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Abstract: We propose a new way to obtain explicit de Sitter (dS) solutions from controlled string-

theory constructions. The Dine-Seiberg problem is usually interpreted as meaning that weak-coupling

expansions generically drive runaways rather than allowing stabilized maximally symmetric spacetimes.

Using the special case of string compactifications to 6D we confirm that this argument does prevent

the existence of classical maximally symmetric 6D solutions but argue that it allows time-independent

classical solutions with maximal 4D symmetry, including dS solutions. We review how minimal gauged

chiral 6D supergravity evades standard dS no-go theorems by having a positive scalar potential and

describe the known 4D classical dS, AdS and Minkowski solutions. The stringy provenance of this 6D

supergravity was obscure until Grimm and collaborators found it to be produced by direct F-theory

Calabi-Yau flux compactifications. We construct classical 4D maximally symmetric solutions for this

6D supergravity and provide explicit solutions of the higher-dimensional field equations corresponding

to dS, AdS and flat spacetimes in 4D, allowing interesting hierarchies of scales. We show how the

singularities of these solutions are consistent with the back-reaction of two space-filling 4D brane-like

sources situated within the extra dimensions and infer some of the properties of these sources using

the formalism of point particle effective field theory (PPEFT). These tools relate the near-source

asymptotic forms of bulk fields to source properties and have been extensively tested for more prosaic

physical systems involving the back-reaction of small sources, such as the dependence of atomic energy

levels on nuclear properties. We use it to determine the tension of the brane-like sources (that can

be positive) and its derivatives. We verify that the solutions are in the weak coupling/large volume

regime required to neglect quantum and α′ effects.
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1 Introduction

The future ain’t what it used to be.

So far as we know de Sitter space is in our future [1]. This is particularly annoying for string theorists

because it seems relatively hard to obtain as a solution to that theory’s field equations (for a recent

review see [2]). So hard that some have conjectured it is a principle of physics that de Sitter space

cannot be found in any theory of quantum gravity [3].

In this paper we find explicit solutions to the classical field equations of low-energy string vacua

that contain 4D de Sitter space and discuss the challenges to which they point for fully understanding

whether or not de Sitter space can be regarded as emerging from a fully fledged string construction.
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1.1 Why it’s hard

Two main obstacles are usually cited when discussing the difficulty of obtaining de Sitter solutions of

string theory within a fully controlled (and so trustable) approach.

1. Classical no-go theorems. General no-go theorems have been proposed that under very general

assumptions exclude the existence of classical 4D de Sitter solutions to the types of equations

that typically govern the low-energy effective string theory action [4–6].

2. The Dine-Seiberg problem. String theory has no parameters and so all approximate expansions

involve a series in powers of a field (such as the string dilaton or the inverse of the volume of any

extra dimensions). The leading term in the scalar potential is necessarily a monomial in these

fields and so drives them to zero or infinity. This suggests that stationary points for these fields

should arise only outside the regime of validity of such expansions [7].

Twenty years of ingenuity have gone into overcoming these challenges and at least two general

mechanisms have emerged. In one approach the classical impossibility of de Sitter solutions is accepted

but quantum corrections play an important role, with a combination of fluxes, branes, orientifold

planes, perturbative and non-perturbative effects cobbled together to generate low-energy effective

descriptions whose field equations have 4D de Sitter solutions (see [8] for a recent review and [9] for

a recent explicit example). These constructions have many moving parts, however, and debate still

rages as to whether all of the corrections are under complete calculational control in the de Sitter

regime. Part of the difficulty arises because de Sitter space necessarily breaks supersymmetry and

supersymmetry is often crucial for suppressing quantum corrections in explicit constructions.

A second approach instead seeks to evade the classical no-go theorems directly so de Sitter solutions

can be found in a regime where all quantum corrections can be systematically neglected. Although

conceptually simpler, most attempts so far have failed to find de Sitter solutions completely within a

trustable regime (see for instance [10, 11]). A key assumption of the no-go theorems is that higher-

dimensional scalar potentials are non-positive, as is known to be true for most higher-dimensional

supergravities. Most but not all: an exception is the 10D Romans supergravity [12] considered in

[11], but its stringy provenance is not fully understood and so far it is not known how to handle the

singularities of the solution.

1.2 So what’s new?

Here we explore a second exception to the negative-potential-in-supergravity rule: gauged chiral 6D

supergravity [13, 14]. This supergravity also has a positive scalar potential and compactified solu-

tions to it have been thoroughly studied for a variety of reasons for over 40 years, starting with the

pioneering work of Salam and Sezgin [15] who found an elegant supersymmetric solution that com-

pactifies to 4D Minkowski space with the extra two dimensions being a sphere whose size is stabilized

by electromagnetic flux.

Further exploration subsequently found a broader class of exact non-supersymmetric classical

compactifications [16–19] to 4D Minkowski space with the extra dimensions deformed into ‘rugby-

ball’ geometries with a pair of conical singularities (interpreted as being the positions of a pair of

codimension-2 branes). Still later came compactifications to 4D de Sitter and anti-de Sitter [20], again

with singularities in the extra dimensions suggesting the presence of source branes. We summarize

these solutions in §2 below.

It is important that the branes in these solutions are not ‘probe’ branes, since the solutions

explicitly include their back-reaction onto the geometry. This back-reaction has two important effects:
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it causes some bulk fields to become singular at the brane position (much as the Coulomb solution

diverges at the position of the source charge) and it can fix some of the remaining moduli associated

with the flat directions of the bulk (in principle obviating the need to introduce fluxes to do so). We

review a formalism for relating the singular bulk behaviour to source properties in §3. Ultimately the

modulus stabilization occurs because the branes break the approximate symmetries responsible for

the moduli [21–23].

It is noteworthy that this occurs without running afoul of the Dine-Seiberg problem, and does

so in an interesting way. The 6D scalar potential indeed arises as expected as a monomial in the 6D

expansion field (a dilaton) in precisely the expected way, and the rolling of the dilaton that this implies

indeed obstructs the existence of a maximally symmetric six-dimensional solution. It does not however

obstruct the existence of solutions that are maximally symmetric only in four dimensions (as is 4D

de Sitter space) rather than in the full six dimensions. In the solutions we find the dilaton evolves in

space and not time and does so in a way that extrapolates between the boundary conditions imposed

by the presence of source branes. In this way the Dine-Seiberg problem gets recast from a bug into a

feature: it helps explain why static solutions compactify spacetime (see [24] for a related discussion).

A perceived problem with these solutions from the string point of view has been the absence of

a clear stringy pedigree for the 6D supergravity. At present there are two separate responses to this

objection:

• We briefly review the arguments of [25] stating that any solution to the 6D chiral supergravity

of interest uplifts to a solution of the full ten-dimensional field equations of Type-I and heterotic

supergravites. This argument uses an explicit consistent truncation on a noncompact extra

dimension with infinite volume – and so does not provide a finite prediction for the 6D Newton

constant (or a viable low-energy phenomenology). But the ability to uplift to ten dimensions

known 6D compactifications with 4D de Sitter space arguably can be regarded as an existence

proof for 4D de Sitter solutions to a class of 10D field equations of a supergravity with a known

stringy provenance.

• To show why the issue of noncompact extra dimensions is ultimately a red herring we work in

this paper with a closely related 6D chiral supergravity that was found to be a low-energy limit

for F -theory compactifications in Type IIB string vacua with compact Calabi-Yau-like extra

dimensions [27]. The 6D theory found in this way differs by the addition of several fields relative

to the 6D theory explored in e.g. [20] and so in this paper we repeat the exercise of constructing

4D de Sitter solutions to the theory that results, thereby providing a new class of explicit 4D de

Sitter compactifications as solutions to 10 equations with a bona-fide stringy pedigree (but this

time with only compact extra dimensions).

These two types of uplifts from 6D to 10D are reviewed in §4 and the new class of compactifications

from F -theory are described in §5.
So does this settle the issue of de Sitter solutions existing in string theory? Not quite, though it

does move the ball downfield somewhat. A remaining concern involves the singularities these solutions

have, which raise two separate issues. The first asks whether any small expansion fields become large

near the singularities, since this can threaten the validity of the approximations made when asserting

the solutions capture the properties of real string vacua. The second assumes the singularities can

be interpreted as indicating the presence of some sort of brane source and asks what can be learned

about the source properties. In particular, are these recognizable as elementary objects like D-branes

or orientifold planes that are known to arise within string theory?
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We do not yet have definitive answers to these questions, but experience elsewhere in physics

teaches us that neither issue need be fatal in itself. Indeed the Coulomb solution remains beloved

despite being famously singular at the origin. Furthermore this singularity is not in itself an obstacle

to controlled calculations of atomic properties. Indeed, this atomic analogy is informative in several

ways since we there understand what is going on in great detail. The singularity at r = 0 indicates

the existence of a localized object (the nucleus) that sources the field, and the singularity only arises

when the idealized external Coulomb potential is naively extrapolated into the interior of the nucleus

instead of using the field the actual nucleus really generates.

We also know that strong couplings emerge at short distances that bind the nuclei and cannot be

captured purely using electromagnetic reasoning. Yet for the purposes of computing atomic electronic

energy levels all of the uncertainties associated with these are well-described by an effective theory that

systematically captures how localized first-quantized sources interact with low-energy electromagnetic

and electron fields in their immediate surroundings (for a review see [30]). The use of this effective

theory does not undermine in any way our ability to accurately compute atomic energy levels, including

the leading contributions from nuclear structure.

The formalism – point-particle effective field theory, or PPEFT – for systematically determining

how individual (first-quantized) small compact objects affect their surroundings was developed [31–

33] and tested in some detail for practical systems like nuclei in atoms [34–37]. It is also known to

capture the correct matching between source and environment – such as between D-branes and their

surroundings (see e.g. [38]) – for gravitational systems [39]. This effective theory provides a connection

between the asymptotic near-source form of any bulk fields and the dependence of the source’s action

on these fields, in much the same way that Gauss’ Law provides a relation between the coefficient of

1/r in the Coulomb field and a source’s electric charge within electromagnetism.

We apply this formalism to the singularities of the 4D de Sitter solutions and find a relationship

between the near-source asymptotic form of these solutions and the effective PPEFT action describing

these sources. This connection does not completely determine the microscopic form of the source any

more than measurements of electronic energy levels can completely determine the quark structure of

the atomic nucleus. But they do efficiently characterize precisely what any brane sources must satisfy

in order to source 4D de Sitter geometries within the supergravities of interest. This leaves open

whether more microscopic constructions using known stringy constituents can be found that have the

required properties.

We conclude with a brief summary of our results in §6.

2 4D de Sitter from 6D supergravity

If you don’t know where you are going you might wind up someplace else.

This section reviews chiral 6D supergravity and summarizes its 4D solutions (including those with

nonzero 4D curvature) and what is known about their singularities and what these say about the

gravitating sources that generate these solutions.

2.1 Chiral 6D Supergravity

Chiral gauged 6D (1, 0) supergravity [13, 14] contains a single chiral supersymmetry in six dimensions.

The field content is built from the basic supersymmetric multiplets, which include:
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• Gravity multiplet: Metric gMN , self-dual antisymmetric tensor B+
MN , left-handed gravitino Ψα

M

for a total of 12 bosonic and 12 fermionic degrees of freedom.

• Tensor multiplet. Anti-self-dual skew tensor B−
MN , scalar φ, right-handed fermion ψ (tensorino)

for a total of 4 bosonic and 4 fermionic degrees of freedom.

• Vector multiplet. Gauge potential AM and right-handed fermion λ (gaugino) for a total of 4

bosonic and 4 fermionic degrees of freedom.

• Hypermultiplet: Two complex scalars q1, q2 and one right-handed Weyl fermion ξ (hyperino) for

a total of 4 bosonic and 4 fermionic degrees of freedom.

In general there can be more than one of each type (except the graviton multiplet), with nT

denoting the number of tensor multiplets, nV the number of vector multiplets and nH the number

of hypermultiplets. Indeed, anomaly cancellation implies multiple multiplets are the rule not the

exception. Although having chiral fermions is attractive for phenomenological purposes it also means

that care must be taken to ensure that no gauge symmetries are anomalous. Green-Schwarz anomaly

cancellation [40] can occur in 6D (just as it does in 10D) but only if some consistency conditions are

satisfied, such as the number of each type of multiplet satisfies [41–43]

nH − nV + 29nT = 273 . (2.1)

The number of scalar fields depends on the number of tensor and hypermultiplets, with the ones from

the tensor multiplets parametrizing the coset SO(1, nT )/SO(nT ) while the 4nH scalars coming from

the hypermultiplets parametrize a quaternionic manifold1.

6D chiral theories are notorious because for them an action need not always exist if there are

unequal numbers of self-dual and anti-self-dual skew tensor fields. For this reason and for simplicity

we concentrate on the case nT = 1 so that the field B−
MN from the tensor multiplet can combine with

B+
MN from the gravity multiplet into an unconstrained antisymmetric tensor BMN . In this case we

have a single tensor-multiplet scalar φ and an action formulation exists. The single tensor-multiplet

scalar we denote by2 φ.

