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We introduce a framework for simulating, on an (n + 1)-qubit quantum computer, the action
of a Gaussian Bosonic (GB) circuit on a state over 2n modes. Specifically, we encode the initial
bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an in-
put qubit-state. This is then evolved by a quantum circuit that effectively implements the symplectic
propagators induced by the GB gates. We find families of GB circuits and initial states leading to
efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB
and qubit gates such that particle- (non-particle-) preserving GB gates lead to real (imaginary)
time evolutions at the qubit level. For the special case of particle-preserving circuits, we present
a BQP-complete GB decision problem, indicating that GB evolutions of Gaussian states on expo-
nentially many modes are as powerful as universal quantum computers. We also perform numerical
simulations of an interferometer on ∼ 8 billion modes, illustrating the power of our framework.

Introduction. The study of the power of quantum
computers has been a central and fundamental topic in
complexity theory. While it is known that these devices
can solve problems at least as fast as classical probabilis-
tic computers, we also know that they are unable to do
so more than exponentially faster [1, 2]. This has raised
the question: What are the tasks that saturate this sepa-
ration? I.e., what are the problems for which a quantum
computer can achieve an exponential advantage over its
classical counterparts?

To answer such questions one starts with the class
Bounded-Error Quantum Polynomial (BQP), the set of
decision problems that a quantum computer can solve in
polynomial time with a small constant probability of fail-
ure. Then, one determines the subset of problems that
are the hardest therein, known as BQP-complete. Several
BQP-complete problems are known, such as those based
on the Harrow–Hassidim–Lloyd algorithm [3], scattering
in scalar quantum field theory [4], and more recently on
the quantum simulation of exponentially many coupled
classical oscillators [5]. The latter presents the intrigu-
ing perspective that simulating exponentially large lin-
ear and energy-preserving simple classical systems leads
to BQP-completeness, and, under reasonable complexity
theory assumptions, to an exponential quantum advan-
tage over classical methods.

In this work we prove an analogous result to that in
Ref. [5], namely, that the quantum simulation of particle-
preserving GB circuits (i.e. passive linear optics) [6–8]
acting on Gaussian initial states on exponentially many
modes also leads to BQP-completeness (see Fig. 1). At
its core, our framework starts with the realization that
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a direct simulation of a bosonic system is intractable
on a qubit-based quantum computer, as the associated
Hilbert spaces are fundamentally different (with one be-
ing infinite-dimensional, and the other discrete). This
issue can be avoided by restricting the simulation to the
first and second moments of the quadrature operators.
That is, we encode in a quantum state the position and
momentum expectation values (and their covariance ma-
trix) over the initial bosonic state. As such, instead of
simulating the action of the GB circuit on the bosonic
Hilbert space, we implement its effective action on the
expectation values on a gate-based quantum computer.
In this context, we present a constructive dictionary

that translates back-and-forth between the symplectic
propagator associated with a universal set of GB gates
(beamsplitters, phase and squeezing gates) and qubit cir-
cuits. The efficiency of our simulation framework relies
on several key conditions, such as the input qubit-state
being preparable in polynomial time, and the quantum
circuit requiring only polynomially-many gates. Indeed,
we present cases of interest for which these two conditions
are satisfied, and therefore for which we can achieve an
exponential quantum advantage.
Background. In what follows, we will consider sys-

tems composed of M bosonic modes (with M = 2n).
Let â†m and âm, with m = 1, . . . ,M , respectively de-
note the creation and annihilation operators for the m-th
mode [9]. We consider the standard Hermitian quadra-
ture operators, position q̂m = 1√

2
(âm + â†m) and momen-

tum p̂m = i√
2
(â†m − âm). They satisfy the canonical

commutation relations [q̂m, p̂m′ ] = iδmm′ . Furthermore,
we will focus on the case where anM -mode bosonic state
ρ0 evolves under the action of a GB circuit whose gates
are generated by time-independent Hamiltonians that are
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Figure 1. Schematic representation of our main re-
sults. a) We present a framework for simulating the action
of a GB circuit on the first and second moments of quadrature
operators of a bosonic state on 2n modes on an (n+1)-qubit
gate-based quantum computer. b) We show that particle-
preserving GB evolutions on Gaussian bosonic states are suf-
ficient to define a problem that is BQP-complete, thus indicat-
ing that passive linear optics on exponentially many bosonic
modes are as powerful as universal quantum computers.

