TNd
1 E0.

The transmission (t) and reflection (r) coefficients for

right-moving and left-moving EM plane waves can there-
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fore be defined as

tR ≡ 1(
TNd
1

)
22

, tL ≡ det
(
TNd
1

)
(
TNd
1

)
22

, (7)

rR ≡
(
TNd
1

)
12(

TNd
1

)
22

, rL ≡ −
(
TNd
1

)
21(

TNd
1

)
22

. (8)

The EM waves resulting from GW conversion in the

various detector components appear as additional source

terms in the transfer matrix formalism. Solving for the

boundary conditions at the disk surfaces including the

particular solutions (4) and (5) determines the ampli-

tudes of the plane waves on the right-hand side of the sur-

face ‘sourced’ by the GW. This is encoded in source vec-

tors S
(n)
mv and S

(n)
vm for vacuum-to-medium and medium-

to-vacuum interfaces, respectively. For a GW incoming

along the symmetry axis of the detector, θ = 0, the re-

sulting source terms at the nth disk are

Sp,s
mv =

B0h×,+

4
√
ϵ

eixnω

√
ϵ+ 1√
ϵ− 1

(
(1+ixn(

√
ϵ− 1)ω)

√
ϵ+1√
ϵ−1

(1−ixn(
√
ϵ+ 1)ω)

√
ϵ−1√
ϵ+1

)
,

(9)

and

Sp,s
vm =

B0h×,+

4
ei(xn+d)ω

(
1 + 2i(xn + d)ω + 4

ϵ−1 )

−1

)
,

(10)

with xn = nD+(n−1)d denoting the position of the left

edge of the nth disk. The generalization to generic angles

θ is straightforward, and the corresponding expressions

are given in Appendix C.

It is worth highlighting the major differences between

these source terms and those obtained for axion dark

matter in Ref. [16]. The first, most notable difference

is the appearance of the phase factor eixω, absent for

non-relativistic axions,4 where x is the position of the

interface. This reflects the fact that the GW is propa-

gating through the detector at the speed of light. The

second notable difference is that besides the order-unity

terms in the source vectors, there are additional position-

dependent terms scaling as xω. Their appearance re-

flects the resonant conversion between the massless GW

and photon in vacuum all along the GW trajectory, first

4 Although note that the small axion velocity results in a similar
factor, see Ref. [23].

seen in the particular solution of Maxwell’s equations in

Eq. (5).

The effective source term including both surfaces of a

single disk can be expressed as

M (n) = S(n)
vm +Gvm · Pm · S(n)

mv . (11)

The appearance of the in-medium propagation matrix

Pm multiplying the vacuum-to-medium source vector,

combined with the relative phase eidω between the two

source vectors Eqs. (9) and (10) means that M (n) de-

pends non-trivially on the thickness of the disks. This

implies a requirement on the disk thickness to ensure

constructive interference between the right-moving EM

waves sourced at the two surfaces: for a generic incom-

ing GW angle in the x–z plane, we find that M (n) is

maximized for a disk thickness that satisfies

dmax

√
ϵ cos θϵ = π/(2ω) . (12)

The quantity θϵ, defined by ϵ sin θϵ = sin θ accounts for

the refraction of the EM plane wave in the medium. If

Eq. (12) is satisfied, we expect from Eq. (5) that the

source terms at the nth disk contribute EM waves with

an amplitude of order ωxnhB0.

Combining the transfer matrix propagating EM plane

waves with the effective source term from the GW en-

ables us to express the amplitude of the EM waves at the

receiver, placed a distance ℓ away from the left edge of

the device, as

Erec(ℓ) = P ℓ
v

(
TNd
1 E0 +

Nd∑

n=1

TNd−n
1 M (n)

)
+ Ep(ℓ) .

(13)

Here, E0 = (0, L0) denotes the amplitude of left- and

right-moving plane waves at the left edge of the setup.

The second term in parentheses encodes the contribution

sourced at the disks and then propagated through the

subsequent disks to the receiver. The additional factor

P ℓ
v accounts for the propagation in vacuum after the last

disk, through a distance xeff = ℓ cθ−Nd(D cθ+d cθϵ) ≥ 0

which need not be equal to the effective lengthD cθ of the

other vacuum sections. Finally, the last term Ep(ℓ) adds

the amplitude of the right-moving particular solution,

Eq. (5), at the position of the receiver. It corresponds

to the signal that would be received in the absence of the

dielectric disks.

We now impose boundary conditions at the two edges
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of the detector, in particular a vanishing amplitude for

the incoming left-moving EM wave at the right edge of

the setup, Erec = (ER
rec, 0), and a vanishing amplitude for

the incoming right-moving EM wave at the left edge of

the setup E(x = 0) = (0, L0). This neglects, for simplic-

ity, the possible presence of a mirror at the left edge of the

apparatus. We can now solve for L0 and the amplitude

of the total right-moving wave at the receiver, ER
rec. De-

noting Mtot =
∑Nd

n=1 T
Nd−n
1 M (n), the resulting solution

for the received electric field can be written compactly as

ER
rec(ℓ) = Ep(ℓ) + eiωxeff

[
(Mtot)R − (Mtot)L rR

]
, (14)

where rR is the reflection coefficient for right-moving EM

waves given in Eq. (8). The subscripts {R,L} indicate

the right- and left-moving components of the Nd-disk

source vectors, respectively. Equation (14) enables us

to further understand the requirements for resonant en-

hancement of GW signals in a dielectric haloscope. Ex-

amining the second term of Eq. (14), it is clear that for

certain combinations of signs for the three quantities in

square brackets, partial or full cancellation occurs (see

also Appendix C for a more detailed discussion). We can

impose the condition rR = 0 to avoid this cancellation.

Physically, minimizing the reflection coefficient for right-

moving waves in this way is equivalently to maximizing

the transmission coefficient, thereby maximizing the EM

signal at the receiver. Using Eq. (8), the condition rR = 0

can be translated into a condition on the separation of

the disks, D. For a GW propagating along the detector

axis, this condition is found to be

Dmax ω = kπ − arcsin

(
2
√
ϵ cos(π/Nd)

1 + ϵ

)
. (15)

Note that this solution is not unique. However, among

all solutions of the equation rR(D) = 0, Eq. (15) is the

one with the largest (Mtot)R, thus maximizing the signal

at the receiver. This analytical result for the optimal

disk separation is validated numerically in Fig. 2 for a

5-disk system with k = 1 and ϵ = 25 (see also Fig. 7

in Appendix C). We find that our analytic estimate is

an excellent approximation to the numerically-obtained

Dmax, disagreeing only at O(10−5) for Nd = 10, and

that the difference scales as 1/N4
d . As a result, for large

Nd ≳ 10, the analytic Dmax is sufficient to estimate the

effect of imperfections in disk placement, as we do in the

next section.

For a GW with a general incident angle Eq. (15) will be
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FIG. 2. The reflection coefficient |rR| (blue solid) and effec-
tive source terms |(Mtot)R|/25 (red dotted) and |(Mtot)L|/25
(green dashed) as a function of D in units of ω/π for Nd = 5
and ϵ = 25. We see that the analytical result Eq. (15), which
corresponds to the dotted vertical line, also corresponds to
the largest value of (Mtot)R that coincides with a zero of |rR|
(horizontal grid line). From Eq. (14), we see that this value
of D maximises the received electric field.

modified. This implies that for a fixed disk width, chang-

ing the disk separation amounts to scanning through

some combination of GW frequencies and incident angles.

Even though this means that for a given GW frequency,

a dielectric haloscope will have an extremely narrow field

of view, this is not a severe limitation in practice, given

that realistic signals either scan over a range of frequen-

cies (e.g. primordial black hole mergers) or have a broad

frequency spectrum. The details of the frequency and

angle-dependent response functions can be determined

numerically using the formalism described here.

