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The recent demonstration of laser excitation of the ≈ 8 eV isomeric state of thorium-
229 is a significant step towards a nuclear clock. The low excitation energy likely results
from a cancellation between the contributions of the electromagnetic and strong forces.
Physics beyond the Standard Model could disrupt this cancellation, highlighting nuclear
clocks’ sensitivity to new physics. Accurate predictions of the different contributions to
nuclear transition energies, and therefore of the quantitative sensitivity of a nuclear clock,
are challenging. We improve upon previous sensitivity estimates and assess a “nightmare
scenario,” where all binding energy differences are small and the new physics sensitivity is
poor. A classical geometric model of thorium-229 suggests that fine-tuning is needed for such
a scenario. We also propose a d-wave halo model, inspired by effective field theory. We show
that it reproduces observations and suggests the “nightmare scenario” is unlikely. We find
that the nuclear clock’s sensitivity to variations in the effective fine structure constant is
enhanced by a factor of order 104. We finally propose auxiliary nuclear measurements to
reduce uncertainties and further test the validity of the halo model.

1. INTRODUCTION

Roughly 80% of the matter content of our Universe consists of dark matter (DM). Despite ample
evidence for its existence from astrophysical and cosmological observations, little is known about its
nature, and it is considered to be one of the greatest mysteries of contemporary physics. Theories
of ultralight dark matter (ULDM) bosons (scalar or pseudo-scalar) provide us with arguably the
simplest explanation for its nature. Well-motivated models of ULDM include the axion [1–5] of
quantum chromodynamics (QCD), the dilaton [6] (though see Ref. [7]), the relaxion [8, 9], and
possibly other forms of Higgs-portal models [10]. Finally, it was recently shown that the Nelson–Barr
framework that also addresses the strong-CP problem, leads to a viable ULDM candidate [11].
All of these models predict that the ULDM would couple dominantly to the Standard Model
(SM) QCD sector, the quarks and the gluons, leading to oscillations of nuclear parameters [12–14].
These models would also lead to subdominant coupling to the QED sector via time variation of
αem, the fine structure constant. Scalar ULDM generically couples linearly to the hadron masses
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(see [15] for a recent review), whereas pseudo-scalars (axions) couple quadratically [16] (though see
Ref. [17, 18]). Furthermore, one can construct a broad class of natural ULDM models where the
leading DM interaction with the SM fields is quadratic [19]. All of these lead to oscillation of the
nuclear/hadronic parameters.

Variations of SM parameters can be searched for by comparing the rates of two clocks (e.g.,
quantum transitions or resonators) that exhibit different dependence on the parameters in question [6,
14, 20]. Laboratory limits on these variations have been obtained from various clock-comparison
experiments based on atomic or molecular spectroscopy as well as cavities and mechanical oscillators.
However, these experimental probes mostly rely on electronic transitions, whereas their sensitivity to
changes in the nuclear sector is largely suppressed. Hyperfine transitions and mechanical oscillators,
(Cs clock, hydrogen maser, quartz oscillator) [21–26], which are sensitive to variation of the nuclear
parameters, do not reach the accuracy and stability of optical clocks. In optical clocks nuclear
properties enter via hyperfine structure and the reduced mass, but their relative contributions
are typically only of order 10−6 and 10−5, respectively. The contributions from the oscillation of
the charge radius, is around 10−3 [27]. Rovibrational transitions in molecules promise an O(1)
sensitivity to a modulation of nuclear parameters [28, 29], although current constraints only exist
at modulation frequencies above 10 Hz [30].

This is one of two main reasons for why a nuclear clock, which precisely monitors an ultra-narrow
nuclear transition, could lead to a quantum leap in ULDM searches, [31–34]. The only isotope
known to possess a suitable clock-nuclear transition is 229Th, which features an isomeric state,
229mTh, a mere 8 eV above the ground state, low enough to be excitable with a laser [35, 36] (for
illustration see Fig. 1). In fact, laser excitation of this transition has recently been reported for the
first time [37–39]. This constitutes a major breakthrough on the way towards a nuclear clock, which
is hoped to surpass the frequency stability of even the best atomic clock, given that the nucleus is
better shielded from environmental noise than the electron shell. Regarding searches for physics
beyond the SM, line-shape analysis of the 229Th data would lead to world-record sensitivity already
now, well before a nuclear clock is going to be realized [40].