quadratic in the position and momentum operators1.
These GB generators, also known as free-bosonic gen-

erators, are arbitrary real-valued degree-two homoge-
neous polynomials on the quadrature operators

Ĥ =
1

2
ẑTKẑ , with ẑ = (q̂1, . . . , q̂M , p̂1, . . . , p̂M )T , (1)

whereK is a real 2M×2M symmetric matrix. The vector
ẑ allows us to express the commutation relations in the
compact form [ẑα, ẑβ ] = iΩαβ , where Ω = iY ⊗ 11M .
Here, Y is the usual 2 × 2 Pauli matrix and 11M the
M ×M identity matrix.
Next, we collect the expectation values of the po-

sition and momentum operators over ρ0 in a vector
⟨ẑ⟩ = (⟨q̂1⟩, . . . , ⟨q̂M ⟩, ⟨p̂1⟩, . . . , ⟨p̂M ⟩)T ∈ R2M , with
⟨x̂⟩ = Tr[ρ0x̂]. As shown in the Supplemental Informa-
tion (SI), evolving ρ0 with a unitary generated by a GB

generator Ĥ for a time t induces the evolution of ⟨ẑ⟩ as

∂⟨ẑ⟩
∂t

= ΩK⟨ẑ⟩ , so that ⟨ẑ⟩(t) = etΩK⟨ẑ⟩(0) . (2)

1 A generalization to time-dependent Hamiltonians is direct using
standard Hamiltonian-simulation techniques [10].

Here, ⟨ẑ⟩(t) denotes the vector containing the expecta-
tion values of positions and momenta at time t, and thus
⟨ẑ⟩(0) represents the initial condition. Since the canoni-
cal commutation relations must be preserved, the prop-
agator etΩK is a 2M × 2M symplectic matrix with real
entries belonging to the Lie group SP(M,R) [9], which
in turn implies that ΩK is an operator in the symplectic
Lie algebra sp(M,R).
Note that while, in general, etΩK is not unitary, we

characterize the quadratic Hamiltonians leading to uni-
tary evolutions of the vector ⟨ẑ⟩, when a gate generator

is of the form Ĥ =
∑M

m,m′=1 hmm′ â†mâm′ + Tr[h]
2 112M ,

with h a Hermitian matrix. Then [Ω,K] = 0, and the
propagator etΩK is the real-time evolution of the Her-
mitian iΩK. Hamiltonians of this form are known as
particle preserving since the hopping terms â†mâm′ move
a boson from mode m′ to mode m. We also charac-
terize non-particle-preserving Hamiltonians of the form

Ĥ =
∑M

m,m′=1 ∆
†
mm′ âmâm′+h.c., whose propagator cor-

responds to the imaginary-time evolution of ⟨ẑ⟩ under the
effective Hamiltonian −ΩK.
In addition to ⟨ẑ⟩, we also collect the expectation value

of products of quadrature operators over ρ0 in the 2M ×
2M positive-definite covariance matrix σ whose entries
are given by σαβ = 1

2 ⟨ẑαẑβ + ẑβ ẑα⟩ − ⟨ẑα⟩⟨ẑβ⟩ [11].
Analogously to Eq. (2), we find (see the SI) that

∂σ

∂t
= ΩKσ − σKΩ , so that σ(t) = eΩKtσ(0)e∓ΩKt ,

where the − (+) sign corresponds to particle (non-
particle) preserving Hamiltonians, as defined above.
The previous insights pave the way to simulate the

action of GB circuits on a gate-based quantum computer.
Initialization. To start the simulation on the quan-

tum computer, we encode the normalized vector ⟨ẑ⟩ (nor-
malized matrix σ) into a pure (mixed) (n+1)-qubit quan-
tum state |ẑ⟩ ∝ ⟨ẑ⟩ (ϱσ ∝ σ). For instance, we have

|ẑ⟩ = 1

∥⟨ẑ⟩∥2

2n∑
m=1

⟨q̂m⟩ |0⟩ ⊗ |m⟩+ ⟨p̂m⟩ |1⟩ ⊗ |m⟩ . (3)

