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Cosmological neutrino mass bounds are becoming increasingly stringent. The latest limit within
ΛCDM from Planck 2018+ACT lensing+DESI is

∑
mν < 0.072 eV at 95% CL, very close to the

minimum possible sum of neutrino masses (
∑

mν > 0.06 eV), hinting at vanishing or even “negative”
cosmological neutrino masses. In this context, it is urgent to carefully evaluate the origin of these
cosmological constraints. In this paper, we investigate the robustness of these results in three ways:
i) we check the role of potential anomalies in Planck CMB and DESI BAO data; ii) we compare the
results for frequentist and Bayesian techniques, as very close to physical boundaries subtleties in the
derivation and interpretation of constraints can arise; iii) we investigate how deviations from ΛCDM,
potentially alleviating these anomalies, can alter the constraints. From a profile likelihood analysis,
we derive constraints in agreement at the ∼ 10% level with Bayesian posteriors. We find that the
weak preference for negative neutrino masses is mostly present for Planck 18 data, affected by the
well-known ‘lensing anomaly’. It disappears when the new Planck 2020 HiLLiPoP is used, leading to
significantly weaker constraints. Additionally, the pull towards negative masses in DESI data stems
from the z = 0.7 bin, which contains a BAO measurement in ∼ 3σ tension with Planck expectations.
Without this bin, and in combination with HiLLiPoP, the bound relaxes to

∑
mν < 0.11 eV at 95%

CL. The recent preference for dynamical dark energy alleviates this tension and further weakens the
bound. As we are at the dawn of a neutrino mass discovery from cosmology, it will be very exciting
to see if this trend is confirmed by future data.

I. INTRODUCTION: NEUTRINO MASS
BOUNDS AS OF MID 2024

In April 2024, the DESI collaboration presented the most
stringent bound on the sum of neutrino masses within the
standard cosmological model [1]:

∑
mν < 0.072 eV [95% CL] , (1)

obtained by combining their new DESI-Y1 baryon acous-
tic oscillation data (BAO) [2, 3] with Planck [4–6] and
ACT data [7, 8] (see also [9, 10] for further updated con-
straints within ΛCDM1).

The bound in Eq. (1) should be compared with the
minimum possible value of the sum of neutrino masses
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1 Note that an absolute neutrino mass bound (i.e. from the labora-
tory and therefore independent upon the assumed cosmological
model) has been recently updated by the KATRIN experiment
to

∑
mν < 0.93 eV at 90% CL [11] when following the Feldman-

Cousins prescription. This limit is currently much weaker than
the cosmological ones.

given the observed mass squared differences from neu-
trino oscillation experiments. Taking them from Nu-
FITv5.3 [12] and by taking mν,lightest → 0, one finds at
5σ CL:

∑
mν > 0.057 eV ≃ 0.06 eV [NO] , (2)

∑
mν > 0.096 eV ≃ 0.10 eV [IO] , (3)

depending upon the neutrino mass ordering. At present,
there is no strong preference for either ordering from
global analyses of neutrino oscillation data, see [12–14].

Clearly, the current cosmological limit is very close to
the minimal value in normal ordering and already dis-
favours to some degree the inverted one. Importantly,
the limit in Eq. (1) is so close to the minimum physical
boundary that statistical statements about the neutrino
mass need to be taken with care. However, cosmological
limits are typically derived within a Bayesian framework,
and as such will depend upon the priors used. While
the dependence may be weak when the likelihood largely
dominates over the prior, and far away from physical
boundaries, it has already been established that neutrino
masses are strongly sensitive to the choice of prior [15–
18], even with DESI [1]. Moreover, and perhaps even
more surprising, there is still no hint of a non-zero mass
in the posterior probability density, and in fact, it has
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been argued that cosmological data may favor a negative
effective neutrino mass [19–21]. While this could be the
result of a statistical fluctuation or a systematic effect, it
could potentially be the indication of new phenomena in
cosmology with groundbreaking implications.

Given the current situation, it is urgent to carefully an-
alyze the origin and behaviour of the present constraints
on neutrino masses from cosmology. In this paper, we
set as goals to investigate simultaneously: i) the data
that have been used and the role of potential statistical
anomalies in those data, ii) the statistical methods used
to derive the results, and whether unwarranted effects
in the Bayesian analysis drive the preference for negative
neutrino masses, and iii) the extent upon which they rely
on the assumption of the standard ΛCDM model.

In order to tackle these questions, we perform an ex-
tensive comparison of cosmological neutrino mass bounds
derived both from a Bayesian and a frequentist stand-
point. In particular, the use of a frequentist analysis
framework can lead to new insight into the sensitivity
of the bound on the statistical procedure adopted, and
can help in addressing the role of priors in the Bayesian
limits. In addition, as we build the likelihood profile of
the sum of neutrino masses in light of various datasets,
it is possible to extrapolate to the unphysical region and
study the potential preference for negative masses, as
performed in previous analyses of the neutrino mass in
cosmology [22–24]. Our analysis is complementary to re-
cent Bayesian method that rely on the use of an “effective
neutrino mass” to model the effect of a negative neutrino
mass [19, 21], and although it comes with its own set
of approximations, it by-passes the need for an arbitrary
definition which will necessarily miss part of the physical
effect that a real model would have.

Second, to address the questions of the robustness of
the bound to the choice of data, we perform series of anal-
yses comparing results from the latest BAO data from
DESI [2, 3], previous ones from SDSS [24], the com-
pilation of uncalibrated supernova (SN) distances from
Pantheon+ [25], and most importantly the latest ver-
sions of the Planck likelihoods based on the 2020 PR4
data release [26]. This is key because Planck currently
dominates the neutrino mass bounds and because these
latest likelihoods not only contain roughly O(10%) more
statistical power than the 2018 (PR3) release, but im-
portantly because they have a much better handle of a
number of systematic effects (see [26] for details). Impor-
tantly, the known lensing anomaly which was present at
the 2.8σ level in the Planck 2018 Plik likelihood [4] is only
present in the 2020 implementations at the 1.7σ or 0.75σ
levels, for the CamSpec [27, 28] and HiLLiPoP [29, 30]
likelihoods, respectively. This is well known to have an
impact on the inference of neutrino masses [31–33]. Yet,
Eq. (1) does not make use of these newer data, and should
thus be explicitly checked. In particular, we test the im-
pact of the anomaly on the bounds in two ways: first, by
simply updating the data to match the newer release (as

in [10, 20]) and second, by explicitly marginalizing over
the Alens parameter [4, 34], that scales the amplitude of
the lensing power spectrum.

Finally, we investigate why the bound in Eq. (1) is
so strong, despite the statistical power of DESI-Y1 BAO
data being a priori not larger (though competitive) than
that of the entire SDSS sample. We believe that this
is crucial as the community expects upcoming measure-
ments from DESI and Euclid to actually pin-down the
absolute neutrino mass scale in cosmology within the
next few years, see e.g. [35–38]. If these collaborations
do not report any measurement of the neutrino mass,
their analyses will clearly signal a breakdown of the stan-
dard cosmological model and possibly even new physics
in the neutrino sector. This could point towards de-
caying neutrinos [39–45], non-standard cosmic neutrino
backgrounds [46–51], or neutrinos with a time-varying
mass [52–59]. Yet, before making such claims, it is impor-
tant to note that DESI data are in some (arguably small)
2σ level tension with Planck. In fact, there are two BAO
measurements at z = 0.5 and z = 0.7 that are driving
the tension with Planck (respectively at the 2.8σ and 2.6σ
level), and that seem somewhat at odds with SDSS re-
sults as well. This raises the questions of the role of those
data points in driving the strong bound in Eq. (1). In ad-
dition, when combined with Planck and Pantheon+ (or
other SN compilation) the compilation of data seem to
favor dynamical dark energy over ΛCDM [1]. Such pref-
erence is known to also alter the bound given by Eq. (1).
Within our joint Bayesian and frequentist framework, we
will thus explicitly check the role of those potential out-
lier points, as well as the preference for a deviation from
ΛCDM in driving the hint of negative neutrino mass, and
the strong neutrino mass bounds.

The rest of our study is structured as follows: first,
in Section II we briefly review the main cosmological im-
plications of massive neutrinos. We will highlight the
crucial role of Planck data as well as why BAO data
can significantly tighten the constraints on the neutrino
mass. In Section III we outline the various data sets
that we will use, and describe the statistical procedure
(both frequentist and Bayesian) that we use to analyse
the data and derive bounds. In Section IV we present our
main results focusing first on analyses with Planck data
only, exploring in detail the role of the lensing anomaly;
we then perform comprehensive analysis of Planck and
BAO data, comparing in particular DESI and SDSS;
and finally, check the impact of considering extensions to
ΛCDM. In Section V we specifically address the potential
cosmological preference for a negative neutrino mass. Fi-
nally, in Section VI we draw our conclusions. Additional
material supporting our findings, including posterior dis-
tributions, correlations and comparisons with previous
works, is provided in the Appendices.
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II. COSMOLOGICAL IMPACT OF THE
NEUTRINO MASS

The existence of the Cosmic Neutrino Background
(CνB) is a key prediction of the Standard Model of cos-
mology [60]. The CνB would have formed in the early
Universe at temperatures of ∼ 2 MeV [61], and according
to the ΛCDM model, we should be living in a Universe
filled with a number density of neutrinos of nν ≃ 56/cm3

per helicity state. These neutrinos gravitate today pri-
marily as a result of their mass and in fact their energy
density today is not negligible:

Ωνh
2 =

∑
mνnν

ρcrit
≃

∑
mν

93.2 eV
≃ 0.0012

∑
mν

0.12 eV
. (4)

This is O(1)% of the dark matter energy density.