When searching for background configurations we can set all fermion fields to zero and focus on

scalar fields, that come from the tensor multiplets and hypermultiplets. Because the supergravity is

gauged there is a scalar potential of the form [13]

V =
2g2

κ4
U(q) eφ , (2.2)

where g is the coupling for a specific 6D gauge field and κ2 = 8πG6 is the 6D Newton’s constant for

gravity. The function U(q) can be minimized for the hypermultiplet fields, qU , leading to a vacuum

configuration for which these fields can all be set to zero consistent with their equations of motion.3

The function U(q) is normalized so that Umin = 1 at this minimum. (In later sections we return to

allow nontrivial hypermultiplet scalar configurations when we discuss F -theory.)

1See [44–49] for recent discussions related to a general classification of chiral supersymmetric 6D theories.
2In general for nT > 1 the coset SO(1, nT )/SO(nT ) is parametrized by fields jα, with α = 1, · · · , nT +1, constrained

by Ωαβj
αjβ = 1, with Ωαβ = diag(−1, 1, · · · , 1). For nT = 1, the constrain is satisfied by j0 = coshφ, j1 = sinhφ and

we can work with the unconstrained field φ. See for instance [50].
3The detailed form of the function U(q) depends on which groups are gauged but it takes generically the small-q form

U(q) = A+
∑

i Bi|qi|2 with A,Bi positive constants, where the sum is over a subset of the hypermultiplets [51–54].
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Background gauge fields can be nonzero consistent with maximal symmetry in 4D and we consider

only a single nonzero background gauge field, chosen to be the gauge potential, AM , that gauges the

specific UR(1) symmetry for which the gravitino field carries nonzero charge. The action for this gauge

field, the Kalb-Ramond field BMN the remaining scalar φ and the metric then has the form considered

in the original paper of Salam and Sezgin:4

L6 = −
√
−g

[
1

2κ2
gMN

(
RMN + ∂Mφ∂Nφ

)
+

1

4
e−φFMNF

MN +
1

12
e−2φHMNPH

MNP +
2g2

κ4
eφ

]
,

(2.3)

with field strengths defined by F(2) = dA(1), H(3) = dB(2) +
1
2κF(2) ∧ A(1) (where the bracketed

subscript (p) in the index-free notation indicates the field in question is a p-form).

The bosonic equations of motion are:

□6φ+
κ2

4
e−φFMNF

MN +
κ2

6
e−2φHMNPH

MNP − 2g2

κ2
eφ = 0 (2.4)

∇M

(
e−φFMN

)
+ κe−2φHPNQFPQ = 0 , ∇M

(
e−2φHMNP

)
= 0 (2.5)

RMN + ∂Mφ∂Nφ+ κ2e−φFMPF
P

N +
1

2
(□6φ) gMN = 0 , (2.6)

in which (2.4) has been used to rewrite (2.6) so that the terms proportional to gMN involve only the 6D

d’Alembertian □6φ := gPQ∇P∇Qφ. This turns out to be possible because the system has a classical

scaling symmetry under which the replacements

gMN → c gMN and e−φ → c e−φ imply L6 → c2L6 , (2.7)

for constant c. Although not a symmetry of the action this transformation does leave the equations

of motion invariant [18, 57, 58].

2.2 Solutions

Because the scalar potential for φ is monotonic it obstructs there being 6D maximally symmetric

solutions for any finite φ. This can be seen because maximal symmetry in 6D requires FMN = HMNP =

0 and that φ be constant, but this is inconsistent with the dilaton field equation which implies □6φ

cannot vanish. The same is not true for solutions that are maximally symmetric only in 4D, however,

since although these still require HMNP = 0 the gauge field can be nonzero if restricted to the two

extra dimensions: Fmn with m,n = 4, 5.

2.2.1 Salam-Sezgin solution

For the simplest solutions spacetime has a product metric,

ds2 = gµν(x) dx
µdxν + gmn(y) dy

mdyn, (2.8)

with gmn being the metric on a 2-sphere and Fmn = f ϵmn proportional to the 2-sphere volume form.

Maximal 4D symmetry requires φ and f are independent of the 4D coordinates xµ and the field

equation (2.5) then implies e−φf is also independent of the coordinates yn. For f and φ separately

constant □6φ = □2φ = 0 and consistency with (2.4) requires

e−φf = ±2g/κ2. (2.9)

4Like all sensible people we use a positive-signature metric and Weinberg’s curvature conventions [55], which differ

from the popular MTW conventions [56] only in the overall sign of the Riemann tensor.
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When □6φ = 0 eq. (2.6) also implies the maximally symmetric 4D metric gµν must be flat. The

resulting maximally symmetric 4D and 2D geometry then is R1,3 × S2 with R1,3, with metric

ds2 = ηµν dx
µdxν + ρ2

(
dϕ2 + sin2 ϕdθ2

)
(2.10)

where ρ is the 2-sphere’s radius. The radius is determined by the extra-dimensional components of

(2.6) – Rmn = −κ2e−φFmpF
p
n – which imply

1

ρ2
= κ2f2e−φ which with (2.9) implies ρ2eφ =

(
κ

2g

)2

. (2.11)

Flux quantization on the 2-sphere also implies g̃fρ2 = 1
2n for integer n, where g̃ is the gauge coupling

for the field FMN . This is consistent with (2.9) and (2.11) if g̃ = g and n = ±1. This choice is called

the Salam-Sezgin solution.

Notice that the field equations determine only the combination ρ2eφ, with the quantities ρ and

φ not separately determined. This is consistent with the classical rescaling symmetry (2.7), which

implies one combination of these two moduli is a flat direction of the potential in the 4D effective

theory.

The Salam-Sezgin solution is remarkable in several ways. It happens that the choice n = ±1

preserves N = 1 supersymmetry in 4D, so these compactifications provide explicit chiral N = 1

Minkowski solutions – much as Calabi-Yau compactifications do for string theory – but in a simpler

framework for which the metric is known explicitly. Furthermore, since the starting 6D theory has a

positive runaway potential, it illustrates directly the Dine-Seiberg problem, not allowing a maximally

symmetric solution in 6D. But the possibility of turning on magnetic fluxes allows a maximally sym-

metric solution in 4D in which the fluxes compete with the runaway scalar potential to give rise to a

4D Minkowski vacuum.

From the 4D point of view the 4D scalar potential for the fields φ and ρ receives contributions

at the classical level from: (i) the 6D scalar potential, (ii) the contribution of 2D curvature to the

Einstein-Hilbert term of the action and (iii) the contribution of magnetic flux to the Maxwell action.

It happens that for n = ±1 these combine to a perfect square, leading to the 4D scalar potential [59]

V =
2g2eφ

ρ2

(
1− κ4

4g2eφρ2

)2

. (2.12)

This reproduces the solution in (2.11) inasmuch as it fixes the combination eφρ2 but leaves the or-

thogonal combination eφ/ρ2 unfixed.5

The Salam-Sezgin solution is known to be a particular instance of a broader class of solutions to

these equations that include both warped geometries and conical singularities in the extra dimensions

[17–19] (for all of which the 4D metric gµν remains flat).

2.2.2 A broader class of solutions

A wide variety of exact solutions to the 6D equations (2.4) through (2.6) are known, including scaling

solutions [60], wave solutions [61], black brane solutions [62] and so on. Of particular interest here are

those described in [20] for which the 4D geometry is maximally symmetric but not flat.

5In [59] non-perturbative effects were added to fix the remaining flat direction. The remaining flat direction arises

because the Salam-Sezgin solution does not break the scaling symmetry (2.7).

– 7 –



These solutions are obtained starting with HMNP = 0 and seeking geometries with the warped-

product metric ansatz

ds2 = ĝMN dxMdxN =W 2gµν dx
µdxν + a2dθ2 + a2W 8dη2 , (2.13)

where gµν(x) is a maximally symmetric 4D metric and the ‘hat’ is meant to distinguish ĝµν =W 2gµν
from gµν . The unknown functions W (η), a(η), φ(η) and Fηθ(η) are defined on the cylindrically

symmetric extra-dimensional 2D geometry spanned by the coordinates θ and η.

Notice that maximal 4D symmetry implies the 4D components of (2.6) become

R̂µν +
1

2
(□2φ) ĝµν = 0 , (2.14)

where R̂µν = 1
4 R̂4 ĝµν . This shows that R̂4 = ĝµνR̂µν = −2□2φ is a total derivative within the two

extra dimensions. If fields are everywhere nonsingular then
∮
□2φ = 0 when integrated over the extra

dimensions and so the maximally symmetric 4D geometry must be flat. But singularities are not

unusual when gravitating sources are present (as the Coulomb solution teaches us for electromagnetic

sources), so a better approach is to excise the positions of any singular sources by surrounding each

of them by a small Gaussian pillbox. In this case integrating over the extra dimensions outside the

pillboxes picks up contributions from the pillbox surfaces, and provides a constraint relating the sign

of R̂4 to the near-source derivative of φ:∫
M2

d2y
√
g2 R̂4(x, y) = 2

∮
∂M2

dy nm
√
g2 g

mn∂nφ , (2.15)

where
√
g2 is the 2D volume element and ∂M2 is the union of the surfaces of the small pillboxes, on

which nm is the unit normal (pointing out of the source) [18, 57, 58].

With these choices the Maxwell equation (2.5) integrates to give

Fηθ = Qa2 eφ , (2.16)

for constant Q while the functions a, W and φ are obtained by integrating the scalar equation (2.4)

φ′′ +
κ2

2
Q2a2eφ − 2g2

κ2
a2W 8eφ = 0 , (2.17)

and the Einstein equations (2.6)

(µν) :
(
lnW +

φ

2

)′′
= 3ζ H2a2W 6 (2.18)

(θθ) :
(
ln a+

φ

2

)′′
= −κ2Q2 a2eφ (2.19)

where primes denote differentiation with respect to η. Here ζ = ±1 and H is the maximally symmetric

4D geometry’s Hubble constant, in terms of which the curvature of the 4D metric gµν is Rµνλρ =

ζH2(gµρgνλ − gµλgνρ) (and so ζ = +1 for de Sitter space and ζ = −1 for anti-de Sitter space).

Eqs. (2.17) through (2.19) are to be read as evolution equations for stepping the three unknown

functions a, W and φ forward in η given initial conditions at some η = η0. These initial conditions

must satisfy the first-order constraint coming from the (ηη) Einstein equation,

(ηη) : 6ζH2a2W 6 − 4 a′W ′

aW
− 6(W ′)2

W 2
+

1

2
(φ′)2 +

κ2

2
Q2 a2eφ − 2g2

κ2
a2W 8eφ = 0 , (2.20)
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from which the value of ζH2 can be read off once the fields and their first derivatives are specified for

some initial value of η. The scale invariance (2.7) of the full 6D field equations implies a one-parameter

family of solutions can be built from any specific solution, with{
φ, a,W,H

}
→

{
φ+ φ0, a e

−φ0/2,W,H eφ0/2
}
, (2.21)

for φ0 an arbitrary real constant. For the special case H = 0 this corresponds to a one-parameter

family of classical solutions all sharing the same Hubble rate, and so corresponding to a flat direction

(labelled by φ0) of the 4D effective theory that represents a compactification modulus.

Notice that (2.19) implies (ln a + 1
2φ)

′ is a monotonically decreasing function of η while (2.18)

implies (lnW + 1
2φ)

′ is monotonically increasing or decreasing depending on the sign of ζ. Integrating

(2.18) specializes (2.15) to this geometry

3ζ H2

∫ η2

η1

dη a2W 6 =
(
lnW +

φ

2

)′

η=η2

−
(
lnW +

φ

2

)′

η=η1

. (2.22)

This last equation has a simple 4D interpretation if integrated over the entire extra dimensions once

the definition
1

κ24
=

1

κ2

∫
d2x

√
g2 W

2 =
2π

κ2

∫ ∞

−∞
dη a2W 6 (2.23)

of the low-energy 4D Newton constant, κ24 = 8πGN , is used because together (2.22) and (2.23) imply

ζH2 = 8
3πGN

[(
lnW +

φ

2

)′
]η=+∞

η=−∞
. (2.24)

This is recognizable as the 4D Friedmann equation, with the role of the 4D energy density being played

by the square bracket involving only the asymptotic derivatives of the combination W + 1
2φ. This

expression can be shown to be completely consistent with the 4D Friedmann equation found within

the low-energy 4D EFT once its effective scalar potential is carefully computed [21, 22, 38, 63, 64].

Explicit solutions to these equations with H = 0 are known in closed form [17–19]

W 2eφ = e−λ3η , W 4 =

(
κ2Qλ2
2gλ1

)
cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
, Fηθ =

(
Qa2

W 2

)
e−λ3η

and
1

a4
=

(
4gκ4Q3

λ31λ2

)
e−2λ3η cosh3[λ1(η − η1)] cosh[λ2(η − η2)] , (2.25)

with integration constants η1, η2, λ1, λ2 and λ3 related by λ2 =
√
λ21 + λ23. There is no loss of

generality in choosing λ2 ≥ 0, in which case it must satisfy λ2 ≥ |λ1| (with equality if and only if

λ3 = 0). A one-parameter family of solutions can be obtained by acting on this with the transformation

(2.21). The stability of these solutions is extensively explored in [65].

Solutions also exist for either sign of ζ and for nonzero H, though not analytically in closed form as

above. Several explicit examples with 4D de Sitter space (ζ = +1 and H ̸= 0) are obtained numerically

in [20].