IV. DETECTING GRAVITATIONAL WAVES IN

RESONANT MODE

Imposing the optimal disk thickness from Eq. (12) and

disk spacing from Eq. (15), we can estimate the maximal

electric field at the receiver as

ER
rec ∼

∑

n

ωxnhB0 ∼ NdωℓhB0 , (16)

which holds for moderately large Nd. This approximate

result arises due to the domination of the disk-sourced

EM plane waves over the particular solution in Eq. (16).

It allows us to rapidly estimate the scaling of the elec-

tromagnetic flux density into the receiver, given by the
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time-averaged Poynting vector

S =
1

2
Re[ER

rec × (BR
rec)

∗] ∼ h2(Nd ω ℓB0)
2 . (17)

The factor 1/2 arises in the time-averaging due to the

use of phasor notation.

It is instructive to compare this expression to the ax-

ion case, S ∼ (gaγaB0Nd)
2 with a the axion amplitude

and the boost factor N2
d enhancing the signal for a large

number of disks. Comparing the couplings to the EM

fields in the Lagrangian, gaγaF F̃ for axions and hF 2 for

GWs, one might have expected to obtain the parametric

result for GWs by simply replacing gaγa 7→ h. Instead,

we note the additional (ωℓ)2 enhancement due to reso-

nant GW-to-photon conversion in vacuum.5 We stress

that the latter is present also in the absence of any disks

(as has been noted e.g. in the context of GW searches

with helioscopes and light-shining-through-wall experi-

ments [7, 24]). In this case the Poynting vector scales as

Svac ∼ h2(ω ℓB0)
2, indicating that the presence of disks

leads to a boost factor |S|/|Svac| ∼ N2
d , in this sense sim-

ilar to the axion case. Note that this scaling of the boost

factor only holds for a moderate number of disks, and

for perfect disk placement and disk thickness. Below we

discuss in greater detail how large a disk number is bene-

ficial, including how it depends on the dielectric constant

of the disks. We also discuss the impact of imperfections,

both in disk placement and thickness.

A. Nd-dependence of the sensitivity for variable

apparatus length

At large Nd, the growth in the received electric field

saturates since the EM waves sourced at two disks that

are separated by a larger number of disks no longer inter-

fere constructively. Technically, this can be seen by evalu-

ating the effective source term (Mtot)R for optimized disk

width dmax and disk separation Dmax and noticing that

the initial quadratic growth with Nd (see Appendix C) is

replaced by an oscillating function of Nd. Empirically, we

find that this saturation occurs for Nd ≳ 10
√
ϵ. For even

larger values of Nd, the EM plane waves sourced at the

disk surfaces and the particular solution Ep(ℓ) interfere

destructively, and the value of the field no longer grows

5 See Appendix B for a discussion on how this frame-independent
result can be understood in other reference frames.

with the detector length ℓ, either. This destructive inter-

ference can happen because for fixed d and D, larger Nd

also means larger ℓ, enhancing Ep(ℓ). This can be seen in

Fig. 3, where we plot the absolute value of the Poynting

vector, |S|, relative to its vacuum value, |Svac|, as a func-

tion of the number of disks (and thereby also as a func-

tion of the apparatus length ℓ = (Nd+1)Dmax+Nd dmax.

We see that at moderate Nd, the colored curves scale as

|S|/|Svac| ∝ N2
d , which, given that |Svac| ∝ ℓ2, demon-

strates the N2
d ℓ

2 growth of the disk-enhanced solution

expected from Eq. (16). For very small number of disks,

or very small ϵ, the scaling differs due to the contribu-

tion from the particular solution Ep(ℓ). At large Nd, the

curves develop the aforementioned plateau and then be-

gin to oscillate with Nd. Comparing different values of

the dielectric constant ϵ (different coloured curves in the

upper panel of Fig. 3), we observe that the maximum

number of disks before saturation is reached is depen-

dent on ϵ. As stated above, we find empirically that

Nd ≳ 10
√
ϵ is a good approximation to the saturation

point. Evidently, a material with as large a dielectric

constant as possible is preferred, modulo difficulties with

manufacturing.

B. Impact of disk imperfections

To demonstrate the effect of detector imperfections, in

the lower panel of Fig. 3 we show in yellow the Poynt-

ing vector for a setup with perfect disk placement, but

imperfect disk thickness d = dmax

(
1 + 10−5

)
, and in red

the solution with perfect disk thickness, but imperfect

placement by the same relative amount. Evidently, there

is a greater tolerance to imperfections in the disk thick-

ness than in the disk placement, as the latter leads to

a more significant reduction in both the peak value of

|S|/|Svac| and in the maximal useful number of disks.6

Requirements on accurate and tunable disk separation

D are an integral part of the axion program in dielectric

haloscope experiments. A variable effective disk width

d
√
ϵ cos θϵ, on the other hand, would be a new require-

6 Note that in the previous section, we discussed the deviation
of the numerical Dmax from the analytic expression given in
Eq. (15). We found that for Nd ∼ 10, the analytic estimate
was accurate at the 10−5 level, and its accuracy improved at
larger Nd. Since Fig. 3 shows that the effect of an imperfec-
tion in the disk placement of a similar order is only important
upon the placement of Nd ≳ 30 disks, our estimates here are well
within the domain of validity of Eq. (15).
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FIG. 3. Performance of a dielectric haloscope operated in res-
onant mode with variable detector length ℓ = (Nd+1)Dmax+
Nd dmax. Upper panel: Poynting vector ratio |S|/|Svac| as
a function of the number of disks for perfect disk placement
(Dmax) and thickness (dmax). Different colored curves cor-
respond to different values of the dielectric constant ϵ. The
curves demonstrate the S ∝ N2

d growth until a plateau is
reached for Nd ≳ 10

√
ϵ. Lower panel: Fixing ϵ = 25, we

study the impact of imperfect disk placement (red curve) and
imperfect disk thickness (yellow curve) compared to case of
the perfect Dmax and dmax (blue). Also shown is a polynomial
fit S ∝ N2

d in dashed blue.

ment of a tunable resonant GW search. As manufactur-

ing and installing a new stack of disks at each step in a

scan over frequencies might be prohibitively difficult, it

may in practice be easier to vary not d, but the dielec-

tric constant, e.g. by filling the disks with some gas or

liquid or by the use of metamaterials [25]. Despite these

difficulties, we will in the remainder of this paper show

results for fully or partially resonant operation assuming

d = dmax(f) to illustrate the maximal possible reach of

this approach. On the other hand, since in the GW case

the propagation direction of the EM waves is set by the

GW wave vector, whereas in the axion case it is given by

the orientation of the disk surface, the disk smoothness

requirements are less stringent here than in the axion

case.

C. Sensitivity for fixed apparatus length

In the discussion so far, adding more disks to the ap-

paratus always meant extending its length. However, in

a realistic setup, the length is fixed, and one must place

disks in the available space. One option is to place all

disks at the optimum separation Dmax as before (with

k = 1 in Eq. (15)) such that the disks only occupy a

portion of the apparatus length (preferably on the side

furthest from the receiver). In this case the device can be

operated in a hybrid resonant/broadband mode, which

will be discussed further in the next section. Here, we fo-

cus instead on another option, namely choosing k = kfill
in Eq. (15), where kfill is the integer that spaces the disks

so as to fill as much of the apparatus length as possible

with evenly separated disks. For fixed ℓ and Nd, we can

use Eq. (15) to determine kfill, finding

kfill=floor

[
arcsin

(
2
√
ϵ cos(π/Nd)

1 + ϵ

)
+

2ℓω − Ndπ√
ϵ

2π(1 +Nd)

]
.