The implications of the neutrino mass in cosmology
have been explored and discussed in depth and length,
see [60–65] for reviews. In essence, the cosmological im-
plications of neutrino masses can be understood as fol-
lows: 1) Neutrinos are always a relevant component of the
energy density of the Universe and therefore contribute
to its expansion rate, H ∝ √

ρ. 2) Neutrinos were propa-
gating ultrarelativistically until the Universe cooled down
to Tν ≃ mν/3 which occurs at zNR

ν ≃ 190mν/(0.1 eV).
3) As a result of their ultrarelativistic speeds, neutri-
nos are not able to cluster on scales smaller than L ≃
20 Mpc 0.1 eV/mν today. In consequence, and for mas-
sive neutrinos which become non-relativistic after recom-
bination mν ≲ 0.6 eV, one of their main cosmological
implications is to suppress the amount of structure for-
mation on scales smaller than L ≃ 20 Mpc 0.1 eV/mν .
This suppression is of course strongly dependent upon
the energy density neutrinos represent in the Universe
which is directly proportional to the neutrino masses as
given in Eq. (4). This discussion clearly highlights that
the best way to search for the neutrino mass is arguably
by directly observing probes of the Large Scale Struc-
ture in the Universe. This is one of the primary goals of
the ongoing DESI and Euclid surveys (see [35–37]). Nev-
ertheless, as of today the bound on the neutrino mass is
dominated by Planck with the aid of BAO and Supernova
measurements to break relevant parameter degeneracies.

How is then Planck sensitive to the neutrino mass if
neutrinos with mν < 0.6 eV became non-relativisitic af-
ter the CMB was formed? There are two effects that
matter [66]: Firstly, as a result of neutrinos traveling at
relativistic speeds, they lead to a suppression of the mat-
ter power spectrum. This reduces the lensing that CMB
photons experience on their way from the last scatter-
ing surface until today, and this in turn leads to sharper
peaks in the CMB power spectrum. This effect is de-
picted in Fig. 1. In this figure, several other cosmological
parameters have been fixed: the total matter densities
of baryons (ωb) and dark matter (ωcdm), the Thomson
optical width to reionization τ , the shape and amplitude
of the primordial matter power spectrum (ns and As), as
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FIG. 1. Impact of a non-zero neutrino mass on the TT power
spectrum. Inspired by Figure 26.2 of [67] but showing the
Planck error bars taken from the binned PR3 data releasea.
Note that it is precisely in the range of angular scales where
the main impact of neutrino masses appears where the lens-
ing anomaly is present in some Planck likelihood implemen-
tations.
a https://irsa.ipac.caltech.edu/data/Planck/release_3/

ancillary-data/

well as the angular scale of the first CMB peak, θs. From
Fig. 1 we can clearly see that the main constraining power
for neutrino masses from Planck will come from rather
small angular scales. Importantly, this lensing effect is
also dependent upon what the values of As and ωm are.

Secondly,
∑

mν impacts the angular diameter dis-
tance to the last-scattering surface as neutrinos con-
tribute to the Universe’s expansion. It is however possi-
ble to exploit the geometrical degeneracy in the CMB by
adjusting H0 to compensate the effect of

∑
mν on the

last scattering surface and ensure the angular diameter
distance to the last-scattering surface is left unaffected.
This is done in Fig. 1, by keeping θs fixed, and requires
a smaller H0. However, in this process Ωm ≡ ωm/h2 will
increase as a result of the necessary decrease in the re-
duced Hubble parameter h ≡ H0/100 km/s/Mpc. This
suggests that an accurate probe of the late-time expan-
sion history can help break the geometrical degeneracy
(namely Ωm and/or H0) and further constrain

∑
mν .

Therefore, in order to make precise inferences on the
neutrino mass from CMB observations one needs to have
i) a very good understanding of how the CMB is being
lensed on small angular scales, ii) control over As and ωm,
and iii) control over Ωm and more generally the expansion
history at late-times.

In this context, regarding i), the Planck legacy analysis
did report the so-called “lensing anomaly” which can im-
pact the inferences on the neutrino masses. The anomaly
was parametrized introducing an ad hoc variable Alens

to change the lensing power relative to its actual physi-

https://irsa.ipac.caltech.edu/data/Planck/release_3/ancillary-data/
https://irsa.ipac.caltech.edu/data/Planck/release_3/ancillary-data/
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cal value, so as to account for possible systematic uncer-
tainties, and Planck data preferred values of Alens > 1.
However, the magnitude of the Alens was known to vary
depending on the specific likelihood (and specific CMB
dataset) used to perform the analysis. While the anomaly
is 2.8σ with the official Planck collaboration 2018 TT-
TEEE likelihood, dubbed plik, it is reduced after the
final PR4 data release to the 1.7σ level with the alterna-
tive CamSpec [27, 28] likelihood, and down to 0.75σ with
the HiLLiPoP [29, 30] one.

Importantly, the CamSpec and HiLLiPoP likelihoods
have been recently updated since the 2018 analysis, in
light of a new set of maps produced by the Planck collab-
oration called NPIPE. The NPIPE maps exploit a num-
ber of improvements in the processing of time ordered
data to allow for an increase in the signal-to-noise ra-
tio at small scales. They also allow to use a larger sky
fraction, and incorporate a better handling of a num-
ber of systematic errors thanks to dedicated mock data.
This results in a roughly ∼ 10% stronger constraining
power on ΛCDM parameters, and importantly, the lens-
ing anomaly seems to be significantly reduced or even
absent in those data. In fact, it has been shown that
they lead to weaker bounds to

∑
mν than the Plik 2018

likelihood, see [10, 28, 30].

Regarding ii), the best way to obtain better measure-
ments on As is from large scale CMB polarization mea-
surements which will be provided by LiteBIRD [68] but
on a ∼ 10 year time-scale. Importantly, regarding iii),
the improvement is happening now, as DESI is taking
data and has published already the 1st year data release,
while Euclid is on space and will start collecting data
in one year as well. In this regard, it is important to
highlight that the compatibility between the new DESI-
Y1 data and Planck is at the 2σ level, and is thus worse
than for SDSS. As a result, this (arguably small) tension
may impact the neutrino mass bound. This is illustrated
in Fig. 2, where we compare constraints under ΛCDM in
the Ωm −H0rd plane from SDSS, DESI and DESI with-
out the data points at z = 0.7. We also superimpose the
posteriors from a fit to Planck 2018 (with lensing), high-
lighting the correlations with

∑
mν with colored points.

As argued in Ref. [1], it is clear that the mismatch in
H0rd between SDSS and DESI is driving the discrepancy,
and a stronger bound to

∑
mν . However, removing the

data points at z = 0.7 can significantly shift the mean
of the posterior distributions (by about ∼ 0.8σ) without
affecting the error bars. This suggests than an analy-
sis without these data points may lead to significantly
weaker bounds, and would argue in favor of a potential
statistical fluke driving these bounds.

In summary, it is very important to understand how
relevant are possible systematic effects in Planck CMB
data on our inferences of the neutrino mass in cosmol-
ogy, as well as what are the implications of adding dif-
ferent sets of BAO data. This is particularly the case
given that the direct combination of Planck + DESI-Y1
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H0rd(z * ) [km/s]
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FIG. 2. Implications of BAO measurements of Ωm and H0rd
for

∑
mν inferences. We show the posterior density contours

using Planck data (grey and dots), as well as the regions
favoured by the full SDSS BAO sample (in blue), DESI-Y1
(in red), and DESI-Y1 without the z = 0.7 bin, which con-
tains a 2.6σ outlier (in black dashed). We can clearly see that
the z = 0.7 leads to a relevant shift on the parameter space
with implications for the neutrino mass.

BAO yields a bound
∑

mν < 0.072 eV which is very close
to the minimum allowed value from neutrino oscillation
experiments

∑
mν > 0.06 eV.

III. DATA AND METHODOLOGY

III.1. Cosmological Data: CMB, BAO and
Supernova

In what follows, we will first perform a comprehen-
sive analysis of the bound on neutrino masses coming
from considering Planck data alone, to highlight the role
of potential anomalies (whether a statistical fluke or a
systematic effect) in the data, and how subsequent data
releases have affected those bounds. To that end, we
consider the following likelihood combinations:

• Planck18-PR3 – We consider the default plik
Planck legacy likelihoods for both TT, TE, EE high
ℓ spectra as well as the large scale (low ℓ) EE polar-
ization likelihood SimAll, and also the large scale
TT Commander likelihood.