2.2.3 Near-brane asymptotics

The solutions (2.25) are generically singular as η → ±∞ (as are also the solutions with H ̸= 0), with a

curvature singularity when λ3 ̸= 0 and a conical singularity when λ3 = 0. The λ3 = 0 solutions include

(but are not restricted to) the unwarped, constant-dilaton ‘rugby ball’ configurations of ref. [16] as the

– 9 –



special case where η1 = η2. These singularities are interpreted as signalling the presence of some sort

of a gravitating source, and so we explore the near-source asymptotic form following [38].

If the source is a codimension-two object then we must ask a → 0 as it is approached (so that

circles of proper radius r that surround it also have circumferences that shrink as r → 0). In the a→ 0

limit eqs. (2.17), (2.18) and (2.19) simplify to

φ′′ ≃ (lnW )
′′ ≃ (ln a)

′′ ≃ 0 , (2.26)

and so for the sources at η = ±∞ we have (respectively)

φ ≃ ∓η q± , W ≃W± e
∓η ω± and a ≃ a± e

∓η α± , (2.27)

for independent real constants αb, ωb and qb applying for the two limits, η → ±∞. The explicit ∓ sign

is present so that the convention is that the functions W , a and eφ all tend to zero at the position of

the source if the constants α±, ω± and q± are positive (and so asking a→ 0 at each brane is equivalent

to requiring α± > 0). The constraint eq. (2.20) implies the relation

q2b = 4ωb(2αb + 3ωb) , (2.28)

must hold separately for both choices b = ±.

Even if a → 0 at the source, neglect of the quantities a2W 6, a2eφ and a2W 8eφ in eqs. (2.17)

through (2.20) is only consistent if W and eφ do not grow fast enough to overwhelm the shrinking of

a, which requires

2αb + 6ωb > 0 , 2αb + qb > 0 and 2αb + 8ωb + qb > 0 . (2.29)

The first of these also ensures convergence of the integral appearing in (2.23). Notice also that if αb > 0,

then ωb must also be non-negative. To see this, suppose ωb were negative. Then eq. (2.28) would imply

−2αb − 3ωb > 0, and so adding this to the first of eqs. (2.29) would give ωb > 0 (contradicting the

assumption that it is negative). In principle, the constant qb can have either sign.

When the inequalities (2.29) hold the terms involving H in the equations of motion become

negligible in the near-brane limit. This means that the asymptotic form of the explicit H = 0 solutions

of (2.25) are also relevant to the asymptotic regions at η → ±∞ when H ̸= 0. In particular, the metric

singularities mentioned above for the flat case also apply. Comparing (2.27) with the limiting forms

of (2.25) and using the above-mentioned condition λ2 ≥ |λ1| shows that

α± =
1

4
(3λ1 + λ2 ∓ 2λ3) ≥ 0 , ω± =

1

4
(λ2 − λ1) ≥ 0 , (2.30)

and

q± = ±λ3 −
1

2
(λ2 − λ1) . (2.31)

The quantity (lnW + 1
2φ)

′ ≃ ωb +
1
2qb therefore asymptotes to

ω± +
q±
2

= ±λ3
2
, (2.32)

and so (2.24) governing the size of H becomes

ζH2 = − 8
3πGN

∑
b=±

(qb
2

+ ωb

)
. (2.33)
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Although this vanishes for the solutions (2.25) (as it must) once (2.32) is used, the result need not

be zero for more general solutions because eqs. (2.30) need hold only approximately in the near-brane

region, with constants λ1, λ2 and λ3 that generically are not the same for the asymptotic region near

different sources.

Because ωb is non-negative eq. (2.33) implies a 4D de Sitter solution (for which ζ > 0) requires

at least one of the qb’s to be negative (and so eφ would diverge if |η| were really taken to infinity for

this source). Such divergences are sometimes dealt with by ‘smearing’ them, as one might do if the

source of a Coulomb potential were at close examination found actually to be a classical distribution

of charge rather than a point source. But as the example of the nucleus within an atom shows, what

is really going on at short distances can be much more complicated than a classical distribution of

charge, so smearing can at best be regarded as an ad hoc model of the real short-distance physics.

Much better to be more systematic: use EFT methods to characterize the kinds of fields that can

emerge from any particular Gaussian pillbox.

3 Effective Field Theory of Localized Sources

In theory there is no difference between theory and practice. In practice there is.

The near-source singular behaviour found above raises two related questions, about both of which

EFT methods have something to say:

• Do near-source singularities imply an irretrievable breakdown of the approximations that allow

reliable predictions to be made for properties (like the 4D curvature) far from the sources?

• What does singular behaviour say about the nature of the gravitating sources whose presence is

responsible for the solution’s singularity?

Effective field theories (EFTs) shed light on both of these questions by systematizing the types of

couplings that can arise between small massive sources and surrounding ‘bulk’ fields, organizing them

in powers of small ratios of scale like R/λ where R is the source’s size and λ is the wavelength of

modes of the bulk field.

Several flavours of such EFTs are fairly widely used. Theories like NRQED [66] – applied to

bound states in QED – or HQET [67] – applied to heavy-quark systems in QCD – formulate both

the bulk fields and the heavy sources as second-quantized fields. For instance in this framework the

interactions between the electromagnetic field Aµ(x), the electron field, Ψ(x), (which charge −e and

mass m) and the field Φ(x) for a spin-half nucleus with charge Ze and mass M ≫ m can be written

as S = SRen + SNRen with the renormalizable action describing the standard minimal couplings:

SRen = SQED + SΦ = −
∫

d4x

{
1

4
FµνF

µν +Ψ [��D +m] Ψ + Φ [��D +M ] Φ

}
. (3.1)

Here Fµν = ∂µAν − ∂νAµ, DµΨ = ∂µΨ+ ieAµΨ and DµΦ = ∂µΦ− iZeAµΦ.

The non-renormalizable action captures the non-minimal interactions among the fields:

SNRen = −
∫

d4x

{
c̃d
2

(
ΦγµνΦ

)
Fµν + c̃s

(
ΨΨ

) (
ΦΦ

)
+ c̃v

(
ΨγµΨ

) (
ΦγµΦ

)
+ · · ·

}
(3.2)

where γµ are the Dirac matrices and the Wilson coefficients c̃d, c̃s, c̃v capture the effects of nuclear

substructure obtained by integrating out its constituents. This kind of approach allows an efficient
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use of graphical methods in the high-energy relativistic theory (in which radiative corrections are

computed) together with more efficient treatment of bound states if the nonrelativistic limit for Φ is

used.

Of more interest here are versions of these theories for which the heavy compact source is treated

in a first-quantized form. In this case both photon and electron are still described by second quantized

fields, Aµ and Ψ, but the multi-particle states of the field Φ are integrated out, leaving only the

collective coordinates — such as the centre-of-mass position and spin – of the single nucleus relevant

to the atom of interest. Writing the worldline of the nucleus as P : xµ = yµ(s) the part of the effective

action containing nuclear structure effects is instead written as S = SQED + SNucl with:

SNucl = −
∫
P
ds

{√
−ẏ2M − ZeẏµAµ + cs

√
−ẏ2

(
ΨΨ

)
+ icv ẏ

µ
(
ΨγµΨ

)
+ · · ·

}
, (3.3)

where ẏ := dy/ds and cs, cv are again Wilson coefficients. In this case the path integral defining the

EFT is over the fields Aµ,Ψ and the nucleus coordinate yµ rather than Aµ,Ψ and Φ. To emphasize

the first-quantized nature this approach can be called the Point Particle Effective Field Theory, or

PPEFT for short.

One variant of the PPEFT formalism has been used to explore how massive objects like black

holes or neutron stars interact gravitationally [68] (such as when inspiralling pairs emit gravitational

waves). This variant typically works in an expansion about flat space and so profits from the efficient

graphical expansions this allows in the weak-field limit. We do not use this formulation here because

position-space methods are more convenient for our purposes, as we next describe.

3.1 Point Particle Effective Field Theory

We here follow the position-space PPEFT approach of [31–33] that is better suited to describing

classical solutions in a way not tied to weak-field expansions. In this approach classical bulk equations

are solved exactly and control over calculations far from any sources is maintained despite the presence

of singular near-source configurations by carving out a small Gaussian pillbox of proper radius ϵ

that excises each source from the surrounding bulk spacetime. The influence of the sources on the

surrounding fields is then captured through appropriate boundary conditions applied at the boundaries

of these pillboxes (in much the same way that Gauss’ law specifies the amount of electric flux at the

boundary of a pillbox in terms of the net charge contained within).

This procedure allows the larger bulk properties to be understood without needing to know mi-

croscopic details about the sources, much as we can understand atomic energy levels in detail without

first completely understanding nuclei.6 It also shows how to identify the boundary conditions as a

function of the effective couplings in the EFT describing the ‘point-like’ source, allowing successively

more accurate boundary conditions as more and more details (like higher order multipoles) of the

source become known.

More specifically, if the physical linear size, a, of the source is much smaller than the typical

extra-dimensional length scale, ℓ, then one chooses ϵ to lie within the regime a ≪ ϵ ≪ ℓ for which

a multipole-like expansion of bulk fields obtained as powers of a/ϵ can be matched to the boundary

conditions satisfied by the bulk fields in their asymptotic near-source limit ϵ ≪ ℓ. PPEFT methods

also show how renormalizations of these effective couplings (even at the classical level along the lines

seen in [69]) give renormalization-group arguments that ensure nothing physical depends on arbitrary

6The utility of the PPEFT formalism has been tested in some detail in calculations of how finite nuclear size influences

precision calculations of atomic energy levels [34–37].
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features like the precise value of the size ϵ of the pillboxes, leaving only predictions organized by ratios

of the physical quantity a/ℓ (for a review see [30]).

Although PPEFT arguments usually start with the EFT for the source and infer the near-source

boundary conditions that follow from it, running this argument backward also allows one to learn

what kinds of sources are consistent with the asymptotic near-source form of known bulk solutions

(like the ones described in previous sections). This gives useful but limited information because at

low energies the bulk fields only carry partial information about the nature of the source, similar to –

though a generalization of – the information carried about electromagnetic moments in the multipole

expansion of the field due to a charge distribution.

Electromagnetic interactions provide the simplest place to start, so consider a point-like static

electromagnetic source in D spacetime dimensions giving rise to a bulk electromagnetic field with

naive action

Sb =

∫
dDx

∫
W

ds Lb[y(s)] δ
D[x− y(s)] =

∫
dDx

Lb

γ
δD−1[x− y(s)] , (3.4)

where the integral is along the world-lineW parameterized as xM = yM(s) along which s is an arbitrary

parameter. We here use the physicists’ crutch: write the source action proportional to a delta function

that localizes it at the correct position. (Part of the point of PPEFT methods is to make this crutch

more precise.) The last equality uses one of the delta functions to perform the s integral and defines

γ := ∂y0/∂s. The delta function evaluates s at s = s(x0).

In the usual treatment of delta-function sources the equation of motion for this action is integrated

over a small spatial Gaussian pillbox, Pϵ, of radius ϵ which the matter contribution can be performed

using the spatial delta function. The integral over the bulk part of the field equation only picks up

the surface term if the pillbox is small enough. For instance, if the bulk Maxwell action is L =

− 1
4

√
−g f(ϕ)FMNF

MN this leads to

0 =

∫
Pϵ

dD−1x

{
−∂M

[√
−gf(ϕ)FMN

]
+
√
−g∇M

[
f(ϕ)FMN

]
+

1

γ

∂Lb

∂AN

δD−1[x− y(s)]

}
≃ −

∮
∂Pϵ

dD−2x nM

[√
−g f FMN

]
+

1

γ

(
∂Lb

∂AN

)
x=y

, (3.5)

where nM is the outward-pointing unit normal vector on the pillbox surface. This returns Gauss’

law if we specialize to the time direction (N = 0) and assume the source action for a point charge:

Sb = Q
∫
dxµAµ.

More generally, (3.5) also applies if Sb is not simply linear in AM . If so then the delta-function

term can depend on other bulk fields. Because these fields often diverge – as does the Coulomb field

– at the source’s position the delta-function terms of (3.5) can be ill-defined. This can be regulated

by substituting the field at a distance ϵ from the source as a proxy for the on-source field, with any

divergences as ϵ→ 0 being renormalized into the effective couplings in the action Sb. In this way the

small pillbox radius ϵ plays double duty: for the total divergence terms it provides a surface near (but

outside) the source on which the external bulk field’s flux can be measured, while for the delta-function

terms it provides a regularization for the fields that strictly speaking would diverge if evaluated directly

at the source position. This ability to fill both roles relies on choosing ϵ much smaller than the size of

the extra dimensions but also much larger than the physical size of the source itself.

A precise way to do all of this is to replace the delta-function formulation with a codimension-

1 surface that consists of the world-tube swept out by the surface of the Gaussian pillbox (see for

example [39]). Rather than specifying the action at a point we can specify the action on this surface
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and consider the interior of the surface to be empty space. Then smoothness at the origin provides a

unique boundary condition deep in the interior and the effects of the action on the codimension-one

surface can be computed in a standard way using Israel junction conditions [70], leading to a prediction

for the boundary conditions just outside the pillbox.

