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Abstract

Random matrix theory (RMT) universality is the defining property of quantum

mechanical chaotic systems, and can be probed by observables like the spectral form

factor (SFF). In this paper, we describe systematic deviations from RMT behaviour at

intermediate time scales in systems with approximate symmetries. At early times, the

symmetries allow us to organize the Hilbert space into approximately decoupled sectors,

each of which contributes independently to the SFF. At late times, the SFF transitions

into the final ramp of the fully mixed chaotic Hamiltonian. For approximate continuous

symmetries, the transitional behaviour is governed by a universal process that we call

Hilbert space diffusion. The diffusion constant corresponding to this process is related

to the relaxation rate of the associated nearly conserved charge. By implementing a

chaotic sigma model for Hilbert-space diffusion, we formulate an analytic theory of this

process which agrees quantitatively with our numerical results for different examples.
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1 Introduction

Emergence of universality in various distinct physical systems is one of the most powerful

tools that enables us to explore and understand underlying physical properties of complex

systems. This feature of physics has shed light on many fundamental aspects of physical

systems that would have otherwise not been conspicuous. One of the most important uni-

versality principles that helps us understand the spectral properties of strongly-interacting

systems is random matrix universality [1]. It has found application in studies of various phys-

ical systems like disordered systems, diffusive systems and 2D gravity among others (see [2]

for a review on various applications). More recently, it has also shed light on the prop-

erties of blackholes and the resolution of the information paradox in gravitational systems

on hyperbolic manifolds [3–6]. In reference to physical systems, the averaging over theo-

ries (through averaging over their Hamiltonian as modelled by an RMT) should only been

seen as a tool to retrieve the universal signals in the physical observations like correlation

functions. Conceptually, the averaging over the Hamiltonians facilitates a coarse graining

over a part of the physical spectrum that is otherwise hard to scrutinise. The exact nature

of the coarse-graining thus facilitated is still an open question and depends on the physical

system as well as the observables under consideration. Not all observables are self-averaging

or are susceptive to aforementioned averaging. It is important to understand what are such

observables and the physical information carried by them about the system of interest.

Random matrix universality is also crucial in our understanding of how closed quantum

systems thermalise. Unlike classical systems where ergodicity in phase space is the guiding

principle for how systems thermalise, the same can’t be said for the quantum mechanical sys-

tems. Eigenstate thermalisation hypothesis (ETH) conjectures that pure states in complex

quantum systems are indistinguishable from thermal states. The coarse-graining inherent

to an RMT description together with ETH provide the quantum mechanical understanding

behind thermalisation [7, 8]. Therefore, understanding the emergence of these features in

physical systems is important (see [9] for a review). In this work, we study the slowest

modes that govern the late time physics in systems with global symmetries. Such modes are

manifested through the spectral properties of the spectrum interpreted through the lens of

RMT universality, as we now describe. In the context of holography, these slowest modes

that describe the RMT behaviour of physical systems also control their late time behaviour

and provide the resolution of unitarity [4, 6].

Similarity of the statistical properties of a physical spectrum to those of an RMT is used
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as a quantum mechanical definition of chaos [1]. The critical property of an RMT that

distinguishes it from integrable systems is the presence of level-repulsion that is contrary

to the typically degenerate spectrum in the latter [10]. Degeneracy of the spectrum results

from underlying symmetries of the physical system. This is not indifferent from classical

integrable theories, where sufficiently many conserved quantities permit for a description in

terms of independent action-angle variables. Quantum mechanical integrable systems are

also believed to possess large amount of symmetries that are absent in strongly-interacting

chaotic systems. A quantity that is often used to test for such RMT behaviour is the

spectral form factor (SFF), the Fourier transform to the time domain of the spectral two

point correlation function [11, 12]. In RMT, this quantity has a distinct shape described by

an initial linear ramp, followed by a plateau phase (see Fig. 1 for a schematic depiction of

this behaviour). The presence of a ramp-plateau in the SFF of a generic system is a signature

of level-repulsion in the spectral statistics and implies quantum chaos.

Going beyond random matrix universality, a key question for physical quantum systems

is how spectral statistics at high energy deviate from RMT. It was recognized early on

in a single-particle context that this deviation may also exhibit universal features [11, 13].

Intuitively, any structure in a Hamiltonian leads to loss of spectral rigidity beyond some

energy scale, usually called the Thouless energy ∆E ≳ ETh. In real time dynamics probed,

e.g., through the SFF, this leads to a ‘bump’ before the Thouless time tTh ≡ 1/ETh: the linear

in time ramp predicted by RMT is approached from above (see, e.g., [14–19]). Characterizing

this overshoot of the ramp in realistic quantum many-body systems compared to RMT has

been the subject of several recent papers [20–25].

In this work, we are interested in understanding how the presence of approximate symmetries

in a physical system affects its chaotic properties. We will see that approximate symmetries

lead to a simple yet widespread situation where the overshoot of the ramp can be precisely

characterized (Fig. 1). Approximate symmetries split the Hilbert space in approximately

decoupled sectors labelled a charge q = 1, 2, . . . , Q. In local systems, the number of sectors

Q typically grows polynomially with system size; it can therefore be large but is much smaller

than the Hilbert space dimension N , and we will be interested in the limit N ≫ Q ≫ 1.

We compute the SFF in such systems and show that the slowest modes that govern the

deviations from the RMT behaviour are proportional to the symmetry breaking terms in the

Hamiltonian. For a system with weakly-broken symmetries, at earlier times the SFF is the

same as that of a theory where the symmetry is preserved. The symmetry breaking slow

modes are responsible for the transition to the SFF of an RMT at late times (see Fig. 1).
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∼
√
t

tTh,0 ti tHeis,q tf tHeis ln t

ln SFFc(t)

Figure 1: Behaviour of the SFF in systems with approximate symmetries. The ‘local’ dif-
fusive behaviour occurs between ti ≃ 1/(4πΓ) and tf ≃ Q2/(4πΓ), where Q is the number
of symmetry sectors of the unperturbed symmetric theory and Γ is the ‘Hilbert space dif-
fusivity’ given in Eq. (1.1). We have marked Thouless time of the symmetric theory, tTh,0,
at which the ramp begins. The SFF of the symmetric theory plateaus at Heisenberg time,
tHeis,q = QtHeis.

When the symmetry-breaking perturbation only couples nearby sectors, this transition is

described in the thermodynamic limit as diffusion between various charge sectors in the

Hilbert space. We refer to this as Hilbert space diffusion. In other words, we demonstrate

how the symmetry breaking modes correlate different charge sectors through a process of

diffusion. Therefore, even a small amount of symmetry breaking that leads to interactions

between only a few charge sectors can give rise to sufficient ergodicity to replicate RMT

behaviour at late times. This is again a manifestation of the fact RMT statistics arise even

when the underlying theory is not an RMT.

The rate describing this process is given by a two-point function of the charge operator Q:

Γ ≃ lim
ω→0

ˆ
dt eiωt⟨Q̇(t)Q̇⟩ . (1.1)

When the symmetry is exact, Q is conserved and Γ = 0. Weakly breaking the symmetry

H0 → H0 + ϵV , non-conservation of the charge Q̇ = i[ϵV,Q] will lead to a rate Γ ∼ ϵ2. This
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rate Γ is both the inverse timescale marking the onset of Hilbert space diffusion (ti = 1/(4πΓ)

in Fig. 1), and the diffusivity. We will show that diffusive exploration of the Hilbert space

then leads to a
√
t growth of the SFF, shown in Fig. 1, which eventually terminates when

this curve reaches the linear RMT ramp expected for a system without any symmetry. This

happens at the time,

tf ≃
Q2

4πΓ
, (1.2)

which is the time required for a random walk with diffusivity Γ to explore a region of size

Q. This therefore identifies the Thouless time for systems with approximate symmetries,

tTh = tf .

At the other extreme, we also consider the case where the symmetry is weakly broken by

a perturbation that correlates all the different sectors with each other. Such a ‘non-local’

exploration of Hilbert space results in an exponentially fast transition to a full ergodic

behaviour. Interestingly, the competition between the linear growth of the SFF (the ramp)

and the exponentially decaying amount of symmetry in such systems can give rise to local

extrema in the SFF of such systems.

While similar mechanisms have been considered in a single-body context [13, 26], a key

question in many-body quantum chaos is to understand which insights from free particles

still apply to interacting systems. Our results only rely on symmetries, and are therefore

non-perturbative in the coupling. They apply to any many-body systems, such as spin chains

or QFTs, with approximate global symmetries. Another important feature in the many-body

context is that each symmetry sector is exponentially large, thereby precluding localization.

Plan of the paper

In this paper, we first describe a toy model with ZQ symmetry. The Hamiltonian of such

a system is a block-diagonal matrix with Q blocks. We consider a model where each of

these blocks is governed by an independent RMT. The ZQ symmetry is weakly broken by

an interaction potential. We consider two cases: (1) ‘local’ Hilbert-space interactions given

by off-diagonal terms in the Hamiltonian that correlate each block with the two adjacent

blocks; and, (2) ‘non-local’ Hilbert-space exploration where the perturbation correlates all

the charge sectors with each other through a random matrix of the size of full Hilbert space.