For our scheme to be efficient, such states need to be
preparable in polynomial time. Such cases occur, e.g.,
when there are O(poly(n)) non-zero known position and
momentum expectation values. Equation (3) illustrates
the privileged role of the first qubit [12], separating the
Hilbert space into two subspaces, one associated with
the positions and the other with the momenta. We will
henceforth refer to the first qubit as the symplectic qubit.
The remaining n qubits serve as a register for each of the
2n modes, and we will refer to them as register qubits. In
particular, in Eq. (3) each mode label m is encoded via
its binary decomposition as m = 20m1 + 21m2 + . . . +
2n−1mn, with ml ∈ {0, 1}, and with the least significant
qubit being the top-most register qubit.
Here we note that when ρ0 is Gaussian, then it is

fully characterized by the first and second moments of
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Figure 2. Examples of GB gates in the qubit picture. We consider a bosonic system on M = 8 modes, leading to a
circuit on 4 qubits. The local phase gate acts on the mode m = 6 = 20 × 0+21 × 1+22 × 1. The local beamsplitter acts on the
modes m = 1 and m′ = 7, whose binary representations only share the least significant bit. The local squeezing gate acts on
mode m = 3 = 20 × 1 + 21 × 1 + 22 × 0, and is represented by an imaginary time evolution as a linear combination of unitaries
with post-selection on two ancillary qubits (which have been added on top). The global phase gate acts on all modes whose
index is even. The global beamsplitter is applied to the first half of the modes, pairing each mode with even index m to its
nearest neighbor mode with index m′ = m+ 1. The global squeezing gate is applied to the first half of the modes.

the quadrature operators, meaning that |ẑ⟩ and ϱσ pro-
vide a full description of these states. Moreover, if the
initial state is also coherent (eigenstates of â), then ϱσ is
the maximally mixed state on (n + 1) qubits. For other
non-Gaussian states our framework is restricted to the
information contained in ẑ and σ.
Evolution. Once the initial state is prepared, we can

evolve it with a quantum circuit that effectively imple-
ments the symplectic propagators associated with the
gates in the GB circuit (see for instance Eq. (2)). In
particular, we present a dictionary to efficiently trans-
late between standard GB and qubit gates. We also refer
the reader to Fig. 2 for an explicit circuit depiction of
some GB gates in qubit circuit form.

The phase gate is a particle-preserving gate acting on a
single mode m. In terms of bosonic operators, its gener-
ator is Ĥ = p̂2m+ q̂2m, yielding ΩK = 2iY ⊗|m⟩⟨m| in the
qubit picture. This corresponds to an Ry gate (rotation
about the y-axis) on the symplectic qubit, conditioned
on the |m⟩⟨m| state on the register.
The beamsplitter is a particle-preserving gate acting

on two modes m and m′. It is generated by Ĥ =
q̂mp̂m′ − q̂m′ p̂m (with m ̸= m′), which results in ΩK =
2i11 ⊗ (i|m⟩⟨m′| − i|m′⟩⟨m|). This corresponds to an Ry

rotation in the subspace spanned by |m⟩ and |m′⟩. This
gate can be implemented by using controlled-not gates
to transform |m⟩ and |m′⟩ into two computational-basis
states that only differ in one qubit, then performing a
controlled-Ry rotation on that qubit (conditioned on the
other n−1 qubits in the register), and applying the same
controlled-not gates to return to the original basis. We
highlight the fact that this gate acts trivially on the sym-

plectic qubit, as beamsplitters conserve total momentum
and total position.
The squeezing gate is a non-particle-preserving gate

that acts on a single mode m. Its generator is Ĥ =
± (q̂mp̂m + p̂mq̂m), leading to ΩK = ±2X⊗|m⟩⟨m|. This
produces an imaginary-time evolution [13–16], which
can be implemented, e.g., with two ancillary qubits and
post-selection. As illustrated in Fig. 2 and further dis-
cussed in the SI, we propose to implement it as a lin-
ear combination of unitaries [17], with the latter being
multi- controlled-Z and controlled-phase gates. Notably,
the fact that states cannot be arbitrarily squeezed trans-
lates in our framework as the success probability of the
imaginary-time evolution for infinite time being zero.
Finally, the displacement gate, a common non-particle-