One might worry that this seems to be a very bespoke construction; why doesn’t it build in too

many model-dependent details? In principle the answer is that as long as a low-energy expansion is

possible for these pillbox boundary conditions then it automatically captures any UV system within

its domain of validity. It doesn’t matter if a particular realization is used to derive what these are.

In practice the relationship between the action on the surface and the initial point particle action on

the particle world-line can in general be complicated [35], but is simple in the special case of spherical

symmetry because they are then just related by dimensional reduction: Scod1 = ΩϵSb, where Ωϵ is the

area of the surface of the Gaussian pillbox.

In the end, the near-source boundary conditions that emerge for spherically symmetric sources in

the case of a codimension-two object (a particle in 3 spactime dimensions or a 3-brane in 6 spacetime

dimensions) is then easy to state for bulk scalar, Maxwell and gravitational fields [38]. For a Maxwell

field it is simply the codimension-two version of (3.5):∮
Cϵ

dθ
[
nN

√
−g f(ϕ)FNM

]
= −

(
δSb

δAM

)
ϵ

, (3.6)

where in the applications of interest here Cϵ is the circumference of the circle of the Gaussian pillbox

in the two extra dimensions and the subscript on the right-hand side is meant to emphasize that fields

are regulated by evaluating them at r = ϵ (if the source position is r = 0). For scalar fields residing

in the bulk with kinetic energy L = − 1
2κ

−2√−g GAB∂
MϕA ∂Mϕ

B coupled to a codimension-two brane

through a brane action Sb[ϕ] the analogous desired relation is∮
Cϵ

dθ

[
1

κ2
√
−g GABnM∂

MϕB

]
= −

(
δSb

δϕA

)
ϵ

, (3.7)

where the integration is again about a small circle of proper radius r encircling the source situated at

r = 0 and the right-hand side is again evaluated at r = ϵ.

Finally, we quote the metric matching condition in the special case that the metric near a source

can be written in the form ds2 = dr2+gij dx
i dxj where r is the proper distance away from the brane,

and the surface of the gaussian pillbox is at fixed r. In this case this surface has extrinsic curvature

Kij =
1
2∂rgij and the metric boundary condition becomes

lim
r→0

∮
Cϵ

dθ

[
1

2κ2
√
−g

(
Kij −Kgij

)
− (flat)

]
= −

(
δSb

δgij

)
ϵ

, (3.8)

where Kij is the extrinsic curvature of the fixed-r surface, for which the local coordinates are those

appropriate for surfaces of constant r: {xi, i = 0, 1, · · · , 4}. The final terms denoted ‘flat’ are the same

result evaluated near the origin of a space for which the location r = 0 is nonsingular.

It should be noted that this is not that useful an equation in the special case that i and j lie in

the θ direction that runs along the circumference of the circle Cϵ, since then it is not clear what to

use for the gij dependence on the right-hand side (since Sb is written as a world-surface action and

not as a codimension-2 action). For instance if

Sb =

∫
W

d4x
√
−γ T (ϕ) (3.9)
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Figure 1: Standard pillbox procedure to illustrate PPEFT. A cylindrical local source of radius a is surrounded by the

pillbox surface of radius ε. Effective field theory is valid in the bulk at a distance ℓ from the centre as long as a ≪ ε ≪ ℓ.

for γab = gMN∂ax
M∂bx

N the induced metric on a 3-brane in 6D and T the source tension, then its

dependence on e.g. gθθ is not specified. This is not in practice a problem, however, because the Einstein

equations in the r-r direction impose a constraint on the initial data that can be used when integrating

in the r direction and it is this constraint that in practice fixes quantities like δSb/δgθθ (see below for

more details in concrete examples).

Eqs. (3.6), (3.7) and (3.8) can each be used in one of two complementary ways:

• The most straigtforward way is to regard ϵ and the couplings – like T [ϕ(ϵ)] in (3.9) – to be

specified, in which case these equations furnish boundary conditions that help determine the

integration constants for the solutions to the field equations in the bulk, outside all of the

pillboxes. Physical predictions (e.g. bulk energy levels or scattering rates for bulk fields from

the sources) depend on these integration constants and it is through their dependence on the

boundary conditions that the bulk fields learn about the presence of the sources.

• The other way to read eqs. (3.6), (3.7) and (3.8) is as Callan-Symansik equations that tell us

how the effective couplings, ci, in Sb must depend on ϵ in order to ensure that the integration

constants (and so also physical observables) remain unchanged if we vary ϵ [31–33]. Observables

should remain unchanged as we do so because the size of the Gaussian pillboxes are arbitrary

after all, and so their precise positions should not matter. The ability to see explicitly why

this happens is indeed a nice feature of the PPEFT formalism. Physical predictions end up

depending only on the RG invariants that characterize the entire RG trajectory (ϵ, ci(ϵ)), rather
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than on the effective couplings ci(ϵ) and ϵ separately.

3.2 Source properties for 6D de Sitter solutions

In this section we follow [38] and use eqs. (3.6) through (3.8) to match the local near-brane asymptotic

behaviour found in the solutions of §2 to properties of the source action (see also [39, 72–79]). We

assume cylindrically symmetric bulk solutions and keep only the leading no-derivative terms of the

source action, which we assume has the form

Sb = −
∫

d4x
√
−γ Lb(φ) = −

∫
d4x

√
−g W 4

b Lb(φ) = −
∫

d4x
√
−g Tb(φ) , (3.10)

where γµν = ĝMN ∂µx
M∂νx

N is the induced metric on the source, which for an unbent static source is

simply the 4D metric components, ĝµν , from (2.13).

The last equality in (3.10) simply defines Tb(φ) =W 4
b Lb(φ) where Wb =W (xb) is the warp factor

evaluated at the brane position. In general functions like W , φ or a might vanish or diverge at the

brane position (if this is idealized as being pointlike) and the PPEFT approach regularizes this by

replacing them by their values at the surface r = ϵ of the small Gaussian pillbox.

The resulting matching conditions are summarized in eqs. (3.6), (3.7) and (3.8), which specialized

to the action (2.3) implies the following near-source matching relation for the scalar φ:

2π

κ2

[
aW 4 ∂r φ

]
r=ϵ

=
∂

∂φ

[
W 4

b Lb

]
and so lim

η→±∞

[
∓∂η φ

]
= q± =

κ2

2π

(
∂ T±
∂φ

)
, (3.11)

where r denotes proper distance away from the source and so satisfies

dr := ∓aW 4 dη , (3.12)

with the sign corresponding to whether or not dη points towards or away from the source in the two

asymptotic regions.

The corresponding expressions for a and W come from the matching conditions for different

components of the metric, and for the geometry of (2.13) the (µν) components of the metric matching

conditions are

−2π

κ2

{
W 4

[
a

(
3
∂rW

W
+
∂ra

a

)
− 1

]}
r=ϵ

=W 4
b Lb(φ) , (3.13)

and so

lim
η→±∞

{
∓
[
3

(
∂ηW

W

)
+

(
∂ηa

a

)]
−W 4

}
= 3ω± + α± −W 4

± = −κ
2T±
2π

. (3.14)

This is a familiar expression in the special case where ωb = 0, in which case W asymptotes to a

constant W → Wb in the near-source limit. Using the asymptotic expression a ≃ ab e
−αb|η| implies

the near-source extra-dimensional geometry of (2.13) becomes

a2be
−2αb|η|(W 8

b dη
2 + dθ2) ≃ dr2 +

(
rαb

W 4
b

)2

dθ2 , (3.15)

revealing a near-source conical singularity with defect angle that (3.14) states has size

δb := 2π

(
1− αb

W 4
b

)
=
κ2Tb
W 4

b

= κ2Lb , (3.16)

in agreement with standard formulae.
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The matching condition that comes from the (θθ) component of the metric gives

2π

κ2

[
aW 4 ∂rW

]
r=ϵ

=W 4
b Ũb(φ) = Ub(φ) and so lim

η→±∞

[
∓
(
∂ηW

W

)]
= ω± =

κ2U±

2π
. (3.17)

where Ub and Ũb are defined by Ub = − 1
2∂Tb/∂gθθ and Ũb = − 1

2∂Lb/∂gθθ. At first sight this seems not

so useful because the dependence of the source action on gθθ is usually not specified in expressions like

(3.10) for the action of a pointlike source in the extra dimensions. But a dependence on gθθ is implicit

in any microscopic description of a source, and the good news is that this dependence is imprinted in

the bulk field equations through the (ηη) Einstein equation that gives the constraint (2.20), evaluated

near the source.

To see what this implies explicitly, drop terms in (2.20) that are subdominant in powers of r in

the near-source limit. This yields (c.f. eq. (2.28))

0 ≃
[
−8 a′W ′

aW
− 12(W ′)2

W 2
+ (φ′)2

]
b

= −8αbωb − 12ω2
b + q2b

= −8Ub

(
W 4

b − Tb − 3Ub

)
− 12U2

b + (Tb ′)2

= W 8
b

[
−8 Ũb

(
1− Lb − 3Ũb

)
− 12 Ũ2

b + (Lb
′)2

]
, (3.18)

where the prime on Tb ′ denotes differentiation with respect to φ. The second line uses the matching

conditions (3.11), (3.14) and (3.17) and defines the dimensionless quantities Tb := κ2Tb/(2π) =W 4
b Lb

– with Lb := κ2Lb/(2π) – and Ub := κ2Ub/(2π) = W 4
b Ũb – where Ũb := κ2Ũb/(2π). The point is that

eq. (3.18) can be solved to get Ub as a function of Lb and its derivative L′
b,

Ub =W 4
b Ũb =

W 4
b

3

[
(1− Lb)−

√
(1− Lb)2 −

3

4
(Lb

′)2

]
, (3.19)

both of which can be read off from (3.10).

The root in (3.19) is chosen so that the result for Ub vanishes when Lb
′ = 0, since in this case the

source couplings do not break the shift symmetry (2.7) and so cannot lift the degeneracy in (2.21).

Indeed ref. [38] explicitly computes the scalar potential for this would-be flat direction in the effective

theory obtained by compactifying to 4D, with the result

V eff(φ0) = −
∑
b

(
Ub +

T ′
b

2

)
= −

∑
b

W 4
b

(
Ũb +

L′
b

2

)
, (3.20)

ensuring that the Friedmann equation computed in the 4D EFT agrees with (2.33) once the matching

conditions (3.11), (3.14) and (3.17) are used. Using (3.19) shows that this potential necessarily vanishes

when Tb
′ vanishes for both sources, corresponding to the flat direction (2.21).
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4 Two stringy routes to 6D supergravity

When you come to a fork in the road, take it.

§2 describes in detail exact 4D de Sitter solutions to 6D (1, 0) gauged supergravity. It remains to lift

these to solutions of field equations with well-established M-theory pedigrees, which requires knowing

how 6D (1, 0) supergravity can be obtained from higher dimensions. At present there are two known

ways to do so:

1. Consistent truncation of 10D heterotic/Type I supergravity: 6D chiral supergravity can be ob-

tained by truncating the ten dimensional heterotic/type I supergravity on H(2,2) × S1 where

H(2,2) is a three-dimensional hyperbolic manifold and S1 is a circle [25]. This is a consistent

truncation inasmuch as it is consistent with the classical equations of motion.

2. Flux F-theory compactification on elliptically fibered Calabi-Yau: 6D chiral supergravity can be

obtained from 10D type IIB supergravity via an F -theory reduction on an elliptically fibered

Calabi-Yau manifold manifod [27].

Although our main focus is on the second of these approaches, for completeness’ sake this section

briefly reviews both of them.

4.1 Type I/Heterotic uplifts

In this section we summarise the claims of [25], and return to the F-theory approach in §4.2.

String theory on Hyperbolic space H2,2 × S1

In this approach the 6D theory is obtained by a series of dimensional reductions and consistent

truncations. At the end it amounts to a dimensional reduction of the effective action of type I/heterotic

strings on H(2,2) × S1 where H(2,2) is the 3D hyperbolic space determined by the real coordinates yi,

i = 1, · · · , 4 subject to the constraint y21 + y22 − y23 − y24 = 1 and S1 a circle of radius R.

We start with the relevant heterotic/type I bosonic part of the Lagrangian (where hats denote

10D quantities):

L10 = −
√
−ĝ

[
1

2κ210
ĝMN

(
R̂MN + ∂M φ̂ ∂N φ̂

)
+

1

4
e−φ̂F̂MN F̂

MN +
1

12
e−2φĤMNP Ĥ

MNP

]
, (4.1)

The idea is to compactify on the 4D space H(2,2) × S1. To this end we (in this section) adopt Planck

units (κ10 = 1) and denote the coordinates of H(2,2) by ρ, α, β, where

y1 + iy2 = cosh ρeiα; y3 + iy4 = sinh ρeiβ (4.2)

with ranges 0 ≤ ρ ≤ ∞, 0 ≤ α, β < 2π. Finally, use z as the S1 coordinate. The solutions found in

[25] correspond to the metric:

dŝ210 = (cosh 2ρ)
1/4

[
e−φ/4ds26 + eφ/4dz2 +

eφ/4

2ḡ2

(
dρ2 +

cosh2 ρ

cosh 2ρ
(Dα)

2
+

sinh2 ρ

cosh 2ρ
(Dβ)

2

)]
(4.3)

where Dα := dα− ḡA(1) and Dβ := dβ + ḡA(1).
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The antisymmetric field similarly takes the form:

Ĥ(3) = H(3) +
sinh 2ρ

2ḡ(cosh 2ρ)2
dρ ∧Dα ∧Dβ +

1

2ḡ cosh 2ρ
F(2) ∧

(
cosh2 ρDα− sinh2 ρDβ

)
(4.4)

where F2 = dA(1) and the field strength H(3) satisfying the Bianchi identity dH3 = 1
2F(2) ∧ F(2).