In section 2, we study the behaviour of the SFF of such systems using the Fermi’s Golden

rule. These systems are then studied numerically in section 3; there we also consider a
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more physical system with an approximate U(1) symmetry: the SYK model with charged

fermions c†, c, where the U(1) symmetry is broken by adding a small charge-2 perturbation

to the Hamiltonian c†ccc+ h.c.. We find excellent quantitative agreement between analytic

predictions and numerical evaluations of spectral form factors in these systems. In section 4,

we provide an independent proof of these results using an effective field theory (EFT) defined

as a σ-model. The σ-model is described by the pseudo-Goldstone modes, corresponding to

the explicit and spontaneous symmetry breaking U(1, 1|2)Q → U(1|1)× U(1|1). Lastly, we

end our paper with some discussion and comments about the applications of these results

and future directions in section 5.

2 Fermi Golden Rule and Hilbert space diffusion

Symmetries reduce the rigidity of the spectrum of chaotic Hamiltonians, as eigenvalues in

different symmetry sectors do not repel. When the symmetry is exact, one usually studies

these sectors independently. This cannot be done when the symmetry is instead only ap-

proximate, as the dynamics allows for the exploration of all sectors at late times. The loss of

spectral rigidity is in this case physical, and depends on the timescale at which one probes

the system: the symmetry appears to hold at early times and the systems behaves as if the

sectors where decoupled, whereas at very late times all sectors are explored and the system

behaves as if there was no symmetry.

We study this quantitatively with a simple example of a system with an approximate ZQ
symmetry, broken by a small dimensionless parameter ϵ ≪ 1: H = H0 + ϵV . When ϵ = 0,

one can label states by their ZQ eigenvalue q = 1, 2, . . . , Q and define a real time ‘partition

function’ in each sector,

Zq(t) =
1

Nq

Nq∑
i=1

eiEi,qt , q ∈ {1, 2, . . . , Q} , (2.1)

which we normalized such that Zq(0) = 1.1 Let us assume for simplicity that all sectors have

the same size Nq. After the Thouless time tTh,0 of the unperturbed Hamiltonian H0 (and

1When studying physical systems with several energy scales, one may wish to only focus on a micro-
canonical window of states around some energy, or work in the canonical ensemble and study statistics as a
function of β. This will not play an important role here.
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before its Heisenberg time), each sector will have an SFF described by RMT

⟨Zq(t)Z∗
q′(t)⟩ ≃

δqq′

Nq

2

b

t

tHeis,q

, (2.2)

with b = 1, 2, 4 for GOE, GUE, GSE statistics respectively, and tHeis,q is the Heisenberg

time in the qth sector, defined as the average spacing between eigenvalues times 2π (for a

microcanonical window of size ∆E with constant density of states, tHeis,q = 2πNq/∆E). The

total SFF instead does not have regular RMT behaviour: the ramp is Q times larger due to

the decoupled sectors:

SFF(t) ≡ ⟨| 1
Q

Q∑
q=1

Zq|2⟩ = Q× 1

QNq

2

b

t

QtHeis,q

≡ Q× SFFRMT(t) ,

(2.3)

where SFFRMT(t) denotes the expected SFF ramp of a QNq ×QNq matrix. The ‘dip-ramp’

feature of the SFF is sometimes called ‘correlation-hole’ whose depth reflects correlations

and eigenvalue repulsion. We see here that the correlation-hole is indeed shallower when

uncorrelated spectra are superimposed.

Let us now turn on the ZQ symmetry breaking term 0 ̸= ϵ ≪ 1. From Fermi’s Golden rule

type arguments (which are spelled out below), one expects the ZQ sectors to mix at a rate

Γ ∼ ϵ2. At times t ≳ 1/Γ, the factor of Q enhancement in (2.3) is therefore expected to

drop, until it eventually reaches 1 at late times, in agreement with RMT. Eq. (2.3) is then

replaced by a time-dependent ramp,

SFF(t) = Nsectors(t)× SFFRMT(t) . (2.4)

Characterizing the overshoot of the ramp in realistic quantum many-body systems compared

to RMT has been the subject of several recent papers [20–25,27,28]. In the following, we will

establish the form of the function Nsectors(t) in the situation of approximate symmetries. The

behaviour of Nsectors(t) will sensitively depend on how the symmetry is broken. A physically
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relevant situation is the case where the symmetry is broken ‘locally’ in the Hilbert space:

H = H0 + ϵV , H0 =

H1
0

H2
0
.
.
.
HQ

0

, V =


0 V1 0 VQ

V †
1 0 V2

0 V †
2 . .

. . VQ−1

V †
Q V †

Q−1 0

 ≡ V+ + V− ,

(2.5)

i.e. V only connects sectors of charge q and q ± 1 (we have written V = V+ + V− as a sum

of terms increasing and decreasing charge, [Q, V±] = ±V±, for future convenience). This

situation naturally arises, e.g., in systems with an approximate U(1) symmetry, broken by a

charge q0 ∈ Z operator in the Hamiltonian: we will consider such an example in the context

of charged SYK in Sec. 3.3. We are considering q0 = 1 for simplicity, but symmetry breaking

by any order one charge q0 will lead to similar local exploration of the Hilbert space. We

will also consider an alternative at the end of this section, where V is not sparse and instead

connects any two sectors, allowing for faster exploration of the whole Hilbert space.

Before we proceed, we would like to mention a particular example of the case when the time

reversal symmetry is broken explicitly and the ensemble diffuses from GOE to GUE. This

has previously been studied and is referred to as “Dyson’s Brownian-motion model” [29–33].

The motivation in these studies was to give an upper bound on time reversal breaking of

nuclear physics. Recently, in [34] an example was considered where the Hilbert space is a

tensor product of two independent Hilbert spaces. An interaction Hamiltonian correlating

these distinct Hilbert spaces induces a diffusive behaviour that looks strikingly similar to

what we discuss in our paper.

2.1 Hopping rates

Writing the eigenstates of H0 as |i, q⟩0 such that

H0|i, q⟩0 = |i, q⟩0Ei , Q̂|i, q⟩0 = |i, q⟩0q , (2.6)

the perturbed eigenstates are, to linear order in ϵ,

|i, q⟩ = |i, q⟩0 + ϵ
∑
j

∑
q′=q±1

|j, q′⟩0 0
⟨j, q′|V |i, q⟩0
Ej − Ei

+O(ϵ2) (2.7)
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The probability for an initial state |i, q⟩0 to evolve into the state |j, q+1⟩0 at time t can then

be found by introducing a complete basis of perturbed eigenstates above; this gives

∣∣
0⟨j, q + 1|e−iHt|i, q⟩0

∣∣2 = ϵ2 |⟨j, q + 1|V |i, q⟩|2 t2
(
sin ((Ej − Ei)t/2)

(Ej − Ei)t/2

)2

+O(ϵ3) . (2.8)

To find the total probability of being in the q + 1 sector, one sums over j. We will assume

typicality (ETH) and replace the matrix element |⟨j, q + 1|V |i, q⟩|2 by its average:

|⟨j, q + 1|V |i, q⟩|2 ≃ 1

2πρ(Ej, q)
⟨V−V+⟩Ei,q(ω) . (2.9)

Here ρ(Ej, q) is the density of states at energy Ej and charge q, and the second factor is

the two-point function of V+ and V− (the parts of V that respectively increase and decrease

charge, see (2.5)) at frequency ω = Ej − Ei in a microcanonical window of energy Ei and

charge q:

⟨V−V+⟩Ei,q(ω) ≡
ˆ
dt eiωt

1

Nw

∑
E≃Ei

⟨E, q|V−(t)V+(0)|E, q⟩ (2.10)

(Nw is the number of states in the window). Returning to (2.8) and summing over j, one

finds

∑
j

∣∣
0⟨j, q + 1|e−iHt|i, q⟩0

∣∣2 ≃ ϵ2t2

2π

ˆ
dω ⟨V−V+⟩Ei,q(ω)

(
sin (ωt/2)

ωt/2

)2

≃ tϵ2 lim
ω→0

⟨V−V+⟩Ei,q(ω) .

(2.11)

In the last line, we assumed t to be greater than the Thouless time of the unperturbed

Hamiltonian, so that the correlator ⟨V V ⟩Ei,q(ω) for ω ≲ 1/t is well approximated by its

limit ω → 0.

The rate to increase charge can be read from (2.11) and is

Γ+ = ϵ2 lim
ω→0

⟨V−V+⟩Ei,q(ω) (2.12)

This rate depends on the energy and charge of the initial state. The rate to decrease charge

is given by an identical expression with V+ ↔ V−.
2 This result holds for general quantum

2For quantum systems with an approximate continuous symmetry (say, U(1)), these hopping rates are
related to (but larger than) the total charge relaxation rate Γrelax. This latter rate is given by a Kubo

formula Γrelax = ϵ2

TχQQ
limω→0⟨V V ⟩(ω) [35], where the factor of TχQQ accounts for the preferred hopping

direction towards lower charge to minimize the free energy.
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systems with approximate symmetries. For the simple RMT setting discussed above, Γ+ =

Γ− ≡ Γ is independent of charge and energy, and (2.12) becomes

Γ =
tHeis

Q
ϵ2|V |2 (2.13)

where |V |2 is the average matrix element of V , and tHeis the Heisenberg time of the full

QNq ×QNq matrix, defined by the total average density of states ρ as tHeis ≡ 2πρ.