The second reason for why the nuclear clock might be extremely sensitive to the presence of new
physics is due to an accidental cancellation between the nuclear energy shift and the electromagnetic
energy shift compared to the ground state, which results in the observed small transition energy.
New physics that couples differently to either of these contributions disrupts this cancellation. A
nuclear clock is therefore believed to have spectacular sensitivity to certain classes of physics beyond
the SM, naively being of the order of MeV/10 eV ∼ 105. The sensitivity of a nuclear clock to
physics beyond the SM has been explored in a number of papers (see for example [41–47]). Recent
reviews can be found in Refs. [15, 48, 49].

However, to accurately quantify this sensitivity, the degree of fine-tuning in the transition energy
(or, in other words, the absolute magnitude of the electromagnetic or nuclear energy difference
between the ground state and the isomer) needs to be known. This is hindered by intrinsic
imperfection in all models of atomic nuclei. At the moment, as we will see below, even a “nightmare
scenario” where no cancellation occurs (and the electromagnetic and nuclear energy differences
happen to be at the eV scale individually) cannot be ruled out. This would leave the nuclear clock
with a disappointing enhancement factor of O(1).

Our goal in the present paper is to quantify how likely this nightmare scenario is. We do so by
calculating the Coulomb energy difference between the ground state and the isomer of 229Th first
in a classical, geometric, model of the nucleus, parameterized by its charge radius, quadrupole and
higher moments, as well as the skin thickness (Section 2.1). We then derive similar results using a
quantum halo model, in which 229Th is described as a 228Th core orbited by a halo neutron, and the
two states differ in the spin alignment of the halo neutron (Section 2.2). Finally, in Section 3, we
conclude and propose a number of auxiliary measurements and further steps that could shed more
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FIG. 1. Illustration of nuclear level properties, namely excitation energy ∆E [35, 36], intrinsic electric
quadrupole momentum Q0 [39, 50] and mean squared charge radius ⟨r2⟩ [42, 50, 51], of the almost-degenerate
ground-state 229Th and isomer 229mTh.

light on the likelihood of the nightmare scenario and the sensitivity of a nuclear clock to physics
beyond the SM.

2. THE 229Th NUCLEUS

229Th is a heavy nucleus. This trivial fact makes its modeling from first principles problematic.
The problem intensifies when considering the isomeric state, whose energy difference with the
ground state, ∆E = 8.335 255 411 536(8) eV [39], lies far below typical nuclear physics scales. As
mentioned before, the presumed explanation for this unnaturally low scale is a cancellation between
the electromagnetic contribution, ∆Eem, and the nuclear contribution, ∆Enuc, to the transition
energy,

∆E = ∆Eem + ∆Enuc , (1)

where very naively we expect
∣∣∆Eem

∣∣ ∼ ∣∣∆Enuc

∣∣ ≫ ∆E . Physics beyond the SM may affect one of
these contributions, but not the other, thereby breaking the fine-tuned cancellation.

The conventional lore is that this implies a sensitivity that is enhanced compared to the
sensitivity of an optical lattice clock by a factor of

∣∣∆Eem

∣∣/∆E ≃
∣∣∆Enuc

∣∣/∆E. To compute
the enhancement factor, determine the sensitivity of a 229mTh nuclear clock to new physics, and
interpret measurements in this context, it is necessary to determine ∆Eem independently. As
∆Eem is not an observable, and at present cannot be computed from first principles, this requires
modelling.

More precisely, if physics beyond the SM manifests itself as an effective variation of the strong
coupling constant, δαs, and/or an effective variation of the electromagnetic coupling constant,
δαem, (for instance due to dark matter oscillations), we can use Eq. (1) to write the corresponding
variation of the transition energy as

δ(∆E)

∆E
=

1

∆E

(
∂∆Eem

∂αem
δαem +

∂(∆Eem + ∆Enuc)

∂αs
δαs

)
, (2)

where in Eq. (2) we have used the fact that ∂(∆Eem + ∆Enuc)/∂αem = ∂∆Eem/∂αem. In case of a
time varying background they would become accessible for quantum sensors, contrary to ∆Eem and
∆Enuc themselves.

