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Ground state preparation is a key area where quantum computers are expected to prove advan-
tageous. Double-bracket quantum algorithms (DBQAs) have been recently proposed to diagonalize
Hamiltonians and in this work we show how to use them to prepare ground states. We propose
to improve an initial state preparation by adding a few steps of DBQAs. The interfaced method
systematically achieves a better fidelity while significantly reducing the computational cost of the
procedure. For a Heisenberg model, we compile our algorithm using CZ and single-qubit gates into
circuits that match capabilities of near-term quantum devices. Moreover, we show that DBQAs can
benefit from the experimental availability of increasing circuit depths. Whenever an approximate
ground state can be prepared without exhausting the available circuit depth, then DBQAs can be
enlisted to algorithmically seek a higher fidelity preparation.

Introduction.— Approximating the ground state of
a target Hamiltonian is a challenging problem, which has
been widely investigated in quantum and classical com-
puting. Quantum phase estimation (QPE) [1–4] is ex-
pected to be the go-to method for computing ground
state energies in the fault-tolerant era, but the circuit
depths it requires are prohibitive on near-term devices.
On the other hand, the variational quantum eigensolver
(VQE) [5] is a popular approach when tackling the prob-
lem in the near term [6–8]. However, as a heuristic opti-
mization algorithm over a highly non-convex landscape,
VQE has no convergence guarantees and is known to ex-
perience numerous optimization barriers [9–14].

Recently, double-bracket quantum algorithms
(DBQAs) have been proposed as a recursive algorithm
for obtaining circuits that diagonalize a Hamiltonian
[15]. In this manuscript, we investigate the potential of
DBQAs for preparing ground states. Unlike quantum
phase estimation, DBQAs can be implemented as near-
term quantum circuits without the need for auxiliary
qubits. Crucially, in contrast to VQE, these algorithms
involve classical optimization only for performance
improvement and can be analytically guaranteed to
converge [16–18].

In this work, as schematically shown in Fig. 1, we pro-
pose a two-stage ground state preparation protocol: first,
apply an existing state preparation method that uses rel-
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Figure 1. We propose a two-stage ground state prepara-
tion protocol: first, apply a relatively short-depth warm-start
circuit; second, apply a DBQA circuit to further the ground
state preparation fidelity.

atively short-depth circuits; second, apply a DBQA to
further improve the state preparation. To be specific, we
chose to initialize with VQE to highlight that even a lim-
ited approximation (namely one that might potentially
be achieved with a short-depth circuit on near-term hard-
ware) can be improved by DBQA. However, we stress
that our results are largely agnostic to the details of the
method used to find the starting state and there exist
many potential candidates, including: Hartree-Fock cir-
cuits [19], quantum imaginary-time evolution [20–23] and
auxiliary qubits qubitization methods [1–3].

To demonstrate the effectiveness of our method, we
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perform numerical simulations of DBQA for the Heisen-
berg model on a lattice. We investigate the circuit depths
required by DBQA depending on the quality of the ini-
tial approximation of the ground state. Considering all
the investigated VQE ansatze and target Hamiltonians,
we found that a single DBQA step (with circuit depth of
50-100 CZ gates per qubit) can improve the energy esti-
mation by an order of magnitude when initialized with
energy closer to the ground state than the first excited
state.

Warm-starting DBQA.— DBQAs are quantum
protocols inspired by flow equations originally used to
study quantum many-body systems [24–26]. As defined
in Ref. [15], DBQA circuits are obtained recursively from
double-bracket iterations (DBIs),

Âk+1 = eskŴkÂke
−skŴk (1)

where Â0 is the DBI input and the DBI generators are
commutators Ŵk := [D̂k, Âk] of Âk with operators D̂k

which should be taken diagonal to target diagonaliza-
tion [15, 16].

To understand the DBI circuit ansatz, which we ex-
plain in more detail in App. A, first note that whenever
D̂k and Âk are Hermitian and sk ∈ R, then R̂k = e−skŴk

are unitary. Second, the DBI initialization Â0 can be an
input Hamiltonian Ĥ0 as explored in Ref. [15]. Third,
among others, a natural task for DBIs is diagonalization.

In fact, when all D̂k are equal and non-degenerate, and
sk are small enough, then Âk asymptotically converges
(exponentially) to a diagonal fixed-point Â(∞) [16–18, 27]
and |ψ∞⟩ := limk→∞ R̂0R̂1 . . . R̂k|0⟩ is an exact eigen-
state of Â0. In the general case, this could be any eigen-
state and the circuit depth required to converge is expo-
nential in k [15]. However, we will show that even a few
steps can be used for substantial gains.

DBIs are parametrized by the step durations sk and
diagonal operators D̂k. These can be varied to maximize
the diagonalizing effect of each DBI step as captured by
a given diagonalization cost function. For example, in
Ref. [15], the DBI parameters are optimized to minimize
the magnitude of the off-diagonal terms of Âk+1 when
applying Eq. (1).

In this work, we address the problem of preparing the
ground state of an input Hamiltonian Ĥ0. To do this, we
consider a warm-start unitary Q̂ by setting

Â0 = Q̂†Ĥ0Q̂. (2)

This mechanism allows us to bridge the gap between
an initial method for approximating the ground state
(which generates Q̂) and our DBQA. Once this is done,
we take as cost function the average energy of the states
|ψk⟩ := Q̂R̂0 . . . R̂k |0⟩ at each iteration under the input
Hamiltonian

E(k) := ⟨ψk| Ĥ0 |ψk⟩ = ⟨0|Âk+1|0⟩ . (3)

Thus this warm-start mechanism allows us to interface
VQE and DBQA by defining a common cost function.

VQE [5] is a variational quantum computing routine
that minimizes the same cost function by optimizing a
parametric quantum circuit Ûθ, i.e. varies parameters θ
to find an optimal set of parameters

θ∗ = argminθ

{
⟨0|Û †

θĤ0Ûθ|0⟩
}

(4)

that minimize the energy. Because of VQE’s variational
character, trainability and expressibility problems ap-
pear [7, 9, 10, 13, 14, 28], limiting its effectiveness. How-
ever, for DBQAs we only need an approximation of the
ground state and VQE might be effective for this despite
its limitations. Thus we will use VQE as a warm start
for DBQA and set Q̂ = Ûθ∗ in Eq. (2). We will refer to
the interfaced approach as VQExDBQA when discussing
numerical results.

Ref. [15] showed that DBQAs are effective candi-
dates for eigenstates preparation by virtue of known
convergence results [16, 18] but it did not show how
to specifically target ground states. As we will see,
VQExDBQA consistently decreases the energy of the
state. We explain this qualitatively as a combination
of two factors: the spectral gap of the Hamiltonian as
well as the exponential convergence of DBQA. Given the
latter, as DBQA progresses Âk is largely diagonal and
consequently the DBI bracket [D̂k, Âk] is “small”, in the
sense that the resulting unitaries R̂k cannot in one step
change the energy by a lot compared to the spectral gap
of the model. Thus, to converge, the state must quickly
tend to an eigenstate that is close in energy. When a
warm-start initialization, e.g. by VQE, is closer to the
ground state than other excited states then |ψ∞⟩ will be
the ground state.