2.2 Hilbert space diffusion

Asymptotically, a state therefore hops from sectors q → q + 1 and q → q − 1 with rate Γ.

Consider now a general state |ψ⟩ with distribution in the various charge sectors:

P (t, q) ≡ |⟨q|ψ(t)⟩|2 . (2.14)

Because of the hopping between sectors with rate Γ, this distribution satisfies a differential

equation

∂tP (t, q) ≃ −2ΓP (t, q) + Γ (P (t, q + 1) + P (t, q − 1))

= Γd2qP (t, q) ,
(2.15)

where we introduced a discrete q derivative dqf(q) = f(q+ 1
2
)−f(q− 1

2
). P (t, q) therefore sat-

isfies an approximate diffusion equation (‘Hilbert space diffusion’)3, with diffusivity Γ given

by (2.13). Fourier transforming to P (t, n) = 1
Q

∑Q−1
q=0 e

i2πnq/QP (t, q) with n = 0, 1, . . . , Q−1,

the solution to Eq. (2.15) with periodic boundary conditions is

P (t, n) = e−ΓntP (0, n) , with Γn = 4Γ sin2 πn

Q
. (2.16)

For closed boundary conditions (i.e., ⟨Q|V |1⟩ = 0) one has instead Γn = 4Γ cos2 πn
2Q

with

n = 1, . . . , Q. Note that total probability is conserved, Γ0 = 0. The effective number of

decoupled sectors at a time t is given by the sum over sectors, times the probability of

3This diffusive exploration of the Hilbert space was also identified in Ref. [24], who considered a similar
toy model as the one studied in this section.
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staying within each sector:4

Nsectors(t) =

Q−1∑
n=0

e−Γnt . (2.17)

This sum can be readily evaluated using the rates in (2.16). It can also be estimated as

follows: at t ≲ 1
Γ
, all sectors are conserved and Nsectors ≃ Q. Instead at t ≳ Q2

Γ
, all sectors

have decayed except for n = 0, and Nsectors ≃ 1. Finally, at intermediate times 1
Γ
≲ t ≲ Q2

Γ
,

for Q ≫ 1 one can approximate the sum in (2.17) with an integral to obtain (for any

boundary condition)

Nsectors(t) ≈ Q

ˆ
dk

2π
e−Γk2t =

Q√
4πΓt

. (2.18)

This 1/
√
t decay is characteristic of diffusion in one dimension. In summary, the SFF well

before the Heisenberg time is expected to be given by

SFF(t) = Nsectors(t)SFFRMT(t) , with Nsectors(t) ≈


Q for t ≲ 1

4πΓ

Q√
4πΓt

for 1
4πΓ

≲ t ≲ Q2

4πΓ

1 for Q2

4πΓ
≲ t .

(2.19)

This prediction is illustrated in Fig. 1.

2.3 ‘Non-local’ exploration of Hilbert space

We now turn to a qualitatively different class of approximate symmetries, where the symme-

try breaking perturbation connects all sectors. The local exploration of the Hilbert space is

then replaced by non-local exploration, and the effective number of decoupled sectors decays

more rapidly with time. As a simple example, consider the RMT from Eq. (2.5) with ZQ

symmetry broken now by a full QNq×QNq random matrix V . The local evolution equation

(2.15) is replaced by

∂tP (t, q) = −QΓP (t, q) + Γ
∑
q′

P (t, q′) . (2.20)

or, in matrix form: ∂tP (t) = −MP (t) with the matrix Mqq′ = Γ(Qδqq′ − 1). The solution is

P (t) = e−MtP (0). M has eigenvalues ΓQ (with degeneracy Q − 1) and 0 (with degeneracy

4This estimate of the effective number of sectors will be fully justified in a σ-model approach in Sec. 4.
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1, the total probability is conserved). The effective number of decoupled sectors is then,

Nsectors(t) = 1 + (Q− 1)e−QΓt . (2.21)

This is compared to numerics for RMT in Fig. 3.

3 Numerics

In this section, we numerically test the prediction of Hilbert space diffusion (2.19) for several

systems with approximate symmetries. We first consider as a toy model the ZQ-symmetric

RMT following (2.5) in which we have good analytical control over the effective number

of decoupled sectors as a function of time Nsectors(t). We consider both situations of a

perturbation that leads to ‘local’ and ‘non-local’ exploration of the sectors. We then turn

to the complex SYK model with an approximate U(1) symmetry broken by a charge q0 = 2

operator with small coefficient in the Hamiltonian.

3.1 Local exploration of Hilbert space

Following (2.5) we construct a block diagonal matrix H0 with Q blocks of size Nq × Nq

sampled from GUE, corresponding to the conserved charge sectors. The symmetry breaking

perturbation V is a matrix connecting only sectors of charge q and q ± 1, with periodic

boundary conditions such that Q + α ≡ α. The hermitian and anti-hermitian parts of the

blocks Vq, q = 1, 2, . . . , Q (see (2.5)) are sampled from GUE. We then study numerically the

spectral form factor SFF(t) for H0+ ϵV and its relaxation towards the late time expectation

SFFRMT(t) for a random QNq ×QNq matrix.

The results are shown in Fig. 2 for different values of ϵ. We find excellent agreement between

numerics and the analytic prediction from Hilbert space diffusion, Eqs. (2.4) with Nsectors(t)

given by (2.17) and diffusivity Γ given by (2.13). Note that this agreement is obtained

without any fitting parameter. Using the full analytic prediction (2.17) rather than its

continuum approximation (2.19) accounts for the smooth behaviour at the onset and end of

diffusion.

We briefly comment on the expected regime of validity of our predictions. Clearly, ϵ needs

to be small enough for weak symmetry-breaking to be the dominant bottleneck towards

12



Figure 2: Spectral form factor for the RMT model with approximate ZQ symmetry, showing
the smooth transition from Q = 16 GUE charge sectors to full (QNq)-dimensional RMT with
Nq = 512 via local exploration of Hilbert space. The transition is governed by the effective
number of decoupled sectors which follows an approximate 1/

√
t behaviour, (2.18). The light

noisy curves correspond to the numerically obtained SFFs, averaged over 100 realizations.
The dark smooth curves come from the analytic prediction (2.17) with diffusivity given by
(2.13), for three different values of ϵ. The dashed red and blue lines denote the onset and
end of Hilbert space diffusion, respectively.

establishing the RMT regime. Conversely, if ϵ is too small to affect level spacing, it will not

have appreciable effects on the SFF. These two conditions read

tTh,0 ≪
1

4πΓ
≪ tHeis,0 . (3.1)

In the case of RMT, the Thouless time is replaced by the microscopic timescale set by the

width of the spectrum tTh,0 → 1/∆E. Substituting Γ with Eq. (2.13), using tHeis, H0 =

2πNq/∆E, and with the normalization |V |2 = 1/Nq, the regime of validity of our results is

1/
√
Nq ≪

√
22π
∆E

ϵ ≪ 1. For the parameters used in Fig. 2, Nq = 512, ∆E = 4, this becomes

13



0.0079 ≪ ϵ≪ 0.45.

3.2 Non-local exploration of Hilbert space

One can also consider an RMT model with non-local exploration of approximate symmetry

sectors. The perturbation V is in this case a full Nq × Nq matrix sampled from GUE,

connecting any two sectors q, q′ ∈ {1, 2, . . . , Q}. The results are shown in Fig. 3, showing

again excellent agreement between numerics and theory, without any fitting parameter. The

effective number of sectors entering in the theory prediction SFF(t) = Nsectors(t)SFFRMT(t)

is now given by (2.21), with rate Γ still given by (2.13).

Figure 3: Spectral form factor for the RMT model with approximate ZQ symmetry, where
the symmetry-breaking perturbation ϵV connects any two sectors, leading to faster ‘non-
local’ exploration of the Hilbert space. Due to the faster approach to full RMT, smaller
values of ϵ are shown. Parameters are otherwise identical to those used in Fig. 2.

As in the previous section, we can estimate the regime of validity of our description. The
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onset of exploration of the full Hilbert space now occurs around the timescale 1/QΓ, so that

the condition (3.1) becomes,

tTh,0 ≪
1

QΓ
≪ tHeis,0 , (3.2)

which for the parameters used in Fig. 3 becomes 0.007 ≪ ϵ≪ 0.40.

3.3 Complex SYK with approximate U(1) symmetry

Figure 4: Numerically computed connected SFF for complex SYK with Q = 13 averaged
over 100 realisations. The SFF presented in the plot is computed by summing over all even
numbered parity sectors. The solid lines show the analytically predicted

√
t-behaviour via

local diffusion for intermediate timescales. The solid lines were fitted using the Γ prediction
from Eq. (2.13) and the number of sectors from Eq. (2.18). We find a good agreement
with the theoretical prediction of Sec. 2 up to a constant O(1) factor. Since the mean level
spacing varies significantly between the centre of the spectrum and its edge, we have used a
Gaussian filter to suppress the contribution of the eigenvalues near the edge of the spectrum.