Finally the 10D dilaton ϕ̂ (which from the Type I truncation of type IIA strings determines the

string coupling gs = ⟨eϕ̂⟩ ) relates to the 6D dilaton φ as:

eϕ̂ = (cosh 2ρ)
−1/2

eφ (4.5)

so weak string coupling corresponds to large ρ and/or large negative φ. For the Type I truncation

of IIB strings, the same ansatz holds with the exchange of the three form F(3) from NS-NS to RR

and S-duality would give the opposite sign for ϕ̂ and then a different interpretation of weak/strong

coupling [25].

Ref. [25] claim that the above ansatz for the metric, anti-symmetric tensor and dilaton plugged

into the 10D supergravity equations gives rise to the 6D equations for gMN , B(2), A(1), φ derived from

the Salam-Sezgin Lagrangian (2.3). Therefore any solution of the 6D Salam-Sezgin theory can be lifted

to 10D by the inverse of this procedure [25]. In particular the well known R1,3 × S2 solution found

by Salam and Sezgin has an uplift to 10D which in the large ρ limit corresponds to the linear dilaton

string background. In this construction the value of the 6D Newton constant κ is not derived in the

usual way as a convergent integral of the 10D Newton constant because of the noncompact nature of

the extra dimensions. In principle one can apply the same reasoning also to the Minkowski, AdS and

dS solutions found in [20] and thereby promote those solutions to the full 10D theory.

4.2 F-theory uplifts

Let us now discuss the second derivation of the 6D (1, 0) supergravity from string theory. This follows

the by-now standard treatment of defining F-theory constructions in terms of M-theory compactifi-

cations7 to one less dimension. We start with 11D supergravity compactified on a six-dimensional

elliptically fibered Calabi-Yau manifold Y6 which is locally a product of a 4D basis space B4 and a

two-torus T 2. T 2 is itself a product of two circles S1
A and S1

B . The 11D manifold can be written as:

M11 = R1,4 × Y6; Y6 ≃ B4 × T 2; T 2 = S1
A × S1

B (4.6)

Compactifying on the circle S1
A gives rise to type IIA string theory. T-dualising on the circle S1

B

(S1
B → S̃1

B with the radius of S̃1
B being large) gives rise to the IIB string theory compactification for

which the 10D manifold is locally:

M10 = R1,4 × S̃1
B ×B4 → R1,5 ×B4 (4.7)

In the last step we take the large radius limit of the circle S̃1
B that promotes the 5D Poincaré symmetry

to the full 6D Poincaré symmetry.

The procedure to derive the 6D effective action is as follows:

• Dimensionally reduce the 11D theory to 5D on a Calabi-Yau manifold Y6 to obtain a 5D N = 2

supergravity theory.

7See for instance the detailed discussion in [26].
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• Dimensionally reduce the most general 6D (1, 0) supergravity theory to obtain a subclass of the

5D N = 2 supergravity theory.

• Compare the two results above in order to identify the particular class of 6D theories that

corresponds to this compactification.

Following this procedure Grimm and collaborators were able to identify the 6D supergravity theory8

[27, 28].

Starting with 11D supergravity with its multiplet composed of the graviton gMN , gravitino ψM

and antisymmetric tensor CMNP with field strength G(4) = dC(3) or GMNPQ = ∂[MCNPQ]. The bosonic

action takes the form:

S11 = − 1

2κ211

∫
d11x

[√
−g

(
R+

1

48
GMNPQG

MNPQ

)
+

2

3 · 4!3
ϵM1···M11CM1···M3

GM4···M7
GM8···M11

]
.

(4.8)

Upon compactification to 5D, the metric can be split into the non-compact 5D and the compact 6D

corresponding to the Calabi-Yau space Y6:

ds2 = ds25 + ds26 . (4.9)

Turning on fluxes for GMNPQ in four of the internal dimensions corresponding to the non-trivial four-

cycles of Y6 through the Freund-Rubin ansatz:∫
γΛ

⟨G(4)⟩ = nΛ; ⟨G(4)⟩ = nΛωΛ (4.10)

where ωΛ, Λ = 1, · · · , h1,1 are a basis of four-forms associated to the four-cycles γΛ in the Calabi-Yau

manifold Y6. With h1,1 the corresponding Hodge numbers and nΛ are integers. As usual, plugging

these fluxes back into the action gives rise a positive scalar potential for the corresponding moduli.

With this background for the bosonic 11D fields the 5D massless degrees of freedom are identified

in terms of the fluctuations of the metric δgMN and antisymmetric tensor δCMNP as follows:

• Metric: The 5D metric gµν , µ, ν = 1, · · · , 5. The Kähler moduli vΛ, Λ = 1, · · · , h1,1, corre-
sponding to the (real) sizes of the four-cycles and the (complex) complex structure moduli zκ,

κ = 1, · · · , h1,2

• Antisymmetric tensor: The 5D antisymmetric tensor Cµνρ which is dual to a 5D scalar Φ.

The fluctuations of the internal components Cmnp corresponding to scalars ξK , ξ̃K with K =

0, 1, · · · , h1,2. There also the fluctuations of Cmnµ which correspond to h1,1 5D vectors AΛ
µ .

All of these massless fields can be accommodated into 5D multiplets with bosonic components as

follows:

• Gravity multiplet: The 5D graviton gµν and the graviphoton corresponding to one of the vector

fields AΛ
µ .

8Contrary to the hyperbolic compactification above, we cannot claim that the F-theory realization corresponds to

a consistent truncation. Actually, there is not yet a mathematically rigorous formulation of the theory [26]. However,

given the large amount of work illustrating concrete consistent models and the strong mathematical basis of the theory,

there is little doubt of its validity. Furthermore the constructions following the M-theory prescription have reproduced

a series of consistent results. The techniques followed in [27] in which solutions of the 6D theory can reproduce direct

compactifications to 4D further add to the believe of the consistency of these constructions.
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• Vector multiplets: The remaining h1,1−1 vectors AΛ
µ together with the h1,1−1 constrained fields

LΛ determined by the Kähler moduli vΛ.

LΛ =
vΛ

V1/3
, N ≡ λΛΩΓL

ΛLΩLΓ = 1 (4.11)

where V is the overall volume (in string units) of the Calabi-Yau Y6, V = λΛΩΓv
ΛvΩvΓ with

λΛΩΓ the triple intersection numbers:

λΛΩΓ =

∫
Y6

ω̃Λ ∧ ω̃Ω ∧ ω̃Γ. (4.12)

with ω̃Λ the dual of ωΛ in 6D, etc.

• Hypermultiplets: qu, u = 1, · · · , 4(h1,2 + 1) corresponding to the fields
(
V,Φ, zκ, z̄κ̄, ξK , ξ̃K

)
.

The volume V, together with Φ and ξ0, ξ̃0 compose the universal hypermultiplet. In F-theory,

one combination of the zκ corresponds to the string dilaton τ .

With this information the effective action for these fields has been explicitly computed. The

relevant effect from the fluxes correspond to the kinetic term for the field Φ which is written in terms

of a covariant derivative DΦ and an effective positive flux potential Vflux:

DµΦ = ∂µΦ+ 2nΛA
Λ
µ ; Vflux =

1

8V2
GΛΣnΛnΣ (4.13)

where GΛΣ is the inverse of the metric GΛΣ(L) determining the kinetic terms for the fields LΛ:

GΛΣ =
1

2V1/3

(∫
Y6

w̃Λ ∧ wΣ

)
. (4.14)

4.2.1 6D uplift and equations of motion

The 5D theory can be uplifted (or oxidized) to find the corresponding 6D action. The result is a

particular case of the most general 6D theory.

For these purposes it is convenient to split the components of the 5D vector multiplets into three

classes depending on the nature of the corresponding h1,1(Y6) moduli vΛ by splitting the indices Λ

as Λ = {0, α, i} with v0 corresponding to the four-cycle of Y6 that is the full B4; v
α corresponding

to the 4-cycles of Y6 dual to the 2-cycles of B4 so α = 1, · · · , h1,1(B4) and vi corresponding to the

4-cycles that combine the fibre and the base. When the vi vanish it corresponds to co-dimension two

singularities that are identified with D7 branes in the weak coupling limit. The gauge group is usually

non-abelian but we will restrict to the Coulomb branch and then i = 1, · · · , rankG.
The 6D to 5D dictionary corresponds to:

nH = h2,1(Y6) + 1; nT + 1 = h1,1(B4); rankG = h1,1(Y6)− h1,1(B4)− 1 (4.15)

Since we are restricting to nT = 1 this implies we are considering backgrounds with h1,1(B4) = 2 and

so h1,1(Y6) ≥ 3.

In the weak coupling limit, the Gmnpq fluxes correspond to magnetic fluxes from D7 branes∫
γΛ
F(2) = nΛ with γΛ a two-cycle wrapped by the D7 brane and the scalar potential is obtained from

the kinetic term in the D7 DBI action:

⟨F(2)⟩ = nΛω̃Λ;

∫
d8x

√
−gFMNFMN =⇒ VD7 ∝ GΛΣnΛnΣ (4.16)

– 21 –



and the gauging of the field Φ comes from the Chern-Simons coupling
∫
C(4) ∧ F(2) ∧ F(2) with C(4)

the RR four-form of type IIB and F(2) the corresponding gauge fields, which in tensor notation is∫
d8xCµνρσFαβFmnϵ

µν···mn. Upon dualization of Cµνρσ to Φ this gives rise to a term nAµ∂
µΦ in the

Lagrangian that gives rise to the gauging of Φ. In this case the scalars zκ correspond to D7 brane

fluctuations and the ξI to Wilson line Am fluctuations.

We next write down the relevant equations to be solved. These are derived in general in [27].

We concentrate on the case nT = 1. Since we only seek maximally symmetric solutions in 4D, we set

HMNP = 0 from the start. Of the other bosonic fields, the metric gMN , hypermultiplets qU and scalars

from tensor multiplets jα, we consider non-trivial profiles only for:

Metric : gMN ; Abelian vector : AM ; Hypermultiplets qU : (V,Φ) , τ ; Tensormultiplets : φ

(4.17)

with all other fields taken to be constant and satisfying their field equations trivially. Here τ is the

complex dilaton field that in F-theory corresponds to a complex structure modulus.

The 6D action now is more complicated than the original Salam-Sezgin action because we cannot

ignore the hypermultiplets qU . Then equation (2.3) is generalized to:

− L6√
−g

=
1

2κ2
gMN

(
RMN + ∂Mφ∂Nφ+ hUVDMq

UDNq
V

)
+
1

4
e−φFMNF

MN +
1

12
e−2φHMNPH

MNP +
2g2U(q)

κ4
eφ , (4.18)

where the scale g comes from fields with nonzero fluxes in the dimensions beyond the 6D on which

the fields in this lagrangian depend. The target-space metric for the hypermultiplet fields is diagonal

and takes the form [27]:

h(V) := hVV = 4hΦΦ =
1

2V2
; hττ∗ =

1

2τ22
(4.19)

where τ = τ1 + iτ2. The only non-trivial covariant derivative is for Φ: DMΦ = ∂MΦ + kAM , where k

must be nonzero if the gauge field AM is the same one that is responsible for the flux that generates

the scalar potential in (4.18), but can vanish if the 6D gauge potential is distinct from the one whose

flux is responsible for the potential.

The scalar potential descending from (4.13) is

V (φ, χ) =
2g2

κ4V2
eφ =

2g2

κ4
eφ−2χ where V := eχ , (4.20)

and we introduce the canonically normalized field χ = logV and use U(q) ∝ V−2 = e−2χ. Notice that

V depends on both the tensor-multiplet scalar φ and the hypermultiplet scalar V = eχ. This flux

induced potential is a particular case of the general 6D scalar potential with U ∝ 1/V2. The volume

dependence is determined by the fluxes and the Weyl rescaling of the metric to get the standard

Einstein frame. Unlike the Salam-Sezgin case we have a runaway potential for χ in addition to φ.

Since we are interested in maximally symmetric solutions in 4D we restrict to backgrounds for

which HMNP = 0. The field equations then simplify to the trace-reversed Einstein equation

RMN = 4e−φκ2FMPF
P

N +∂Mφ∂Nφ+
1

2
∂Mχ∂Nχ+

1

2
e−2χDMΦDNΦ+

1

2τ22
∂(Mτ∂N)τ

∗+
1

2
gMN□φ , (4.21)

and the Maxwell equation

∇R

(
e−φFLR

)
=

k

32
e−2χDLΦ , (4.22)
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and the scalar equations

□χ = −4eφ−2χṼ − e−2χDMΦDMΦ , □Φ = 2∂MχD
MΦ , (4.23)

□φ = Ṽ eφ−2χ − κ2e−φFMNFMN and □τ = − i

τ2
∂Mτ∂Mτ ,

with Ṽ ∝ g2/κ4 the constant determined from higher-dimensional fluxes appearing in the 6D scalar

potential V = Ṽ eφ−2χ. Notice that Ṽ is the only parameter through which κ and g enter into the

solutions and so sets their overall scale. In particular Ṽ can be much smaller than the Planck size if

g2/κ≪ 1.