Dark matter-induced variations of αem,s are typically of the form δαem,s = αem,s(1 + F(t)gem,s) ,
where gem,s denotes the dark matter coupling strength to either the electromagnetic or strong sector
of the SM, while F(t) is a function which depends on the dark matter energy density and mass,
with the latter setting the frequency at which F(t) oscillates.
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In the following we focus on the computation of the electromagnetic enhancement factor, defined
as

Kem ≡ 1

∆E

∂∆Eem

∂ logαem
≃ ∆Eem

∆E
, (3)

where in the last equality we have assumed that ∆Eem depends linearly on αem. Any other
power-law dependence will give an order-one correction which is irrelevant for the scope of this
work. Kem arises naturally as the quantity of interest for dark matter candidates which couple
to the electromagnetic sector; however, as explained in the introduction, such candidates are
typically well constrained by other probes. But some of the most appealing and well-motivated
dark matter candidates couple to the strong sector, and it is therefore of great interest to compute
the corresponding enhancement factor Ks = Kem

s + Knuc
s related to variations of the effective value

of αs. The effect of such variations is, unfortunately, very difficult to model. Nevertheless, we notice
that as long as ∆Eem has a polynomial dependence on αs (this dependence can come, for example,
from the variation of the nuclear radius with αs, see [27] for a relevant discussion), we expect

Kem
s ≡ 1

∆E

∂∆Eem

∂ logαs
∼ β

∆Eem

∆E
∼ βKem , (4)

where we introduced an overall factor β, which we expect to be of order one, but which can slightly
change for different functional dependencies of ∆Eem on αs. Barring fine-tuning cancellations
between Kem

s and the analogous quantity for the nuclear energy, Knuc
s ≡ 1

∆E
∂∆Enuc
∂ logαs

, we expect our
computation of Kem to be a good proxy for Ks as well, and therefore our conclusions to apply also
to dark matter models which couple to the strong sector. This statement can be invalidated only if
the functional dependence of ∆Eem and ∆Enuc on αs is exactly the same.

We now turn to the actual determination of ∆Eem and its variation with αem and define the
corresponding enhancement factor as

K ≡ |Kem| . (5)

Recent studies on this topic have modelled the 229Th nucleus using a purely geometric model
[42, 52]. This is a classical model, in which the nucleus is described as a three-dimensional
body with some charge distribution – in the simplest case a homogeneously charged sphere or
ellipsoid. Its electrostatic energy can then be derived easily using standard methods from elementary
electrodynamics. The energy difference between the ground state and the isomer is interpreted as
due to a change in the shape of the nucleus; and the shapes of the two states are modelled from
observables, notably the measured nuclear charge radius and electric quadrupole moment.

However, the geometrical model has several severe shortcomings. First, its classical nature
neglects a possible quantization of nuclear deformations. Second, it only assesses the direct (Hartree)
contribution to the electrostatic energy, neglecting exchange (Fock), vacuum polarization, and
spin–orbit coupling terms [53]. These are typically small compared to the direct contribution
in absolute terms, but since we are interested in electromagnetic energy differences, they may
nevertheless be important. In particular, the excitation from the ground state (spin 5/2) to the
isomeric state (spin 3/2) can be interpreted as a single neutron spin flip. In this case, the change in
the spin–orbit term, which is the smallest of the four corrections in absolute terms [53], might even
dominate the electromagnetic contribution to the excitation energy. (Note that even though the
spin–orbit term is small, it is still much larger than the observed energy difference of order 8 eV.)

This motivates an alternative description of the 229Th nucleus: the so-called halo model, in
which 229Th is described as a monolithic spin-0 228Th nucleus orbited by a relatively loosely bound
“halo neutron”. Models with one or several such halo nucleons have been applied successfully to
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a number of nuclei, especially away from the valley of stability and near the neutron and proton
driplines [54, 55]. In the case of 229Th, a halo model is supported by the relatively smaller neutron
separation energy (Sn = 5.2567(26) MeV) in the ground state of 229Th compared to the ground state
of 228Th (7.1052(23) MeV). A similar difference cannot be found comparing the proton separation
energies in the ground states of 229Th and 228Th: 6.5981(28) MeV and 6.3676(21) MeV, respectively
[56, 57]. The very similar charge radii of 228Th (5.7488(152) fm) and 229Th (5.7557(143) fm) lend
support to the halo model in which the core is 228Th and the difference in the charge radii of 228Th
and 229Th is mainly due a recoil effect that is suppressed by the inverse mass number [54]. Given
that the ground state of 228Th has zero spin, the spins of the 229Th ground state and 229mTh isomer
can be understood if the halo neutron is in a d-wave state; the ground state and the isomer then
correspond to the two spin orientations of that neutron. Note, however, that the description in
terms of a halo model is not supported by the nuclear shell model, in which the neutron valence shell
is the 2g9/2 orbital containing three valence neutrons which moreover have the “wrong” angular
momentum.