Having confirmed our predictions in two toy RMT models, we now turn to a physical many-
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body system with an approximate symmetry: the complex SYK model, with weak explicit

breaking of the U(1) symmetry. We consider the following Hamiltonian:

H = H0 + ϵV =
∑
i<j
k<l

Jijklc
†
ic

†
jckcl + ϵ

∑
i

j<k<l

(
J̃ijklc

†
icjckcl + h.c.

)
, (3.3)

with complex fermions satisfying {c†i , cj} = δij for i, j = 1, 2, . . . , Q. The unperturbed

Hamiltonian (ϵ = 0) describes the complex SYK model (see, e.g., Ref. [36]), with couplings

chosen randomly from a Gaussian distribution with zero mean and |J2
ijkl| = |J̃2

ijkl| = 3!J2

N3 ,

where J sets the average strength of the coupling. This unperturbed model has a U(1)

symmetry cj → eiθcj, which separates the Hilbert space into Q + 1 sectors of U(1) charge

q = 0, 1, . . . , Q, and size Nq =
(
Q
q

)
. The total Hilbert space dimension is

∑
qNq = 2Q.

Adding the charge q0 = 2 operator to the Hamiltonian with small non-zero coefficient ϵ≪ 1

explicitly breaks the U(1) symmetry down to a Z2 symmetry measuring fermion parity.

Because the symmetry-breaking deformation only connects nearby charge sectors q → q± 2,

we expect the SFF of this model to feature diffusive growth ∼
√
t at intermediate times,

characteristic of ‘local’ exploration of the Hilbert space as discussed in Sec. 2. Unlike in

the previous examples, the size of each block Nq now depends on q, so that strictly one

should consider diffusion on an inhomogeneous lattice, with site-dependent diffusivity. This

is simple to incorporate (and is discussed in Sec. 4.3.2). However, the q-dependence of Nq can

approximately be ignored at large Q, where observables are dominated by the largest sectors

near half-filling q ∼ Q
2
±

√
Q, with width set by the width of the binomial distribution. We

therefore still expect the SFF to feature the
√
t behaviour, with a reduced number of sectors

Qeff ∼
√
Q. Fig. 4 shows that the numerically obtained SFF indeed meets this expectation.

However, the effect of different block sizes presents itself in the SFF of the un-deformed model

as the smoothening of signal when the ramp transitions into plateau. This is a consequence

of different Heisenberg time corresponding to each block of different size.

4 Hilbert space diffusion: a σ-model approach

The ergodic behaviour of quantum chaotic systems can be described using an effective field

theory (EFT) of light degrees of freedom governed by a σ-model on a (super-)coset manifold

[37–39] (see Refs. [33, 40] for reviews). In this section, our goal is to extend these EFTs

to capture the diffusive behaviour of theories with approximate symmetries uncovered in
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section 2. Specifically, we will again consider a Hamiltonian of the form (2.5),

H = H0 + ϵV , (4.1)

where, H0 is the unperturbed Hamiltonian with ZQ symmetry and V is the perturbation that

breaks this symmetry. The structure of V is such that it connects sectors of charge q with

adjoining sectors of charge q±1, leading to ‘local’ exploration of the Hilbert space. Following

the discussion in section 2, we expect this perturbation to allow for gradual diffusive-like

exploration of the Hilbert space, leading to a characteristic
√
t behaviour of the SFF at

intermediate times (Fig. 1).

We start by briefly reviewing the framework of the chaotic sigma model, before adapting the

formalism in order to incorporate the local Hilbert-space diffusion we just reviewed.

4.1 General framework: chaotic σ-models

When one studies a system with a known Hamiltonian, one of the first things to do is to

solve for its energy spectrum. Of course, most of the time it is not possible to solve the eigen-

equation exactly, but nevertheless it still makes sense to talk about a (-n energy) density

of states ρ(E). When studying the spectral properties of a system, a useful observable

describing these properties is given by the spectral resolvent, R±(z).
5 Defined in terms of

the retarded/advanced Green’s function, it is written as

R±(z) = Tr[G±(z)] = Tr[z ± iδ −H]−1. (4.2)

The resolvent is related to the spectral density via the formula ρ(z) = ∓ 1
π
ImR±(z). The

resolvent can also be obtained from the generating functional,

Z(2)(z1, z2) =
det(z2 −H)

det(z1 −H)
, (4.3)

by differentiating with respect to the energy argument z1, and then setting z1 = z2,

ρ(E) = ∓ 1

π
Im ∂z1Z(2)(z1, z2)

∣∣∣
z1=z2=E±i0

. (4.4)

5We shall use the notation z± for denoting a small imaginary, positive/negative energy offset z± = z± iδ.
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We notice also the symmetry between the energy arguments, zi. Differentiating instead with

respect to z2 will change the result only by a minus sign.

The two-point function of the density of states can likewise be computed using the following

generating function,6

〈
ρ(E)ρ(E ′)

〉
c
=

1

2π2
Re ∂z1∂z2

〈
Z(4)(z3, z4, z

+
1 , z

−
2 )
〉
c

∣∣∣ z3=z+1 =E

z4=z
−
2 =E′

, (4.5)

where,

Z(4) =
det(z3 −H)det(z4 −H)

det(z+1 −H)det(z−2 −H)
. (4.6)

Note that in the above equation we have written the product of Green’s functions on the

RHS inside angle brackets, ⟨·⟩.7 These angle brackets represent coarse-graining/averaging

that can be taken over different quantities, for example over statistical ensembles or over

microcanonical energy windows.8 The averaging/coarse-graining is not a necessity, but useful

to extract the self-averaging part of the physical observables in any theory. The choice

of the imaginary offset of the energy arguments in the denominator gives us the required

product of density of states. From the connected part of the two-point function R2(E,ω) =〈
ρ(E + ω

2
)ρ(E − ω

2
)
〉
c
, the connected spectral form factor is obtained by taking a Fourier

transform,

SFF(t) =
1

ρ(E)2

ˆ
dω R2(ω)e

−iωt . (4.7)

The definition of SFF in (4.7) might appear to be different from the one in section 2. Here

the SFF has an explicit dependence on the energy E. However, when defined within a

microcanonical ensemble around energy E, the two definitions agree. If one is interested in

computing the SFF over the entire spectrum, then one can integrate the expression defined

in (4.7).

Having set up our framework, we now explain how to compute the quantities introduced

above explicitly using the supersymmetric approach of Refs. [37–39]. Our main goal is to

compute Z4. The inverse determinants can be rewritten as integrals over bosonic variables

Si, and a similar rewriting is possible for the determinants in the numerator where we use

6The principle part of the Green’s functions contributes only to the disconnected part and would subse-
quently be dropped.

7The subscript c denotes the corrected part of the correlation function that is defined as
〈
AB
〉
c
=〈

AB
〉
−
〈
A
〉〈
B
〉

8In SYK for example, one averages over different disordered realizations.
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fermionic valued field variables, χi. For a simpler representation of these integrals, we regroup

both field types into a single 4L-dimensional graded vector,

ψ = (Sri , S
a
i , χ

r
i , χ

a
i )
T and ψ̄ = (S̄ri , S̄

a
i , χ̄

r
i , χ̄

a
i ) . (4.8)

Here the bar represents a generalised adjoint operation, ψ̄ = ψ†·g, on the graded vector.9 The

matrix, g = diag(1,−1, 1, 1), is required for the convergence of the integral (4.10) defined

below. The indices r/a stand for retarded/advanced and the lower index i runs over the

Hilbert space, i = 1, . . . , L. In general, the total vector space can be split into a tensor

product of three subspaces, representing the graded, retarded/advanced, and the physical

Hilbert space nature,

H = Hbf ⊗Hra︸ ︷︷ ︸
4−dim.

⊗ Hi︸︷︷︸
L−dim.

. (4.9)

For notational purposes, we’ll only write the indices over which we currently sum over; or

when it’s not clear from the context to which we are referring. We can now set up the

partition function as Gaussian integral,

Z(4)[ẑ] =

ˆ
d(ψ̄, ψ)eiψ̄(ẑ−Ĥ)ψ. (4.10)

We use the ·̂ notation to denote matrices in the full 4L-dimensional Hilbert space. Thus,

Ĥ is equivalent to one copy of the Hamiltonian H in each graded sector such that Ĥ =

1
bf ⊗ 1

ra ⊗ H. Moreover, we have regrouped the four energy variables zi into a diagonal

graded four by four matrix denoted by ẑ. The role of the energy variables zi is multifold. As

one sees in equation (4.5), the zi source the insertions of the Green’s functions. Additionally,

careful choice of the imaginary parts ensures convergence of the Gaussian integrals. At the

same time, it governs the spontaneous causal symmetry breaking of the action in equation

(4.10).10 Once the sources are turned off, ẑ takes the following form in the action,

ẑ = z ⊗ 1
i = 1

bf ⊗
(
E1ra + (ω

2
+ iδ)σra3

)
⊗ 1

i . (4.11)

For notational simplicity we will not always write out the full Hilbert space nature, but it

will be clear from context. Also, in this notation, it is even clearer that this machinery can

9The generalisation of adjoint fields permits us to generalise the following analysis to the different sym-
metry groups from the 10-fold symmetry classification of RMT [41–43].