(18)

This expression is dominated by the second term balanc-

ing the apparatus length with the number of disks. For

the design parameters set out by the MADMAX collabo-

ration in Ref. [17], ℓ = 2m and ϵ = 25, targeting the fre-

quency range ω ∈ 2π[1010, 1011] Hz, we find that there is

a maximum number of disks Nd ≲ 136 [ω/(2π×1010 Hz)]

that can be placed in the apparatus when targeting a

resonance frequency ω.

While this shows that the maximum number of disks

that can be placed in the apparatus can be large, what

is more important is whether placing additional disks ac-

tually leads to an increased signal flux at the receiver.

From the results of the previous section, we can already

anticipate that the optimal useful number of disks will

be significantly smaller than the number that could in

principle fit in the apparatus. To evaluate the optimal

useful number of disks, we compute the ratio |S|/|Svac|,
setting k = kfill in Dmax and fix ℓ = 2m, ϵ = 25. The

result is shown in Fig. 4 for two different values of ω. We

see that as in the previous discussion where we allowed
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FIG. 4. Performance of a dielectric haloscope operated in
resonant mode for fixed detector length ℓ = 2m, choosing
k = kfill in the solution for Dmax, so that the full length of the
apparatus is filled with disks. As in Fig. 3. we plot Poynting
vector ratios |S|/|Svac| as a function of Nd. Different colored
curves correspond to different values of ω. As discussed in
the text, for ω = 2π × 1010 Hz up to Nd = 136 disks can fit
into the detector, explaining the abrupt end of the blue curve
at this value. The jaggedness of both curves comes from the
requirement that kfill must be an integer number. We observe
that the maximum Poynting vector ratio is |S|/|Svac| ∼ 200,
obtained for 40 ≲ Nd ≲ 70.

the detector length ℓ to be a function of Nd, fixing ℓ and

maximising k by setting it equal to kfill yields almost

the same result for the maximum number of useful disks,

Nd ∼ 60 for ϵ = 25. Of note is that the two coloured

curves in Fig. 4 follow the same shape, implying that the

ratio of Poynting vectors is independent of the signal fre-

quency when all quantities D, d, k are optimised. The

ω = 2π × 1010 Hz curve ends at Nd = 136 as this is the

maximum number of disks that can fit into the 2m-long

detector at this frequency while keeping d and D opti-

mal. Finally, recalling the previous discussion, we note

that using a material with a larger ϵ leads to a larger

number of useful disks, scaling as Nd ∝ √
ϵ.

We conclude that in fully-resonant mode, optimis-

ing the disk spacing leads to an almost frequency-

independent maximum signal flux enhancement for the

future MADMAX detector of |S|/|Svac| ∼ 200, which

in turn translates to a maximum enhancement of the

strain sensitivity relative to a setup without disks of

h/hvac ∼ 14. This enhancement is not insignificant, and

can be improved by using disks with larger dielectric con-

stants. However, it comes at the price of rendering the

device fully resonant, with fairly stringent tolerances on

the disks. As a result, in the next section we consider

two alternative operation modes for MADMAX: one in

which there are disks but also a large vacuum region, and

one in which the disks are entirely removed.

V. HYBRID RESONANT/BROADBAND OR

PURE BROADBAND OPERATION

As discussed in the previous section, fully resonant op-

eration of MADMAX can lead to an enhancement in

the strain sensitivity to GWs that can be greater than

an order of magnitude compared to a setup without di-

electric disks. However, given the nature of expected

sources of high-frequency GWs such as sub-solar mass

BH mergers, it can be beneficial to have broadband sen-

sitivity to access a range of frequencies simultaneously.

We consider two options for achieving this here: a hy-

brid resonant/broadband setup; and a fully broadband

setup without any dielectric disks. In the former, the

stack of dielectric disks (whose thickness and spacing is

optimised for a particular frequency) is made as compact

as possible by choosing k = 1 in Eq. (15) and then placed

at the end of the device furthest from the receiver.

Consider first the hybrid setup. It has the advantage

that GWs whose wave vector points in a direction such

that waves pass through the disks and the receiver are

resonantly enhanced by the disks, provided their fre-

quency matches the setup’s resonance frequency. The

signals from GWs at other frequencies experience less

enhancement, or even suppression from the disks. How-

ever, for a certain range of incoming GW directions, the

GW wave vector does not pass through the disks and

the receiver simultaneously. GWs hitting the receiver

then experience conversion in vacuum only, which leads

to a broadband signal as the absence of disks in the

path of the wave means that transmission is frequency-

independent.

In the hybrid scenario, the optimal number of disks

is frequency-dependent as shown in Fig. 5, where we

plot |S|/|Svac| for ten different frequencies in the range

ω ∈ 2π × [1010, 1011] Hz. The largest boost is obtained

for ω = 2π × 1010 Hz and is about |S|/|Svac| ∼ 50 for

Nd ∼ 70. For higher frequencies the boost shrinks and

is achieved only upon the placement of more disks, until

reaching |S|/|Svac| ∼ 2 for Nd ∼ 90 at ω = 2π× 1011 Hz.

This frequency dependence largely reflects the reduced

amount of detector length reserved for the resonant op-

eration at higher frequencies when fixing k = 1, and is
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FIG. 5. Performance of a dielectric haloscope in hybrid
resonant/broadband mode. We plot Poynting vector ratios
|S|/|Svac| as a function of Nd, using ℓ = 2m for the length of
the apparatus and fixing k = 1 in the expression (15) for lmax.
All disks are assumed to be placed on the side of the apparatus
furthest from the receiver, so that its remaining length is vac-
uum. We show ten curves corresponding to ω = 2π w×1010 Hz
with w ∈ [1, 10].

compensated by a larger fraction of the detector avail-

able for a broadband search. Alternatively, one could

improve the resonant sensitivity at higher frequencies by

increasing k – at the cost of reducing the corresponding

broadband sensitivity.

This suggest that an optimal hybrid setup is a detec-

tor with Nd = 73 disks optimised for ω = 2π × 1010 Hz,

occupying about half of the ℓ = 2m apparatus. Such

a setup optimises the resonant sensitivity to the lowest

frequencies considered, while leaving around 1m of vac-

uum between the last disk and the receiver, over which

GWs entering at an appropriate angle can be detected in

broadband mode. More precisely, this is the case for GWs

entering under an angle |θ| ≳ arctan(2R/ℓeff), where R is

the radius of the cylindrical apparatus and the quantity

ℓeff is obtained from the length of the vacuum section,

ℓvac and the wavelength of the GW, λ = 1/f as

ℓeff =
16R2ℓvac − 2Rλ

√
4ℓ2vac + 16R2 − λ2

16R2 − λ2
. (19)

This effective length arises from the requirement that the

geometric optics limit used here is valid, i.e. that none

of the GW wavefronts of length λ pass through the disks

on the way to the receiver. In the infinite frequency,

ℓeff = ℓvac as expected, while ℓeff = 0 for λ ≥ 2ℓvac. For

the configuration advocated above with ℓvac ∼ 1m, the

requirement on ℓeff is such that the broadband exper-

iment running concurrently with the resonant one can

cover the frequency range ω ≳ 2π · 1.5 × 108 Hz with a

broadband readout.

For the hybrid setup the Poynting vector associated

to disk-enhanced resonant GW-to-photon conversion is

given by Eq. (17) (neglecting the contribution of Ep(ℓ)),

while for conversion in vacuum for GW not passing

through the disks before reaching the receiver, it is

Seff ∼ h2(ω ℓeff B0)
2 . (20)

This equation is used for the broadband part of the hy-

brid setup we consider when discussing our sensitivity

estimates in Section VI.