Compiling DBQAs.— To execute DBQA circuits,
an explicit strategy for compiling the DBI unitaries R̂k

as quantum circuits is necessary. This can be achieved
by group commutator iterations (GCIs), where we replace
R̂k by an approximation derived in Ref. [29],

V̂k = eirkϕD̂keirkÂke−irk(ϕ+1)D̂ke−irk(1−ϕ)ÂkeirkD̂k ,
(5)

with ϕ = 1
2 (
√
5 − 1). We then define the unitary of k

GCI steps as

Ûk = V̂0V̂1 . . . V̂k−1, (6)

such that now Âk = Û †
kÂ0Ûk. Following Ref. [29,

Eq. (8)], for rk =
√
sk this gives V̂ †

k ÂkV̂k ≈ R̂†
kÂkR̂k,

with an error bounded as O(s2k). See App. B for an
overview of other group commutator approximations and
scalings [15, 29, 30]. The GCI unitary can be recursively
compiled using the identity eirkÂk = Û †

kÛ
†
θ∗eirkĤ0Ûθ∗Ûk

and Ûk+1 = ÛkV̂k and by calling Hamiltonian simula-
tion [31, 32] for each appearance of an evolution oper-
ator in V̂k, see App. B for more details. This recursive
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Figure 2. Hamming-weight-preserving architecture for L = 4
qubits and S = 2. A single circuit layer consists of Recon-
figurable Beam Splitter (RBS) gates (see Eq. (7)) connecting
nearest- and next-nearest neighbors. We account for periodic
boundary conditions by adding RBS gates connecting the last
and first qubits. After a chosen number of layers, we add mea-
surements in the computational basis.

unfolding for each step k leads to a circuit depth that
grows exponentially with k so we use DBQA for up to
three steps and after a warm-start.

Tailoring VQE.— We will report below quantitative
results for preparing the ground state of the XXZ model,
which satisfies a total-spin conservation [33]. For an even
number of qubits L — as in the examples examined in
this work — and total spin S, the ground state of the
XXZ Hamiltonian is constrained to the half-filling sub-
space, i.e. a superposition of states associated to total
spin S = L/2. We account for this symmetry by using
a Hamming-weight-preserving VQE ansatz [13, 14, 34–
44]. This reduces the search space to a Hilbert space
of size

(
L

L/2

)
, providing a polynomial compression. Even

though this compression is not ideal, i.e. exponential,
fulfilling the system symmetries allows for faster training
due to circuit updates being constrained to a subspace of
interest [41, 45–48]. One way to construct an Hamming-
weight preserving ansatz consists of creating a network
of Reconfigurable Beam Splitter gates

θ =

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 . (7)

Such a gate is a common building block for constructing
circuits which preserve the Hamming weight of bitstrings
that label computational basis states in a given superpo-
sition. In Fig. 2 we describe the circuit architecture im-
plemented in our numerical experiments. In App. C we
also include results using a hardware-efficient ansatz [49],
which explores the entirety of the Hilbert space of size
2L. The increased expressibility complicates the train-
ing procedure, but interfacing with DBQA has again an
advantageous effect.

Numerical results for XXZ.— We consider the

one-dimensional XXZ Heisenberg model,

ĤXXZ =

L∑
i=1

(X̂iX̂i+1 + ŶiŶi+1 +∆ẐiẐi+1) , (8)

where the subscript i indicates the Pauli operators are
acting on the i-th qubit, and we use periodic boundary
conditions. The XXZ model (8) is well-understood by
means of Bethe ansatz [51–53], tensor networks [54] and
VQE [55].

After training the VQE circuit until a target epoch,
we use it as warm-start for GCI. For each GCI step,
we optimize the D̂k operators which are parametrized
as classical Ising models (see App. D). This allows us to
compile e−itD̂k with at most two layers of CZ gates and
we use second-order Trotter-Suzuki decomposition [31]
for a short-depth compilation of e−itĤXXZ , see App. E.

A detailed description of the procedure by which we
obtained the results we present in this section can be
found in App. D.

To visualize the advantages of VQExDBQA, in Fig. 3
we show the results for L = 10 qubits obtained by execut-
ing the procedure once. We find that the DBQA halves
the energy residue if applied to the early training epochs
and essentially reaches the ground state when executed
later in the process. More specifically, if we use three lay-
ers of the ansatz from Fig. 2, so a warm-start circuit with
depth of 12 CZ gates per qubit, then following up with
one GCI step yields a VQExDBQA circuit with depth 75
CZ gates per qubit. We quantify its performance through
the the energy approximation ratio

∆E := (Ẽ0 − E0)/E0 , (9)

where Ẽ0 is the energy achieved by VQExDBQA and E0

is the true ground state energy. Fig. 3 shows an im-
provement by an order of magnitude from ∆E ≈ 1% to
∆E ≈ 0.1%. This cost function gain is statistically sig-
nificant, see Tab. I where we consider 50 executions of
VQExDBQA for each VQE circuit configuration. Con-
sistently, DBQA steps improve energy estimation for all
depths analyzed. Energy measurements can be trans-
lated to fidelity lower bounds [56] as described in App. D.
Tab II shows that one step of VQExDBQA allowed us to
get F ≥ 99.6± 0.3% fidelity.

By increasing the circuit depth of the chosen ansatz
of Fig. 2 to 20 CZ gates per qubit, it can be trained to
reach ∆E ≈ 0.4%. In general, whenever an initialization
method is improved to match the previously top per-
forming VQExDBQA circuit, DBQA can be interfaced
with that enhanced initialization Q̂. Indeed, when ini-
tialized with the 20 CZ gates per qubit circuit depth with
∆E ≈ 0.4%, just one DBQA step again gives an order of
magnitude gain ∆E ≈ 0.03%. We were not able to reach
∆E ≈ 0.03% by training deeper VQE circuits.

The VQExDBQA circuits executed to produce Fig. 3
involve a VQE warm-start with 3 layers of the ansatz
from Fig. 2, which translates to circuit depth of 12 CZ
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Figure 3. Visualization of the impact of VQExDBQA on cost function for a single VQE random seed, see Tab. I for statis-
tical analysis. (left) Training of VQE (blue lines) for 3, 4, and 5 layers of Hamming-weight preserving ansatz (hues of blue)
achieves within 500 training epochs ground state energy residue ∆E ≈ 1%. For more epochs, the initially rapid decrease in
the cost function saturates and shows marginal improvement afterward. We initialize DBQA with VQE for selected epochs
∈ {100, 200, 500, 1000, 2000} and optimize DBQA parameters with CMA-ES [50]. In the bottom panel we show the rela-
tive difference value between the achieved energy Ẽ0 and the true ground state energy E0. (right) Token cost estimates of
VQExDBQA by counting the total number of CZ gates required for the complete protocol: training the VQE until a target
epoch and the optimization of DBQA.