We see that these equations allow for solutions for which the dilaton field τ is constant but in

F-theory, and similar to the stringy cosmic string solutions [29], there can also be solutions with non-

trivial profile for τ that we can also consider. Since the scalar potential is runaway in the φ and χ

directions there are no solutions for which both of these fields are constant in 6D: as before there are

no maximally symmetric solutions in 6D.

Ref. [27] finds explicit solutions to these equations assuming constant φ, which is consistent with

the equations of motion if the fluxes of the gauge field are adjusted to cancel the contribution from the

scalar potential on the right-hand side of the φ equation. This solution is particularly interesting since

they prove that it preserves N = 1 supersymmetry in 4D and reproduces the features of standard

4D compactifications of F-theory, but in a two-stage approach that passes through six dimensions.

Checks of the remaining EFT in the two stage (F theory to 6D to 4D) and direct (F-theory to 4D)

approaches reproduce the same EFT giving robustness to the procedure.

We next consider maximally symmetric solutions in 4D but without supersymmetry for which

both dS and AdS solutions exist. We do so by considering non-trivial profiles for both the volume field

χ and the gauge coupling field φ, thereby generalizing both the generalized Salam-Sezgin solutions in

which only φ was considered and the solutions of [27] in which only χ was considered.

5 4D de Sitter from F-theory derived 6D supergravity

It’s like déjà vu all over again.

We now consider maximally symmetric solutions in 4D of which there are several interesting cases:

1. Constant τ and k = 0 which means the 6D flux is from a U(1) field that is orthogonal to the

combination that gives the Stuckelberg contribution to DΦ. In this case DMΦ = ∂MΦ and

solutions exist with Φ constant.

2. Constant τ and k ̸= 0 which means the 6D fluxes come from the Stuckelberg potential.

3. Non-trivial profile for τ as relevant for F-theory.

We will concentrate here on scenario 1 which is the simplest to illustrate our results. We will

dedicate a follow-up article to the detailed study of scenarios 2 and 3 which are more general and

potentially more realistic.
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5.1 Ansätze and new asymptotic behaviour

We repeat the arguments of §2 to construct solutions to eqs. (4.21) that are cylindrically symmetric

in the extra dimensions and maximally symmetric in 4D. For ease of reference, the equations to be

solved are the Maxwell equation

∇M

(
e−φFMN

)
= 0 , (5.1)

and the scalar field equations

□χ+ 4Ṽ eφ−2χ = 0 and □φ+ 1
4 κ

2e−φFMNFMN − Ṽ eφ−2χ = 0 , (5.2)

where κ is the 6D Planck scale and Ṽ is an independent dimensionful. Here φ is the tensor-multiplet

scalar and χ is the volume modulus of the Calabi Yau space. The 6D trace-reversed Einstein equation

similarly is

RMN + κ2e−φFMPF
P

N + ∂Mφ∂Nφ+
1

2
∂Mχ∂Nχ+

1

2
gMN□6φ = 0 . (5.3)

These agree with (2.4) through (2.6) if evaluated at χ = 0 for a particular choice of Ṽ , but we

cannot simply use the solutions from §2 because χ = 0 is not a solution to the first of eqs. (5.2). We

instead use the same approach taken in §2 to reconstruct new solutions. Notice that for 4D maximally

symmetric solutions the 4D part of (5.3) again relates the 4D curvature to a total derivative of φ,

implying that the sign of the 4D curvature can be computed using only the near-source asymptotic

form for ∂rφ, along the lines of eq. (2.15) [18, 57, 58].

To this end we again follow [20] and seek solutions with the 6D metric ansatz

ds2 = ĝµνdx
µdxν + a2dθ2 + a2W 8dη2 (5.4)

where the coordinates (η, φ) parametrise the compact two dimensions and ĝµν =W 2gµν where gµν is

the maximally symmetric 4D metric with curvature R4 = −3ζH2 and ζ = ±1 or zero (with ζ = +1

corresponding to de Sitter space). 2D axial symmetry requires W = W (η), a = a(η), φ = φ(η) and

χ = χ(η) are all functions only of η. We expect an effective 6D regime to emerge when there is a

hierarchy of size between the volume V of the extra dimensions between 6 and 10 and the volume

a2W 4 of the compact dimesions appearing within (5.4).

Under these assumptions the Maxwell equation implies (e−φFηθ/a
2)′ = 0 and so integrates to give

Fηθ = Q̂ a2eφ (5.5)

as before, with Q̂ an integration constant. With this choice FMNFMN = 2Q̂2e2φ/W 8. The scalar field

equations then are

χ′′ = −4Ṽ a2W 8eφ−2χ and φ′′ = Ṽ a2W 8eφ−2χ − 1
2Q

2a2eφ (5.6)

where Q := κQ̂. In particular Ṽ > 0 implies χ′ is a monotonically decreasing function of η.

The (µν) component of the Einstein equations are unchanged from §2,(
lnW + 1

2φ
)′′

= 3ζH2a2W 6 , (5.7)

as is also the θθ component (
ln a+ 1

2φ
)′′

= −Q2a2eφ . (5.8)
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The ηη component can be expressed as the constraint

φ′2 + 1
2χ

′2 − 8(lnW )′(ln a)′ − 12[(lnW )′]2 + a2eφ
(
Q2 − 2Ṽ W 8e−2χ + 12ζH2W 6e−φ

)
= 0 . (5.9)

It can sometimes be useful to follow [20] and notice that these ordinary differential equations can

be regarded as arising from the ‘Lagrangian’

L :=
[
φ′2 + 1

2χ
′2 − 8(lnW )′(ln a)′ − 12[(lnW )′]2

]
N−1 −Na2eφ

(
Q2 − 2Ṽ W 8e−2χ + 12ζH2W 6e−φ

)
(5.10)

because variations with respect to φ, χ, W and a reproduce equations (5.6), (5.7) and (5.8) after

setting N = 1 while varying respect to N gives the constraint (5.9) (again after setting N = 1).

5.1.1 New asymptotic behaviour

It is tempting to think that the similarity of these equations to those of §2 will ensure that they will

share the same near-source asymptotic form as was found in (2.27), but the presence of the χ field

makes this not quite true.

To see why, it is useful to follow [20] and change variables to decouple as many of the equations

as possible. Defining new variables X , Y and Z by

φ =
1

2
(X − Y − 2Z) , lnW =

1

4
(Y − X ) , ln a =

1

4
(3X + Y + 2Z) (5.11)

and further

X = X + lnQ , Y = Y + ln(2Ṽ ) and Z = Z + ln

(
6H2

Ṽ

)
, (5.12)

allows the Lagrangian L to be simplified to

L =
[
(X ′)

2 − (Y ′)
2
+ (Z ′)

2
+ 1

2 (χ
′)
2
]
N−1 −N

[
e2X − e2Y−2χ + ζe2Y+Z

]
, (5.13)

leading to the simpler equations

X ′′+ e2X = 0 , χ′′+2e2Y−2χ = 0 , Z ′′+ 1
2ζe

2Y+Z = 0 and Y ′′+ e2Y−2χ− ζe2Y+Z = 0 . (5.14)

The X equation decouples from the others and can be integrated to give

X = ln

[
λ1

cosh[λ1(η − η1)]

]
, (5.15)

where λ1 and η1 are integration constants. The other three equations can be simplified by noticing

4Z ′′ + 2Y ′′ − χ′′ = 0 which implies

χ = 4Z + 2Y + bη + c (5.16)

for integration constants b and c. The remaining two equations depend only on Y and Z and can in

principle be solved numerically. They are usefully rewritten by defining

A :=
1

2
(2Y + Z) and B := Y − χ = −(Y + 4Z + bη + c) (5.17)

because then the remaining equations for Y and Z become:

B′′ = ζe2A + e2B and A′′ = 3
4ζe

2A − e2B . (5.18)
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Now comes the main point: the singularities of the solutions of these equations can differ signifi-

cantly from those described in §2 when χ is set to zero. To see why, it suffices to consider the case of

4D Minkowski solutions, for which ζ = 0. In this case the B equation completely decouples to become

B′′ = e2B (4D flat solutions) (5.19)

and can be directly integrated, with solution

B = ln

[
λq

sinh[λq(η − η0)]

]
, (5.20)

where the difference between this and (5.15) has its roots in the difference in the sign of the exponential

in (5.19) relative to the X equation in (5.14).

What is significant about (5.20) is the appearance of a new singularity at η = η0 in addition to

the ‘old’ singularities at η → ±∞ familiar from §2. Even if we start at η → −∞ using one of the

asymptotic Kasner-type solutions given in (2.27) with χ = χ′ = 0 the evolution of χ ensures that

the solution does not evolve towards another Kasner-type solutions at η → +∞ because a new type

of singularity instead intervenes as η → η0. As we shall see, a new class of asymptotic behaviour

emerges because the solutions evolve towards configurations for which the non-derivative terms on the

right-hand sides of eqs. (5.6), (5.7) and (5.8) are not negligible (that is, the inequalities (2.29) assumed

when developing the approximate solutions (2.27) break down).

We wish to identify the asymptotic behaviour of the fields near this new singularity and see what

these imply for the properties of any sources located at the singularity, though before doing so rewrite

the equations in terms of the proper distance along the extra dimensions.

5.2 Solutions as functions of proper distance

Asymptotic solutions are easier to obtain (and the nature of the sources to which they point are easier

to identify) if we change coordinates from η to proper distance r satisfying dr = aW 4dη. This section

therefore sets up and solves (both asymptotically and numerically) the field equations using proper

distance.

It is also convenient to introduce new logarithmic variables a =: eΩ and W =: eΓ so that the

metric becomes

ds2 = e2Γ(r)gµνdx
µdxν + e2Ω(r)dθ2 + dr2 (5.21)

and proper distance becomes dr = eΩ+4Γdη.

Denoting d/dη with primes and d/dr with over-dots, for any function J [η(r)] we have

J ′ = eΩ+4ΓJ̇ and J ′′ = e2Ω+8Γ
[
J̈ +

(
Ω̇ + 4Γ̇

)
J̇
]
, (5.22)

and so the field equations (5.6) through (5.8) become

φ̈+
(
Ω̇ + 4Γ̇

)
φ̇ = Ṽ eφ−2χ − 1

2Q
2eφ−8Γ

χ̈+
(
Ω̇ + 4Γ̇

)
χ̇ = −4Ṽ eφ−2χ

Γ̈ +
(
Ω̇ + 4Γ̇

)
Γ̇ = 3ζH2e−2Γ − 1

2

[
φ̈+

(
Ω̇ + 4Γ̇

)
φ̇
]

(5.23)

Ω̈ +
(
Ω̇ + 4Γ̇

)
Ω̇ = −Q2eφ−8Γ − 1

2

[
φ̈+

(
Ω̇ + 4Γ̇

)
φ̇
]
.
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These imply Q, Ṽ and H drop out of the combination

χ̈+ 3φ̈− 2Ω̈ = −
(
Ω̇ + 4Γ̇

)(
χ̇+ 3φ̇− 2Ω̇

)
, (5.24)

and allow the total derivatives (5.7) and (5.8) to be written

d

dr

[
eΩ+4Γ

(
Γ̇ + 1

2 φ̇
)]

= 3ζH2eΩ+2Γ and
d

dr

[
eΩ+4Γ

(
Ω̇ + 1

2 φ̇
)]

= −Q2eφ+Ω−4Γ . (5.25)

Finally, the constraint (5.9) becomes

φ̇2 + 1
2 χ̇

2 − 8Ω̇Γ̇− 12Γ̇2 + 12ζH2e−2Γ +Q2eφ−8Γ − 2Ṽ eφ−2χ = 0 . (5.26)

5.2.1 Kasner-type solutions

We seek solutions to these equations with scaling behaviour close to r = 0 (the singularity’s location)

of the form9

φ = φ0+q ln

(
r

r0

)
, χ = χ0+s ln

(
r

r0

)
, Γ = Γ0+w ln

(
r

r0

)
and Ω = Ω0+α ln

(
r

r0

)
, (5.27)

up to neglected terms that go to zero when r → 0. The last of these is equivalent to

a(r) = a0

(
r

r0

)α [
1 +O(r)

]
, for a(r) ∝ eΩ (5.28)

which emphasizes that for this case there is a length scale a0 hidden within Ω0. For this leading

behaviour φ̇ = q/r and φ̈ = −q/r2 and so on. The 1/r2 terms in eqs. (5.23) and (5.26) dominate as

r → 0 provided

q > 2(s− 1) and q > 2(4w − 1) and (if H ̸= 0) w < 1 , (5.29)

and when this is true the equations imply the Kasner-like conditions

α+ 4w = 1 (5.30)

and

q2 + 1
2s

2 − 8αw − 12w2 = q2 + 1
2s

2 − 8w + 20w2 = 0 (5.31)

where the first equality uses (5.30) to eliminate α.