preserving Gaussian gate, cannot be included as a linear
qubit gate in the proposed framework (see the SI for an
additional discussion on this gate).
We stress that while our framework requires the imple-

mentation of multi-controlled qubit operations to simu-
late the action of some GB gates, these can be compiled
exactly using only O(n) local gates [18]. Moreover, if in-
stead of one or two modes, we consider GB gates that
act on several (potentially exponentially many) modes,
there can be simplifications that render them much eas-
ier to implement at the qubit level. As an important
example, we show in Fig. 2 (see also SI) how some global
phase gates and beamsplitters acting on 2n−1 modes sim-
plify to two-qubit controlled-Ry rotations, as well as how
the number of control qubits is reduced for some global
squeezing gates. This means that when the GB circuit
is composed of polynomially many such local particle-
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preserving gates, the implementation of the quantum cir-
cuit is efficient. When non-particle-preserving squeezing
gates are added, then the efficiency will ultimately de-
pend on how many such gates are added, as well as on
their squeezing strength parameters.

At this point, we recall that the covariance matrix of
coherent states leads to a maximally mixed state ϱσ,
and therefore it remains invariant when evolved with a
purely unitary circuit (e.g., particle-preserving GB gates
in an interferometer). This result is well aligned with the
bosonic picture where coherent states going through in-
terferometers remain coherent states. Then, as squeezing
gates are not particle-preserving, their action on a coher-
ent state corresponds to purifying the associated ϱσ.
Measurements. At the output of the quantum cir-

cuit, we obtain states that represent the evolved expec-
tation values and covariance matrix of quadrature op-
erators (which we respectively denote as

∣∣ẑ′〉 and ϱσ′).
We now discuss how measuring these states allows us to
extract useful information about the GB circuit.

There are a variety of measurements of interest for
Gaussian states. As detailed in the SI, photon count-
ing can be implemented for coherent states by sampling
bitstrings from

∣∣ẑ′〉. To understand why this is the case,
we recall that the energy for each mode is proportional
to the probability of sampling the corresponding bit-
string. Secondly, for any bosonic state homodyne mea-
surements correspond to retrieving the position (momen-
tum) of a specific mode. At the qubit level, these mea-
surements can be implemented from a swap-Hadamard
test between

∣∣ẑ′〉 and some computational-basis state of
interest. Then, our framework also allows us to estimate
the fraction of total momentum and total position, as
this value can be retrieved by measuring the symplectic
qubit in

∣∣ẑ′〉. Similarly, the fractional energy of the first
and second half of the modes can be estimated by mea-
suring the bottom-most (most significant) register qubit.
Moreover, we note that combining computational basis
measurements (or Hadamard tests) on

∣∣ẑ′〉 and ϱσ′ al-
lows us to estimate the energy in a given mode. To finish,
we note that while the total energy remains constant for
particle-preserving GB circuits, this quantity can change
when non-particle-preserving gates are included. In this
case, while we cannot directly measure the total energy
of the system (as the states need to be normalized), one
can keep track of the total energy by using as a proxy
the success probability of the imaginary-time evolutions.

BQP-completeness. We now show that we can lever-
age our framework to devise a decision problem based on
a restricted class of large optical quantum interferom-
eters and prove that it is BQP-complete. We begin by
introducing a family of quantum interferometers, that we
refer to as bit-structured.

Definition 1 (Bit-structured interferometer). A bit-
structured interferometer acting on 2n nodes consists of
L global beamsplitters, such that each global beamsplitter
acts on 2n−1 modes. A global beamsplitter is specified by
two natural numbers, k ̸= l, between 1 and n. The global

Figure 3. Simulation of a structured interferometer on
∼ 8 billion modes. We illustrate Problem 1 by tracking two
non-trivial evolutions of ⟨q̂1⟩/x along a large bit-structured
interferometer, the green (red) plot corresponding to a YES
(NO) instance. The gray region corresponds to 1

3
< ⟨q̂1⟩/x <

2
3
. The simulations were performed with Qibo [19, 20].

beamsplitter then acts on all the modes with indices {m}
such that their k-th bit is equal to 0, by applying local
beamsplitters between modes with indices m,m′ that only
differ in their l-th bit.