Let us now consider fully broadband operation of the

MADMAX device, which would imply removing the di-

electric disks (thereby rendering the apparatus much less

sensitive to its primary physics target, axions). As with

the broadband part of the hybrid setup discussed above,

the resulting Poynting vector is constructed entirely from

the solution to Maxwell’s equations in vacuum given,

Eq. (5). There is again an opening angle within which

GW-to-photon conversion benefits from the full appara-

tus length ℓ, given by θc ≲ arctan(2R/ℓ). As long as the

GW angle is less than this value, the flux density reaching

the receiver scales the same way as Eq. (20), only with ℓ

on the RHS instead of ℓeff . This calculation matches the

results in Ref. [7] which considered vacuum conversion

of GWs to photons in light-shining-through-wall experi-

ments.

If the experiment is operated in the fully broadband

configuration, the high-frequency limit of the sensitivity

band is determined by the highest frequency at which

broadband readout can be achieved, which we expect to

lie around O(10− 100) GHz for MADMAX-like readout.

At lower frequencies, if the regime ωR ∼ 1 is reached,

our analysis does not account for possible EM resonances

in the apparatus, which could change the solution to

Maxwell’s equations in vacuum and is therefore not to

be taken at face value. We plot this region in Fig. 6 as

a dashed green line. At even lower frequencies, ωR ≲ 1,

the walls of the MADMAX apparatus act as a waveg-

uide, suppressing power flow to the receiver. For the

dimensions of the MADMAX apparatus, this occurs for

frequencies ω/(2π) ≲ 3× 108 Hz, and is accounted for in

our sensitivity estimates. In practice, we can model the

response of the MADMAX apparatus in this regime as a

cavity of resonant frequency ωc ∼ 1/R being driven by
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a lower-frequency signal, leading to a suppression of the

power by a factor ω4/(ω2 − ω2
c )

2 ∼ (ωR)4.

VI. SENSITIVITY ESTIMATES

We are now ready to estimate the sensitivity of a

MADMAX-like dielectric haloscope to the GW strain h.

A useful figure of merit for this is the signal-to-noise ratio

(SNR) of a hypothetical signal. The optimal SNR can be

written as

SNR ≃
(
tint

∫ ∞

0

df

(
Ssig(f)

Snoise(f)

)2
)1/2

, (21)

where Ssig, noise are the signal and noise power spectral

densities (PSDs), respectively,and tint is the integration

time. The latter is given by the length of the data tak-

ing period for stochastic signals and by the duration of

the signal for transient sources. For a signal whose wave-

form is known and can be matched to the datastream in

the time domain, a matched filtering analysis can be per-

formed leading to an SNR with the same form, only with

a ratio of signal and noise PSDs that is not squared. In

both cases, it is instructive to rewrite the SNR in terms

of the PSD of the GW Sh(f), and the so-called “noise-

equivalent strain PSD” Snoise
h (f). The former is defined

for an approximately stationary process as

Sh(f) ≃
1

T
⟨h̃(f)h̃(f ′)⟩

=
1

T

[
|h̃+(f)|2 + |h̃×(f)|2

]
, (22)

were ⟨·⟩ denotes taking the ensemble average of Fourier

transformed quantities h̃(f), and T is the integration

time of the receiver. The noise-equivalent strain PSD

is in turn defined as

Snoise
h (f) =

Sh(f)

Ssig(f)
Snoise(f) , (23)

where Snoise(f) includes all noise contributions seen by

the detector. For MADMAX, thermal noise is expected

to dominate such that Snoise(f) ∼ Sth(f) = 2Tsys, where

Tsys = 4.2K is the system temperature of the apparatus.

From these definitions, it is clear that we can rewrite

the SNR in terms of the ratio (Sh(f)/S
noise
h (f)). The

noise-equivalent strain PSD is therefore a useful figure of

merit that includes not only the intrinsic noise, but also

the efficiency with which a general GW signal Sh(f) is

converted into a measured signal by the detector.

For the fully resonant operation mode, the signal power

at the receiver, Psig(ω) = πR2Sx can be computed from

Eq. (16). We then find for the PSD at the receiver

Sres
sig (f) = C2πR2 (2πfℓB0Nd)

2
Sh(f) +O(1/

√
ϵ) , (24)

where C ∼ 0.4
√

ϵ/25 denotes the numerical factor

dropped in Eq. (16). Here f = ω/(2π) denotes the GW

frequency, which is identical to the frequency of the gen-

erated electromagnetic wave. For simplicity, here and

in the following, we assume the GW to travel along the

symmetry axis of the detector, θ = 0. Plugging Eq. (24)

into Eq. (22), we find for the strain-equivalent noise PSD

in resonant mode

(
Snoise
h

)1/2∼ 10−22/Hz
1
2

C/0.4

(
1m2

Rℓ

)(
10T

B0

)(
43

Nd

)(
10GHz

f

)
.

(25)

Sensitivity estimates derived from this expression are

shown as the purple curve in Fig. 6, where we have fixed

Nd = 43, ℓ = 2m, πR2 = 1m2, and have used k = kfill
to determine the disk spacing in Eq. (15). The last as-

sumption leads to the jaggedness of the sensitivity curve

– each of the steps in the curve corresponds to a change

in kfill.

When the detector is operated in fully broadband mode

without disks, the signal PSD is given by

Sbroad
sig (f) =

1

8
πR2 (2πfℓB0)

2
Sh(f) , (26)

with the same notation as above. This result holds again

for a GW traveling along the symmetry axis of the detec-

tor, but the more general result for an arbitrary incoming

angle can be directly computed from Eq. (5). Sensitiv-

ity estimates derived from Eq. (26) following the same

approach as above are shown as the solid green curve

in Fig. 6. Across much of the frequency range of interest

here, we observe sensitivity growth as ∝ 1/f , correspond-

ing to the ∝ ωℓ growth of the EM field amplitude at the

receiver, see Eq. (5). At small frequencies we include the

effect of suppression of the flux arriving at the receiver

due to the wavelength of the GW becoming larger than

the radius of the apparatus. This implies that the bound-

aries of the detector act as a waveguide, suppressing the

EM signal and thereby the sensitivity. Finally, we show

the region around ωR ∼ 1 as a dashed line to indicate

that our calculation does not include various effects such
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FIG. 6. GW strain sensitivity for different operation modes of a dielectric haloscope with the dimensions of MADMAX, and for
a GW incoming along the x-axis. (i) Broadband operation with no dielectric disks (darker green). The dashed region around
ωR ∼ 1 indicates the regime where electromagnetic resonances of the apparatus can be relevant, implying that our results
should be taken with a grain of salt. The label ‘1/f -scaling’ indicates where the signal field grows linearly with f , resulting in
a linear decrease in Snoise

h . (ii) Fully resonant operation (purple) above 10GHz, assuming the optimal number of disks at each
frequency, spaced such that the detector is maximally filled (k = kfill in Eq. (15)). (iii) Hybrid resonant/broadband operation
(dashed blue) with a stack of disks optimised for f = 1GHz at the left end of the detector, choosing the smallest solution
(k = 1) for their spacing. For comparison, we show in dotted black projected limits of other proposals for broadband GW
detectors (MAGO 2.0 [26] and low-frequency IAXO [24]) and in dotted this expression can gray proposals for resonant detectors
(resonant cavities [8, 12] and MAGO 2.0 [26]).

as EM resonances associated to the detector size that

could occur in this frequency range.