Eqs. (5.30) and (5.31) determine s and α in terms of w and q, and the inequalities put constraints

on the allowed region in the (q, w) plane. Positivity of q2 + 1
2s

2 implies 0 ≤ w ≤ 2
5 , and for any real

w we have q2 + 1
2s

2 ≤ 4
5 with the maximum obtained when w = 1

5 . Requiring circles of radius r to

have circumferences that shrink as r → 0 further requires α > 0 and this implies w < 1
4 . Notice that

these automatically fall into the w < 1 region required if H ̸= 0. There is plenty of room to find

nonzero values for q and w for which all inequalities in (5.29) are satisfied, and the resulting solutions

generalize the Kasner-like solutions of §2 to include a nontrivial profile χ(r). Of these the most trivial

solutions have s = q = 0, corresponding to situations were the scalars φ and χ do not diverge at the

source locations. For these eqs. (5.30) and (5.31) imply w = 0 and α = 1, so the warp factor does not

diverge or get driven to zero and the geometry has a conical singularity at r = 0.

9Since a has dimensions of length a0 = a(r0) = eΩ0 = ℓ defines a length scale in this asymptotic expression.
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5.2.2 New asymptotic solutions

As noted above, the Kasner-like solutions are not sufficiently general to capture all of the singularities

found when integrating (5.18) such as found in particular in (5.20). To capture the asymptotic form

for these requires no longer assuming that the derivative terms dominate, so we ask under which

conditions the non-derivative terms compete with the derivative terms for small r. That is, we ask

when the non-derivative terms can also scale as 1/r2 rather than being subdominant.

The leading power of r in eqs. (5.23) then becomes

q

r2

(
−1 + α+ 4w

)
= Ṽ eφ0−2χ0

(r0
r

)2s−q

− 1
2Q

2eφ0−8Γ0

(r0
r

)8w−q

s

r2

(
−1 + α+ 4w

)
= −4Ṽ eφ0−2χ0

(r0
r

)2s−q

w + 1
2q

r2

(
−1 + α+ 4w

)
= 3ζH2e−2Γ0

(r0
r

)2w

(5.32)

α+ 1
2q

r2

(
−1 + α+ 4w

)
= −Q2eφ0−8Γ0

(r0
r

)8w−q

.

It is clear that new solutions can exist when the inequalities (5.29) are saturated, but if they do they

cannot satisfy the linear Kasner condition α + 4w = 1. The linear combination (5.24) is particularly

simple and implies

(s+ 3q − 2α)(−1 + α+ 4w)
1

r2
= 0 . (5.33)

The constraint (5.26) similarly generalizes to

q2 + 1
2s

2 − 8αw − 12w2

r2
+ 12ζH2e−2Γ0

(r0
r

)2w

+Q2eφ0−8Γ0

(r0
r

)8w−q

− 2Ṽ eφ0−2χ0

(r0
r

)2s−q

= 0 .

(5.34)

Some or all of the non-derivative terms can compete with the 1/r2 terms if some or all of the

following conditions hold

q = 2(s− 1) , q = 2(4w − 1) and (if H ̸= 0) w = 1 . (5.35)

When these hold the sum of the coefficients of 1/r2 in the corresponding equations in (5.32) and

(5.34) must also vanish. Consider, for instance, the most restrictive case where all three conditions

in (5.35) hold. These together with (5.33) then completely determine the powers, giving w = 1,

q = 6, s = 4 and α = 11. The last three equations of (5.32) can then be used to solve for the

three quantities Ṽ eφ0−2χ0r20, Q
2eφ0−8Γ0r20 and ζH2e−2Γ0r20. This leaves the constraint (5.34) but

as is easily checked this is automatically satisfied once the other conditions are (as might have been

expected due to the Bianchi identity). The problem with this solution is that the last of eqs. (5.32)

implies Q2eφ0−8Γ0r20 = −(14)2 is negative. A similar problem arises if all terms are required to scale

like r−2 when H = 0, which requires w = 1
5 , q = − 2

5 , s = 4
5 and α = − 1

5 , and again Q2 must be

negative.

An existence proof that a solution of this new type exists is the case where the Ṽ term scale as

1/r2 but the Q2 and H2 terms are subdominant. In this case (5.32) and (5.33) imply

w = 1
9 , q = − 2

9 , s = 8
9 , α = 1

9 and Ṽ eφ0−2χ0r20 = 8
81 , (5.36)

which also satisfies 8w − q = 10
3 < 2 and w < 1 (as required for the subdominance of the Q2 and H2

terms). This is the class of solutions to which we find our numerical solutions typically evolve.
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5.2.3 Numerical 4D de Sitter solutions

We have numerically integrated the evolution equations (5.23) forward in r starting from initial condi-

tions at r = ric for the fields and their derivatives that are chosen to satisfy the constraint (5.26). We

verify numerically that the constraint remains satisfied for other values of r as a check on calculations.

In practice we choose ric to be very small and choose initial values consistent with an asymptotic

solution of the Kasner-like form (5.27) that diverges at r = 0. The Kasner parameters α and q

are specified and then s and w are determined from the Kasner constraints (5.30) and (5.31). The

equations are then integrated numerically to larger values of r until they again diverge, at a proper

distance denoted by re. We numerically compare the solution’s asymptotic form near this second

singularity and verify that it also satisfies the power-law form (5.27). This comparison also reveals the

powers q, s, α and ω for this second singularity. For the solution displayed these turn out to be given

by (5.36).
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(a) The function φ(r) vs r
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(b) The function V = eχ(r) vs r.
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(c) The function a(r) = eΩ(r) vs r.
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(d) The function W (r) = eΓ(r) vs r.

Figure 2: Solutions to eqs. (5.23) vs proper distance with initial conditions chosen near r = 0 consistent with

4D de Sitter geometry and a Kasner asymptotic form with powers q = 0.0001, α = 0.9999, s = 0.0200 and

w = 0.000024. The numerical prefactors satisfy the constraint equation with coefficients Ω0 = −5, χ0 = 8 and

H = 10−5 in units where Ṽ = 1. The second singularity is arises at r = 3032 with an asymptotic power-law

form with the non-Kasner powers given in (5.36).

Figure 2 show the results of numerical evolution obtained in this way with initial conditions

specified at r = ric = 10−6, where the numerics use units10 for which Ṽ = 1. The initial conditions

10As noted below eq. (4.23) the choice g2/κ ≪ 1 ensures the energy unit specified by Ṽ = 1 is much smaller than 6D

Planck size.

– 29 –



correspond to an asymptotic power-law form with Kasner powers

α0 = 0.9999 q0 = 0.0001 , s0 ≃ 0.0200 , w0 = 0.000025 (5.37)

chosen to satisfy the constraints (5.30) and (5.31) and to be not far from the trivial solution (for which

s = q = w = 0 and α = 1). The solution also assumes Ω0 = −5, χ0 = +8 and Γ0 = φ0 = 0 in

the assumed small-r asymptotic form (5.27). We use the constraint (5.26) to generate the rest of the

initial conditions assuming the 4D maximally symmetric dimensions form a de Sitter space (and so

ζ = +1) for which we choose the Hubble scale H = 10−5.

The field equations are then integrated numerically towards increasing r until a second singularity

is encountered, which for the solution displayed occurs at a proper distance re = 3032 from the first

Kasner singularity. The four panels of Fig. 2 respectively plot φ(r), the volume of the transverse

compact 4D space B4 (in string units) V = eχ(r) together with the 6D metric functions a(r) = eΩ(r)

and W (r) = eΓ(r) obtained in this way. All are plotted as a function of proper distance away from the

Kasner-type source.

The asymptotic form of the solution near this second singularity is found numerically to agree

with the power-law form given in (5.27). This comparison also reveals what the powers qe, se, we

and αe are for this asymptotic solution. This can be seen, for instance, in Fig. (3) which computes

r ∂Ω/∂r and r ∂χ/∂r as r → re (a quantity that should be r-independent – and equal to αe and se
respectively – if the asymptotic solution (5.27) applies). These comparisons for the solution displayed

reveal that the powers agree with those predicted by (5.36) once re − r is smaller than 10−5.

Numerical α

Analytic coefficient

10-6 10-5 10-4 0.001 0.010 0.100
0.107
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(a) r ∂Ω/∂r vs αe = 1
9

Numerical s

Analytic coefficient

10-6 10-5 10-4 0.001 0.010 0.100

0.887

0.888

0.889

(b) r ∂χ/∂r vs se = 8
9

Figure 3: Plot of r ∂Ω/∂r and r ∂χ/∂r vs re − r for the solution in Fig. 2, which should be r-independent

in the scaling regime of (5.27). Also shown is the prediction for αe and se obtained from the non-Kasner

power-law (5.36).

We can check ex post facto that this solution lies within the domain of validity of the derivation

of the 6D field equations.

• Weak string coupling: is ensured by choosing the field τ appropriately, and τ is constant in our

solutions with a value not fixed by the field equations. We are therefore free to choose τ to be

in the weak-coupling regime and once this is done it follows that the string length ℓs (defined by

α′) satisfies ℓs = ℓ10/λ where ℓ10 is the 10 Planck length (defined from κ10) and λ≪ 1.

• 10D supergravity regime: Use of the higher-dimensional supergravity equations requires the four

compact dimensions B4 transverse to the 6D theory to be large in string units. In our conventions
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this requires V = eχ ≫ 1, since V is defined to be the volume of B4 measured in string units:

V = ℓ4B/ℓ
4
s. This is satisfied by the top-right panel of Fig. 2 except in the immediate vicinity of

the right-hand (non-Kasner) singularity.

• Effective 6D limit: requires the length scale ℓB setting the linear size of the four transverse

dimensions, B4, must be larger than the scales defining the 6D theory. (This hierarchy is required

for solutions of the higher dimensional field equations to be well-approximated by the 6D ones

found explicitly here.) On one had the lower-left panel of Fig. 2 shows that the proper distance

re ∼ 3000 and the circumference 2πa(r) of circles at fixed r are both large compared with unity

and therefore also compared with the 6D Planck length ℓ6 set by the value κ. (As discussed

below eq. (4.23) choosing g2 ≪ κ and Ṽ = 1 ensures ℓ6 ≪ 1. ) On the other hand we have also

seen that ℓB = V1/4ℓs = V1/4ℓ10/λ where weak string coupling says λ≪ 1. But compactification

predicts the 6D and 10D Planck lengths are in turn related by ℓ10 ∼ ℓ6 V−1/4 ≪ ℓ6 ≪ 1 so we

have LB ∼ ℓ10/λ. For instance if we choose τ so that λ ∼ V−1/4 ≪ 1 then ℓB ∼ ℓ6 is much

smaller than the compact two dimension in 6D (except very close to the right-hand (non-Kasner)

singularity.

• Semiclassical methods in 6D: As usual for gravity (see e.g. [30]) semiclassical methods are con-

trolled by powers of ℓ6 divided by the curvature radii which in the 6D theory are set by extra-

dimensional size and by the 4D Hubble length H−1. This is under control for our solutions

because the curvature radii are both much larger than unity but ℓ6 must be smaller than unity.

We see that the various small control parameters in the analysis can be kept controllably small,

except perhaps in the immediate vicinity of the right-hand non-Kasner singularity.

5.3 Interpretation of the singularities

The singularities in the bulk solutions can again be matched to the action of the gravitating source

whose back-reaction is responsible for the singular behaviour along the lines described in §2. We again

assume a source action containing the fewest derivatives, as in (3.10), leading for unbent sources to

Sb = −
∫

d4x
√
−g W 4

b Lb(φ, χ) = −
∫

d4x
√
−g Tb(φ, χ) . (5.38)

The matching conditions that follow when (5.38) is combined with eqs. (3.6) through (3.8), can

be specialized to the field equations (5.2) and (5.3) and simplified by cancelling a common factor of

W 4(ϵ). This leads to the following near-source matching relation for the scalars[
a ∂r φ

]
r=ϵ

=

(
∂Lb

∂φ

)
r=ϵ

and
[
a ∂r χ

]
r=ϵ

=

(
∂Lb

∂χ

)
r=ϵ

, (5.39)

where Lb = κ2Lb/(2π) is a dimensionless measure of the strength of the gravitational back-reaction of

the source. These equations show precisely how the singularity in a bulk scalar at the source location is

controlled by the strength with which it couples to the source action. The metric matching conditions

similarly are

1−
[
a

(
3
∂rW

W
+
∂ra

a

)]
r=ϵ

=
(
Lb

)
r=ϵ

and
[
a ∂rW

]
r=ϵ

=
(
Ũb

)
r=ϵ

, (5.40)

where Ũb := κ2Ũb/(2π) with Ũb defined below eq. (3.17).
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Just as in earlier sections, although the right-hand sides of the first three of these can be read off

from (5.38) the same is not true for Ũb. But this need not pose a problem because (∂rW )r=ϵ can be

read off in terms of the other derivatives and fields using the constraint (5.26), and once this is done

the second of eqs. (5.40) can be regarded as determining Ũb.