10This was referred to as ‘causal symmetry breaking’ in [6], a terminology we will also adopt in this work.
The nomenclature makes reference to the fact that the different signs of the iϵ prescription are related to
the retarded and advanced causal Green’s functions, respectively.
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be easily generalized to higher point correlation functions.

Let us now discuss the symmetry structure of this action. In our case, the fields (ψ̄, ψ)

transform under a general transformation T ∈ U(L,L|2L). The presence of Ĥ breaks this

symmetry explicitly to U(1, 1|2) × 1L ≡ U(1, 1|2). This is the reason the EFT is defined

in terms of a four by four graded matrices, denoted later by A; and is independent of the

dimension, L, of our theory. Furthermore, the identity contribution proportional to E in ẑ,

(4.11), is irrelevant for any further symmetry breaking, but the second part (ω
2
+iδ)σra3 acting

as Pauli matrix in the retarded and advanced space determines the weak and spontaneous

breaking of the causal symmetry to the group: U(1|1)×U(1|1). According to this symmetry

breaking pattern, the degrees of freedom important for describing the EFT are the (pseudo-)

Goldstone modes that live in the manifold U(1, 1|2)/(U(1|1)× U(1|1)).

4.2 Effective field theory of Hilbert space diffusion

As we alluded to above, to extract the self-averaging part of the SFF that is described by the

symmetry-broken theory of the chaotic sigma model, one is required to average the generating

function over an appropriate ensemble. In our toy-model, we average over the Hamiltonians,

with a measure
´
P (H)(·)dH. This average splits in our case into two independent averages

over the diagonal block matrices H0 and over the perturbation matrices V . We remind the

reader that we constructed the entries of both of these matrices to be sampled from a GUE

ensemble. We define therefore the distributions,

P (H0) =
∏
α

P (Hαα
0 ) =

∏
α

e−
Nq
2σ

Tr[Hαα
0 (Hαα

0 )†] , (4.12)

P (V ) =
∏
α<β

P (V αβ) =
∏
α<β

e−
Nq
σ

Tr[V αβ(V αβ)†] . (4.13)

In our case, since we’re restricting to nearest neighbour interactions, β = α + 1 and the

index α runs over the number of charges, α = 1, · · · , Q. We are imposing periodic boundary

conditions, such that α + Q ≡ α. The size of an individual charge sector is denoted by

Nq. Hence, the dimensionality of the total Hilbert space, L = QNq. Now we have all the

ingredients to compute the generating function, given by the formula,

〈
Z(4)[ẑ]

〉
H
=

ˆ
d(ψ̄, ψ)dHP (H)eiψ̄(ẑ−Ĥ)ψ. (4.14)
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4.2.1 σ-model action

After expanding the action (4.14) in the fields, restricting only to the non-zero terms, α, β =

α + 1 and averaging over GUE sampled Hamiltonians H given in (4.12) we find,

〈
Z(4)[z]

〉
=

ˆ
d(ψ̄, ψ)e

− σ
2Nq

∑
α

Str[(Mα)2+2ϵ2MαMα+1]
e
i
∑
α

Str[zαMα]
. (4.15)

We have introduced the supertrace notation withMα a four by four Hermitian supermatrix,11

with two diagonal blocks, one accounting for the retarded, one for the advanced sector,

Mα =
(
Mα

r 0
0 Mα

a

)
where Mα

I =
(
S̄α
I S

α
I χ̄α

I S
α
I

S̄α
I χ

α
I χ̄α

I χ
α
I

)
, I = a, r . (4.16)

InMα
I the Hilbert space indices i are summed over. Now, before proceeding, let’s analyse the

action a bit more in detail. The first term Str [(Mα)2+ 2ϵ2MαMα+1] is the action of a one-

dimensional lattice model with nearest neighbour interactions, where at each site α we have

a supermatrix valued field. The second piece, Str [zαMα], can be thought of as an external

magnetization, which we have generalised to a location-dependent field, zα. Following this

idea, we rewrite the equation (4.15) in a more compact way with the use of a Q×Q matrix

K(ϵ2) with periodic boundary conditions

K(ϵ2) =


1 ϵ2 0 ... ϵ2

ϵ2 1 ϵ2

0 ϵ2 1
...

...
ϵ2

ϵ2 ϵ2 1

, (4.17)

so that 〈
Z(4)[z]

〉
=

ˆ
d(ψ̄, ψ)eiStr[Z

TM ]e
− σ
2Nq

Str[MTK(ϵ2)M]
. (4.18)

Here the Mα matrices are ordered as entries in a vector M = (M1, . . .MQ)T, as well as the

energies zα as entries in Z = (z1, . . . zQ)T. The identity elements on the diagonal of K(ϵ)

produce the mass term, (Mα)2, and the off-diagonal elements giving the nearest neighbour

interactions.

Next, we perform the integral over the superfields ψ̄, ψ. To do so, we use the Hubbard-

11The Hermititian conjugate of supermatrices is defined differently from that for standard matrices, M† =(
a ξ
ζ b

)†
=
(

a∗ ζ∗

−ξ∗ b∗

)
. Along with the property of complex conjugation for Grassmann numbers, (ξ∗)∗ = −ξ,

the Hermiticity of Mα follows.
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Stratonovich (HS) trick to decouple the quartic interactions in the (Mα)2 term,

e
− σ
2Nq

Str[MTK(ϵ2)M]
=

ˆ
dA e−

Nq

2σ
Str[ATK(−ϵ2)A]+iStr[ATM] . (4.19)

Here, we have introduced an HS field at each site α, which collectively written as A =

(A1, . . . AQ)T. Subsequently, performing the integration over the (ψ̄, ψ) fields, which is a

Gaussian supermatrix integration, leads to an integral over the four-by-four dimensional

matrices A,

〈
Z(4)[z]

〉
=

ˆ
dA e

−
Nq

2σ

∑
α

Str[(Aα)2−2ϵ2AαAα+1]−Nq
∑
α

Strln[zα+Aα]
≡
ˆ
dA e−NqS[A] . (4.20)

The supertraces are also only over the four-by-four graded space. Since each graded sector

contains Nq-fields, an overall Nq factor appears also in front of the ln-term. This means the

whole exponent has an overall Nq factor, which allows us to solve the integral via saddle-point

analysis for Nq → ∞. Note that the HS fields Aα transform under the adjoint representation

of U(1, 1|2), which follows from the transformation properties of ψ̄, ψ fields.

4.2.2 Stationary phase analysis

In the large Nq limit, the saddle point equations corresponding to Aα are given by,

1

zα + Aα
+

1

σ

[
Aα − ϵ2Aα+1 − ϵ2Aα−1

]
= 0 . (4.21)

Solving this matrix equation for general ϵ, ω values is difficult, we therefore opt for a per-

turbative study. For the ϵ = ω = 0, we find (recall that z = E1bf ⊗ 1
ra when ω = 0, see

Eq. (4.11))

Aα0 = −1
2
E1bf ⊗ 1

ra + iγ(E) Λ̃αg with γ(E) =

√
σ − E2

4
, (4.22)

and where Λ̃α is a hermitian matrix that is a square root of the identity 1
bf ⊗ 1

ra. In

the absence of the interaction, ϵ = 0, we have an independent saddle point equation for

each α. The matrix Λ̃ can be found from the orbits of base solutions Λ̃0 under the pseudo-

unitary group, Λ̃g = gΛ̃0g
−1, with g ∈ U(1, 1|2). Choosing g to diagonalize Λ̃, it is suf-

ficient to consider as base solutions Λ̃0 diagonal matrices that are square roots of unity:

Λ̃0 = diag(±1,±1,±1,±1). This leads to 16 different solutions; however, not all solutions

contribute, since only a few can be reached by deforming the initial integration contour of
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Eq. (4.20). If we concentrate first on the bosonic sector, we have to pay attention to the

poles in the complex Aα plane, stemming from the term e−Strln[zα+Aα] = Sdet[zα+Aα]−1. The

original integration contour along the real axis can be deformed to reach either the saddle in

the upper or lower half plane in order to avoid the poles, but not both at the same time. On

the other hand, in the fermionic sector there are no poles and the initial integration contour

along the imaginary axis can be deformed such that it passes through both saddles and the

zero. The saddle point corresponding to the choice,

Λ̃0 = 1
bf ⊗ σra3 ≡ Λ , (4.23)

has the non-perturbatively leading contribution when ω ̸= 0 and is conventionally referred

to as the standard saddle point. Since we are interested in ω ̸= 0, we begin with standard

saddle point solution for all charge sectors, α,

Aα0 = −1
2
E1bf ⊗ 1

ra + iγ(E) Λ, ∀α . (4.24)

The second saddle point corresponding to,

Λ̃0 = σbf3 ⊗ σra3 ≡ ΛAA , (4.25)

is referred to as Andreev-Altshuler (AA) saddle point [12]. It lies in the pseudo-unitary group

orbit of the standard saddle point. The remaining two saddle points are truly subleading in

the large L limit [44]. For a detailed analysis on how to choose this dominant saddle point

solution, we refer to [23,33,40].