Finally, in the hybrid regime, the signal PSD for GWs

received in broadband mode (i.e. not passing through the

disks before hitting the receiver) is identical to Eq. (26)

above, only with ℓ replaced by ℓeff from Eq. (19). Mean-

while the signal PSD for resonantly-enhanced signals ex-

hibits a more complicated Nd dependence than Eq. (24),

the equivalent for fully resonant setups. For Nd ≲ 10,

the impact of the disks is small compared to conversion

in vacuum, and the signal PSD is well-approximated by

Eq. (26). For larger number of disks, the scaling with

Nd is frequency-dependent, and can be inferred from the

ratio |S|/|Svac| shown in Fig. 5. For the benchmark sce-

nario with Nd = 73 disks we advocated for in Section V,

the expected sensitivity is shown as a dashed blue line

in Fig. 6. The choice Nd = 73 maximises the resonant

boost at f = 1010 Hz. For f ≥ 1010 Hz, the sensitivity is

dominated by resonantly enhanced signals, and we show

the result assuming a GW propagating along the detector

axis θ = 0. For f ≤ 1010 Hz, we compute the effective

length travelled in vacuum as a function of frequency,

and show the corresponding reduction in sensitivity. It

is mostly a factor of 2 except at the lowest frequencies

detectable.

Detection in the broadband regime has the advantage

of being sensitive to short-duration signals that rapidly

scan through signal frequency, such as the mergers of

sub-solar mass black holes. These black holes must be

of a primordial nature and could comprise some or all

of the dark matter. As shown in Appendix E, a detec-

tor with no disks is sufficient to detect mergers up to
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distances dPBH ∼ 10−4 pc for chirp masses in the range

10−7 M⊙ ≲ Mc ≲ 10−5 M⊙. In this context, we stress

that the typically very short duration tint ∼ 1/f and low

phase coherence of the signal from merger events has been

accounted for in the derivation of this estimate. Com-

pared to e.g. GW searches using resonant cavities, which

require sufficiently long and coherent signals to fully ring

up the cavity, the induced electromagnetic waves in our

broadband proposal simply track the wave front of the

gravitational wave as it passes through the detector, in-

heriting the frequency spectrum and phase factor of the

GW. This makes our proposal significantly more sensitive

to these types of signals. However, to reach appreciable

expected merger rates of order one per year (correspond-

ing to a reach of dPBH ≳ 10 kpc assuming primordial

black holes in aforementioned mass range make up a sig-

nificant fraction of dark matter [1, 9]) requires an implau-

sibly large magnetised volume, since dPBH ∝ (B0 ℓR).

We note that the required eight order of magnitude in-

crease in the combination (B0 ℓR) would also put cosmo-

genic sources of GW such as primordial phase transitions

within reach.

VII. CONCLUSIONS

We have analysed the prospects of GW detection in

dielectric axion haloscopes, which consist of a stack of

dielectric disks placed inside a magnetic field. We have

focused specifically on the parameters of the planned

MADMAX experiment primarily designed to search for

axion dark matter. Similar to axions, GWs source prop-

agating EM fields at the surfaces of the dielectric disks,

which for a suitable geometry can interfere constructively

to maximize the signal at the receiver. However, the rel-

ativistic nature of the GW leads to several important

differences: (i) unlike axion-to-photon conversion, GW-

to-photon conversion occurs also in the vacuum between

disks, enhancing the EM signal in the GW case. (ii) The

sourced EM waves inherit the position dependent GW

phase, leading to new conditions to ensure resonant oper-

ation, including in particular a requirement on the effec-

tive disk thickness d =
√
ϵ cos θϵ, and limiting the max-

imal number of disks that can be used to enhance the

signal. (iii) The sourced EM waves inherit the propa-

gation direction of the GW, reducing the manufactur-

ing requirements on the disk surface. Consequently, this

setup provides an example where the parametric sensitiv-

ity to GWs cannot be obtained by a simple dimensional-

analysis recasting of the axion sensitivity.

Compared to previous proposals based on the GW-to-

photon conversion in vacuum in the presence of a strong

magnetic field, we find that placing dielectric disks in a

magnetised apparatus can lead to a slight improvement

in the noise-equivalent strain sensitivity, by up to a factor

of 10. However, this improvement comes at the cost of

making the apparatus a resonant detector that is maxi-

mally sensitive only in an extremely narrow range of GW

frequencies, while suppressing the signal at other frequen-

cies (see Fig. 7 in Appendix C). The enhancement at the

resonance frequency moreover relies on exquisite manu-

facture quality and placement of the dielectric disks.

We therefore also consider two alternative approaches

to use the MADMAX apparatus, namely hybrid res-

onant/broadband and fully broadband operation. In

the latter, the disks are removed entirely, and we

find a slightly reduced sensitivity of at best S
1/2
h ∼

10−21 Hz−1/2 × (10GHz/f), which is nevertheless com-

petitive with other recent proposals. Broadband opera-

tion has the advantage of being able to cover a wide range

of possible signal frequencies without requiring any tun-

ing. The hybrid approach combines resonant and broad-

band operation, with a fixed number of disks placed in

one half of the detector, leaving the other half as vac-

uum. GWs at frequencies above f ≳ 1010 Hz then benefit

from resonant enhancement of the sensitivity (with the

same requirements on disk placement and thickness as in

the fully resonant setup), while GW frequencies between

f ∈ [0.015, 1] × 1010 Hz can be detected in broadband

mode, albeit with a reduced opening angle and therefore

effective detector length.

Detectors designed to search for axion dark matter can

often be re-purposed to search for high frequency gravi-

tational waves (see e.g. [8, 9, 11, 14] for other work along

these lines). However, the wide range of possible grav-

itational wave signals, covering various dimensions such

as central frequency, duration and coherence make de-

signing the ideal detector a complicated task, with each

detector having its advantages and disadvantages. Di-

electric haloscopes such as MADMAX have the advan-

tage of being operable in multiple regimes, each of which

can benefit from different experimental aspects, making

them an attractive option in the enduring search for high-

frequency gravitational waves.
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Appendix A: Conventions

We list here the various conventions we use in the derivation of our results. For the gravitational wave (GW), we

work in the transverse traceless frame where the metric perturbation is written as

hTT
ij =

(
h+ê+ij + h×ê×ij

)
e−iω(t−k̂·x) , (A1)

with the explicit form of the polarization tensors given by

ê+ij = uiuj − vivj , ê×ij = uivj + viuj , (A2)

where v̂ = (−sϕ, cϕ, 0), û = v̂ × k̂ and the normalized GW wave vector k̂ form an orthonormal system. The

polarization tensors are transverse kiê
ij
λ = 0 and orthogonal êλij ê

λ′,ji = 2δλλ
′
. All electromagnetic fields generated by

the passing GW inherit the time-variation and propagation phasor, such that when evaluating observables, we must

take the real part of the relevant quantities. This results in the factor (1/2) and the Re[. . .] appearing in our definition

for the Poynting vector in Eq. (17).

For the power spectral densities, we use the convention that the two-point correlation function of a complex quantity

x(f) in frequency-space is related to the two-sided PSD as

⟨x(f)x∗(f ′)⟩ ≡ Sx(f)δ(f − f ′) . (A3)

The PSD is in turn related to the auto-correlation function of the quantity x(t) in the time domain as

Ax(τ
′ − τ) = ⟨x(τ)x∗(τ ′)⟩ =

∫ ∞

−∞
df e−2πif(τ ′−τ)Sx(f) , (A4)

where the minus sign in the exponent reflects our phase (and therefore Fourier transform) convention.

Appendix B: The Transverse-Traceless Frame in the High-frequency Limit

In the main body of this paper, we work in the Transverse-Traceless (TT) frame to calculate the effect of the passing

GW on the EM fields. More specifically, we treat the background magnetic field as being static in the TT frame,

which amounts to assuming that it is freely falling. In this section, we justify this approach.