Further simplifying using the near-source asymptotic forms (5.27) then allows (5.39) to be written

qb

(
ab
rb

)(
ϵ

rb

)αb−1

=

(
∂Lb

∂φ

)
r=ϵ

and sb

(
ab
rb

)(
ϵ

rb

)αb−1

=

(
∂Lb

∂χ

)
r=ϵ

, (5.41)

where the arbitrary pivot scale r0 is denoted rb to emphasize that it can differ from source to source

while ab := a(rb) and so on for the other fields. The metric conditions (5.40) similarly become

1− (3wb + αb)

(
ab
rb

)(
ϵ

rb

)αb−1

=
(
Lb

)
r=ϵ

(5.42)

and

wb

(
ab
rb

)(
ϵ

rb

)αb−1

=
(
Ũb

)
r=ϵ

. (5.43)

We next consider two cases: weakly coupled sources for which Lb = κ2Lb/(2π) ≪ 1 (and the same

is true for its derivatives with respect to φ and χ) and generic sources for which these quantities need

not be small.

5.3.1 Weakly gravitating (Kasner) sources

For weakly coupled sources we assume Lb and Ũb are both small, in which case (5.41) and (5.43) imply

that qb, sb and wb are small while (5.42) implies the same for αb − 1. This puts them perturbatively

close to the trivial Kasner-like solution for which q = s = w = 0 and α = 1. Dropping subdominant

terms in Lb and Ub allows the neglect of αb − 1 on the left-hand sides of the matching conditions, and

so (ϵ/rb)
αb−1 ≃ 1. Under these circumstances the matching conditions to simplify to

qb

(
ab
rb

)
=

(
∂Lb

∂φ

)
r=ϵ

, sb

(
ab
rb

)
=

(
∂Lb

∂χ

)
r=ϵ

, wb

(
ab
rb

)
=

(
Ũb

)
r=ϵ

(5.44)

and

1− (3wb + αb)

(
ab
rb

)
=

(
Lb

)
r=ϵ

. (5.45)

In this Kasner-like limit non-derivative terms can be dropped as being subdominant in powers of

r in the near-source limit and so the constraint (5.26) can be written

0 ≃
[
φ̇2 + 1

2 χ̇
2 − 8Ω̇Γ̇− 12Γ̇2

]
b
= q2b +

1
2s

2
b − 8αbwb − 12w2

b

= W 4
b

[
−8 Ũb

(
1− Lb − 3Ũb

)
− 12 Ũ2

b + (Lb ,φ)
2 + 1

2 (Lb ,χ)
2
]
, (5.46)

where the last line uses the matching conditions (5.44) and (5.45) and subscripts φ and χ denote

differentiation with respect to the corresponding field. Once solved for Ũb this gives

Ũb =
1
3

[
(1− Lb)−

√
(1− Lb)2 − 3

4 (Lb ,φ)2 − 3
8 (Lb ,χ)2

]
≃ 1

8 (Lb ,φ)
2 + 1

16 (Lb ,χ)
2 + · · · , (5.47)
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where the approximate equality works to leading order in Lb. We see that Ũb vanishes if Lb is

independent of χ and φ and once used in (5.44) shows that the power wb is

wb

(
ab
rb

)
≃ 1

8

(
∂Lb

∂φ

)2

r=ϵ

+
1

16

(
∂Lb

∂χ

)2

r=ϵ

+ · · · , (5.48)

and so can be neglected because it is quadratic in Lb and its derivatives.

Because (5.48) implies wb is second order in Lb it can be neglected at leading order, in which case

the Kasner relation (5.30) implies αb = 1− 4wb ≃ 1 and (5.45) simplifies to

ab
rb

≃ 1−
(
Lb

)
r=ϵ

. (5.49)

Since the near-source metric has the form dr2 + a2dθ2 ≃ dr2 + a2b(r/rb)
2dθ2 when αb ≃ 1 we see that

the geometry has a conical defect δb whose size is related to Lb in the standard way

δb = 2π

(
1− ab

rb

)
≃ κ2Lb . (5.50)

In particular positive defect corresponds to positive tension. We see in this way that weak coupling

leads to Kasner-like solutions that are perturbatively close to the trivial solution w = s = q = 0 and

α = 1, and the sign of the tension is related to the sign of the bulk geometry’s conical defect angle.

The sign of Lb can be read off from the defect angle of the geometry using (5.50), at least for

the Kasner-type singularities. To see how, denote by ℓ the length scale we set to unity when we take

Ṽ = 1. Then the relation a(r)/ℓ = eΩ(r) together with the asymptotic forms a(r) = ab(r/rb)
α and

Ω(r) = Ω0 + α log(r/ℓ) shows that Ω0 is given by

Ω0 = log
(ab
ℓ

)
+ α log

(
ℓ

rb

)
= log

(
ab
rb

)
− (1− α) log

(
ℓ

rb

)
. (5.51)

But from (5.50) we see that Lb > 0 requires ab < rb. Recall that ℓ is a macroscopic scale associated

with the extra dimensions and rb is a microscopic scale associated with the source so we expect ℓ > rb.

It follows that if α < 1 (such as is true for a Kasner-like singularity) then Ω0 must be negative if

ab < rb. In particular, if 1 − α ≪ 1 and Ω0 is negative and order unity (as is true for the numerical

solution shown) then Lb > 0.

In the special case where Lb is independent of χ and φ we see that qb = sb = 0 and the Kasner

conditions then imply wb = 0 and αb = 1. The matching conditions boil down to the usual relation

between the conical defect angle and the source’s tension Lb = κ2Lb/2π. If this is true for both of

the sources in the geometry – situated at r = 0 and r = re – then integrating the first of eqs. (5.25)

between the two branes implies

3ζH2

∫ re

0

dr aW 2 =W 4
e (we +

1
2 qe)

(
ae
re

)
−W 4

0 (w0 +
1
2 q0)

(
a0
r0

)
= 0 , (5.52)

and so H = 0, implying the maximally symmetric 4D geometry must be flat. Because (5.48) implies

wb is always second-order in Lb 4D curvature within this weak-coupling regime nonzero 4D curvature

at linear order in Lb requires a coupling between sources and φ.

At second order in Lb a nontrivial coupling to χ can suffice to obtain nonzero 4D curvature even if

there is no direct coupling to φ, provided χ couples differently to the two sources. In this case solving

the Kasner condition (5.46) for given sb allows nonzero wb ≃ s2b/16 and so (5.52) can be nonzero at

second order provided s0 ̸= se.
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5.3.2 Non-Kasner sources

Conversely the non-Kasner asymptotic solutions whose powers are given by (5.36) cannot describe

weakly coupled sources because sb, qb and wb are not perturbatively close to zero. In this case we

must go back to the matching conditions (5.41) through (5.43). In this case any mismatch beween the

explicit ϵ-dependence of the left-hand side and the ϵ-dependence of the fields appearing in Lb must be

interpreted as indicating the need for an implicit ϵ-dependence for the effective couplings11 appearing

in Lb.

This type of solution actually arises in the numerical solutions described above. For the plots

shown all of the powers qb, sb, wb and αb are chosen positive near r = 0 which implies Lb for this

source must be a growing function of both χ and φ. The solution obtained by integrating the field

equations then predicts the asymptotic form near the other source and as shown in the plots, and these

predict that only the sign of ∂rφ is opposite near the other source while all of the other derivatives do

not change sign (provided one is careful to take the derivatives in the direction moving away from the

source). This provides an indirect constraint on the form that Lb must take and in particular requires

the sources to couple to φ with Lb having opposite sign derivatives as φ is varied.

5.3.3 D-brane charges

A great benefit of knowing the F-theory pedigree of the 6D equations is that it allows a simple

identification of whether the sources of the singularities can be well-known objects like D3 branes (or

more generally bound states of D-branes). This can be done by testing whether the sources carry D3

or D7 charges, which in the current language corresponds to there being singularities in the fields to

which these charges couple. Tracking through to the higher dimensions shows that D3 brane charge

can be identified as a near-source singularity of the field Φ that is dual to the IIB 4-form C(4). D7

charges can similarly be read from the asymptotic behavior of the 10D 0-form C(0) that is a component

of the complex string dilaton field.12 By this measure the solutions we find here have zero D3 and

D7 charges because the fields Φ and τ are nonsingular at the source positions. We leave for a future

publication the generalization of our solutions to include sources with nonvanishing D3/D7 charges by

exploring solutions with non-trivial τ and Φ configurations.

6 Conclusions

It’s tough to make predictions, especially about the future.

We outline in this paper a systematic approach to obtain classical 4D maximally symmetric so-

lutions of string theory: Minkowski, AdS or dS. Furthermore, we achieve these solutions without

relying on quantum or α′ corrections and therefore have better computational control as long as the

corrections are subdominant and can be consistently neglected.

Our construction relies on several well-established tools developed over the past 20 years:

11It is noteworthy that no ϵ-dependent couplings were required when matching to D-branes in the stringy cosmic

string solutions described in [38].
12Identifying D7 charges was done in [38] for the flat solutions of 6D supergravity in which the precise D7 tension was

obtained using PPEFT methods and agreeing with known results. Furthermore, in the 6D F-theory solutions found in

[27] were extended to non-trivial dilaton values by modifying slightly the metric ansatz. In both cases, the standard

F-theory configuration with 24 singularities corresponding to D7 branes at weak coupling were reproduced. Notice that

there are at least two types of D7 branes. Those wrapping the full B4 base and those wrapping a 2-cycle of B4 and the

two extra dimensions from going from 6D to 4D.
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• The general classes of analytic and numerical Minkowski, AdS and dS solutions of gauged 6D

supergravity.

• The development of EFT techniques to describe the back-reaction of brane-like objects, tested

with applications to brane and atomic systems.

• The F-theory derivation of gauged 6D supergravity including explicit N = 1 supersymmetric

solutions reproducing known results from direct 4D compactifications.

Combining these three ingredients is relatively straightforward but far from trivial since the system

of equations to be considered once the F-theory derivation of 6D supergravity is included, requires

more scalar fields and their corresponding field equations. It is worth emphasizing that, contrary to

Calabi-Yau compactifications, compactifications of 6D supergravity are much simpler, allowing for

explicit metric solutions for the extra-dimensional geometry. Furthermore, the scalar fields do not

take homogeneous values and instead have non-trivial profiles in the extra dimensions that can be

explicitly computed, albeit so far only numerically.

The main point is that addressing simultaneously the two challenges to obtain dS in string theory

– namely the classical no-go theorem and the Dine-Seiberg problem in 6D rather than 4D – leads

to solutions of the field equations of 6D gauged supergravity derived from F-theory corresponding to

4D Minkowski, AdS and dS spacetimes. The solutions generically have co-dimension two singularities

that have brane-like properties that can (but need not) correspond to positive-tension objects and the

challenge of finding a full microscopic understanding of these extended objects remains an interesting

open question.

Similar singularities arise for the solutions found in [11] for massive IIA supergravity and applying

the formalism of PPEFT to those solutions may also provide a better understanding how to interpret

the properties of the sources to which they point. Furthermore, general studies of non-supersymmetric

strings with runaway potentials have been made (see for instance [80] and references therein) with

similar properties in terms of brane-like singularities.

We emphasize that from the EFT point of view this leaves us no worse off than when computing

nuclear complications to atomic energy levels. One can compute the atomic effects of various nuclear

moments without knowing the full complicated structure of the atomic nucleus including all the details

of strong interactions, confinement, etc. It is EFT techniques that allow us to compute the implications

of finite-size nucleus size effects in precision calculations of the atomic energy levels by expanding in

the small ratio of nuclear and atomic sizes. Similar techniques allow us to compute the back-reaction

effects of the corresponding brane-like object at the singularities.

It is important to emphasize that having a monotonic potential where V ′ = 0 need not be a bug

and instead might be a feature. It forbids maximally symmetric solutions in the higher dimensions

but does not exclude maximally symmetric solutions in lower dimensions, with non-trivial profiles for

the scalar fields in the compactified dimensions. The solutions we find here are likely just the tip of

the iceberg for a larger class of solutions of this type.

In the broader perspective, our work fits with the generic structure of the string landscape in which

vacua with all signs of the cosmological constant are present. But unlike for Minkowski and AdS,

explicit realization of dS backgrounds have been more challenging to obtain. We believe the results of

this article provide progress in this direction and should help add to the accumulated evidence to the

existence of dS solutions in string theory (and if they do not, why they do not). Furthermore, since our

set up provides dS solutions within a chiral theory, it might be plausible to use it as a starting point

for a search of realistic models in 4D. In particular our construction naturally fits with the anisotropic
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compactifications described in [81] in which two extra dimensions can be much larger than the other

extra dimensions providing an interesting hierarchy of scales in 4D.

Although the existence classical de Sitter solutions to the equations we solve is incontrovertible,

several points remain open. These include the description of the full F-theory solutions with all

moduli stabilized for concrete models, a better understanding of the singularities, a rigorous proof of

the stability of the solutions and so on. Furthermore, a natural next step after obtaining dS solutions

is to look for time-dependent solutions giving rise to inflation starting not from a 4D effective action

but from the full 10D equations which should be under reach following the work of [82]. We believe

this to be only a first step towards a fully-fledged realistic classical dS solution from a concrete string

construction. We leave the study of the scenarios 2 and 3 of section 5 for a follow-up publication [83]

and hope to address some of the other questions in the near future.
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