Layers Warm-start 1 GCI step 2 GCI steps 1 DBI step Long VQE training

1− Ẽ0/E0 1− Ẽ0/E0 1− Ẽ0/E0 1− Ẽ0/E0 1− Ẽ0/E0

3 0.012± 0.004 0.0011± 0.0007 0.0005± 0.0004 0.0009± 0.0006 0.010± 0.004

4 0.008± 0.004 0.0006± 0.0005 0.0002± 0.0002 0.0005± 0.0004 0.004± 0.002

5 0.005± 0.003 0.0003± 0.0002 0.0001± 0.0001 0.0002± 0.0002 0.003± 0.002

Depth Cumulative cost Depth Cumulative cost Depth Cumulative cost - Depth Cumulative cost

3 12 1.44× 107 75 1.49× 107 390 1.69× 107 - 12 5.76× 107

4 16 2.56× 107 95 2.62× 107 490 2.88× 107 - 16 10.24× 107

5 20 4.0× 107 115 4.07× 107 590 4.38× 107 - 20 16.0× 107

Table I. (above) Energy approximation ratio for the XXZ model of Eq. (8) with L = 10 qubits, and ∆ = 0.5. The estimates
with their uncertainties were calculated using the median and the median absolute deviation of a sample of results obtained by
repeating the execution fifty times with different initial conditions. (below) Circuit depth expressed as number of CZ gates per
qubit, alongside with cumulative number of CZ gates used to reach Ẽ0 (See App. D). Warm-start VQE approximations (500
epochs of training) are presented alongside VQExDBQA results, executed considering both compiled (GCI) and theoretical
(DBI) approaches. For DBI, we compute R̂k through dense matrix representation so there is no gate count. Longer VQE
training (2000 epochs) is reported in the last column of the table.

Layers Warm-start 1 GCI step 2 GCI steps 3 GCI steps

3 0.83± 0.06 0.95± 0.01 0.993± 0.006 0.997± 0.003

4 0.89± 0.05 0.992± 0.007 0.997± 0.003 0.998± 0.001

5 0.93± 0.04 0.996± 0.003 0.998± 0.002 0.9992± 0.0008

Table II. Fidelity lower bounds [56] (see App. D) extending
results presented in Tab. I.

gates per qubit and then one GCI step yields depth 75
while two steps have depth 390. The right plot in Fig. 3

shows the training cost of the algorithm quantified in
terms of cumulative number of CZ gates during opti-
mization which captures the runtime of the classical op-
timization. More details about the cumulative cost met-
ric can be found in App. D. We find that the cost of
training is dominated by VQE when running few DBQA
steps. For tasks requiring high ground-state preparation
fidelity, VQE and DBQA should be used in sequence as
individually each would necessitate unnecessarily large
token expenditures. This cost advantage is confirmed in
Table I, where we report the gate count in the case where
VQExDBQA has been compiled into circuits via the GCI
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formalism (see appendix E).
Alongside with compiled GCI circuits, in the next-to-

last column of Tab. I, we show VQExDBQA results using
DBI unitaries which perform similarly to GCI, highlight-
ing the usefulness of Eq. (5).

Further investigations are presented in appendix F and
appendix C, where we consider next-nearest neighbors in-
teractions in the target Hamiltonian and a VQE architec-
ture which does not respect XXZ symmetries so requires
longer training but yields better warm-start energy in
shorter depth. Even in these cases, we have verified that
VQExDBQA remains advantageous.

Conclusions.— Current quantum hardware allows
to execute dozens, if not hundreds of CZ gates per
qubit. However, this capability cannot be used to prepare
high-fidelity ground state approximations due to a lack
of compiling methods (VQEs encounter training limita-
tions for large architectures; QPE algorithms need fault-
tolerance). We suggest that the recently proposed DBQA
approach could potentially be used to compile circuits to
take advantage of the capacity of existing quantum hard-
ware.

The fact that the combination of VQE and DBQA can
achieve lower energies with shorter training times than
using VQE alone could be advantageous in the near fu-
ture when remote access to powerful quantum hardware
will be readily available, however at a token cost for
each circuit execution. Our implementation [57] within
Qibo [58] provides a compilation of circuits that can be
used with any QASM compatible API and so quantum
computations that demonstrate experimental advances
become readily available.

We note that in this work we have not explicitly taken
into account the effect of shot noise or hardware noise in
our numerics. Once the effects of noise are included we
expect the performance of VQE to substantially degrade
due to the barren plateau phenomenon. In contrast, the
optimization procedures for DBI are optional in the sense
that even without learning the optimal step durations sk,
certain DBIs can still be guaranteed to converge, though
likely with less efficiency. Thus, while noise would be
detrimental to both VQE and DBI, we expect DBI to be
substantially more robust to its effects. We leave a full
exploration of these effects to future work.

Nonetheless, our high-fidelity ground state preparation
circuits relied on the initialization being sufficiently good,
which will become increasingly difficult for larger sys-
tem sizes. However, Figure 3 suggests that DBQA re-

mains advantageous for “undertrained” initializations by
markedly lowering the energy even if executed for just one
or two steps. If more improvement is needed then DBQA
is algorithmic so at the expenditure of circuit depth it can
allow to lower the energy further. Moreover, DBQA is ag-
nostic to the initialization method and can be combined
with a range of different state preparation strategies, see
App. G for overview.

We expect DBQAs to remain useful in the fault-
tolerant era as an initialization for QPE. Quantum dy-
namic programming [59] allows to reduce the circuit
depth of DBQAs and can be sequenced after VQE and
DBQA and before QPE. Thus, our work demonstrates
that, with respect to circuit depth, DBQAs could plau-
sibly be used to “interpolate” between the near-term and
the fault-tolerant eras.

Finally, it would also be interesting to investigate more
generally how DBQAs might impact the optimization of
variational algorithms. This could involve adopting an
approach opposite to the one developed in this work, us-
ing DBQA as a warm-start for variational routines. Such
a study would fit into a research context rich in opti-
mization techniques to interface with: Riemannian gradi-
ent flows [60], natural gradients [61], quantum imaginary
time evolution [22] among the others, with the intention
of considering all these tools in order to leverage their
mutual benefits.

All results presented in this work are reproducible
using the open-source code at Ref. [57].
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Appendix A: Summary of double-bracket quantum algorithms

We first list qualitative aspects together with main references and then will discuss these step by step with explicit
formulas. The approach we take stems from i) double-bracket flows which are non-linear differential equations in the
space of matrices [16, 62]. However, on a quantum computer implementing such equations exactly seems unfeasible
as opposed to discretizations [15] so we turn to ii) iterations rather than continuous flows, see also [17, 18]. Next, the
form of the iterations turns out to be iii) recursive and so the recursive step depends on the iterated matrix and only
implicitly on the input matrix. This property allows us to “dress” the input Hamiltonian by the initialization unitary
without changing the formulation. To implement quantum recursions on a quantum computer it appears that either
the iv) depth or v) width of the circuit grows exponentially. For this reason we vi) extend the durations of steps in
the iterated discretization of double-bracket flow such that each recursion step gives as much gain of the cost function
as possible. Additionally, we depart from using strictly the operators that would arise in continuous flows and vii)
allow for variational optimization, again to maximize the viii) cost function gain in each step.

For completeness, we give i) an example of a double-bracket flow, namely the Brockett flow [16, 63]: Given an input
matrix A0, we consider Aℓ to be the solution for any ℓ ∈ R of

∂ℓAℓ = [[N,Aℓ], Aℓ] . (A1)

If the matrix N is diagonal and has a non-degenerate spectrum then A∞ will be diagonal and the eigenvalues will be
sorted as in N [16, 63] for almost all initial matrices A0. The Euler scheme discretization of such differential equations
with ∆ℓ ∈ R

A(k+1) = A(k) +∆ℓ[[N,A(k)], A(k)] (A2)

is the linear expansion of the unitary recursions defined next.
Let Ĥ0 be a Hamiltonian and assume that we are given a sequence of hermitian diagonal operators D̂0, D̂1, . . .. We

define the ii) double-bracket iteration (DBI) as the iii) recursion starting with k = 0 and

Ĥk+1 = eskŴkĤke
−skŴk , (A3)

where Ŵk is a commutator bracket

Ŵk = D̂kĤk − ĤkD̂k = [D̂k, Ĥk] . (A4)

Next, we single out the double-bracket unitary

Ûk+1 = Ûke
−skŴk (A5)

which appears in the DBI recursion equation. As we will discuss in the next section, we can approximate Ûk using group
commutator formulas which reduce the quantum computation to sequences of Hamiltonian simulations. However, as
we will see there via explicit gate counting, the iv) depth of the circuit grows exponentially. Alternatively, we can use
the quantum dynamic programming [59] approach for executing the recursion, which can be carried out using only
polynomial depth, albeit v) with an exponential circuit width as a trade-off.