• CamSpec22-PR4 – We consider the new
Planck CamSpec NPIPE12 7 TTTEEE likelihood
for both TT, TE, EE high ℓ spectra [27, 28] as well
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as the large scale (low ℓ) EE polarization likelihood
SimAll and the large scale TT Commander one.

• HiLLiPoP23-PR4 – We consider the new
HiLLiPoP [30] likelihood for both TT, TE,
EE high ℓ spectra, and the LoLLiPoP [29, 69] EE,
EB and BB low ℓ spectra.

• Lensing-PR3 – Unless otherwise stated (no lens-
ing) we also consider the reconstructed gravita-
tional lensing potential power spectra from Planck
PR3 [5]2. We note, however, that there is a newer
PR4 one [6], as well as a complementary one by
ACT [7, 8]. Including these data sets will not alter
our conclusions and will only improve the bound
by ∼ 10% (compare Eq. (1) with Eq. (5a)).

Secondly, we will investigate the role of BAO data,
and the impact of potential statistical fluctuations within
DESI data on the bounds. We include the following data
combinations:

• DESI-Y1 – We consider the full set of BAO data as
reported in [1, 2].

• DESI-Y1-no07 – We consider the full set of BAO
data as reported in [1, 2] but without including the
two data points at z = 0.7. Since this corresponds
precisely to the redshift of dark energy domination
and this bin contains a data point in ∼3σ tension3

with Planck predictions, it is interesting to explore
its impact on the

∑
mν bound to understand what

would happen if these outliers are not confirmed by
future data, as highlighted in Figure 2.

• SDSS-full – We consider the full set of BAO data
from SDSS as detailed in [24].

• DESI-Y1+SDSS – We consider the DESI and SDSS
combination as done in [1] that makes use of
the BAO measurements from the survey with the
largest effective volume in a given redshift bin.
Note that this includes the DESI-Y1 BAO mea-
surements at z = 0.7 which are in ∼ 3σ tension
with Planck ΛCDM predictions.

Finally, we also consider analyses including uncali-
brated luminosity distance-redshift measurements from
type Ia SN:

2 We stress that the intrinsic lensing induced smoothing of the
CMB peaks is always included.

3 Out of the 22 BAO data points, most of them are in good agree-
ment with Planck ΛCDM predictions, but there are two DESI-Y1
data points at z = 0.5 and z = 0.7 which deviate by ∼ 2.8σ and
∼ 2.6σ, respectively. Given a total of 22 total measurements of
BAO, the chances of this occurring (assuming Gaussian and un-
correlated errors) is of only ∼ 1.8%, see [70]. We further note
that the DESI-Y1 BAO measurements at z = 0.7 are also in
some tension with the old SDSS ones at similar redshifts.

• SN-Pantheon – We make use of the Pan-
theon+ catalog of uncalibrated luminosity dis-
tance of type Ia supernovae (SNeIa) in the range
0.01 < z < 2.3 [25]. We note that there are alter-
native compilations such as the Union3 [71] and
DES-Y5 SNeIa [72] that could be used. We do not
anticipate them to strongly impact our conclusions.
We leave a dedicated analysis to future work.

III.2. Analysis methodology: comparing Bayesian
and frequentist framework

In the cosmology community, it has become standard
to perform analyses through a Bayesian framework, as
those are typically numerically less expensive than fre-
quentists analyses given the very large number of (cos-
mological and nuisance) parameters that must be con-
sidered. These also have the claimed advantage to in-
corporate prior knowledge (or lack thereof) in a straight-
forward manner, as priors are rooted in the definition of
the posterior distribution within Bayes theoreom. In ad-
dition, there are now advanced tools (based on the notion
of Bayesian evidence) to perform model comparison that
are routinely used in Cosmology, and can (somewhat)
easily tackle the problem known as “look elsewhere ef-
fect” in the frequentist framework, and quantify the ab-
stract notion of “Occam’s razor” that is often put for-
ward. Yet, given that cosmology bounds on the sum of
neutrino masses are pushing against the physical bound-
ary, they can be affected by prior effects: the credible in-
tervals built from the Bayesian posteriors become largely
influenced by the choice of priors, rather than the data
likelihood. As the choice of priors carry a level of ar-
bitrariness, these effects can lead to constraints that are
not robust. This is particularly relevant given the current
context, and the apparent strength of the cosmological
bound.

Indeed, over the past years, almost the entirety of each
subsequent data release increased progressively the ex-
isting bound, with a preferred value at

∑
mν = 0 and

barely any hint for a non-vanishing value, which is sur-
prising and worth investigating. In fact, present con-
straints have almost exhausted the available parameter
space given the lower bound from neutrino oscillations
and are already in significant tension with the minimal
value implied by an inverted ordering, still allowed by
oscillation results. In this context, subtleties when de-
riving the limits must be taken into consideration. In
a Bayesian framework, the results are therefore prior-
dependent (see e.g. Ref. [1]), as the preferred value ap-
pears to always be the smallest possible one given the
prior (ie.,

∑
mν = 0, 0.06 or 0.1 eV when disregarding

the results from oscillations or assuming a normal or in-
verted ordering, respectively) and thus (artificially) relax
the larger the minimal allowed mass is.

As an alternative to the Bayesian approach, and to
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compare and contrast the results, we make use of the fre-
quentist framework, relying on a series of χ2 optimiza-
tions at fixed neutrino mass, to build a profile likelihood
and derive confidence intervals. The main advantages of
the frequentist approach are that i) constraints are insen-
sitive to the specific choice of priors, and ii) the presence
of the physical boundary can be accounted for in a statis-
tically consistent manner [73]. Thus, a direct comparison
between the two approaches may provide a better han-
dle on the relevance of these subtleties, as well as on the
robustness of the cosmological bound.

All power spectra in our study are obtained from the
Boltzmann code CLASS [74]. The main physical quantity
impacting cosmological observations is the total energy
density in non-relativistic neutrinos and as such, for sim-
plicity, we model the neutrinos as fully degenerate with a
mass mν =

∑
mν/3, and unless specified, vary it within

the prior range mν ∈ [0, 1] eV. Cosmological data cannot
be sensitive to the mass splittings and this choice can
only cause relatively small changes in ∆χ2, see e.g. [23].
We additionally vary the following six cosmological pa-
rameters, within large flat priors (when applicable): the
angular size of the sound horizon θs, the physical baryon
ωb and dark matter ωcdm densities, the amplitude As and
tilt ns of the primordial power spectrum for scalar modes,
the optical depth to reionization τreio.

On the Bayesian side, we perform a Markov Chain
Monte Carlo (MCMC) sampling of the posterior distribu-
tion, using the publicly available MontePython code [75,
76]. Cosmological and nuisance parameters are varied
according to the “fast” and “slow” parameters decom-
position [77]. The chains are then marginalized with
GetDist [78] in order to extract the bounds. On the
frequentist side, instead of posterior marginalization, the
relevant procedure is likelihood profiling, which requires
the minimization of the χ2 function for a fixed value of
the parameter of interest (

∑
mν in our case), varying si-

multaneously the N − 1 remaining cosmological and nui-
sance parameters. In particular, the various likelihood
combinations described in Section III contain of the or-
der of N ∼ 20−25 parameters making the minimization a
highly non-trivial task. In this context, we have opted to
perform the numerical minimization with the simulated
annealing algorithm implemented in Procoli [79]4. Al-
though this procedure is straightforward, the HiLLiPoP
likelihood requires significantly more care to successfully
converge. We attribute this to the fact that HiLLiPoP
is the sole CMB likelihood that is not binned, and is
therefore noisier than the others. For this reason, our

4 We note that there are other public codes available such as
Prospect [80] and CAMEL [81]. While Prospect also relies on a
simulated annealing algorithm and would likely provide similar
results as Procoli, CAMEL relies on the quasi-Newtonian opti-
mizer Minuit [82]. We have not been able to obtain converged
likelihood profiles with CAMEL, highlighting one of the difficulties
in the frequentist approach.

profiling is not performed over a regular grid of
∑

mν .
This is, however, not a major cause for concerns, since to
properly calibrate the frequentist test statistics we will
in any case fit the likelihood profiles. In addition, we can
extrapolate the resulting fits to the unphysical negative
neutrino mass region, allowing us to asses the potential
preference for negative masses recently displayed by some
datasets and discussed in [19–21].

Consequently, in order to gauge the impact of ap-
proaching the physical boundary at

∑
mν = 0, we will

choose two different prescriptions to extract the frequen-
tist bound:

1. Bounded Likelihood (B.L.): focusing only on the
physical region

∑
mν > 0, we derive the bound via

the standard ∆χ2 cut assuming Wilks’ theorem, see
e.g. [83].

2. Feldman-Cousins (F.C.): we fit the χ2 profile in
the physical region to a parabola and extrapolate
into the unphysical region so as to find where the
true minimum would lie. It is then possible to ex-
tract the corrected upper bound from Table X of
Ref. [73]. Compared with the previous procedure,
this prescription has the advantage of guaranteeing
proper coverage of the interval. However, it relies
on the extrapolation in order to find the position
and depth of the minimum.