In the following, we investigate the predictions of both the geometric model and the halo model
quantitatively.

2.1. The classical geometric model

In spite of its aforementioned shortcomings, the geometric model of the 229Th nucleus has been
widely adopted in the literature, including in several studies exploring the potential of nuclear clocks
to look for new physics [42, 52]. We therefore study this model first, advancing it beyond previous
calculations. Our goal is to compute the electromagnetic energy difference, ∆Eem between the
ground state and the isomer of 229Th. Doing so at the required level of ∼ 8 eV is considered absurd
in nuclear physics, and we do not claim to achieve this either. Instead, our aim is to estimate a
preferred range of ∆Eem, and thereby to answer the following two questions:

1. What is the expected magnitude of ∆Eem, and therefore of the enhancement factor ∆Eem/∆E
(with ∆E ∼ 8 eV) benefiting searches for new physics?

2. How likely is a “nightmare scenario”, where ∆Eem is accidentally close to zero, so that no
fine-tuned cancellation is required to explain the smallness of ∆E, and new physics searches
would not benefit from an enhancement, or even suffer a suppression?

Our starting point is the nuclear charge density, which we describe with a Woods–Saxon
distribution [58]:

ρ(r, θ) =
ρ0

1 + exp
(
r−R(θ)

z

) , (6)

where z is the “surface thickness” of the nucleus, R is its “radius” and the reference density ρ0 is
determined by the normalisation condition

Z e =

∫
d3r ρ(r, θ), (7)

with e the electric charge unit, and Z = 90 for thorium. We model non-sphericity of the nucleus
through an angular dependence in R, namely

R(θ) = R0 [1 + β2Y20(θ) + β3Y30(θ) + β4Y40(θ) + . . . ] , (8)



6

where R0 is the scale radius, the Ylm(θ, ϕ) denote spherical harmonics, and β2, β3, and β4 are
the coefficients of the quadrupole, octupole, and hexadecapole, respectively. We neglect higher
multipole moments in this work. Assuming azimuthal symmetry, we have set the magnetic quantum
number m to zero, thereby making sure that R depends only on the polar angle θ, not on the
azimuthal angle ϕ. Note that β3 and β4 are not constrained by experiments yet, contrary to β2,
but they all impact ∆Eem.

Given the density profile, we can compute the two quantities which are accessible experimentally,
namely the mean squared charge radius

⟨r2⟩ ≡ 1

eZ

∫
d3r r2ρ(r, θ) , (9)

and the intrinsic quadrupole moment

Q0 ≡
∫

d3r r2ρ(r, θ)
[
3 cos2(θ) − 1

]
. (10)

(We use the notation Q0 here to distinguish the intrinsic quadrupole moment from the spectroscopic
quadrupole moment Qs = Q0[(j(2j − 1)]/[(j + 1)(2j + 3)], which is often the quantity that is
reported in the experimental literature.) The measurements of ⟨r2⟩ and Q0 fix two parameters of
our model. In particular the scale radius R0 depends mainly on ⟨r2⟩ = (5.7557(143) fm)2 [50, 51],
while the parameter β2 is closely related to the intrinsic quadrupole moment, Q0 = 9.8(1) fm2 [50].
For small β2,3,4 one finds, ⟨r2⟩ ∼ R2

0 plus small corrections due to the skin thickness O(z2/R2
0),

whose typical value is z ∼ 0.5 fm. Similarly, for small β2 one can write Q0 as an expansion in β2. In
the following we do not assume these expansions and numerically solve for the various parameters
of our model.

Note that Ref. [42] relates ⟨r2⟩ to β2 (or equivalently Q0) by taking a constant volume approach,
that is, by assuming equal R0 for the ground state and the isomer. Furthermore, [42] studies the
impact of small β3 values on the energy difference ∆Eem, but not the impact of β4. Our study
does not assume a constant volume. We numerically scan over the parameters β3, β4, and ∆z to
carefully asses their combined impact on nuclear clock sensitivity.