The key to our argument is the hierarchy between the wavelength λ of the GW and the dimensions of a typical

dielectric haloscope. For GW frequencies in the range ω/(2π) ∈ (108, 1011)Hz, the former is λ ∈ (3 × 10−3, 3)m.

These wavelengths should be compared with the typical size of the apparatus, which is a few meters.7 As a result, we

work almost exclusively in the ωℓ ≫ 1 regime where the usual long-wavelength approximation to the proper detector

frame breaks down. An option would be to use the all-orders in ωℓ formulation of the proper detector frame [8], but

this rapidly complicates the computation. Instead, it is well known that the TT frame offers a valid description of the

interaction of GWs with objects when ωℓ ≫ 1, as they are all effectively free-falling in this regime (see e.g. discussions

7 Corresponding to characteristic frequencies ωdet ≲ 2πv × 108 Hz, where v = c (cs ≪ 1) for EM (elastic) waves.
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in [10, 27]). Let us make this argument more explicit and see in particular how it applies to the applied magnetic

field.

To understand how objects in the laboratory frame behave in the large ωℓ limit, we start by recalling the definition

of the geodesic deviation equation, which is derived by considering two geodesics separated by a small distance ξ,

each respecting their own geodesic equations

d2xµ

dτ2
+ Γµ

νρ(x)
dxν

dτ

dxρ

dτ
= 0 , (B1)

d2(x+ ξ)µ

dτ2
+ Γµ

νρ(x+ ξ)
d(x+ ξ)ν

dτ

d(x+ ξ)ρ

dτ
= 0 . (B2)

Evaluating the difference between these equations at a point x = 0, and assuming that the detector is at rest or

moving non-relativistically, such that only dξ0/dτ ̸= 0, we see that all we need to compute is Γµ
00(ξ). A subtlety

is that this Christoffel symbol should be evaluated using the metric in the laboratory frame that includes terms to

all orders in ωk̂ · x. This metric was worked out in Refs. [28, 29], and resummed in Ref. [8] for a plane wave. For

computing Γµ
00(ξ), we need the all-orders metric components h00 and h0i given by [8, 9, 28, 29]

h00 ≡ −2

( ∞∑

n=0

n+ 3

(n+ 3)!
(Rk0l0)

(n)
ξkξlξjn

)

= −ω2hTT
kl (x)ξkξl

(
− i

ωk̂ · x
+

1− e−iωk̂·x

(ωk̂ · x)2

)
, (B3)

h0k ≡ −2

( ∞∑

n=0

n+ 2

(n+ 3)!

(
Rk

j10j2

)(n)
ξj1ξj2ξjn

)

= −ω2
(
hTT
kl (x)ξl(k̂ · x)− k̂kh

TT
jl (x)ξjξl

)(
− i

2ωk̂ · x
− e−iωk̂·x

(ωk̂ · x)2
− 1− e−iωk̂·x

(ωk̂ · x)3

)
. (B4)

As a result, we can write the geodesic deviation equation to all orders as

d2ξk

dτ2
+

(
∂th0k − 1

2
∂kh00

)
dx0

dτ

dx0

dτ
= 0 . (B5)

Note that we could have easily obtained this expression from the geodesic deviation equation without expanding in

small ξ, but instead using the definition of the Christoffel symbols and our closed-form expressions for the metric.

We can easily check that in the ωℓ ≪ 1 limit, this recovers the usual expression

ξ̈k =
1

2
ḧTT
kl ξl (B6)

whereby the effect of a GW is that of a Newtonian force. To understand the impact of this force on the external

magnetic field (i.e. on the experimental apparatus generating the magnetic field), we need to compare this force to

the internal mechanical forces in those materials. Internal forces act as ∇2ξ, ∇(∇ · ξ), and therefore scale as c2sξ/ℓ
2,

where cs ≪ 1 is the speed of sound. For ωℓ ≪ cs, the GW force is weaker than internal forces and its effect is therefore

suppressed. For cs ≪ ωℓ ≪ 1, the long wavelength limit still applies, but the GW force overcomes internal forces and

dominates the equation of motion for ξ.

Of greater interest to our situation is the opposite limit, where ωℓ ≫ 1, where explicit computation shows that the

geodesic deviation equation becomes

ξ̈k =
1

2
ḧTT
kl ξl +O(1/ωk̂ · x) , (B7)

as long as the transverse directions are smaller than the direction along k̂ · x. Since ωℓ ≫ 1 also means ωℓ ≫ cs, on
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the basis of the discussion above, all internal forces in the material can be safely neglected. The coupling of the GW

to higher phonon modes is suppressed by the missmatch between the dispersion relations of GWs and phonons in

the material, see e.g. Ref. [26] for an explicit example. As a result, it is legitimate to treat the apparatus generating

the magnetic field, and therefore the magnetic field itself, as being free-falling in the high-frequency limit. Since the

coordinates in the TT frame are set by free-falling test-masses (which move in the proper detector frame according

to Eq. (B7)), the apparatus and consequently the magnetic field appear static in the TT frame.

Finally, in solving Maxwell’s equations including the effective current due to the presence of the GW, we found that

the particular solution grew as ωℓ. As discussed in the main text, this is a result of the mass degeneracy between

the GW and photon. However, one might wonder how to see that this result holds also in the laboratory frame. As

we see in Eq. (B3) and Eq. (B4), the laboratory frame metric to leading order in ωℓ ≪ 1 scales as h ∼ (ωℓ)2hTT.

However, much of the parameter space we are interested in lies in the opposite limit, ωℓ ≫ 1. In that limit, explicit

computation shows that both h00 and h0i scale as h ∼ (ωℓ)hTT. Therefore, had we opted to obtain the particular

solution to Maxwell’s equations in the laboratory frame, we would have obtained the same result as in the TT frame,

as expected.

Appendix C: Additional Details on Transfer Matrix Formalism

In this appendix, we expand on the discussion in Section III by deriving the explicit expressions for all the ingredients

to describe the multi-disk system using the transfer matrix formalism. Where applicable, we follow the procedure

and notation developed for axions in Ref. [16]. We will discuss in particular the conditions on disk width and spacing

required to optimize the sensitivity to GWs.

As in the main text, we consider a setup with 2Nd+1 regions, alternating between vacuum regions of length D and

in-medium regions of length d with a dielectric constant ϵ > 1. We consider a cylindrical setup of disks stacked along

x-axis, with constant magnetic field pointing in z-direction and EM waves propagating in the x–z plane. In each region

we consider left- and right-moving EM waves, with the 2-component vector En = (Rn, Ln) denoting their amplitude

on the left edge of the nth region. Throughout our expressions, we will drop a global factor exp(−iω(t−sθz)), common

to the GW and all induced EM fields. The propagation matrices describing the phase evolution across these regions

are given by

Pv = diag(eiωDcθ , e−iωDcθ ) , Pm = diag(eiω
√
ϵdcθϵ , e−iω

√
ϵdcθϵ ) , (C1)

for the vacuum and disk regions, respectively. Here θ is the angle between the right-moving EM wave and the x-axis,

cθ ≡ cos θ, and θϵ is the angle of the refracted right-moving wave in medium, defined by the relation
√
ϵ sin θϵ = sin θ.