In order to assess whether a χ2 profile is Gaussian and
the Feldman-Cousins method can be safely applied, we
will perform a parabolic fit of all points that lie below a
certain ∆χ2

max. By varying this parameter in the inter-
val ∆χ2

max ∈ [2, 4], we can have a measure of how much
the best-fit parabola or, equivalently, the F.C. bound,
depends on the amount of points that are being fit. Fol-
lowing this method, we will only quote frequentist bounds
on the profiles that exhibit stable best-fit parabolas. We
find that this is the case for all of the analyses and that
the limits derived from the Feldman-Cousins procedure
do not appreciatively depend upon ∆χ2

max.

IV. COSMOLOGICAL NEUTRINO MASS
BOUNDS: A FREQUENTIST VS BAYESIAN

COMPARISON

IV.1. Planck Only Analyses

Planck Legacy vs Planck 2020 likelihoods – In Fig. 3 we
compare the profile likelihoods for the neutrino mass us-
ing the latest implementations of the Planck likelihoods.
We also show the first Planck 2013 results from [22] in
red that already highlighted the potential preference for
“negative” neutrino masses. We show results from the
2018 legacy PR3 (black) as well as the latest implementa-
tions of the PR4 data release using CamSpec (green) and
HiLLiPoP (blue). As discussed in the introduction, these
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FIG. 3. Profile likelihoods for the neutrino masses within ΛCDM for three different versions of the Planck likelihoods:
Planck18-PR3, CamSpec22-PR4, and HiLLiPoP23-PR4. For comparison purposes we also show the Planck 2013 results from [22]
in red where the potential trend for a best fit in the “negative” regime was first highlighted. We clearly see that the bound
on the neutrino masses changes significantly for each implementation of the likelihood, being HiLLiPoP the one giving the
looser constraints. Solid and dashed lines correspond to parabolic fits where the ∆χ2 points up to 4 or 2 were used in the fit,
respectively.

implementations feature different levels of lensing dis-
crepancies which are critical for neutrino mass inferences.
The lensing anomaly in the Planck18-PR3 one is 2.8σ, in
CamSpec22-PR4 it is 1.7σ, while in HiLLiPoP23-PR4 it is
only 0.75σ. From Fig. 3, one can see that the strength
of the neutrino mass bound directly anti-correlates with
the level of the anomaly, and can relax by up to a factor
of 2 when going from Planck18-PR3 to HiLLiPoP23-PR4.
One can also clearly notice that the extrapolation to the
unphysical region indicates preference for negative neu-
trino masses for Planck18-PR3 and CamSpec22-PR4, the
two likelihoods that carry some residual lensing anomaly.
However, for HiLLiPoP23-PR4, which has no statistically
significant Alens anomaly, the minimum of the χ2 is con-
sistent with positive (albeit small) neutrino masses.

In Table I we explicitly show the 95% CL bounds on
the neutrino mass for the various likelihoods. Given the
impact of the lensing anomaly in plik and CamSpec, their
preference for a best-fit in the negative mass region is very
strong. As such, our samples in the physical region lie
very far from the ∆χ2 minimum where the Gaussian ap-
proximation holds and the extrapolation has extremely
large uncertainties as shown in Fig. 3. Therefore, the
simple Feldman-Cousins prescription when a Gaussian
behaviour is observed cannot be implemented in these
two cases. Instead, a full boostraping of the parameter
space to calibrate the test statistic and correctly asses at
which values of the ∆χ2 lay the cuts for the confidence

levels of interest would be needed. This procedure would
be extremely computing-expensive and is unfortunately
not feasible. On the other hand, for the HiLLiPoP im-
plementation (which does not feature a lensing anomaly),
solid frequentits limits can be obtained. A direct com-
parison shows that this frequentists and Bayesian bounds
agree within 20%.

The impact of Alens – To investigate further the potential
preference for negative neutrino masses and the role of
the lensing anomaly in driving this preference, we show in
Fig. 4 the results from analyses that vary in addition the
Alens parameter that controls the lensing of temperature

and polarization fluctuations (Cϕϕ
L = AlensC

ϕϕ
L |ΛCDM

[34]). This parameter is well known to be correlated with
the neutrino mass [4], and this is confirmed through our
frequentist analysis, see the right panel of Fig. 15. From
Fig. 4 one can see that the χ2 parabolas become all more
or less similar, and that when the Alens parameter is al-
lowed to vary we find no preference for a negative neu-
trino mass. Therefore, our sampling of the ∆χ2 in the
physical region is now closer to the minimum and we can
reliably extrapolate and derive robust frequentist confi-
dence levels also for Planck18-PR3 and CamSpec22-PR4.
These are reported in Table I. We see that the neutrino
mass bounds can be relaxed by up to a factor of ∼ 2 when
the Alens parameter is introduced, becoming comparable
to the latest laboratory bounds. This is in agreement
with the findings of [33]. Importantly, when the Alens
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parameter is allowed to vary, the profile likelihoods re-
semble Gaussians and we are able to obtain frequentist
limits for

∑
mν . Direct comparison between Bayesian

and frequentist limits shows a 10 − 20% agreement de-
pending upon the specific likelihood.

Though the Alens parameter is unphysical, this exer-
cise clearly highlights the importance of internal inconsis-
tencies in Planck CMB data for inferences of the neutrino
mass in cosmology. Marginalizing over these anomalies,
it is remarkable that Planck constrains become only as
strong as direct laboratory bounds. However, we stress
that this is only part of the cosmological constraining
power, as we have ignored the Lensing-PR3 likelihood,
which provide additional sensitivity to CMB lensing, as
well as BAO and SNe data that are sensitive to the back-
ground effects of neutrinos.

In Fig. 5 we show the results but now including the
Lensing-PR3 lensing likelihood and with the physical
condition Alens = 1. By comparing the results with those
without lensing in Fig. 3 we can clearly see that while the
impact on the Planck18-PR3 analysis is mild at the level
of the 2σ limit, the extrapolated behaviour to negative
neutrino masses shows significantly weaker support for a
negative best fit. This is because the lensing likelihood
does not feature a lensing anomaly. The shift for the
CamSpec22-PR4 and HiLLiPoP23-PR4 cases is substan-
tially more pronounced and as shown in Table I the 95%
CL limit improves by a factor of 1.5 when the lensing
likelihood is added. We note that for the data set combi-
nation HiLLiPoP23-PR4+Lensing-PR3 the minimization
procedure was rather challenging highlighting that a non-
global minimum of the χ2 at around

∑
mν ∼ 0.2 eV may

be present. In Appendix A we show the Bayesian pos-
terior in Fig. 11 and there is a priori no evidence for
multi-modality in it.

IV.2. Planck + BAO:
A close look at the DESI results

As discussed in Section II, there are two critical ef-
fects of the neutrino mass in the CMB: one is on CMB
lensing at small angular scales (high ℓ), see Fig. 1, and
the other is on the angular diameter distance to recom-
bination, which lead to a strong correlation with other
cosmological parameters such as Ωm, see Fig. 2. This is
why including the Lensing-PR3 likelihood and BAO data
is critical, as they can help break degeneracies between∑

mν and other cosmological parameters, and allow for
an increased sensitivity of the neutrino mass when com-
bined with CMB observations (note that geometric BAO
data on their own are not sensitive to the neutrino mass).

In particular, as stated in the introduction, one of the
main goals of our study is to understand why the bound
from Planck+DESI-Y1 is so strong, and whether it really
points to negative neutrino masses.

In order to gauge how unexpected is the result
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FIG. 4. Neutrino mass profile likelihoods using the full Planck
temperature and polarization data for ΛCDM allowing to vary
the unphysical Alens parameter which is strongly correlated
with

∑
mν . We can see that the bounds are significantly

relaxed and comparable to the KATRIN laboratory upper
limit.
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FIG. 5. Neutrino mass profile likelihoods using the full Planck
temperature, polarization and lensing data for ΛCDM. This
should be compared with Fig. 3 that does not include lensing.

from Planck+DESI-Y1, it is instructive to first esti-
mate the sensitivity of this data combination to neu-
trino mass, as for instance done in Ref. [84]. To do
so, we perform a mock data analysis, making use of
the MontePython and the Fake planck realistic like-
lihood [84], that we combine with our own mock like-
lihood of DESI-Y1, that simply makes use of the co-
variance matrix from the data, replacing the measure-
ments with a fiducial model prediction. For the fidu-
cial, we study three configurations:

∑
mν = 0, 0.06, 0.1
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Planck only 95% C.L.
∑

mν (eV)

Model Planck likelihood Bayesian
Frequentist
B.L. F.C.

No lensing likelihood

ΛCDM
Planck18-PR3 0.24 0.17 -
CamSpec22-PR4 0.33 0.28 -
HiLLiPoP23-PR4 0.51 0.40 0.39

ΛCDM+Alens

Planck18-PR3 0.82 0.91 0.88
CamSpec22-PR4 0.78 0.97 0.93
HiLLiPoP23-PR4 0.68 0.77 0.76

With lensing likelihood

ΛCDM
Planck18-PR3 0.25 0.20 0.18
CamSpec22-PR4 0.21 0.19 0.18
HiLLiPoP23-PR4 0.34 0.33 0.32

TABLE I. Upper limits at 95% CL on the neutrino mass
within ΛCDM using various Planck likelihoods. We show the
Bayesian limits compared with the two frequentist approaches
(B.L. = Bounded Likelihood, and F.C. = Feldman-Cousins)
described in Section III.2. We do not quote frequentist F.C.
bounds for Planck18-PR3 and CamSpec22-PR4 (no lensing)
due to their non-Gaussian behaviour in the physical region,
which precludes a reliable extrapolation into the unphysical
regime.