We will say that

Ĥk(s) = esŴkĤk(0)e
−sŴk (A6)

https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/https://doi.org/10.48550/arXiv.2312.03083
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevResearch.6.013221
https://doi.org/10.1103/PhysRevResearch.6.013221
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is a double-bracket rotation (DBR) since it satisfies a Heisenberg equation involving two, not one, brackets

∂sĤk(s) = [[D̂k, Ĥk(0)], Ĥk(s)] . (A7)

This allows us to define a greedy optimization scheme of a cost function f : C2L×2L → R≥ by considering vi) a global
minimum of how much a DBR can reduce the cost function

sk = argmins∈Rf(Ĥk(s)) . (A8)

Given this optimizer conditioned implicitly on the D̂k operator we can vii) optimize these operators e.g. by repeatedly
taking a starting guess, updating it and finding the minimum of f . We then set Ĥk+1 = Ĥk(sk).

Finally, let us discuss viii) explicit forms of cost functions. For the DBR ansatz we consider the magnitude of the
off-diagonal terms of Ĥk. More specifically, we define σ(Ĥk) to be the restriction of Ĥk to its off-diagonal, i.e. σ(Ĥk)

and Ĥk have the same off-diagonal matrix elements but the diagonal matrix elements of σ(Ĥk) are all zero. While
any matrix norm applied to σ(Ĥk) would be a measure of the magnitude of the off-diagonal terms of Ĥk, we consider
the Hilbert-Schmidt norm which arises from the Hilbert-Schmidt scalar product [64]

⟨Â, B̂⟩HS = tr [Â†B̂] (A9)

via ∥Â∥2HS = tr [Â†Â]. For this choice we can cast the Taylor expansion into the form

∥σ(Ĥk)∥2HS − ∥σ(Ĥk−1)∥2HS = −2sk−1⟨Ŵk−1, [Ĥk−1, σ(Ĥk−1)]⟩HS +O(s2k−1) . (A10)

This formula means that as long as we set the sign of D̂k correctly then we will get a reduction of the Hilbert-
Schmidt norm of the off-diagonal restriction. When iterated we will converge towards a fixed point which will be
diagonal. This diagonalization is achieved by the unitaries Ûk so when applying to computation basis states we will
get an approximation to an eigenstate.

In this work, we show that DBIs allow to reduce the expected value of energy which is defined by

Ek = ⟨ψk| Ĥ0 |ψk⟩ = ⟨0| Ĥk |0⟩ (A11)

where

|ψk⟩ = Ûk |0⟩ . (A12)

Finding the global minimum of the energy cost function fE(ψ) = min ⟨ψ| Ĥ0 |ψ⟩ results in the preparation of an
eigenstate, albeit a particular one. If one wishes to prepare eigenstates then the energy fluctuation

Ξ(ψ) =

√
⟨ψ| Ĥ2

0 |ψ⟩ − ⟨ψ| Ĥ0 |ψ⟩2 , (A13)

is an experimentally measurable cost function. We then can define the energy fluctuation during a DBI

Ξk =

√
⟨ψk| Ĥ2

0 |ψk⟩ − ⟨ψk| Ĥ0 |ψk⟩2 =

√
⟨0| Ĥ2

k |0⟩ − ⟨0| Ĥk |0⟩2 . (A14)

Finally, we argue why the energy of the individual state obtained from the VQE

|ψ(θ)⟩ = Ûθ |0⟩ (A15)

is lowered by DBI. In principle, the DBI is designed to lower the magnitude of the off-diagonal elements in the
Hamiltonian. However, by going from the Heisenberg picture in Eq. (A3) to the Schrödinger picture in Eq. (A12)
we see that |ψk⟩ becomes gradually closer to an eigenstate thanks to the lowering of σ(Ĥk). While σ(Ĥk) is lowered
other eigenstate signifiers will be enhanced by proxy. For example, because the Hamiltonian Ĥk becomes increasingly
more diagonal, there are always fewer off-diagonal matrix elements and Ξk will be directly lowered in the process.
For the energy, we additionally take into account that the VQE prepares a low-energy state. In the case that such a
state has already an energy expectation value lower than the spectral gap, for σ(Ĥk) to continue lowering the energy
must continue to approach the ground state value - otherwise the iterated DBI state will continue having overlaps
with higher energy eigenstates.
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Appendix B: Details on group commutator iterations

We will consider the notation

Âk+1 = V̂ †
k ÂkV̂k (B1)

for group commutations where the recursion step unitary V̂k is obtained by various approximations to the double-
bracket rotation unitary

Ûk = e−sk[D̂k,Âk] (B2)

The group commutator unitary for hermitian input generators Â, B̂ is given by

V̂ (GC)(Â, B̂) ≡ eiÂeiB̂e−iÂe−iB̂ . (B3)

For an iteration, we will set

V̂k = V̂ (GC)(
√
skÂk,−

√
skD̂k) = e−sk[D̂k,Âk] +O(s

3/2
k ) . (B4)

In general V̂ (GC)(Â, B̂) ≈ e−[A,B]. We consider this ordering because when rotating Âk in Eq. (B1) we can equivalently
use the reduced group commutator formula

V̂ (RGC)(Â, B̂) = eiB̂e−iÂe−iB̂ . (B5)

Setting

V̂k = V̂ (RGC)(
√
skÂk,−

√
skD̂k) (B6)

we do not obtain an approximation of the double-bracket rotation unitary Ûk but when rotating Âk we will obtain
the same Âk+1 because e−iÂkÂke

iÂk = Âk.
Finally, following Ref. [29] we consider the generalization of the group commutator to give a better approximation.

For this, notice that the group commutator approximates the evolution generated by a commutator of two generators
by a product of their individual evolutions. The following formula is given in Eq. (8)

V̂ (HOPF)(Â, B̂) = eiϕÂeiϕB̂e−iÂe−i(ϕ+1)B̂ei(1−ϕ)ÂeiB̂ (B7)

with ϕ = 1
2 (
√
5− 1). Again, this is design to approximate a double-bracket rotation V̂ (HOPF)(Â, B̂) ≈ e−[A,B]. To use

it for a group commutator iteration we set

V̂k = V̂ (HOPF)(
√
skÂk,−

√
skD̂k) = e−sk[D̂k,Âk] +O(s2k) . (B8)

This gives a higher-order approximation by canceling the first and third-order terms, thus retaining the leading
second-order term needed for the approximation of the double-bracket rotation unitary. We will refer to it as the
3rd order group commutator to stress the cancellation of the third order expansion term (coincidentally, the formula
involves 3 evolutions for each of the generators involved, while the regular group commutator involves 2).