Now we have all the ingredients to talk about the symmetry breaking procedure. Going back

to the action in (4.20), we can see that for ω = 0 and ϵ = 0, the action is invariant under a

symmetry transformation T ∈ U(1, 1|2)Q. But by choosing a specific saddle, as (4.23) does,

the symmetry of the full action gets spontaneously broken down to
(
U(1|1)×U(1|1)

)Q
. And

the resulting coset manifold is therefore,

⊗
α
Mα =

(
U(1, 1|2)

U(1|1)× U(1|1)

)Q
. (4.26)

This symmetry is explicitly broken when ω ̸= 0. When the global symmetry of the original

theory is broken, ϵ ̸= 0, the fields, Aα, corresponding to individual sectors start interact-

ing. In this case, the symmetry is further broken down to U(1|1) × U(1|1). The “pseudo-
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Goldstone” modes that belong to the coset manifold,

Mq =
U(1, 1|2)Q

U(1|1)× U(1|1)
, (4.27)

are the lightest modes governing the universal physics of our EFT. These modes control

the fluctuations around the dominant saddle point solution and are parameterised by the

elements of the coset manifold Uα ∈ Mα,

Aα = −1
2
E1+ iγ(E) UαΛα (Uα)−1 . (4.28)

Before we proceed, we would like to mention that so far we had been working with the ‘Bose-

Fermi’ convention in which the graded space is decomposed as (bf) ⊗ (ra). However, for

parametrising the supercoset manifold, it is more convenient to decompose in the ‘advanced-

retarded’ convention, (ra)⊗ (bf), which we use henceforth.12 The above fluctuations can be

further written in an exponential representation in terms of “pion” fields Bα, B̃α,

Uα = e−W
α

, Wα = −
(

0 Bα

B̃α 0

)
, (4.29)

and expanded in a weak-field approximation,

UαΛα(Uα)−1 = Λα + 2ΛαWα + 2Λα(Wα)2 + . . . . (4.30)

The one-loop exactness of the σ-model action on Mq implies that we need to consider only

up to quadratic terms in Bα, B̃α.13 Carrying out this expansion of the full action (4.20) leads

us to,

S[A] =
∑
α

Sα ,

Sα = Strln[E1+ Aα0 ] +
E
2σ
Str[
(
ω1 0
0 ω3

)
−
(
ω2 0
0 ω4

)
]− iγ

σ
Str[
(
ω1 0
0 ω3

)
+
(
ω2 0
0 ω4

)
] (4.31)

− 2iγ
σ
Str[BαB̃α

(
ω1 0
0 ω3

)
−B̃αBα

(
ω2 0
0 ω4

)
] + 4ϵ2γ2

σ
Str[(Bα+1−Bα)(B̃α+1−B̃α)] + . . . .

In the above equation, · · · represents all higher order terms in Bα, B̃α. We refer to the

appendix [A] for details of the computation. We represent by S[B, B̃] the part of the action

12This corresponds to permuting the second and the third rows and columns in the supermatrices.
13Normally, one would need to include the contributions of one-loop path integral around both the saddle

points. However, the AA saddle point gives rise to the plateau after the Heisenberg time and the contribution
of the standard saddle is sufficient to reproduce the ramp [33,40]. The Hilbert space diffusion occurs at time
scales earlier than tH so we don’t consider the contribution of the AA saddle point for current purposes.
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generating the diffusion equation for the B-fields,

S[B, B̃] = −2iγ
σ
Str[BαB̃α

(
ω1 0
0 ω3

)
−B̃αBα

(
ω2 0
0 ω4

)
]+ 4ϵ2γ2

σ
Str[(Bα+1−Bα)(B̃α+1−B̃α)]. (4.32)

For our perturbative analysis it is sufficient to consider only lowest order terms in ω and ϵ.

Recall that the energy arguments, ω1 and ω2, source the insertion of retarded and advanced

Green’s functions, (4.2), respectively. On differentiating with respect to these sources, we

obtain an insertion in terms of the pions in the above integral,

〈
G+

(
E +

ω

2

)
G−

(
E − ω

2

)〉
= 4

(
Nqγ

σ

)2
〈∑
α,α′

Str
[
BαB̃αPb

]
Str
[
B̃α′Bα′Pb

]〉
+
N2
q

σ
.

(4.33)

Here, Pb is the projection operator on the bosonic sector. The second term is the contribution

of the disconnected part, and so we drop it subsequently. After having taken the derivative

with respect to the sources, we obtain the effective action of our EFT by setting ω3 = ω1

and ω4 = ω2,

S[B, B̃] = −2γ

σ

Q∑
α=1

(
i(ω1 − ω2)Str[B

αB̃α]− 2ϵ2γStr[(Bα+1 −Bα)(B̃α+1 − B̃α)]
)

(4.34)

We rewrite the above action in the momentum space corresponding to the discrete α-lattice,

S[b, b̃] = −2γ

σ

Q−1∑
n=0

(
i(ω1 − ω2)− Γn

)
Str
[
bnb̃n

]
, (4.35)

where, Bα =
1√
Q

Q−1∑
n=0

e2πiα
n
Q bn, B̃α =

1√
Q

Q−1∑
n=0

e−2πiα n
Q b̃n, (4.36)

and Γn = 8ϵ2γ sin2
(
πn
Q

)
, which as we will see shortly matches the expression found in

Eq. (2.16).
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4.3 Hilbert space diffusion in σ-model

The equation of motion for Bα can be found by varying the action δS[B]/δB̃α = 0 (the B̃α

equation is similar):

−i(ω1 − ω2)Bα = 2ϵ2γ(Bα+1 − 2Bα +Bα−1) . (4.37)

The ensuing physics is transparent: we can directly read off a discrete derivative in α-space,

Bα+1 − 2Bα + Bα−1 = d2αBα. Also, by Fourier transforming the above equation to the time

domain, −i(ω1 − ω2) makes a continuous time derivative ∂t apparent, and we find a diffu-

sion equation for the fields Bα → B(α, t), in accordance with our earlier phenomenological

discussion. Moreover, by keeping track of the factors in front of ωi and Bα we determine the

diffusion constant Γ, such that,

∂tB(α, t) = Γd2αB(α, t). (4.38)

Expressing the diffusion coefficient in terms of the Heisenberg time, and relating γ from

(4.24) to the density of states of the full NqQ×NqQ matrix ρ = tHeis/(2π),

γ(E) ≡ πσ
QNq

ρ(E) , (4.39)

we find,

Γ = 2ϵ2γ = ϵ2|V |2 tHeis

Q
, (4.40)

where we introduced |V |2 = σ
Nq

following (4.12). This matches the diffusivity found using

Fermi’s Golden rule in Eq. (2.13). We will see in the next section how this translates into a

diffusive behaviour in the spectral form factor.

4.3.1 Spectral form factor in perturbed theory

The two-point function of the density of states can be computed from (4.33) using the identity

(4.5),

〈
ρ
(
E +

ω

2

)
ρ
(
E − ω

2

)〉
c
=

(
Nqγ

σ

)2
2

π2
Re

〈∑
n,m

Str
[
bnb̃nPb

]
Str
[
b̃mbmPb

]〉
(4.41)
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=
1

2π2
Re

Q−1∑
n=0

(
i

ω + 2iδ + iΓn

)2

(4.42)

The SFF is the Fourier transform of the above expression, (4.7),

SFF(t) =
1

ρ(E)2

ˆ
dω e−iωt ⟨ρ(E + ω/2)ρ(E − ω/2)⟩c

=
1

2π2ρ(E)2
Re

[∑
n

ˆ
dω e−iωt

(
i

ω + 2iδ + iΓn

)2
]
. (4.43)

On performing the Fourier transform and taking the limit in which the regulator δ → 0

vanishes, we get the following expression,

SFF(t) =
|t|

2π ρ(E)2

(
Θ(t) + Θ(−t)

)
×

Q−1∑
n=0

e−Γn|t| . (4.44)

Note that the first term in the RHS of the above expression is the SFF of an RMT. Therefore,

it is only natural to interpret the second term containing the sum over the discrete modes,

n, as the effective number of symmetry sectors in the theory as a function of time,

Nsectors(t) =

Q−1∑
n=0

e−Γnt .

Using Γn = 4Γ sin2 πn
Q
, we estimate Nsectors(t) by converting the sum over discrete modes into

an integral as we did in (2.18),

Nsectors(t) ≈
Q

π

πˆ

0

dk e−Γk2|t| =
Q√
4πΓ|t|

Erf(π
√
Γ|t|) . (4.45)

At early times, this function predicts that Nsectors(t) ≈ Q as one would expect since the diffu-

sion hasn’t washed away the sectors yet. We also get the predicted decay in the intermediate

time regime,

Nsectors(t) ≃
Q√
4πΓt

. (4.46)
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This diffusive behaviour ends when the Nsectors(t) ≃ 1, that is, when there is effectively only

one sector.14 At this timescale, tf ∼ Q2

4πΓ
, the SFF has the same behaviour as that of an

RMT of the same size as the full Hilbert space,

SFF(t) =
1

ρ(E)

t

tHeis

, tHeis ≥ t≫ tf (4.47)

till it plateaus at Heisenberg time. Thus, we have explicitly derived the diffusive behaviour

in the SFF using the σ-model on the supercoset manifold, Mq, given by (4.27). This EFT

is valid for timescales after the Thouless time of the symmetry-preserved theory, tTh,0 and is

therefore universal for all chaotic theories.