0.0 0.1 0.2 0.3
m  (eV)

P

Planck + DESI-Y1
Planck18-PR3 + DESI-Y1

mock m = 0 eV

mock m = 0.06 eV

mock m = 0.10 eV

HiLLiPoP23-PR4 + DESI-Y1-no07

NO IO

FIG. 6. Reconstructed posterior distribution of
∑

mν in a
mock analysis of Planck18-PR3+Lensing+BAO with three
configurations:

∑
mν = 0, 0.06, 0.1 eV. We also show the

posterior reconstructed from the real data for comparison.

eV, fixing the other ΛCDM parameters as reconstructed
from Planck18-PR3+Lensing+BAO [4]. We run MCMC
chains, and show the reconstructed posteriors in Fig. 6. It
is clear that the real data (black line) provide significantly
stronger constraints than expected, and in fact, our mock
data suggests that the combination of Planck+DESI-Y1
has the sensitivity necessary to detect at small signifi-
cance non-zero neutrino masses, assuming these respect
the laboratory lower limits. Barring issue with our mock
likelihoods, it is thus clear that there is some ‘anomaly’ in
the real data (whether due to a fluke, or new physics). As
already discussed and as we will elaborate in the follow-
ing with analyses of the real data, the two results that

seem to be driving this unexpected constraints beyond
the sensitivity are Planck likelihoods through the lensing
anomaly and the DESI-Y1 data at z = 0.7. Indeed, when
we compare instead the posterior for HiLLiPoP, with a
significantly reduced lensing anomaly, and remove the
DESI outliers, the posterior is much closer to the ex-
pected sensitivity as shown by the purple line in Fig. 6.
When in presence of such anomalous behaviour from the
actual data when compared to the expected sensitivities,
an alternative method to the Feldman-Cousins analysis
was proposed by Lokhov and Tkachov [85] ensuring also
proper coverage when deriving the confidence intervals
but conservatively replacing the anomalous results push-
ing into the unphysical region with the expected sensi-
tivity in absence of a signal. Since we find that the main
contributors driving the anomalous results can be iden-
tified and that their impact can be almost entirely re-
moved for instance through the HiLLiPoP + DESI-Y1
combination, we prefer not to implement this method
as it would hide the different behaviours of the differ-
ent datasets and cosmological models we want to analize
and compare here. However, we do find the compari-
son with the expected sensitivities presented in Fig. 6,
on which the LT method is based, very illustrating. Fur-
thermore, we can compare our expected sensitivities of
Planck+DESI-Y1 to the ones obtained in previous fore-
casts using the full DESI reach [84]. We find a 1σ sensi-
tivity of ∼ 0.06 eV while for Planck+DESI-full Ref. [84]
reports a 1σ sensitivity of 0.04 eV. This highlights what
is the level of improvement expected from the additional
5 years of BAO data, although an even higher sensitivity
can of course be obtained from a full shape analysis of
the matter power spectrum, see [35–38].

We now turn to the real data. In Fig. 7 we show the
analyses of Planck data5 combined with: (a) DESI-Y1
BAO results, (b) the full SDSS combination (which have
a similar statistical power in the Ωm vs H0rd plane as
DESI-Y1, see Fig. 2), (c) the DESI/SDSS BAO combina-
tion that takes the BAO results at each redshift bin from
the survey that has greatest statistical power, and (d) the
DESI-Y1 BAO combination but without the z = 0.7 bin
that contains data which deviate by ∼ 3σ from ΛCDM
predictions. Importantly, in all data set combinations,
we consider separately the three latest Planck likelihood
implementations.

First, from panel (a), we confirm that the extrapo-
lation of the results from Planck+DESI-Y1 to the un-
physical region seem to favor negative masses. How-
ever, in our approach, given uncertainties in the pro-
file represented by the bands, the preference remains
at low statistical significance. In fact, we find that it
is the combination with HiLLiPoP23-PR4 that seems to
lead to the largest preference (reaching at most ∼ 1σ).
This may appear counter-intuitive given results pre-

5 We stress that Lensing-PR3 is now included in the analysis.
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FIG. 7. Profile likelihoods of the neutrino mass within ΛCDM when using Planck+BAO data comparing scenarios with DESI-
Y1 (a), the full SDSS data (b), the combination of DESI-Y1+SDSS (c), and the DESI-Y1 data set but removing the ouliers at
z = 0.7 (d). We can clearly notice that systematically the HiLLiPoP23 likelihood implementation gives the weakest constraints,
and that the two BAO measurements at z = 0.7 have a significant impact on both the bound on the neutrino mass as well as
the potential preference for a negative best fit.

sented in previous section. We attribute this to the
fact that HiLLiPoP23-PR4 has the weakest constrain-
ing power on neutrino masses, and thus the statisti-
cal power from DESI can be more pronounced. Sec-
ond, by comparing the results from Planck+DESI-Y1
and Planck+SDSS in panel (b), one can clearly see that
the bound on the neutrino mass are significantly weaker
in the latter case and that the preference for negative
neutrino masses further decrease. This is particularly
striking for HiLLiPoP23-PR4 that is now fully compati-
ble with positive masses. However, when comparing the
Planck+DESI-Y1 and Planck+DESI-Y1+SDSS (panel
(c)) one notices that the profiles are quite similar and
only slightly shifted towards more positive values for the
latter case. This suggests that the low-z data points
from DESI, that are replaced by SDSS is this analysis,

do not play a significant role in the preference for neg-
ative neutrino masses. Rather, we can compare the re-
sults from Planck+DESI-Y1 and Planck+DESI-Y1no07
(panel (d)) which excludes the outliers at z = 0.7. We
find that removing these data points loosens the bound
and also makes all likelihood combinations to peak at
around

∑
mν ≃ 0, thus removing the potential prefer-

ence for negative neutrino masses. Although it is obvi-
ous that removing two data points from DESI-Y1 is not a
valid statistical procedure, this exercise shows that DESI-
Y1 BAO data at z = 0.7 have a very significant impact
on the neutrino mass bound. We note that the DESI-
Y1+SDSS BAO combination does include these outliers
in the combination as the effective volume of DESI is
already larger than that of SDSS at z = 0.7.

Finally, although Fig. 7 shows that the form of the
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profiles (in particular the extrapolation) is different for
the three Planck implementations, the differences at the
level of the 95% CL bound is only at the 10− 20% level,
depending upon the specific BAO data used. This is
good news because it shows that the potentially large
systematic shifts on

∑
mν when using Planck CMB data

alone are not present at the same level when CMB lensing
and geometric BAO data are included. Our results are in
qualitative agreement with the recent Bayesian analysis
of [10].

IV.3. Planck + DESI + SN: Impact of the Dark
Energy equation of state

So far, we have explored constraints to
∑

mν assum-
ing a flat ΛCDM background, and showed how BAO data
can help strengthen the bound by breaking the degener-
acy with Ωm. However, in models with more parameters
controlling the late-time expansion history, it is expected
that additional degeneracies with the neutrino masses
will appear. Chief amongst those is the well-known de-
generacy with the equation of state of dark energy, w (see
e.g. [86].) Given the tentative evidence for a time-varying
equation of state of dark energy from DESI when com-
bined with SN data [1], it is relevant to explore how it
can impact the bound on the neutrino masses. Following
[1], we model the equation of state of dark energy to vary
according to the Chevalier-Polarski-Linder parametriza-
tion w(a) = w0 + (1 − a)wa [87, 88], where a is the scale
factor, and vary w0 ∈ [−3, 2] and wa ∈ [−3, 1].

In Fig. 8 we show the likelihood profile of
∑

mν built
from the combination of Planck, DESI-Y1 BAO and the
SN Pantheon sample, in ΛCDM (in black) and in the
w0waCDM cosmology (in green). One can see that when
the equation of state of dark energy is allowed to vary the
bound on the neutrino mass is relaxed, in good agreement
with [1]. We find, however, that the 95% bound can
be roughly 30% weaker for HiLLiPoP than with Plik or
CamSpec. Interestingly we also note that the potential
evidence for a negative neutrino mass vanishes.

Something important to highlight is that, while al-
lowing for the equation of state of dark energy to vary
relaxes the bound on the neutrino mass, the best fit for
the equation of state differs significantly from the cos-
mological constant value and in particular suggests that
w0 ≳ −1 today. Thus, while the bound may be relaxed,
large neutrino masses would require dark energy to be-
have very differently than a cosmological constant. We
note that if one restricts the analysis to constant equa-
tion of state, namely w(a) = w0 where only w0 is allowed
to vary, the bound on the neutrino mass remains very
similar to that in ΛCDM, see [1].