Finally, in the numerics, we use again canceling and consider

V̂ (RHOPF)(Â, B̂) = eiϕB̂e−iÂe−i(ϕ+1)B̂ei(1−ϕ)ÂeiB̂ (B9)

as above with ϕ = 1
2 (
√
5− 1). We then set

V̂k = V̂ (RHOPF)(
√
skÂk,−

√
skD̂k) = e−sk[D̂k,Âk] +O(s2k) . (B10)

and benefit from 1 less query to Hamiltonian simulation.
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1. Explicit unfolding for GCI with RGC

As above, we set

Â0 = Û †
θ∗Ĥ0Ûθ∗ (B11)

so that the energy expectation value agrees with the loss function of the VQE

⟨0| Â0 |0⟩ = ⟨ψ0(θ)| Ĥ0 |ψ0(θ)⟩ . (B12)

In this section, we will make it explicit how a GCI for Âk results in an explicit unitary that involves only the VQE
preconditioning unitary Ûθ∗ , the input Hamiltonian evolutions e−itĤ0 and the diagonal evolutions e−itDk .

In the first step we will have for Â = r0Ĥ0 and B̂ = −r0D̂0 with r0 =
√
s0

V̂1 = e−ir0D̂0Û †
θ∗e

−ir0Ĥ0Ûθ∗eir0D̂0 . (B13)

With this we find

Â1 = V̂ †
1 Û

†
θ∗Ĥ0Ûθ∗ V̂1 . (B14)

This means that the state will be

⟨0| Â1 |0⟩ = ⟨ψ1(θ)| Ĥ0 |ψ1(θ)⟩ (B15)

where

|ψ1(θ)⟩ = Ûθ∗ V̂1 |0⟩ . (B16)

Here we V̂1 acts on the computational basis state, not the VQE state. This suggests that the DBQA step has the
role of entangling the computational basis state subtly and preparing it for the action of the VQE unitary. However,
let us notice that

eis0D̂0 |0⟩ = |0⟩ (B17)

whenever D̂0 is traceless and otherwise we acquire an immaterial global phase. Thus more explicitly we have

|ψ1(θ)⟩ = Ûθ∗e−is0D̂0Û †
θ∗e

−is0Ĥ0Ûθ∗ |0⟩ (B18)

which means that the Hamiltonian evolution in the first step acts indeed on the low-lying state |ψ(θ)⟩.
To do one more GCI step with r1 =

√
s1, we set

V̂2 =e−ir1D̂1 V̂ †
1 e

−ir1Â0 V̂1e
ir1D̂1 (B19)

=e−i(r0D̂0+r1D̂1)Û †
θ∗e

ir0Ĥ0Ûθ∗eir0D̂0Û †
θ∗e

−ir1Ĥ0Ûθ∗e−ir0D̂0Û †
θ∗e

−ir0Ĥ0Ûθ∗ei(r0D̂0+r1D̂1). (B20)

Here, it is key that there are in total 3 queries to the evolution governed by the input Hamiltonian. Using v2 we will
have

|ψ2(θ)⟩ = Ûθ∗ V̂1V̂2 |0⟩ (B21)

and again by disregarding the global phase the implementation of the last diagonal circuit eir0D̂0+ir1D̂1 can be omitted
in V̂2 (but not in V̂1). Thus, in total 2 steps of GCI involve 4 queries to e−itĤ0 .

We will say that Eq. (B20) is the unfolded form of the second GCI step. We repeat this unfolding of the recursion
for further steps until all unitaries appearing in the sequence are generated either by D̂k or Ĥ0.

In the numerical results, we do not use the first but rather the third-order higher-order product formula approx-
imating the double-bracket rotation. The unfolding proceeds in analogy just involving more queries to the input
Hamiltonian simulation.
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Appendix C: VQE using Hardware-Efficient ansatz

In this section, we show how DBQAxVQE performs with a hardware-efficient ansatz targeting the XXZ Hamiltonian.
This ansatz is in principle more expressive of the Hamming-weight preserving ansatz of Fig. 2, in the sense it could
cover the whole Hilbert space if the chosen circuit is expressive enough. From one side, this means the optimal solution
to our problem lies in the search space of our algorithm but, on the other hand, the training is more difficult because
no prior knowledge is exploited as it is when choosing the Hamming-weight preserving ansatz. Practically, we are
also exploring regions of the Hilbert space that don’t contain the target solution. Comparing the gates composing
our chosen HEA circuit with the one introduced in Fig. 2, we note the former presents more parameters but a lower
number of CZ. The choice of the ansatz must take into account the hardware availability and calibration accuracy.
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Figure 4. One example of VQExDBQA for XXZ using a hardware efficient ansatz and obtained fixing the simulation ran-
dom seed; the image is intended to provide qualitative information about the impact of VQExDBQA. A more robust study
of the performance is presented in Tab. I.(left) Training of VQE (blue lines) for 7, 8, and 9 layers (hues of blue) achieve
within 500 training epochs ground state energy residue of about 1%. We initialize DBQA with VQE for selected epochs
∈ [1000, 2000, 3000, 4000, 5000] where we apply a DBQA optimized in its parameters with CMA-ES [50]. (right) Token cost
estimates of VQExDBQA by counting the total number of two-qubit gates required to execute the complete protocol: training
the VQE until a target epoch and then optimizing and applying the DBQA.

Layers Warm-start 1 GCI step 2 GCI steps Long VQE training

1− Ẽ0/E0 1− Ẽ0/E0 1− Ẽ0/E0 1− Ẽ0/E0

7 0.023± 0.002 0.013± 0.0007 0.011± 0.0003 0.006± 0.002

8 0.005± 0.003 0.0003± 0.0002 0.00013± 0.00007 0.004± 0.002

9 0.005± 0.003 0.0003± 0.0002 0.00018± 0.00006 0.0030± 0.0003

Depth Cumulative cost Depth Cumulative cost Depth Cumulative cost Depth Cumulative cost

7 7 12.18× 107 50 12.25× 107 265 12.52× 107 7 20.03× 107

8 8 15.84× 107 55 15.91× 107 290 16.21× 107 8 26.4× 107

9 9 19, 98× 107 60 20.06× 107 315 20.39× 107 9 33.3× 107

Table III. (above) Energy approximation ratio for the XXZ model of Eq. (8) with L = 10 qubits, and ∆ = 0.5. The estimates
with their uncertainties were calculated using the median and the median absolute deviation of a sample of results obtained
by repeating the execution fifty times with different initial conditions. (below) Circuit depth expressed as number of CZ gates
per qubit, alongside with cumulative number of CZ gates used to reach Ẽ0 (See App. D). Warm-start VQE approximations
(3000 epochs of training) are presented alongside VQExDBQA results, executed considering compiled GCI circuits. Longer
VQE training (5000 epochs) is reported in the last column of the table.

We proceed with the same strategy presented in the main text, but considering N = 5 trainings per configuration.
In Fig. 4 we show an example of VQExDBQA execution with fixed random seed. After an initially rapid cost
function decrease, the VQE training saturates to essentially marginal improvements regardless the number of layers
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considered. On the other hand, we find that the DBQA halves the energy residue if applied to very early training
epochs (1000, 2000) and essentially reaches the ground state when executed later in the process.

The lower left plot shows that DBQA initialized in the first training plateau is in the basin of attraction for the
ground-state fixed point where convergence is exponentially fast in the number of steps.