When the EM waves cross a disk surface, they obey the usual EM boundary condition at the interface of a medium,

Bm = Bv , E∥
m = E∥

v , ϵE⊥
m = E⊥

v , (C2)

where ∥ and ⊥ refer to the contributions parallel and perpendicular to the interface, respectively. These boundary con-

ditions distinguish s-polarized EM waves (orthogonal to the plane of incidence) and p-polarized waves (perpendicular

to the plane of incidence). At a vacuum-to-medium interface this is encoded in the matrices

Gp
mv =

1

2

(
1√
ϵ
+ cθ

cθϵ
− 1√

ϵ
+ cθ

cθϵ

− 1√
ϵ
+ cθ

cθϵ

1√
ϵ
+ cθ

cθϵ

)
, Gs

mv =
1

2
√
ϵ

(√
ϵ+ cθ

cθϵ

√
ϵ− cθ

cθϵ√
ϵ− cθ

cθϵ

√
ϵ+ cθ

cθϵ

)
, (C3)

whereas the inverse process, a medium-to-vacuum boundary yields

Gp
vm =

1

2

( √
ϵ+ cθ

cθϵ
−√

ϵ+ cθ
cθϵ

−√
ϵ+ cθ

cθϵ

√
ϵ+ cθ

cθϵ

)
, Gs

vm =

(
1 +

√
ϵ cθ
cθϵ

1−√
ϵ cθ
cθϵ

1−√
ϵ cθ
cθϵ

1 +
√
ϵ cθ
cθϵ

)
. (C4)
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These expressions allow to explicitly construct the effective single-segment transfer matrix T1 = GvmPmGmvPv

introduced in the main text. Note that so far, this is simple geometric optics for a multi-disk system, independent of

the presence of any axions or GWs.

With GWs included, we need to include an effective source term in the inhomogeneous Maxwell equation. It can

easily be verified that a particular solution of this equation is given by Eq. (5) in vacuum and by Eq. (4) in medium.

These particular solutions are not unique as one can always add plane wave solutions (solutions to the source-free

equation). The solutions only become unique once appropriate boundary conditions are imposed. The particular

solution in vacuum given in Eq. (5) has been chosen so as to give a vanishing plane wave contribution at x = 0,

i.e. no right-moving plane waves at the left edge of the detector.8 The particular solution in medium Eq. (4) has

been chosen to take a conveniently simple form. By construction, our results do not change if we choose a different

particular solution to Maxwell’s equations, such as a sawtooth-shaped function which is given by Eq. (4) inside the

disks, vanishes just beyond the right edge of each disk, and then grows linearly up to the left edge of the next disk.

The motivation for such a choice would be that it ensures Ep
v is the same in all vacuum regions.

In the transfer matrix formalism, the EM fields induced by the GW enter through the source terms Smv and

Svm at the vacuum-to-medium and medium-to-vacuum interface, respectively. They are obtained by solving the

inhomogeneous Maxwell equations at these interfaces. Since we have set up the transfer matrix formalism to propagate

the solutions for the EM waves from left to right, we determine the remaining free coefficients in the source terms

(corresponding to adding plane wave solutions to the particular solutions Eq. (4) and Eq. (5)) by imposing a vanishing

amplitude for all the plane waves sourced to the left side of the respective interface, i.e. the source term is set up to

generate left- and right-moving EM fields only to the right of the respective interface. For a GW with incident angle

θ in the x–z plane, allowing for right(left)-moving plane waves with angle θ (−θ) in vacuum, and correspondingly θϵ
(−θϵ) inside the disks, provides solutions to Eq. (C2). The source terms for the vacuum-to-medium interface of the

nth disk are then obtained as

Sp
mv =

B0h
×eixnωcθ

8
√
ϵ(ϵ− 1)cθϵ

(√
ϵ(−2ixnω(ϵ− 1)cθ + (ϵ− 3)c2θ − ϵ− 1)− 2cθϵ [(ϵ+ 1)cθ + ixnω(ϵ− 1)]

2cθϵ [(ϵ+ 1)cθ + ixnω(ϵ− 1)] +
√
ϵ[−2ixnω(ϵ− 1)cθ + (ϵ− 3)c2θ − ϵ− 1]

)
, (C5)

Ss
mv =

B0h
+eixnωcθ

4
√
ϵ(ϵ− 1)cθϵ

(
−c2θ − i (xnω(ϵ− 1)cθ +

√
ϵcθϵ(xnω(ϵ− 1)− 2icθ))− ϵ

c2θ + i (xnω(ϵ− 1)cθ +
√
ϵcθϵ(−xnω(ϵ− 1) + 2icθ)) + ϵ

)
, (C6)

and the corresponding terms for the medium-to-vacuum interface are given by

Sp
vm =

B0h
×ei(xn+d)ωcθ

4cθ

(
1 + 2i(xn + d)ωcθ − 4c2θ/(ϵ− 1)

−c2θ

)
, (C7)

Ss
vm =

B0h
+ei(xn+d)ωcθ

4cθ

(
1 + 2i(xn + d)ωcθ − 4c2θ/(ϵ− 1)

−1

)
, (C8)

with xn = Dn+(n− 1)d indicating the left edge of the nth disk. For a GW incoming along the symmetry axis of the

detector, θ = θϵ = 0, and the above expressions reduce to Eqs. (9) and (10) in the main text.

From Eqs. (C1) and (C3) to (C8), we construct the effective single disc source term M (n) = Svm+GvmPmSmv and

the total effective source term

Mtot =

Nd∑

n=1

TNd−n
1 M (n) (C9)

appearing in the expression (13). Mtot relates the EM fields at the two ends of the detector system. When evaluated for

8 The remaining part of this particular solution can be understood as the EM wave sourced at the boundary of the external magnetic
field. Approximating the boundary at x ≃ 0 by B(x) = Θ(x)B0êz gives rise to an effective surface current jsurfeff = (êx × Meff)δ(x) =

B0δ(xL)e−iω(t−k̂·x)(0, h+cθ, h×) [11]. Matching boundary conditions at this interface gives rise to an EM wave in the magnetic field
region.
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FIG. 7. The ratio of the electric field at the rightmost edge of a detector with Nd disks relative to the particular solution,
|ER

rec(ℓ)|/|Ep(ℓ)| as a function of the normalised disk spacing. We show results for Nd = 3, 5, 7 in yellow, red and blue
respectively. Note that the resonances where the field value is enhanced correspond almost exactly to the analytic values of
Dmax, shown in the figure as dotted vertical lines. The agreement improves with larger Nd, as noted in the main text.

the analytic optimal disk thickness dmax from Eq. (12), and disk separation Dmax from Eq. (15), the two components

of Mtot can be approximated in the large ϵ, small Nd limit as

∣∣[Mtot]R(L)

∣∣ ≃ 1

32
π3Nd(ωℓ)hB0

√
ϵ , (C10)

where we have taken θ = 0. We observe that at leading order in the large ϵ, small Nd limit, the two components of

Mtot are identical, supporting a posteriori the need for a vanishing reflection coefficient rR to avoid any cancellation

between the two terms in Eq. (14). We show in Fig. 7 the remarkable agreement between the analytically obtained

ideal disc separation Dmax, see Eq. (15), and peaks in the signal strength obtained using the full transfer matrix

formalism developed here.

The parametric scaling of Eq. (C10), and consequently the parametric estimate in Eq. (16) in the main text, is

confirmed numerically in Fig. 8, which initially shows a linear growth of (Mtot)R with the number of disks. The linear

growth with the detector length ℓ is common to both (Mtot)R and Ep, and hence drops out of the depicted ratio.

As we continue to increase the number of disks, destructive interference between different subsystems, i.e. within

the different terms in [Mtot]R, becomes a limiting factor. While the condition (15) ensures that the total Nd-disk

system is maximally transmissive, subsystems with n < Nd disks (as seem by EM waves sourced at all but the first

disk) can feature significant reflection. At large Nd, this eventually limits the enhancement with Nd and results in an

oscillatory behaviour of the boost factor as a function of the number of disks. Numerically, we find that this happens

around Nd ≳ 50
√
ϵ/25, see Fig. 8. We note that this observation restricts only the useful number of disks, but not

the disk spacing and detector length. For fixed number of disks, the sensitivity can still be improved by increasing k

in Eq. (15), and thereby ℓ.