Lastly, we investigate whether varying the Alens pa-
rameter may remove the preference for negative neutrino
masses, despite the inclusion of DESI-Y1 BAO and SN
data data. Our results are shown in Fig. 8 in blue. One

can notice that this shifts the best fit to the positive
regime and that the bound becomes again a factor of
∼ 2 weaker than when compared to the standard case
where Alens = 1. This suggests that, regardless of the
behavior of DESI data, it is the lensing anomaly that
dominates the preference for negative neutrino masses.
Note though, that removing (most of) the constraining
power from lensing by including Alens does not remove all
the sensitivity to neutrino masses altogether. While the
constraints relax, they remain significantly stronger than
laboratory ones when BAO and SNIa data are included,
in the ball park of

∑
mν ≲ 0.2 − 0.3 eV depending on

which CMB likelihood is used.

IV.4. Frequentists vs Bayesian Limits: The impact
of statistical choices on the neutrino mass bound

Until now, we have focused our attention on profile
likelihoods, as these allowed us to investigate the prefer-
ence for negative neutrino masses. In this section we will
study how the confidence intervals built from the profile
likelihood compare with the Bayesian credible intervals
built from the posteriors. While the two statistical ap-
proaches address distinct questions and thus do not need
to necessarily coincide, we find the comparison useful
to understand how dependent is the derived constraint
on the choice of the statistical procedure. Moreover, if
the likelihood is Gaussian and when assuming flat, non-
informative priors on the parameter under study, the two
approaches should coincide. Therefore, the comparison
allows to asses the role of possible prior effects in the
bound given by Eq. (1) as well as deviations from Gaus-
sianity. Notice that the extrapolations to negative masses
performed in our work as well as in Ref. [24] and [10]
rely on the Gaussianity of the likelihood and posterior
respectively. Similarly, the study of Ref. [21] relies on
a linear expansion of the dependence of the observables
with

∑
mν which, per Wilks theorem, would imply a

Gaussian behaviour. The fact that these analyses do
not coincide (see section V for a full comparison) implies
that the Gaussian behaviour approximation is violated at
some degree. As we will show and discuss below, we find
that the differences between the Bayesian and frequentist
approaches are at the 10% level, which provides a useful
estimation of the size of the uncertainties introduced by
these approximations. We refer to Appendix A for the
posterior distributions.

Our results are summarized in Table II for analyses
that combine Planck+BAO data, and in Table III for
those that also include SN data from the Pantheon sam-
ple. These tables include three estimates of the bound
to neutrino masses: the Bayesian limit at 95% CL, those
derived using Feldman-Cousins procedure (F.C.), as well
as those using the naive bounded maximum likelihood
(B.L.) (∆χ2 = 3.84), all at the same confidence level.
Firstly, we generally notice a very good agreement be-
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FIG. 8. Neutrino mass profile likelihoods for Planck+DESI-Y1+Pantheon+ data set combinations. We show ΛCDM in black,
varying the equation of state of dark energy in green, and allowing for Alens to vary in blue. In the left panel we show the
results for plik, in the middle for CamSpec, and in the right panel for Hillipop. We clearly see a similar behaviour for all of
them and the potential preference for a negative best fit to dissapear when the equation of state of dark energy is allowed to
vary.

Planck + BAO 95% C.L.
∑

mν (eV)

BAO data Planck likelihood Bayesian
Frequentist

Gaussian fit
B.L. F.C.

SDSS-full
Planck18-PR3 0.114 0.116 0.113 -0.018±0.068
CamSpec22-PR4 0.115 0.108 0.106 -0.026±0.067
HiLLiPoP23-PR4 0.151 0.146 0.146 0.007±0.071

DESI-Y1
Planck18-PR3 0.084 0.074 0.071 -0.047±0.057
CamSpec22-PR4 0.079 0.069 0.067 -0.045±0.053
HiLLiPoP23-PR4 0.102 0.085 0.083 -0.038±0.060

DESI-Y1+SDSS
Planck18-PR3 0.096 0.086 0.082 -0.033±0.058
CamSpec22-PR4 0.088 0.080 0.077 -0.032±0.054
HiLLiPoP23-PR4 0.112 0.099 0.097 -0.016±0.058

DESI-Y1-no07
Planck18-PR3 0.107 0.096 0.092 -0.036±0.065
CamSpec22-PR4 0.101 0.089 0.087 -0.048±0.066
HiLLiPoP23-PR4 0.125 0.114 0.114 -0.012±0.064

TABLE II. Upper limits at 95% CL on the neutrino mass within ΛCDM using various data set combinations of Planck + BAO
data. We show the Bayesian limits compared with the two frequentist approaches (B.L. = Bounded Likelihood, and F.C. =
Feldman-Cousins) described in Section III.2. We also report the Gaussian fit for our profile likelihoods.

tween the two frequentists approaches, with differences
between them at the ≲ 5% level only. This suggests that
the fact that the minimum lie beyond the physical re-
gion does not significantly affect the bounds to neutrino
masses. Secondly, and interestingly, we also notice a very
good agreement between the frequentists and Bayesian
limits. In fact, we find, that the frequentists limits are
in many cases ∼ 10% stronger than the Bayesian ones.
For example, considering the data set combination of
Plik+DESI, we find at 95% CL:

∑
mν < 0.084 eV [Bayesian] , (5a)

∑
mν < 0.074 eV [Bounded−Likelihood] , (5b)

∑
mν < 0.071 eV [Feldman−Cousins] . (5c)

One clearly sees that the three are very similar, with the
frequentist ones being slightly more stringent. While the

two approaches need not necessarily agree, this could be
due to two effects. First, it is possible that there are mild
prior effects in the Bayesian analysis, that go in the direc-
tion of relaxing the bound. Second, it can be difficult to
find the absolute minimum of the χ2 for each simulated
value of

∑
mν for such a large parameter space. If the

simulated annealing methods fails to cool to the absolute
minimum, the slightly larger values of the χ2 would lead
to slightly tighter frequentist constraints. Nevertheless
and regardless of its origin, this effect is only around the
10% level, and we thus conclude that the constraints are
robust to the choice of statistical method up to that level
of difference. Let us additionally note that the Bayesian
constraint we derive here is slightly different than Eq. (1).
This is because the DESI collaboration used more con-
straining CMB lensing data, combining Planck lensing
PR4 with ACT lensing, rather than Planck lensing PR3
as we do here. Nevertheless, we do not expect that using
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this lensing data would change the overall trend.

So far we have included in our analyses values for neu-
trino masses down to the massless limit,

∑
mν = 0,

but we know from the laboratory that there are phys-
ical boundaries at either

∑
mν = 0.06 eV for NO or at∑

mν = 0.10 eV for IO. To gauge the impact of those
experimental lower limits on the cosmological neutrino
mass bound, we run dedicated Bayesian analyses restrict-
ing the prior to

∑
mν following either the NO or IO con-

straints. For the frequentist limit, it is sufficient to con-
sider these boundaries as lower limits in our ∆χ2 curves.
This procedure yields:

∑
mν < 0.121 eV [NO−Bayesian] , (6a)

∑
mν < 0.106 eV [NO−Bounded−Likelihood] , (6b)

∑
mν < 0.096 eV [NO−Feldman−Cousins] , (6c)

and for the inverted ordering case:

∑
mν < 0.152 eV [IO−Bayesian] , (7a)

∑
mν < 0.138 eV [IO−Bounded−Likelihood] , (7b)

∑
mν < 0.127 eV [IO−Feldman−Cousins] . (7c)

Since in these scenarios the physical boundary is further
away from the best fit of the ∆χ2, the Feldman-Cousins
correction becomes more relevant and we observe a larger
difference compared to the naive bound one would derive
simply assuming the applicability of Wilk’s theorem, al-
though it is still within 10%. The difference between the
frequentist and Bayesian constraints also increases, with
up to 20% difference between the Feldman-Cousins result
and the Bayesian posterior. Let us stress that, for this
particular dataset, the inverted ordering assumption has
a p−value of only 1%.

Importantly, we have highlighted before that there
are two effects that significantly pull the bound on
the neutrino mass in Eq. (1): i) the lensing anomaly
present in some of the Planck likelihoods, and ii)
the outliers in DESI-Y1 at z = 0.7. In this con-
text, to be maximally conservative, one can consider
the combination of HiLLiPoP+DESIY1no07 for which
there is no lensing anomaly in the Planck likelihood
and where the outliers in DESI-Y1 data have been re-
moved. The relevant Bayesian and frequentist limits from
HiLLiPoP+DESIY1no07 read:

∑
mν < 0.125 eV [Bayesian] , (8a)

∑
mν < 0.114 eV [Bounded−Likelihood] , (8b)

∑
mν < 0.114 eV [Feldman−Cousins] . (8c)

Here we can see again a ∼ 10% agreement between
Bayesian and frequentist approaches.

When considering the physical boundary for normal

ordering, the constraints read:

∑
mν < 0.160 eV [NO − Bayesian] , (9a)

∑
mν < 0.132 eV [NO − Bounded−Likelihood] , (9b)

∑
mν < 0.125 eV [NO − Feldman−Cousins] . (9c)

and for the inverted ordering case:

∑
mν < 0.179 eV [IO − Bayesian] , (10a)

∑
mν < 0.156 eV [IO − Bounded−Likelihood] , (10b)

∑
mν < 0.146 eV [IO − Feldman−Cousins] . (10c)

Where, as before, the FC corrections become more rel-
evant given the larger distance between the best fit and
the physical boundary.