The plot on the right shows the cumulative number of CZ gates required to execute the VQExDBQA protocol
together with the circuit depth, expressed as number of CZ gates per qubit. We find that the training cost is
dominated by VQE if considering a couple of DBQA steps. On the other hand, the DBQA training optimizes the
energy more with fewer queries. For tasks requiring high ground-state preparation fidelity, both methods should
be used in sequence as individually each would necessitate unnecessarily large token expenditures. A more detailed
analysis of the performances is presented in Tab. III and Tab. IV, where the approximation accuracy is respectively
quantified in terms of relative differences of Eq. (D1) and fidelity lower bound of Eq. (D2).

Layers Warm-start 1 GCI step 2 GCI steps Long VQE training

7 0.67± 0.03 0.82± 0.05 0.85± 0.05 0.92± 0.03

8 0.93± 0.04 0.995± 0.002 0.998± 0.001 0.94± 0.03

9 0.93± 0.02 0.996± 0.001 0.998± 0.001 0.96± 0.004

Table IV. Fidelity lower bound F (see Eq. (D2)) for the XXZ model of Eq. (8) with L = 10 qubits, and ∆ = 0.5 extending
results of Tab. III.

Appendix D: Details about numerical simulations

In this section, we discuss the choices we made in carrying out the simulations that led to the results shown in
this manuscript. After detailing the numerical simulations, we describe the computational cost of the VQE and
VQExDBQA approaches, which are reported in the tables of this work.

All the simulations have been performed using Qibo [58, 65–70], an open-source quantum computing framework
widely used to run quantum machine learning algorithms both in simulation [71–77] and on quantum hardware [78–80].
The optimizations have been performed through the Qibo interface, which integrates robust Python based frameworks
such as keras [81], tensorflow [82], scipy [83] and pycma [50].

1. VQE training and computational cost

Training description — We train the VQE using a gradient-based optimization approach. We use the Adam
optimizer [84], which has been proven to be one of the most effective optimizers when training big machine-learning
models. We set the learning rate to 0.05 after performing a hyper-optimization on a grid of values between 0.1 and
0.001. We keep the default values of the remaining hyper-parameters according to the Keras’ implementation.

The explored VQE architectures are the Hamming weight preserving ansatz introduced in Fig. 2 and a Hardware
efficient ansatz composed of RY, RZ and CZ gates. The target Hamiltonians have been chosen as cases of the general
Heisenberg Hamiltonian: a first target involves nearest neighbors interactions and a penalty ∆ = 0.5 to the Ẑs, while
in a second moment we consider a more complex case lighting up the next-nearest neighbors interactions. We refer
to these two cases as XXZ and J1-J2 respectively.

Once the VQE ansatz and the target Hamiltonian are specified, we explore its expressibility by varying the number
of layers in the VQE ansatz. We trained both ansatze with layers ranging from 3 to 9 and we repeated each training
with five different initial configurations. Namely, we randomly sampled the initial values of the angles parametrizing
the variational model from the uniform distribution U(−π, π).

After selecting the circuit sizes for which the ground state approximations were most accurate, we conducted a
series of more exhaustive simulations to quantify the training error. In particular, we handle the XXZ target training
Hamming-weight preserving ansatze composed of 3, 4, and 5 layers for 2000 epochs, and hardware-efficient ansatze
composed of 7, 8, and 9 layers for 5000 epochs. We instead tackle the J1-J2 target training Hamming-weight preserving
ansatze composed of 3, 4, 5, and 6 layers for 2000 epochs.

For each fixed target, ansatz, and number of layers we repeat the training fifty times, with a different set of initial
parameters sampled from the uniform distribution U(−π, π). Each of these training instances corresponds to a ground
state energy approximation Ẽ0, whose quality is quantified by computing the relative difference with the target (known
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or numerically computed) ground state energy E0

RD = 1− Ẽ0

E0
. (D1)

Alternatively, we can use the ground state energy approximations Ẽ0 to compute the following fidelity lower bound [56]

F = 1− Ẽ0 − E0

E1 − E0
, (D2)

where E0 and E1 are the true ground state and first excited state respectively.
Once all the fifty RD or F values are collected, a final estimate is computed through the median value of the

list, median(x), where we call x the list of RD/F values for simplicity. The estimation of the uncertainty is instead
computed using the median absolute deviation:

MAD = 1.4826 · median
(
|xi − median(x)|

)
. (D3)

We choose the median and the median absolute deviation as estimators of the variable and its uncertainty to be
more robust to outliers, which could be expected when applying the VQExDBQA algorithm. Since we make use of
a global cost function in this work, it can happen that, if the initial approximation provided by the VQE is not close
enough to the ground state, the final effect of the DBQA doesn’t correspond to a further reduction of the energy.
Moreover, since the optimization cost of the DBQA is particularly intense in the case of the non-compiled DBI, in
some rare cases it can happen the optimizers are not able to find an optimal configuration of the parameters when
the optimization process is limited in time.

Computational cost — To evaluate the computational cost of the VQE training we need to take into account
the total number of two-qubit gates composing the circuit architecture and the number of times an expectation value
has to be computed to evaluate predictions and gradients during the training. When using a gradient-based approach
on a quantum device, the gradients must be calculated using parameter shift rules [85, 86]. Since we parametrize
the quantum circuit through rotational gates, it is well known the partial derivative of our cost function w.r.t. to a
circuit’s parameter θ can be calculated using two expectation values. Considering the choice of Adam optimization,
the entire gradient of the cost function has to be computed at each optimization iteration. Finally, the total amount
of two-qubit gates (we take CZ as reference) can be computed as:

NVQE
CZ (e) = k · p · e · nVQE

CZ , (D4)

where we indicate with e the number of Adam iterations, p the number of parameters of the circuit, and nVQE
CZ the

number of CZ gates that compose the circuit according to the chosen ansatz. The constant k refers to the number
of expectation values required to execute the parameter shift rule. In the case of the hardware-efficient ansatz k = 2
and in the case of the Hamming weight preserving ansatz k = 4 since each RBS gate is decomposed into two rotations
depending on the same angle θ [45]. According to the same decomposition, the number of CZ gates composing the
Hamming-weight preserving ansatz circuit can be calculated as twice the number of RBS gates.

2. VQExDBQA procedure and computational cost

VQExDBQA procedure — To fully exploit the algorithm, it is necessary to prepare an approximation of the
ground state. In this work, we make use of a VQE, but any ground-state preparation algorithm can be used. This
first approximation is then used to precondition the target Hamiltonian, which is then rotated according to Eq. (2).
The following key step consists in compiling the DBI circuit and this can be done following an equivalent procedure
to the one presented in Sec. E. In the following discussion of the computational cost of the algorithm, we will take
into account the same VQE trainings exposed in the previous section, which are used as preconditioning ground state
approximations in the VQExDBQA process. We evaluate Eq. (D1) after applying the VQExDBQA to a given ground
state approximation provided by VQE stopped at target epoch e. Following the same procedure of Sec. D 1 we collect
all the RD values and provide the final estimations as the median and median absolute deviation of the obtained
results.