We now turn towards the main result of this section, namely the calculation of the electromagnetic
energy for both the ground state and the isomer of 229Th. We approximate this with the direct
Coulomb energy contribution

Eem ≃ EC[⟨r2⟩, Q0, z, β3, β4] =
1

2

∫
d3r d3r′

ρ(r, θ) ρ(r′, θ′)

|r− r′|
. (11)

The integral over the azimuthal angles can be evaluated analytically as the charge density does
not depend on these angles. The four remaining integrals, however, must be done numerically. We
show the results in Figs. 2 and 4.

In Fig. 2 we plot the enhancement factor K as a function of the relative quadrupole moment
difference between the excited state and the ground state of 229Th, ∆Q0/Q0, for various combinations
of β3,4. We find that the “nightmare scenario” in which K ≃ 0, implying no enhanced sensitivity

to new physics, is fairly unlikely. It would only be realized for very specific values of βgs,iso
3,4 of the

ground state (“gs”) and the isomer (“iso”) chosen in such a way that the funnel region is aligned
with the measured value of ∆Q0/Q0 from Ref. [39] (vertical dark gray line in Fig. 2). In contrast,
typical values of K ∼ 104–105 are far more likely. To illustrate this point, we plot in Fig. 3 the
enhancement factor K as function of βgs

3 and βiso
3 for βgs

4 = βiso
4 = 0 (left panel), and as a function

of βgs
4 and βiso

4 for βgs
3 = βiso

3 = 0 (right panel). In both panels, ∆Q0 has been fixed to the value
measured in Ref. [39].
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FIG. 2. The enhancement factor K benefiting new physics searches with 229Th as a function of the quadrupole
moment difference between the excited and ground states. The different colored lines correspond to different
values of the higher electromagnetic multipole moments βgs,iso

3,4 of the ground state (“gs”) and the isomer
(“iso”), cf. Eq. (8). (The labels give only the multipole moments which are chosen different from zero.) The
vertical gray line indicates the latest, very precise, measured value of ∆Q0/Q0 [39], while the wide shaded
gray band corresponds to the 1σ uncertainty from previous measurements [50]. We see that for specific values

of ∆Q0/Q0 and the values of βgs, iso
3,4 , the K-factor may be drastically smaller than 105.
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FIG. 3. The enhancement factor for new physics searches with 229Th (“K-factor”) as a function of the higher
electrostatic multipole moments β3 (left) and β4 (right) of the ground state (“gs”) and the isomer (“iso”).
We see that K is typically of order 104–105, except for a narrow funnel region. In both plots we have fixed
z = 0.5 fm and all the other parameters to their median experimental values.
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FIG. 4. The enhancement factor K as a function of the difference in the skin thickness between the excited
and ground states of 229Th. Colored lines correspond to various values of the higher electromagnetic multipole
moments βgs,iso

3,4 of the ground state (“gs”) and the isomer (“iso”), cf. Eq. (8). Similar to Figs. 2 and 3 we

see that K can go to zero for specific values of ∆z and βgs, iso
3,4 , though for most values of these unknown

parameters, K is of order 104–105. The dot-dashed blue line shows the approximate expression for K from
Eq. 7 of Ref. [52], which does not take into account the impact of β3,4 and is a good approximation only for
small ∆z [59].

We finally discuss in Fig. 4 the impact of the neutron skin thickness, z, which we have so far
chosen to be z = 0.5 fm for both the ground state and the isomer. We see again that – depending
on the values of ∆z and βgs,iso

3,4 – K might be very small or zero. Note that the treatment of the
skin thickness discussed in [52] is valid only for small ∆z and does not simultaneously take into
account the effects of β3,4.

Finally, We explicitly checked that adding additional contributions to Eq. (11), for instance an
exchange term describing Pauli blocking in the free Fermi gas approximation, has a minor effect and
does not qualitatively change any of our conclusions. Including such terms would slightly change
the values of βgs,iso

3,4 for which K ≪ 105 by a small amount.