Finally, we can compare our Bayesian bounds with
other recent studies. In particular, our limit for the
PlanckPR3+DESI+Pantheon perfectly agrees with the
one reported in [9]. Ref. [10] also presented analy-
ses including various versions of the new Planck like-
lihoods. For the data combination Plik+DESI and
HiLLiPoP+DESI (with or without SN), we find bounds
that are ∼ 10 − 20% looser that those reported in [10].
However, for the case HiLLiPoP+SDSS/DESI we find
the same limit as [10]. Given that we agree with Ref. [9]
when the very same data is considered, but also with
Ref. [10] when a subset of the DESI data set is consid-
ered, we conjecture that the differences in the limits may
stem from a different implementation of the full DESI
likelihood. Our implementation matches the one in the
Cobaya public repository [89].

V. DO COSMOLOGICAL DATA PREFER A
“NEGATIVE” NEUTRINO MASS?

It has been recently emphasized in [19–21] that cosmo-
logical data may prefer “negative” neutrino masses and
that such a preference for unphysical values, if not due
to a statistical fluke or an unknown systematic effect,
may hint for new physics in cosmology. In their analy-
sis, the Authors of [19, 20] define an “effective neutrino
mass” which, when taking negative values, generates an
increase of power in the CMB lensing potential, an ef-
fect that is opposite to that of positive neutrino masses.
In [21] an alternative definition is adopted which also
accounts for the other effects of neutrino masses in cos-
mological observables (in particular on the angular di-
ameter distance, but not only). In this paper, to gauge
the preference for neutrino mass, we have simply extrapo-
lated through a Gaussian fit the behaviour of our profiled
∆χ2. Even though the extrapolation introduces some
degree of uncertainty, that we have quantified with the
procedure detailed in Section III.2, it provides a comple-
mentary way to assess the preference for negative values
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Planck + DESI-Y1 + Pantheon+ 95% C.L.
∑

mν (eV)

Model Planck likelihood Bayesian
Frequentist

Gaussian fit
B.L. F.C.

ΛCDM
Planck18-PR3 0.093 0.087 0.088 -0.025±0.056
CamSpec22-PR4 0.089 0.080 0.078 -0.033±0.055
HiLLiPoP23-PR4 0.112 0.099 0.098 -0.034±0.066

w0waCDM
Planck18-PR3 0.177 0.163 0.163 -0.019±0.092
CamSpec22-PR4 0.167 0.161 0.164 0.006±0.079
HiLLiPoP23-PR4 0.213 0.205 0.207 0.024±0.092

ΛCDM+Alens

Planck18-PR3 0.242 0.268 0.260 0.060±0.102
CamSpec22-PR4 0.204 0.220 0.210 0.050±0.079
HiLLiPoP23-PR4 0.180 0.187 0.181 0.046±0.068

TABLE III. Upper limits at 95% CL on the neutrino mass using Planck + BAO + SN data within extended ΛCDM models,
including a time-varying equation of state of dark energy, as well as varying the Alens parameter. We show the Bayesian
limits compared with the two frequentist approaches (B.L. = Bounded Likelihood, and F.C. = Feldman-Cousins) described in
Section III.2. We also report the Gaussian fit for our profile likelihoods, obtained from the points below ∆χ2 = 4.
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FIG. 9. Profile likelihoods for the data set combinations of Planck18-PR3+DESI-Y1 (black), HiLLiPoP23-PR4 (blue), Planck18-
PR3+DESI-Y1-no07 (red), HiLLiPoP23-PR4+DESI-Y1-no07 (green), and compared with χ2

eff = −2 logP from [20] (purple)
and [21] (orange), which have treatments for “negative” neutrino masses. By comparing the black and blue curves we can
clearly see that the bound on the neutrino mass gets relaxed if the HiLLiPoP likelihood (which does not contain a lensing
anomaly) is used. However, it is clear from the extrapolated parabolas that there is still some preference for a negative neutrino
mass. This, however, disappears when the DESI BAO data at z = 0.7 which contains a ∼ 3σ outlier is removed (see red and
green curves).

displayed by the different datasets analyzed without the
need for an explicit (arbitrary) modelling of the effect of
negative neutrino masses. A similar approach, extrapo-
lating instead a Gaussian fit to the posterior distribution,
was adopted in Refs. [24] and [10].

Our results agree overall fairly well with all previous
works [10, 19–21] considering the different treatments
performed in each of them. Our main results and the
comparison to previous analyses are shown in Fig. 9

(see also App. B). In particular, Ref. [21] argued that
the Gaussian extrapolation in [10] underestimates the
preference for negative masses of present data. Indeed,
Refs. [19–21] find rather more negative best fits through
their analyses with their respective “effective masses”
peaking around −0.15 eV (see purple and orange lines in
Fig. 9). We do find some preference for negative neutrino
masses in datasets including both the Planck likelihoods
affected by the lensing anomaly (Plik 2018 in Fig. 9 but
also CamSpec in previous sections) and the full DESI Y1



15

BAO data (black line). However, this preference is sig-
nificantly weaker, with a best fit at

∑
mν ≃ −0.05 eV in

agreement with the extrapolation of the posterior shown
in [10] and the comparison and discussion in [21].

More importantly, Ref. [21] only considered the Cam-
Spec Planck likelihood. We find here that this dataset
has a preference for negative neutrino masses, because of
the presence of a residual lensing anomaly, and that it can
be reduced when using alternative likelihoods. Indeed,
we find a preference for negative neutrino masses when
Planck 2018 is analyzed on its own. Switching for the
HiLLiPoP23-PR4 version of Planck (largely unaffected by
the lensing anomaly), there is no preference for negative
masses, and the bound significantly relaxes. The pref-
erence re-appears for HiLLiPoP23-PR4 when DESI-Y1
BAO data are included because these data have a lower
constraining power to

∑
mν . Nevertheless, Fig. 9 shows

that the bound on
∑

mν relaxes when changing from plik
2018 to HiLLiPoP (black vs blue lines) or when removing
the z = 0.7 outlier bin in DESI (black vs red lines). Fi-
nally, when the z = 0.7 bin is removed and the HiLLiPoP
implementation are both considered, the preference for
negative masses essentially disappears (green line) and
the bound is about a factor 2 weaker. Let us note
that the authors of [20] did investigate the persistence
of their effective negative neutrino mass signal when
PR4 likelihoods are used. However, the analyses were
not performed for HiLLiPoP23-PR4 but rather for the
CamSpec22-PR4 likelihood, where the lensing anomaly is
still present, albeit at a reduced level. Ref. [20] does
show that the preference for negative masses is relaxed
in this scenario at a level that, naively, seems consistent
with the reduced presence of the anomaly in CamSpec.
In this context, it would be very interesting to explore
the potential preference for a “negative” neutrino mass
following the implementation of [21] and [19, 20] but us-
ing the HiLLiPoP likelihood and also in the absence of
the z = 0.7 outliers that we have shown pull the neu-
trino mass bound significantly. Given our results, and
if our hypotheses are correct, the preference for negative
neutrino masses would vanish in that case.

From our results, we conclude that there is no sig-
nificant nor compelling evidence for negative neutrino
masses from cosmology. We do confirm some mild pref-
erence when Planck likelihoods affected by the lensing
anomaly are adopted, pointing towards a potential resid-
ual systematic effect in these implementations. We also
find that the z = 0.7 bin of DESI, in some tension with
Planck data, push towards negative values. If these out-
liers are confirmed, it will be interesting to see how the
preference for negative masses evolves in the future. For
now, and in agreement with [10], we conclude there is
no compelling evidence for negative masses from present
datasets and that present constraints are still perfectly
compatible with the results from neutrino oscillations.
We believe that a key check to see if cosmological data
does prefer effective “negative” neutrino masses is to do
a cosmological analysis using the HiLLiPoP likelihood

implementation.

VI. CONCLUSIONS

Recent cosmological constraints on the sum of neu-
trino masses (

∑
mν) already disfavour its minimum

value if the mass ordering is inverted and allow very lit-
tle parameter space even for normal ordering [1]. Some
analyses combining additional datasets even start to rule
out the minimum value of

∑
mν for a normal order-

ing [9], seemingly implying tension between cosmologi-
cal probes and neutrino oscillation experiments. In this
context, we have critically assessed the constraints on∑

mν from cosmological observables investigating their
robustness against different statistical methods and de-
termining which observables mainly dominate the bud-
ding tension with oscillations results.

To this end, we have analyzed the constraints on
∑

mν

from different datasets both through the usual Bayesian
approach and through complementary frequentist meth-
ods. For the latter, given the proximity of the best fit to
the physical boundary of the parameter space, we have
extrapolated the likelihood profiles into the unphysical
region so as to apply the appropriate correction [73]. This
also allowed us to explore the preference of some datasets
for negative neutrino masses recently reported in [10, 19–
21].