Appendix D: Emitted EM waves for a Fully Arbitrary Incoming GW

We present here the particular solutions to Maxwell’s equations in the presence of a GW traveling in an arbitrary

direction with respect to the detector axis (as opposed to GW traveling in the x–z plane considered so far). These
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of the number of disks Nd. We have fixed the disk thickness and separation to their analytic optimum values, dmax and Dmax,
respectively. We observe ∝ Nd growth up to moderate Nd, at which point the disk contribution begins to shrink relative to the
vacuum contribution.

are the input required to generalize the transfer matrix formalism to arbitrary 3D systems. We refrain from listing

the full expressions for Pv,m, Gs,p
mv,vm, and Ss,p

mv,vm in the 3D case here as they are rather cumbersome.

In the medium, a particular solution is given by

Em(θ, ϕ) =
B0e

−iω(t−k̂·x)

ϵ− 1



−cθ (h+sϕ + h×cϕsθ)

cθ (h+cϕ − h×sϕsθ)

h×c2θ


 . (D1)

Meanwhile in vacuum, a particular solution is

Ev(θ, ϕ) =
B0e

−iω(t−k̂·x)

2




iωx (h×sθ + h+tϕ)

−iωx (h+ − h×sθtϕ)

−h× − h+
tϕ
sθ

− iωxh×
cθ
cϕ


 . (D2)

It should be borne in mind that as particular solutions to Maxwell’s equations, these are not unique, and are subject to

the imposition of boundary conditions. In both the vacuum and medium particular solutions above, the propagation

vector is k̂ = (cϕcθ, sϕcθ, sθ).

Appendix E: Sensitivity to Primordial Black Hole Binaries

Given the frequencies at which dielectric haloscopes are most sensitive, one of the most interesting signals they

could detect arises from mergers of sub-solar mass black holes. These would almost certainly be of primordial origin,

since generic stellar stability arguments imply that black holes formed in the late Universe should all have masses

m ≳ M⊙.

Black hole binaries emit coherent GWs at a frequency f(t) which evolves with time as the binary radius shrinks in
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time. The strain can be approximately modelled as [30]

h(t) ≃ 4

d
(GMc)

5/3
(πf(t))

2/3
cos (f(t) + φ) g(θ, ϕ) , (E1)

whereMc is the chirp mass of the binary. For equal-mass black holes, it is given byMc = m/21/5. Fourier-transforming,

Eq. (E1) becomes [30]

h̃(f) ≃
(
5

6

)1/2
1

2π2/3

1

d
(GMc)

5/6
f−7/6g(θ, ϕ) . (E2)

The function g(θ, ϕ) captures the dependence on sky position of the signal with respect to the detector. The average

of this quantity is typically O(1), so in what follows we will assume |g(θ, ϕ)|2 = 1 for simplicity. Note that h(t) and

h(f) have an explicit dependence on the distance to the binary d.

Assuming matched filtering for the coalescing binary signal, the SNR is given by [30]9

SNR ≃
(
2

∫ ∞

0

df
|h̃(f)|2
Snoise
h (f)

)1/2

, (E3)

which can be inverted to compute the maximum distance d at which a binary merger can be seen,

d =

(
5

6

)1/2
1

π2/3
(GMc)

5/6

(∫ fmax

fmin

df
f−7/3

Snoise
h (f)

)1/2
1

SNR
. (E4)

Here, we have restricted the integral to the frequency range [fmin, fmax] in which the detector and source system both

have support. In practice, fmax can be set either by the maximum frequency of the binary inspiral or the maximum

frequency the detector is capable of measuring. In Fig. 9, we plot this distance reach for (primordial) black hole binary

mergers as a function of the chirp mass, assuming the same detector parameters as in Fig. 6 for the fully broadband

MADMAX setup (no disks).

There are three qualitatively different regimes in Fig. 6. For small chirp masses, the integral in Eq. (E4) is

dominated by the frequency at which the detector is most sensitive, which for the parameters chosen is approximately

fbest ∼ 1011 Hz. The integral is then approximately

∫ fmax

fmin

df
f−7/3

Snoise
h (f)

∼ f
−4/3
best

Snoise
h (fbest)

∝ f
2/3
best , (E5)

with Snoise
h (f) given in Eq. (23) in the main text. Note that Eq. (E5) is independent of Mc, such that the scaling of

d with Mc is given solely by the M
5/6
c factor in Eq. (E4).

For chirp masses above Mc ≳ 10−8 M⊙, we observe a different scaling, namely d ∝ M
1/2
c . In this regime, the

integral in Eq. (E4) is dominated by the maximum frequency the binary reaches at the innermost stable circular orbit

(ISCO), given by fISCO ∼ 2× 103 Hz× (M⊙/Mc). More precisely, the frequency integral is well approximated by

∫ fmax

fmin

df
f−7/3

Snoise
h (f)

∼ f
−4/3
ISCO

Snoise
h (fISCO)

∝ M−2/3
c , (E6)

in this regime, such that we obtain the observed chirp mass scaling in Fig. 9.

Finally, for chirp masses above Mc ≳ 4 × 10−6, the sensitivity drops as d ∝ M
−3/2
c . In this regime, the ISCO

frequency is lower than the frequencies where the detector is most sensitive, and only reaches the frequencies where

9 Note the factor of 2 difference with respect to Ref. [30]’s expression, due to our use of two-sided PSDs.
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the waveguide effect is in force. The result is that rather than Snoise
h ∝ 1/f2 as for smaller chirp masses, we are in

the Snoise
h ∝ 1/f6 regime. The frequency integral in Eq. (E4) becomes

∫ fmax

fmin

df
f−7/3

Snoise
h (f)

∝ f
14/3
ISCO ∝ M−14/3

c , (E7)

leading to the d ∝ M
−3/2
c scaling we observe in Fig. 9 for Mc ≲ 10−4.

The distance reach shown in Fig. 9 needs to be seen in the context of the expected rate of PBH merger events. A

rough estimate of this rate is given by [31–33]

R0 ≃ 10−2 kpc−3 yr−1 × f
53/37
PBH

(
δ

2 · 105
)(

Mc

10−5M⊙

)−32/37

, (E8)

where fPBH ≤ 1 is the fraction of dark matter that is in the form of primordial black holes, and δ is the local dark

matter overdensity in the Milky Way halo compared to the average cosmological dark matter density. Taking into

account microlensing constraints which limit fPBH ≲ 0.01 [34], this indicates that a reach of at least tens of kpc is

needed to achieve reasonable rate of observed events.

When computing the expected event rate for a given detector sensitivity more accurately, we need to take into

account also the field of view of the detector. This amounts to considering the angular average of Ssig
h , where for

simplicity we conservatively only take into account GWs passing through all the disks, such that the angular averaged
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Ssig
h becomes

⟨Ssig
h ⟩θ =

1

2π

∫ arctan(2R/ℓ)

− arctan(2R/ℓ)

cos θ dθ Ssig
h (θ = 0) =

2R

πℓ
√

1 + 4R2

ℓ2

Ssig
h (θ = 0) ≡ η Ssig

h (θ = 0) . (E9)

From the definition of the strain-equivalent noise PSD in Eq. (23), we see that this amounts to replacing Snoise
h 7→

Snoise
h /η in Eq. (E3). As in the main text, we have here restricted ourselves to GWs in the x–z plane for simplicity.

For detectors with R ∼ ℓ the factor η is order one, however for R ≪ ℓ it will be much smaller, significantly limiting

the effective sensitivity. In particular, for the parameters of Fig. 9, η = 1/(
√
2π).
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