2.2. Th-229 as a Halo Nucleus

To describe 229Th as a halo nucleus, we follow the halo Effective Field Theory (EFT) framework
for shallow d-wave states developed in [60, 61], considering the ground state (j = 5/2) and the
isomer (j = 3/2) which both have positive parity as a doublet resulting from the l = 2 coupling
of the halo neutron to the 228Th core system. We stress here that halo EFT should only be
considered a model for the neutron–228Th system, not a proper EFT, as the separation between
the low and high energy scales is marginal. If the expansion parameter is estimated as the ratio
of the neutron separation energies of 229Th (Sn ≈ 5.2 MeV) and 228Th (Sn ≈ 7.1 MeV), it would
be

√
5.2/7.1 ≈ 0.86. In addition, the predictivity of halo EFT is limited for d-wave nuclei as the
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centrifugal barrier creates a strong dependence on short-distance (small r) effects and therefore on
the overlap of the halo nucleon’s wave function with the core. This is reflected in a leading-order
dependence of most observables on counter-terms whose exact magnitude depends on the core–halo
interaction model.

However, d-wave halo EFT suggests that the neutron-halo doublet states, j = 3/2 and j = 5/2,
are degenerate at leading order, and that therefore the differences between their charge radii,
quadrupole moments, etc., vanish at leading order [60, 61]. Thus, we develop here a model, inspired
by halo EFT, that focuses on these differences, motivated by the nature of the isomeric transition.
We begin by computing the two quantities to which we have experimental access, namely the mean
squared charge radius and the quadrupole moment. Within our halo model, the charge density of
the ground and excited states are identical, except for a difference stemming from the spin–orbit
interaction between the halo neutron’s spin and its l = 2 orbital angular momentum. This spin–orbit
contribution to the charge density is given by [62]

ρSO =
µn

2m2
n

iσαβ ·
[
(∇Φ†

α) × (∇Φβ)
]
, (12)

where µn = −1.91 is the magnetic moment of the neutron in units of the nuclear magneton, Φ is
the (non-relativistic 2-component) neutron spinor and α, β = 1, 2 are spinor indices. With ρSO at
hand we can compute the mean squared charge radius and the quadrupole moment, in analogy to
our calculation from Section 2.1 for the geometric model.

We start with the contribution from the spin–orbit charge density to the mean squared radius
∆⟨r2⟩. Following Ref. [62], it is given by

⟨r2⟩SO =
1

Z

∫
r2ρSO d3r = − µn

m2
nZ

(κ + 1) , (13)

where

κ =

{
l for j = l − 1

2

−(l + 1) for j = l + 1
2

. (14)

Then, for the difference between the isomer and the ground state we obtain

∆⟨r2⟩SO ≡ ⟨r2⟩isoSO − ⟨r2⟩gsSO = 0.0047 fm2 . (15)

This value is smaller than the measured ∆⟨r2⟩ = 0.012(2) fm2 [50] by only a factor of ∼ 2, which
we consider excellent agreement given the inherent uncertainties to the halo model.

For the intrinsic nuclear quadrupole moment,

QSO =

∫
r2(3 cos2 θ − 1)ρSO d3r , (16)

we find Qgs
SO = 8µn/(5m2

n) for the ground state, and Qgs
SO = −3µn/(5m2

n) for the isomer. Using
again µn = −1.91 , we find

Qiso
SO −Qgs

SO = 0.185 fm2 , (17)

in astonishingly good agreement with the latest experimental value [39]

(Qiso −Qgs)exp = 0.175 525(6) fm2. (18)

We consider this a further validation of the halo model for 229Th. We also notice that the
computations of ∆⟨r2⟩SO and Qiso

SO −Qgs
SO are not sensitive to UV physics, i.e., insensitive to the
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structure of the wave-function near the origin. The main assumption in these calculations is that
the contribution originates in single nucleons [62], i.e., consistent with a halo model [54]. This
leaves room for possible renormalization of the halo-neutron magnetic moment, which offers an
explanation for the ≈ 50% deviation from experiment.