Computational cost — Both the initial state approximation and the GCI compilation into a circuit present a
computational cost and have to be cumulatively taken into account to evaluate the whole computational expense
of the algorithm. The total number of two qubits gates required by the VQExDBQA process involves then a first
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contribution due to the VQE cost described in Eq. (D4). We have to consider then the cost of executing the new
circuit, in which the VQE unitary is repeated exponentially as DBI iterations increase, and there is an additional cost
due to the Hamiltonian decomposition as explained in Sec. E. Denoting nDBQA

CZ the number of CZ gates composing
the circuit already involving both the GCI compilation and the recursive VQE call, we finally must consider the cost
of optimizing the GCI’s parameters. In fact, the GCI circuit can be parametrized both in the step duration s and in
the diagonal operators D̂k. In this work, we parametrize D̂k as a classical Ising model with nearest-neighbor (NN)
interactions:

D̂k(B
(k), J (k)) =

N∑
i=0

(α
(k)
i Ẑi + β

(k)
i Ẑi+1Ẑi), (D5)

where N is the number of sites in the chain, the parametrization is implemented through the coefficients {αi}Ni=0 and
{βi}Ni=0 and the superscript k highlights the optimization procedure is repeated for each DBQA step. We use Scipy’s
Powell and CMA-ES optimizers to find an optimal DBI configuration and this optimization has to be considered as
additional cost in the overall count. To evaluate this final contribution to the total number of two-qubit gates we
multiply nDBQA

CZ with the total number of cost function evaluations nfval executed by the optimizers. The total number
of two-qubit gates required to finalize the VQExDBQA ground state approximation can be finally obtained as

NDBQA
CZ = NV QE

CZ (e) + nfval · nDBQA
CZ . (D6)

Appendix E: Compiling of XXZ evolution

We next provide a discussion on how to explicitly express the diagonalization DBQA as above into an explicit
circuit. For the XXZ model we write the Hamiltonian as

Ĥ0 =

L∑
a=1

Ĥ(a) (E1)

where each summand addresses only two qubits

Ĥ(a) = X̂aX̂a+1 + ŶaŶa+1 + ẐaẐa+1 (E2)

for a < L and

Ĥ(L) = X̂LX̂1 + ŶLŶ1 + ẐLẐ1 (E3)

because of periodic boundary conditions. We next use M steps of the linear Trotter-Suzuki decomposition

e−itĤ0 =

(
L∏

a=1

e−i t
M Ĥ(a)

)M

+O(M−1) (E4)

which means that, if we decompose e−it/MĤ(a)

into CNOT and single qubit rotations, we get a circuit approximation
with accuracy O(t2/M). This is done by noticing that e−it/MĤ(a)

is a unitary acting on two qubits, i.e. a and a+ 1
and any two-qubit unitary can be decomposed into a circuit made of single qubit rotations and 3 CNOT gates [87].

We next discuss generalizations. The Hamiltonian in Eq. (E1) can be arbitrary and only the last step has to be
modified: Then the terms Ĥ(a) can be acting on more than 2 qubits and the evolutions they generate e−it/MĤ(a)

can
be compiled into CNOTs and single qubit rotations using the quantum Shannon decomposition [88] which implements
a unitary on K qubits using O(4K) CNOTs which is, in general, an optimal scaling.

Additionally, we can use a higher-order Trotter-Suzuki decomposition. We assume again that we have a 2 qubit
Hamiltonian on a line of an even number of qubits L so that Ĥ(o)

0 =
∑L/2

a=1 Ĥ
(2a−1) and Ĥ(e)

0 contains only commuting
terms. Then we write

e−itĤ0 =
(
e−it/(2M)h

(o)
0 e−it/MĤ

(e)
0 e−it/(2M)Ĥ

(o)
0

)M
+O(M−2) (E5)
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which gives an improved error scaling. From commutativity, we have the exact equality

e−it/(2M)Ĥ
(o)
0 =

L/2∏
a=1

e−it/MĤ(2a+1)

(E6)

Each of the factors above can again be decomposed into CNOTs and single qubit rotations by standard methods [87,
88].

1. Other 2-local models

The addition of the magnetic field Hamiltonian can be compiled in the above formalism by setting

Ĥ(a) = X̂aX̂a+1 + ŶaŶa+1 + ẐaẐa+1 +BaZa (E7)

for a < L and for periodic boundary conditions we set

Ĥ(L) = X̂LX̂1 + ŶLŶ1 + ẐLẐ1 +BLẐL (E8)

or for open boundary conditions Ĥ(L) = 0 so that

Ĥ0 = ĤXXZ + Ĥ(B) =
L∑

a=1

Ĥ(a) . (E9)

For the transverse-longitudinal field Ising model we set

Ĥ(a) = X̂aX̂a+1 +BaẐa + CaX̂a (E10)

and boundary terms similar to those above. This would give as above a compiling solution with 3 CNOT gates.

2. Special purpose compiling for the transverse-field Ising model

We next consider the special transverse-field Ising model

Ĥ(a) = X̂aX̂a+1 +BaẐa (E11)

obtained from the above by setting Ca = 0. We use that X̂aX̂b = CNOT(a, b)X̂aCNOT(a, b) and Ẑa =

CNOT(a, b)ẐaCNOT(a, b) to write

CNOT(a, b)Ĥ(a)CNOT(a, b) = X̂a +BaẐa (E12)

which means that we can get for any t

e−itĤ(a)

= CNOT(a, b)e−it(X̂a+BaẐa)CNOT(a, b) . (E13)

In other words, the transverse-field Ising model evolutions can be compiled using 2, not 3, CNOT gates per interaction
term.

3. Compiling for the classical Ising model

In the numerical calculations, we use parametrizations for the diagonal evolutions which have a low quantum
compiling. More specifically we define the classical Ising model

Ĥ(B, J) =

L∑
a=1

(BaZa + Ja,a+1ẐaẐa+1) (E14)

where as above ZL+1 = Z1. For Ĥ(B, J) we can compile the diagonal evolution using 2 CNOT gates which is
more efficient than using the general method of compiling 2-qubit unitaries from Ref. [87]. We use that ZaZb =
CNOT(a, b)ZbCNOT(a, b) and by unitarity of the CNOT gate

e−itZaZb = CNOT(a, b)e−itZbCNOT(a, b) . (E15)

The model is commuting so e−itĤ(B,J=0) consists of independent single qubit rotations.
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Appendix F: VQExDBQA results considering the J1-J2 model

In the main text, we presented results for the SU(2) symmetric XXZ model where we set ∆ = 0.5 as penalty to
the Ẑ interactions. Here we extend the analysis to a more general model:

ĤJ1-J2 = J1ĤXXZ + J2

L∑
i=1

(X̂iX̂i+2 + ŶiŶi+2 + ẐiẐi+2), (F1)

where we light up next-nearest neighbors interactions. In particular, we consider J1 = 1 and J2 = 0.2, which
corresponds to a regime such that J2/J1 = 0.2, and has been chosen knowing the target system presents a Berezin-
skii–Kosterlitz–Thouless transition at J2/J1 = 0.24116 [89, 90]. Also in this case we use the Hamming-Weight
preserving ansatz presented in Fig. 3 because the same symmetries are respected. We follow the same procedure as
the one presented in the main text for XXZ , but in this case, we execute the DBQA in single commutator mode
only. We postpone to future works the compilation of the model into a quantum circuit likewise we did in App. E.
The obtained results are presented in Tab. V.