4.3.2 Generalisation to varying block sizes

We now generalise the Hilbert space diffusion for a theory where the block sizes of the

different charge sectors are unequal, labelled by Nα. The total Hilbert space dimension is

the sum of dimensions of each of the Q charge sectors,
Q∑
α=1

Nα = L. For such a theory, the

appropriate distribution for the Hamiltonian is,

P (H0) =
∏
α

e
− L

2σQ
Tr

[
Hαα

0 (Hαα
0 )

†]
, (4.48)

P (V ) =
∏
α<β

e
− L

σQ
Tr

[
V αβ(V αβ)

†]
. (4.49)

This distribution ensures that the interaction strength in the different sectors of the Hamil-

tonian are the same while facilitating a saddle point analysis. This modified potential sub-

sequently modifies the action that one obtains in terms of the HS fields, Aα, is

⟨Z(4)[z]⟩ =
ˆ
dAe

− L
2σQ

∑
α

Str[(Aα)2−2ϵ2AαAα+1]−
∑
α
NαStr ln[zα+Aα]

≡
ˆ
dA e−

L
Q
S[A] , (4.50)

and the saddle point equations of motion,

1

zα + Aα
= − L

σNαQ

(
Aα − ϵ2Aα+1 − ϵ2Aα−1

)
. (4.51)

14This can also be viewed as the timescale where our integral approximation of the discrete sum breaks
down and finite size effects become important. Note that the discrete sum in (4.44) approaches 1 as t → ∞
because Γ0 = 0.
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Once again, considering ω, ϵ perturbatively and solving the saddle point equation with ω =

0 = ϵ, we obtain the solutions lying on the coset manifolds Mα,

Aα0 = −1

2
E1bf ⊗ 1

ra + iγαΛ̃
α
g with γα =

√
σNαQ

L
− E2

4
. (4.52)

Going through the same technical analysis as before, we obtain the corresponding action in

terms of the pion fields,

S[B, B̃] = − 2

σ

∑
α

(
iγα(ω1 − ω2)Str[B

αB̃α]− 2ϵ2γαγα+1Str[(B
α+1 −Bα)(B̃α+1 − B̃α)]

)
(4.53)

= − 2

σ

∑
n,m

[
i(ω1 − ω2)

(
1

Q

∑
α

γαe
2πi α

Q
(n−m)

)

−8ϵ2

(
1

Q

∑
α

γαγα+1e
2πi α

Q
(n−m)

)
sin

(
πm

Q

)
sin

(
πn

Q

)
ei

π
Q
(n−m)

]
Str[bnb̃m] .

(4.54)

This leads to a diffusion equation for position dependent diffusion constant,

−i(ω1 − ω2)B
α = 2ϵ2

[
γα+1(B

α+1 −Bα)− γα−1(B
α −Bα−1)

]
. (4.55)

Depending on the system at hand, one can make appropriate approximations to solve these

equations. Our numerical analysis for the cSYK model suggests that the toy-model with

constant block sizes is sufficient to explain the Hilbert space diffusion in the cases where the

size of the blocks vary slowly. However, it would be interesting to understand if any interest-

ing new physics might arise in this more general case. It would be particularly interesting to

investigate whether very small block sizes coupled with in-homogeneous diffusion constants

could cause the system to get stuck in a bottleneck and thus impede the diffusive approach

to ergodicity established in this paper.

5 Discussion

Let us now take stock of what we have achieved in the present paper before listing some

interesting open directions suggested by the results herein. The main result presented in
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this paper, backed up by detailed numerical tests and analytic arguments, is a prediction

for the Thouless time of quantum many-body systems whose Hilbert space can be gainfully

organised by making use of a weakly broken symmetry. In this case, the Thouless physics

is controlled by two in principle independent mechanisms. Firstly, the potentially strongly

coupled, approach to maximally randomised dynamics in each charge sector, and secondly

the exploration of the full Hilbert space of all charge sectors combined, characterised by

effectively randomising the off-diagonal blocks of the Hamiltonian. In this paper we have

demonstrated that the latter proceeds via a Hilbert-space local diffusion process, which we

characterised by a diffusive interpolation visible in the spectral form factor from an early

time behaviour indicative of a symmetry-enhanced SFF to a late time non-enhanced SFF

indicating quantum ergodic behaviour encompassing the entire Hilbert space. Under the

natural assumption that the diffusive process governs the late-time behaviour, we predict

the relevant Thouless time when the non-enhanced SFF begins to be given by Q2/(4πΓ) (see

(1.1)), with Γ the Hilbert-space diffusion constant. The underlying mechanism of Hilbert-

space local diffusion is analytically confirmed by a supersymmetric sigma model analysis,

which explicitly gives rise to a diffusion equation among the sigma-model target spaces

associated to each charge sector, controlled by the rate Γ, as suggested by our heuristic

Fermi Golden-Rule analysis in accordance with numerics.

We have also studied the case in which the symmetry is broken by a perturbation that cor-

relates all the charge sectors with each other. This presents a case of ‘non-local’ Hilbert

space diffusion that is exponentially fast. After the onset of non-local diffusion, the effective

amount of symmetry of the system at a given time as measured by Nsectors(t) decays expo-

nentially fast until the symmetry is completely washed out, and we are left with an ergodic

theory that has explored the entire Hilbert space. These results once again match with the

numerical studies of these systems.

We will conclude this article with a discussion of interesting directions, which we hope to

address in the future.

5.1 Future directions and applications

We would like to further explore the case of inhomogeneous diffusion constant that arises

when the individual symmetry-reduced blocks of the Hilbert space do not all have the same

dimension. In a similar vein, but of increased technical complication, would be to set up

the sigma-model analysis of such more realistic systems from first principles, that is to
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explicitly model each Hilbert-space block with the ergodic physics of the SYK model [20,23],

rather than a full RMT average as done in Section 4. This would make the interplay of

the ‘strongly-coupled’ Thouless physics of each block with the diffusive approach to a full

ergodic limit explicit, and would give valuable insight into the more general problem. A

logical next step would then proceed to the incorporation of spatial locality, which we again

would expect to be of diffusive nature, but this time in real space. A model incorporating all

these aspects would capture all relevant physical mechanism of the approach of the ergodic

limit in spatially local many-body quantum systems, including those of local QFTs restricted

to a microcanonical energy window and placed on a compact manifold.15 There, one expects

interesting crossovers between the different mechanisms at work, in particular as the Thouless

time of an individual sector is expected to be governed by the local number of degrees of

freedom tTh
N ∝ Nα (see [18,20,23]) while the two diffusive times are governed by the Hilbert-

space diffusion constant tTh
Hilbert ∝ Q2/Γ and real-space diffusion tTh

space ∝ L2/D, where L is the

characteristic size of the spatial manifold (the black-hole horizon) and D is the real-space

diffusion constant. In the case of real-space diffusion, one also obtains a σ-model similar

to what we find in this work [11, 13, 26]. One particularly interesting class of theories we

have in mind here would be holographic field theories, such as the N = 4 SYM theory,

whose ergodic phase is dual to the very-late time dynamics of bulk black holes [3, 6]. This

competition between various possible Thouless times also applies to local lattice models such

as spin chains or unitary circuits, with or without large local Hilbert space dimension. The

results of [34], where a Hilbert space that is a tensor product of two independent Hilbert

spaces at distinct sites with a weak interaction correlating them induces a diffusive behaviour,

might be relevant in such studies.

In this context, it would also be enlightening to reveal the holographically dual mechanism to

the process of Hilbert-space diffusion. Given the results of [45], who identify hydrodynamic

modes in the spectral form factor [22, 24] in terms of quasinormal modes arising from the

so-called double-cone wormhole [4], a natural guess is that the bulk mechanism of Hilbert

space diffusion caused by a weakly-broken U(1) symmetry is related to the bulk quasinormal

modes associated to a bulk Maxwell field with a small mass on the double cone wormhole. In

a related context, it would also be interesting to explore the implications of the Hilbert space

diffusion in the holographic setup on the question of presence of global symmetries in grav-

itational theories [46]. It was shown in this work that the presence of ergodic modes might

rule out the presence of a global symmetry in gravitational theories. It will be interesting to

15The latter two conditions are necessary to ensure that there exists the possibility of an ergodic limit of
such theories in the first place.
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study the role of diffusion in the mechanism that support this conclusion.

Our results can also be fruitfully applied to random unitary circuits and Floquet systems. A

model of mass-deformed SYK model has been studied recently as a model to study transitions

from ergodic to localized phases [47, 48]. The absence of conservation laws in these systems

allows for our mechanism involving approximate symmetries to control the Thouless time

in the thermodynamic limit L → ∞. Many such systems have approximate conservation

laws, either by design, or by accident: in particular, disordered systems in 1+1d near a

localization transition feature an MBL regime with almost conserved local integrals of motion

(see, e.g., [49,50]). Since the number of conserved charges grows with L, our mechanism may

explain the observation of Thouless times diverging with system size in these systems [21,51]

(a similar phenomenon is not observed in higher dimensions, consistent with the absence

of approximate local integrals of motion there). Depending on details, there may be other

explanations for large Thouless times in these systems [17, 21]; however, for systems close

enough to an MBL transition, we would expect the long-lived charges to be the bottleneck

controlling the approach to RMT.