From the simulations and results presented in Sec-
tion IV we conclude that:

• Bayesian and frequentist limits on the neu-
trino mass agree very well and within 10%
precision – The agreement between the Bayesian
and frequentist bounds on

∑
mν is very good. Re-

garding the frequentist constraints, an extrapola-
tion into the unphysical region of negative neu-
trino masses was performed to apply the appropri-
ate correction [73] to the confidence intervals. Even
though this procedure introduces a certain degree
of uncertainty, we quantified the range of variation
with the number of points for larger values of

∑
mν

and χ2 included and verified that the impact on
the confidence intervals derived is negligible. More-
over, we also compared these with the naive cuts at
the values of ∆χ2 implied by Wilks theorem with-
out venturing into the unphysical region and found
almost identical results. When comparing these
frequentist confidence intervals with the Bayesian
credible regions with flat priors on

∑
mν we find

good agreement between both approaches but con-
sistently tighter results for the frequentist method,
by about ∼ 10%. We thus conclude that the cos-
mological constraints on

∑
mν are robust at this

level against variations of the statistical method
employed to derive them.

• The potential preference for “negative” neu-
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trino mass bounds is strongly dependent
upon the Planck likelihood implementation
used in the analysis – When investigating
the constraints derived exclusively from Planck
data, we find radically different behaviours be-
tween the Plik, CamSpec and HiLLiPoP imple-
mentations. Indeed, the preference for unphysi-
cal negative masses and hence the strongest con-
straints on

∑
mν are obtained for Plik and, to a

lesser degree CamSpec, and absent for HiLLiPoP,
with a factor ∼ 2 weaker constrain. This ten-
dency for weaker constraints for the CamSpec or
HiLLiPoP implementations was also recently con-
firmed in Ref. [10]. These results seem closely corre-
lated to the presence of the lensing anomaly in these
datasets, which is reduced in the CamSpec and
almost absent in the HiLLiPoP implementations.
To confirm this observation, we performed anal-
yses including the Alens parameter and marginal-
ising over its value. Interestingly, these analyses
yielded the weakest constraints for the datasets
more strongly affected by the anomaly. In particu-
lar, the Plik and CamSpec constraints in combina-
tion with other datasets relax by more than a factor
2. We conclude that, when the lensing anomaly is
not present in the Planck likelihood either through
use of the HiLLiPoP implementation or the inclu-
sion and marginalization over Alens, the combined
results of Planck with DESI and Pantheon relax to
about

∑
mν < 0.11 eV or even

∑
mν < 0.2 eV,

both at 95% CL, and in good agreement with both
the normal and inverted orderings currently al-
lowed by neutrino oscillation data.

• DESI-Y1 BAO measurements at z = 0.7 pull
the neutrino mass bound significantly and
also induce some preference for negative val-
ues – When combining Planck with BAO data
from DESI we observe a mild preference for unphys-
ical negative neutrino masses, and hence a more
stringent constraint. This mild preference for neg-
ative masses even appears for the HiLLiPoP im-
plementation, for which it is absent when analyzed
alone or in combination with other datasets. Upon
closer examination, this preference seems to be
driven mostly the BAO measurements at z = 0.7,
out of which the angular one is in ∼ 3σ tension
with Planck expectations. Indeed, when removing
this bin, the preference for negative masses disap-
pears and the corresponding constraints relax ac-
cordingly. Similarly, if SDSS BAO data is used
instead of DESI, constraints relax by about a 50%
in all cases considered. Thus, given the unexpect-
edly strong constraint derived when including the
full DESI dataset, it will be very interesting to con-
firm if the present trend is confirmed with higher
statistics from upcoming DESI data releases.

• The hint of dynamical dark energy relaxes

the neutrino mass bound and removes the
preference for “negative” masses – The re-
sults presented by the DESI collaboration [1] favour
a dynamical equation of state for Dark Energy
parametrized through w0 and wa when extending
the ΛCDM. We find that our analyses including
this effect also relax significantly the constraints
on

∑
mν by a factor 2 in all cases analyzed, in

agreement with the results of [1, 19, 21]. In ad-
dition, the preference for negative neutrino mass
disappears, suggesting that it may be an artifact
of using the wrong cosmological model. More data
are necessary to test whether the hint of dynamical
dark energy, and the related artificially strong con-
straints to neutrino mass, are due to a statistical
fluke, a systematic error, or a real deviation from
ΛCDM.

All in all, we find it is premature to infer signifi-
cant tension between present cosmological probes
and neutrino oscillation data, and that the pref-
erence for unphysical negative masses is not yet
compelling. A critical test of this statement would be to
have the results for the models including “effective nega-
tive” neutrino masses using the HiLLiPoP likelihood im-
plementation of the Planck data which does not feature
a lensing anomaly. In any case, this is a very exciting
period as we should be on the brink of a discovery of
the absolute neutrino mass from cosmology. This would
represent an indirect confirmation of the cosmic neutrino
background and set a target for laboratory experiments
aiming to kinematically measure the neutrino mass or,
even more interestingly, its potential Majorana nature.
If in the upcoming years a discovery is not made despite
unprecedentedly small statistical and systematic errors,
it will be a clear call for a change of paradigm, poten-
tially signaling new physics such as neutrino decays [39–
45], non-standard thermodynamic histories [46–51], or
time varying masses [52–59]. It is clear that upcoming
years are of utmost importance for neutrino cosmology,
as whether neutrino masses are detected or not, we are
on the verge of a major breakthrough.
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C. A. Ternes, and M. Tórtola, JCAP 03, 011 (2018),
arXiv:1801.04946 [hep-ph].

[17] S. Gariazzo et al., JCAP 10, 010 (2022),
arXiv:2205.02195 [hep-ph].

[18] S. Gariazzo, O. Mena, and T. Schwetz, Phys. Dark Univ.
40, 101226 (2023), arXiv:2302.14159 [hep-ph].

[19] N. Craig, D. Green, J. Meyers, and S. Rajendran,
(2024), arXiv:2405.00836 [astro-ph.CO].

[20] D. Green and J. Meyers, (2024), arXiv:2407.07878 [astro-
ph.CO].

[21] W. Elbers, C. S. Frenk, A. Jenkins, B. Li, and S. Pascoli,
(2024), arXiv:2407.10965 [astro-ph.CO].

[22] P. A. R. Ade et al. (Planck), Astron. Astrophys. 566,
A54 (2014), arXiv:1311.1657 [astro-ph.CO].

[23] F. Couchot, S. Henrot-Versillé, O. Perdereau,
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Appendix A: Posterior distributions

In this Appendix we draw the
∑

mν posterior distributions for some of our analyses. In particular, we present in
Fig. 10 the Bayesian analogue of Fig. 3. Secondly, the Bayesian analyses for the different Planck+BAO combinations
are shown in Fig. 12 (see Fig. 7 for their frequentist counterpart). Lastly, the Planck+DESI-Y1+Pantheon+ posteriors
are presented in Fig. 13, where we are using the same datasets as in the frequentist analyses of Fig. 8.

For the comparison between the bounds extracted from the Bayesian and frequentist approaches, we refer the
reader to Tables I, II and III.
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FIG. 10. Posterior distributions for the same data set combinations as in Fig. 3 but analyzed within a Bayesian framework.
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FIG. 11. Posterior distributions for the same data set combinations as in Fig. 5 but analyzed within a Bayesian framework.

Appendix B: Comparison with other Gaussian extrapolations

For the sake of assessing the robustness of our results when performing the extrapolation of the likelihood profiles
into the unphysical

∑
mν region, we compare our results with those of other works, such as Refs. [10, 21]. In these

works, a similar procedure was performed but within a bayesian framework: the authors fitted to a Gaussian their
posterior in the physical region and extrapolated to negative masses.
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FIG. 12. Posterior distributions for the same data set combinations as in Fig. 7 but analyzed within a Bayesian framework.
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FIG. 13. Posterior distributions for the same data set combinations as in Fig. 8 but analyzed within a Bayesian framework.

The comparison is shown in Fig. 14, where we plot our ∆χ2 profiles and their −2 logP for similar datasets. We
find an overall agreement in the preference for a best fit in the negative neutrino mass region, suggesting that the
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conclusions drawn from the extrapolation are not largely dependent on the statistical procedure employed.
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FIG. 14. Comparison between our ∆χ2 profiles and their gaussian extrapolation with the corresponding extrapolated −2 logP
of Ref. [10] and Ref. [21].

Appendix C: Correlations with other parameters

It has been shown that extending the standard cosmological model either with the Alens parameter or by adding a
dynamical dark energy equation of state w(a) = w0 + (1 − a)wa, the cosmological bound on neutrino masses can be
substantially relaxed and thus reduce the tension with oscillation data. In Fig. 15 we present the correlations of

∑
mν

with w0 and Alens, as derived from our frequentist and Bayesian analyses by plotting the w0 (left panel) and Alens

(right panel) values of the profile likelihood points as well as the Bayesian contours. Most interestingly, as previously
stated, HiLLiPoP23-PR4 yields the closest Alens value to ΛCDM.
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FIG. 15. Correlations of
∑

mν with w0 and Alens. The points are extracted from our profile likelihoods for the Planck+DESI-
Y1+Pantheon+ combination, while the shaded regions correspond to the bayesian credible intervals at 1 and 2σ.
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