Having shown that the halo model gives sensible results for the mean squared charge radius and
the quadrupole moment, we now compute the spin–orbit contribution to the binding energy of the
halo neutron [63]

ESO =
e µn

2m2
n

1

2

[
j(j + 1) − l(l + 1) − 3

4

] ∫ ∞

0

[
[u(r)]2

r

dVC

dr

]
dr , (19)

where l = 2 and j = 5/2 (ground state) or 3/2 (isomer) are its angular momentum quantum
numbers, VC(r) is the Coulomb potential of the 228Th core, and u(r) is the excess neutron’s radial
d-wave function [64]:

u(r) = A(r)e−γr
(

1 +
3

γr
+

3

(γr)2

)
. (20)

In this expression, γ ≡
√

2mnEB, EB = 5.2 MeV is the binding energy, and A(r) is determined
by short-range physics. A(r) has a weak dependence on r, and it asymptotically converges to a
constant A at large r, that is therefore called the asymptotic normalization constant (ANC). At
leading order in halo EFT, A is taken to be fully independent of r, and depends on the UV cutoff
scale, which is what we assume in the following. As usual in EFTs, the behavior of the ANC
at short distances should be fixed from additional experimental constraints, see the discussion in
Section 3. Since the neutron separation energy for the ground state of 229Th is expected to be
almost the same as for the isomer, a good assumption is that u(r) is also the same for j = 5/2 and
j = 3/2. After all, these quantum numbers are just a result of the spin–orbit coupling for fixed
l = 2, and we treat the spin–orbit potential as a small perturbation.

In order to estimate ESO from Eq. (19), we also need to specify the Coulomb potential, VC(r),
which we derive from the nuclear charge density distribution. As the halo-neutron radial wave
function is dominated by the length scale γ−1, i.e., few Fermi, much larger than the UV length-scale,
the charge density can be approximated by a Woods–Saxon form [65], see Eq. (6). Since for heavy
nuclei R0 ≫ z, we can further approximate the charge density ρ(r) ≈ 3

4πR3
0
ZeΘ(R0 − r), leading to

VC(r) =

{
Ze
2R0

(
3 −

(
r
R0

)2)
r < R0

Ze
r r > R0

. (21)

Thus, the universal property ρ ≈ constant leads to dVC/dr ∝ r, which conveniently cancels the UV
sensitivity of the integral in Eq. (19), i.e.,∫ ∞

0

[u(r)]2

r

dVC

dr
dr =

Ze

R0

(
1

R2
0

∫ R0

0
[u(r)]2dr +

∫ ∞

R0

R0[u(r)]2
dr

r3

)
. (22)

Thus,
∫∞
0

(u(r))2

r
dVC
dr dr is not divergent. Both integrals on the right-hand side are finite, the first

one due to the normalization of u(r), and the second because it is controlled by the free d-wave
solution, cf. Eq. (20). For the parameters of 229Th, the first integral dominates. In order to evaluate
this integral we introduce a short-distance cutoff, l, to regularize the divergence of the integrand at
r → 0, and we assume a constant A(r), constrained by the normalization condition on u(r). We
find that the integral is almost independent of l for values l ≤ 4 fm. Numerically, we then obtain

∆ESO = ESO|j=5/2 − ESO|j=3/2 ≈ 144 p keV , (23)
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where the order-one factor p is a function of A and l. A more complete nuclear model would predict
a specific form for A(r), eliminating the need for a regulator, and thereby determining p. Intuitively,
p is related to the probability of finding the halo neutron inside the nucleus.

Summarizing, we find the contribution of the spin–orbit interaction to ∆Eem to be of order
100 keV, which corresponds to an enhancement factor K ≈ 104 for new physics searches using
nuclear clocks.

3. SUMMARY AND OUTLOOK

In this work we have studied how the sensitivity of a 229Th nuclear clock to new physics depends
on nuclear modelling. On the one hand, we have shown that within a classical geometric model
of the 229Th nucleus, which is widely used in the literature, a “nightmare scenario” in which the
sensitivity goes to zero is possible, although it requires fine-tuning of the model parameters at the
per cent or per mille level. On the other hand, we have presented a more realistic quantum halo
model, in which an approximately unpaired neutron of 229Th is loosely bound to a 228Th spin-0
core. The neutron is in a d-wave state, with orbital angular momentum l = 2. We have validated
this model against the experimentally measured differences of charge radii and quadrupole moments
of the 229Th ground state and of the isomer 229mTh. The model correctly predicts these differences
to be close to zero. Within the halo model, the “nightmare scenario” is never realized and the
enhancement factor Kem for new physics searches is always ≳ 104.