Another class of models with many approximate conservation laws are systems fine-tuned

close to integrability. It would be interesting to study the effective number of sectors

Nsectors(t) that enhance the SFF at intermediate times in this context as well. This could

be achieved by following an approach similar to [24], by finding a representation of the SFF

involving the effective action for generalized hydrodynamics with weak relaxation terms for

the approximate charges (see, e.g., [52]).
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Appendix

A Perturbation analysis around the saddle point

In this appendix, we study the value of the action (4.20) on the coset manifoldMq, (4.27). In

the absence of perturbations, ω = 0 = ϵ, the action stays constant along this coset manifold

courtesy of the U(1, 1|2)Q symmetry. However, when these parameters are switched on, the

symmetry explicitly breaks to U(1|1)×U(1|1) and we obtain a non-zero action on the coset

manifold. Let’s remind ourselves of the action that we have found in Eq. (4.20)

S[Aα] = 1
2σ
Str
[
(Aα)2 − 2ϵ2AαAα+1

]
+ Strln[zα + Aα], (A.1)

with the definition of zα as

zα = 1
bf ⊗

(
E1ra + (ω

2
+ iδ)σra3

)α
. (A.2)

Also, the solution to the saddle point equation (4.21), with the explicit form found for Λ, is

Aα0 = −1
2
E1+ iΛαγ(E) = 1

bf ⊗
(
−1

2
E1ra + iγσra3

)α
, (A.3)

where 1 = 1
bf ⊗ 1

ra.

Logarithmic term

We redefine zα + Aα ≡ Kα
0 +Kα

ω , where,

Kα
0 = E1+ Aα, Kα

ω = 1
bf ⊗ (ω

2
+ iδ)ασra3 . (A.4)

Here, Aα are the solutions of the saddle point equation that lie on the coset manifold Mα

as described in the discussion following (4.22). Therefore, it follows from (4.21) that,

(Kα
0 )

−1 = − 1
σ
Aα . (A.5)

We briefly drop the α index to avoid notational clutter. These solutions lying on the Mα can

be parametrized by the elements of the coset manifold (4.26), U ∈ U(1, 1|2)/U(1|1)×U(1|1),
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as orbits of the standard saddle point,

A = UA0(U)
−1 ≡ A0 + δA , (A.6)

where, recall that the standard saddle point is given by,

Aα0 = −1
2
E1+ iΛαγ(E) . (A.7)

Transforming A0 under U amounts to finding out how the Λ matrices transform. In order

to do that, we rewrite the U - matrices as exponential of so called “pion” fields B, B̃,

U = e−W , W = −
(

0 B
B̃ 0

)
. (A.8)

Taking into account terms up to second order in W we find

UΛU−1 = Λ+ 2ΛW + 2ΛW 2 + . . . , (A.9)

and therefore the fluctuations are given as,

δA = iγΛ + 2iγΛW + 2iγΛW 2 + . . . (A.10)

Returning to the logarithmic term in the action we expand it in small ω up to first order,

Strln[Kα
0 +Kα

ω ] = Strln[Kα
0 ] + Str[(Kα

0 )
−1Kα

ω ] +O(ω2) (A.11)

Plugging the expressions from (A.5), (A.6) and (A.10) into the above expression and restoring

the previously omitted α indices, leads us to

Str[(Kα
0 )

−1Kω] = − 1
σ
Str[Aα0K

α
ω ]−

2iγ
σ
Str[ΛαWαKα

ω ]−
2iγ
σ
Str[Λα(Wα)2Kα

ω ] + . . . (A.12)

We remember that the supertrace is defined as Str[M ] = Tr[M bb]−Tr[M ff ].16 By evaluating

the terms in eq (A.12), we find that the supertrace Str[ΛWKω] vanishes, and we get,

Str[K−1
0 Kω] =

E
2σ
Str[
(
ω1 0
0 ω3

)
−
(
ω2 0
0 ω4

)
]− iγ

σ
Str[
(
ω1 0
0 ω3

)
+
(
ω2 0
0 ω4

)
]

− 2iγ
σ
Str[BαB̃α

(
ω1 0
0 ω3

)
− B̃αBα

(
ω2 0
0 ω4

)
] + . . . . (A.13)

16M bb,Mff are the components of the graded matrix that map bosons to bosons and fermions to fermions,
respectively.
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The term Strln[Kα
0 ] is invariant under the coset manifold transformations and therefore

doesn’t expand in fluctuations.

Quadratic term

Now we study the quadratic term of the action (A.1) and similarly expand it around the

saddle point. We immediately see that the term Str[(Aα)2] is invariant under Uα- transfor-

mations thanks to cyclicity of the trace. It therefore remains to evaluate

− ϵ2

σ
Str
[
AαAα+1

]
. (A.14)

To do so, we define new transformation matrices, Rα,α+1 as

Rα,α+1 = (Uα)−1Uα+1, (Rα,α+1)−1 = (Uα+1)−1Uα = Rα+1,α. (A.15)

These measure the relative location on the coset manifold of the saddle point solution at

α + 1 with respect to the solution at α. It is straightforward to check that the R matrices

can be written in a similar exponential form as U by using

V α,α+1 = Wα −Wα+1 and Rα,α+1 = eV
α,α+1

. (A.16)

And subsequently we find the transformation properties of Λ as (dropping again the α indices

for notational convenience)

RΛR−1 = Λ+ 2ΛV + 2ΛV 2 + . . . (A.17)

up to second order in the B- fields. Plugging in the fluctuations in eq (A.14) we find,

Str[AαAα+1] = Str[Aα0A
α+1
0 ] + 2iγStr[Aα0Λ

α+1V α,α+1] + 2iγStr[Aα0Λ
α+1(V α,α+1)2] + . . . .

(A.18)

For the same reason as before, the linear term in V vanishes. Equivalently, also the terms

proportional to Str[A0A0] and to Str[EΛV 2] evaluate to zero.

The non-vanishing contribution is therefore written in terms of the B, B̃ fields,

− ϵ2

σ
Str[AαAα+1] = 4ϵ2γ2

σ
Str[(Bα+1 −Bα)(B̃α+1 − B̃α)] + . . . , (A.19)
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and the total action (A.1) expanded around the saddle point fluctuations is

S[Aα0 ] = Strln[E1+ Aα0 ] +
E
4σ
Str[
(
ω1 0
0 ω3

)
−
(
ω2 0
0 ω4

)
]− iγ

2σ
Str[
(
ω1 0
0 ω3

)
+
(
ω2 0
0 ω4

)
]

− 2iγ
σ
Str[BαB̃α

(
ω1 0
0 ω3

)
− B̃αBα

(
ω2 0
0 ω4

)
] + 4ϵ2γ2

σ
Str[(Bα+1 −Bα)(B̃α+1 − B̃α)] + . . . .

(A.20)
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[51] C. L. Bertrand and A. M. Garćıa-Garćıa, “Anomalous thouless energy and critical
statistics on the metallic side of the many-body localization transition,” Physical
Review B 94 no. 14, (Oct., 2016) 144201, arXiv:1606.08419 [cond-mat.dis-nn].
http://dx.doi.org/10.1103/PhysRevB.94.144201.

[52] A. Bastianello, A. De Luca, and R. Vasseur, “Hydrodynamics of weak integrability
breaking,” Journal of Statistical Mechanics: Theory and Experiment 2021 no. 11,
(Nov., 2021) 114003, arXiv:2103.11997 [cond-mat.stat-mech].
http://dx.doi.org/10.1088/1742-5468/ac26b2.

40

http://dx.doi.org/10.1103/PhysRevResearch.3.013023
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013023
http://dx.doi.org/10.1103/RevModPhys.91.021001
http://dx.doi.org/10.1103/RevModPhys.91.021001
https://link.aps.org/doi/10.1103/RevModPhys.91.021001
http://arxiv.org/abs/2403.07111
http://arxiv.org/abs/2403.07111
http://dx.doi.org/10.1103/physrevb.94.144201
http://dx.doi.org/10.1103/physrevb.94.144201
http://arxiv.org/abs/1606.08419
http://dx.doi.org/10.1103/PhysRevB.94.144201
http://dx.doi.org/10.1088/1742-5468/ac26b2
http://dx.doi.org/10.1088/1742-5468/ac26b2
http://arxiv.org/abs/2103.11997
http://dx.doi.org/10.1088/1742-5468/ac26b2

	Introduction
	Fermi Golden Rule and Hilbert space diffusion
	Hopping rates
	Hilbert space diffusion
	`Non-local' exploration of Hilbert space

	Numerics
	Local exploration of Hilbert space
	Non-local exploration of Hilbert space
	Complex SYK with approximate U(1) symmetry

	Hilbert space diffusion: a sigma-model approach
	General framework: chaotic sigma-models
	Effective field theory of Hilbert space diffusion
	Hilbert space diffusion in sigma-model

	Discussion
	Future directions and applications

	Perturbation analysis around the saddle point