Layers Warm-start 1 DBI step 2 DBI steps 3 DBI steps Long VQE training

3 0.033± 0.005 0.020± 0.005 0.016± 0.005 0.014± 0.004 0.026± 0.006

4 0.017± 0.007 0.006± 0.005 0.003± 0.003 0.002± 0.002 0.010± 0.004

5 0.011± 0.007 0.002± 0.002 0.0008± 0.0008 0.0004± 0.0004 0.005± 0.003

6 0.009± 0.006 0.002± 0.001 0.0007± 0.0007 0.0004± 0.0004 0.005± 0.003

Table V. Relative difference between approximated energy Ẽ0 and the target ground state value E0 for the J1-J2 model of
Eq. (F1) with L = 10 qubits, J1 = 1 and J2 = 0.2 together with the cumulative number of CZ gates, NCZ, used to reach
Ẽ0. The estimates with their uncertainties were calculated using the median and the median absolute deviation of a sample of
results obtained by repeating the execution fifty times with different initial conditions. Warm-start VQE approximations (500
epochs of training) are presented alongside VQExDBQA results, executed considering BDI unitaries. Longer VQE trainings
(2000 epochs) are reported in the last column of the table.

Appendix G: Details on relation to other methods

There exist many other VQE ideas and we refer to reviews for specific discussion of their detailed performance [6–
8]. Overall, it is clear that purely variational methods can be limited by training obstructions (e.g. swamps of
local minima or barren plateaus). So, the accuracy in energy estimation is expected to saturate before reaching the
global minimum. In all variational cases, one can interface the unitary Ûθ∗ with DBQA via the rotation of the input
generator (B11) as done in the main text.

We note that VQExDBQA is conceptually distinct from Ref. [60] which uses DBI methods — framed there in the
language of Riemannian flows — to compute the gradients of generic fixed parameterized quantum circuits. That is,
Ref. [60] is a quantum algorithmic implementation of Riemannian gradient descent steps. In contrast, we are using
DBI methods as a new ansatz design for parameterized quantum circuits.

Gradient-based optimization is often used for training VQE and it is natural to consider these methods for training
DBQA as well. An example of such 1-dimensional optimization is to use a greedy strategy to select DBI step durations
sk as cost function minimizers for the respective DBR. This strategy can be more general, e.g. gradient descent in the
space of magnetic fields Bi or Ising couplings Ji,j to find the best D̂k operators in each step starting from an initial
guess. We have also tried non-gradient-based optimizers, see App. D.

An interesting avenue of research is to replace VQE unitaries Ûθ by Hartree-Fock warm-starts, see Ref. [19] for a
discussion of quantum compiling using Givens rotations and experimental data. In this case, again, the question would
be if Hartree-Fock interfaced with DBQA could achieve better ground state approximation. Further generalization to
other ansatze in quantum chemistry can be interfaced with DBQA as long as explicit compiling is available.

Apart from direct minimization of energy, there exist methods that aim to implement certain transformations and
these transformations have energy-lowering properties. Quantum imaginary-time evolution (QITE) is an iteration
where in each step one seeks an approximation to the imaginary-time update |ψk+1⟩ = e−τĤ0 |ψk⟩ /∥e−τĤ0 |ψk⟩ ∥
through a unitary Ûk such that Ûk |ψk⟩ ≈ |ψk+1⟩. Here, the optimal parametrization of Ûk is not known so variational
methods have been used [20, 22, 23]. QITE circumvents trainability issues by trying to implement steps of an iteration
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that is bound to decrease the energy but it is not clear how to find the correct unitary for longer durations where the
cost function resolution is limiting. Instead, DBQA is coherent in that it can be applied directly and only relies on
measurements to optimize its performance but does not rely on classical supervision for its parametrization. For this
reason, it is likely the QITExDBQA interfacing should be preferred over the DBQAxQITE. However, if it is possible
to easily parameterize QITE at late stages of energy optimization, then QITExDBQAxQITE could be useful too.

So far we discussed methods that have been suggested without the use of auxiliary qubits. If one allows for that then
methods based on quantum phase estimation (QPE) become key. Here again interfacing can be possible. Most likely
DBQAxQPE should be preferred over QPExDBQA because QPE can be expected to be more costly than DBQA so
it is natural to chain methods to increase resource cost, e.g. VQExDBQAxQPE. QPE methods can be systematically
formulated in the formalism of qubitization. Note, that QITE can also be implemented in this way. In all cases, the
upper bound on the ground state energy found via VQExDBQA (or DBQAxQPE) could also be complemented with
a lower bound of the ground state energy via Dual-VQE [91].

Finally, let us comment broadly on DBQA concerning the so-called quantum approximate optimization algorithm
(QAOA) [6, 92]. Let us begin with Eq. (A10) and notice the resemblance to a 1-layer QAOA, in that in V̂1 we have a
layer of single-qubit gates (specifically, diagonal Z-rotations) followed by the evolution under the input Hamiltonian
and then again single-qubit rotations. For the first step, this is similar to QAOA which interlaces single-qubit
rotation layers with evolutions under the input Hamiltonian. The biggest difference is that in DBQA the two single-
qubit layers are related in that they are inverses of each other. Thus the guidance of the DBI equation through the
reduced group commutator approximation suggests a more constrained QAOA ansatz. This constraint facilitates the
monotonicity relation (A10) which allows us to analytically understand why diagonalization ensues. Similar relations
for unconstrained QAOA are not known to us but Ref. [15] conjectured that this might hint at understanding the
functioning of optimized QAOAs. Aside from these coincidental similarities, the methods are different in several key
aspects. In Ref. [92] the QAOA ansatz involving evolutions with the native Hamiltonian for trapped ions was used
to prepare an approximation to the ground state of a different model. In contrast, DBQA is not restricted to target
only the ground state but can be applied to target any other eigenstate of the given model. The distinction from
QAOA becomes more evident when applying DBQA beyond the first step. For example in the second step,(B20)
another difference appears in that V̂2 involves not only forward evolutions under the input Hamiltonian but also
respective backward evolutions. Indeed, while it may be challenging to implement DBQA beyond the first step on
analog quantum simulators, it is this nested forward and backward evolution structure that ensures the convergence
of DBQA. We are not aware of convergence guarantees of the DBQA type for QAOA.

1. Overview of currently available circuit depth

Following the overview above, most methods for preparing ground states on existing quantum hardware suffer one
of two severe problems. Variational methods are limited by the resolution of the cost function which is at the root
of their operation. This limits the circuit depth that is meaningful in practice to about a dozen entangling layers.
QPE-based methods are the opposite in that to become meaningful they need a large circuit depth.

As a specific example, we consider Ref. [93] which compared the performance of QPE for physical and logical qubits.
The algorithmic performance in Ref. [93] was obtained by using N ≈ 920 CZ gates for L = 8 qubits and the 2-qubit
gate fidelity was pe ≈ 2× 10−3.

We can use these experimental results to get ballpark figures for currently available depths. Upcoming devices are
set to reach p′e ≈ 5×10−4 [94] so assuming each CZ gate fails independently of the others we can estimate the number
N ′ of gates that can be used meaningfully by solving heuristically

(1− pe)
N = (1− p′e)

N ′
(G1)

This equation gives 16% success probability which in the three-nines fidelity regime p′e would appear for N ′ ≈ 3690
CZ gates. From these estimates, we see that there exists quantum hardware which operates meaningfully for circuit
depths of about 100 CZ gates per qubit and this is set to even larger values in the very close future. This means that
1 and 2 GCI steps are already feasible for implementation on existing noisy intermediate-scale quantum devices.
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