Our work suggests multiple directions of future research. It is clear that the main obstacle to
an accurate determination of the enhancement factor is the nuclear model, which has multiple
unknown parameters. In the future, we hope it will be possible to further refine and verify the
halo model using in particular neutron capture experiments. The amplitude of neutron capture in
d–wave halos is proportional to the asymptotic normalization constant A. Thus, a neutron capture
experiment can give a quantitative constraint on the probability of finding the halo-neutron inside
the core, which governs the size of the spin–orbit contribution to the electromagnetic interaction.
In addition, we have assumed that A is identical for the ground state and for the isomer. This
assumption can, in principle, be verified by measuring the neutron capture cross section, σcap, for
both states. Halo EFT predicts σiso

cap = 2
3σ

gs
cap [60].

Moreover, it is important to confirm the latest results for ∆Q0/Q0 [39], and to possibly also
improve the determination of ∆⟨r2⟩. In addition, it is highly desirable to devise further tests of the
shape of the nucleus, sensitive to the higher-order multipoles β3,4 and the skin thickness z. These
quantities are crucial for determining the enhancement factor within the classical geometric model,
which – despite the shortcomings we have stressed several times – is still of interest and represents
an alternative to the d–wave halo model.

Finally, we have argued in the introduction to Section 2 that Kem ∼ Ks, and that therefore
our results apply both to new physics coupled to the electromagnetic sector and to new physics
coupled to the strong sector. We believe this to be true unless the electromagnetic and nuclear
energy differences between the ground and excited states of thorium-229 conspire to have the exact
same functional dependence on αs. Indeed, in EFT approaches to the expansion of nuclear forces
in the QCD scale, the electromagnetic and strong contributions are predicted to have different
dependence on this scale [55, 66]. However, it is key to verify this within concrete frameworks. We
leave this and other exciting developments for future work.
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Appendix A: Spin-Orbit Contribution to the quadrupole moment

Here we provide details on the computation of the spin–orbit contribution to the intrinsic nuclear
quadrupole moment for halo nuclei. In general, this contribution is

QSO =

∫
r2(3 cos2 θ − 1)ρSO d3r. (A1)

Following the appendix of ref. [62], we split QSO into two pieces. The first one is

Q
(1)
SO = − 3µn

2m2
n

(κ + 1)

∫
d cos θ dϕΩ†

jlmΩjlm (3 cos2 θ − 1), (A2)

where

Ωjlm =

 Cjm

lm− 1
2
, 1
2

1
2

Y
m− 1

2
l

Cjm

lm+ 1
2
, 1
2
− 1

2

Y
m+ 1

2
l

 (A3)

is the angular part of the spinor, and the C are Clebsch–Gordan coefficients relating the orbital
angular momentum l and the spin to the total angular momentum j. In our case, l = 2, j = 5/2
(ground state) or 3/2 (isomer), and the choice of m is arbitrary as the corresponding phase factors

drop out in Ω†
jlmΩjlm.

The second contribution to QSO is more involved and reads [62]

Q
(2)
SO =

µn

2m2
n

∫
dθ dϕ i

[
cos θ

(
∂Ω†

1

∂θ

∂Ω1

∂ϕ
− ∂Ω†

1

∂ϕ

∂Ω1

∂θ

)
+ sin θe−iϕ

(
∂Ω†

1

∂θ

∂Ω2

∂ϕ
− ∂Ω†

1

∂ϕ

∂Ω2

∂θ

)
+ sin θeiϕ

(
∂Ω†

2

∂θ

∂Ω1

∂ϕ
− ∂Ω†

2

∂ϕ

∂Ω1

∂θ

)
− cos θ

(
∂Ω†

2

∂θ

∂Ω2

∂ϕ
− ∂Ω†

2

∂ϕ

∂Ω2

∂θ

)]
(3 cos2 θ − 1). (A4)

Here, we have omitted the indices jlm on Ωjlm to shorten the notation. The subscripts 1, 2 refer
to the two components of the spinor. The integrals in Eqs. (A2) and (A4) can be performed
analytically, and the total spin–orbit contribution to the quadrupole moment,

QSO = Q
(1)
SO + Q

(2)
SO (A5)
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is found to be Qgs
SO = 8µn/(5m2

n) for the ground state, and Qgs
SO = −3µn/(5m2

n) for the isomer, as
written in the main text.
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