Our decision problem is then phrased as follows.

Problem 1. Consider a bit-structured interferome-
ter (see Definition 1) acting on 2n modes with L ∈
O(poly(n)), and an input state such that the first mode
is displaced in position by a real constant x while the
state of the remaining modes is the vacuum. Then, de-
cide whether the expectation value of the position on the
first mode at the output of the interferometer is

1. ⟨q̂1⟩ >
2

3
x , or 2. ⟨q̂1⟩ <

1

3
x ,

given the promise that either one or the other is true.

Problem 1 is illustrated in Figure 3, where we simulate
an interferometer with ∼ 8 billion modes (i.e., a 33-qubit
circuit). There, we keep track of ⟨q̂1⟩/x (which corre-

sponds to the overlap with the |0⟩⊗n
state) as the state

evolves through the beamsplitters.
Our main result is the next theorem.

Theorem 1. Problem 1 is BQP-complete.

The proof of Theorem 1 can be found in the SI, but
we give here a summary of the key points. First, we
show that Problem 1 is contained in BQP. To do this, we
simply use the mapping between beamsplitters and qubit
gates explained previously to prove that a bit-structured
interferometer with O(poly(n)) layers always results in
a polynomial-size quantum circuit, which is a necessary
condition to be contained in BQP.
Finally, we need to prove that Problem 1 is BQP-Hard.

That is, if we can solve it, we can also solve any other
problem in BQP with an additional overhead that is poly-
nomial in n. This is done by first showing that each global
beamsplitter gives rise to a controlled-Ry gate (acting
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when the control qubit is in the |0⟩ state). Then, we use
the result from [21] which states that controlled-Ry ro-
tations constitute a universal gate set, in the sense that
any quantum computation can be performed with these
gates [22, 23].

Outlook. This work contributed to the body of knowl-
edge of schemes leading to BQP-complete tasks. In par-
ticular, along with Ref. [5], we show examples of how
linear and energy-preserving evolutions of exponentially
many simple physical systems can be efficiently simu-
lated on a quantum computer. A key unique feature of
our framework is that we translate a sequence of gates
from one physical system to another (product of expo-
nentials) rather than performing real-time evolution of a
Hamiltonian (exponential of a sum).

Importantly, our work opens up several interesting re-
search directions. For instance, we have shown how to
simulate the evolution of the first and second moments
of bosonic states. This makes the simulation complete
only for Gaussian states. Hence, we envision two possi-
ble paths to extend our proposed framework to better ap-
proximate the simulation of non-Gaussian states. First,
we could find ways to simulate the evolution of higher
moments. To what extent this would improve the qual-
ity of a simulation for non-Gaussian states, such as Fock
states, remains open. Second, because bosonic states can
be written as a continuous sum over coherent states, ap-
proximating them on a grid of coherent states may also
be a viable strategy to simulate non-Gaussian states. Fi-

nally, we also leave for future work a precise characteri-
zation of the computational complexity of the quantum
simulation of non-particle preserving GB circuits, which
are likely outside of BQP.
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SUPPLEMENTAL INFORMATION FOR “GATE-BASED QUANTUM SIMULATION OF GAUSSIAN
BOSONIC CIRCUITS ON EXPONENTIALLY MANY MODES”

Appendix A: Framework

1. Time evolution of quadrature operators in phase space

Let us consider a system of bosons with M modes, and let us assume ℏ = 1. The state space of such a system

is H =
⊗M

m=1 Fm, where Fm is the Fock space associated to the m-th mode. That is, each Fm is spanned by the
infinitely-many basis vectors {|k⟩m}k∈N indicating the occupancy number of the mode. For example, if we fix the
number of bosons to 3 and let the number of modes be M = 4, the basis state |0, 1, 2, 0⟩ ≡ |0⟩ ⊗ |1⟩ ⊗ |2⟩ ⊗ |0⟩
corresponds to the state with one boson occupying the second mode and two bosons occupying the third mode. These
basis states are eigenstates of the particle number operator, since they have a fixed number of particles, and are known
as Fock states. The (non-Hermitian) creation â†m and annihilation âm operators are defined by their action on Fock
states as follows,

â†m |N0, . . . , Nm, . . . , NM ⟩ =
√
Nm + 1 |N0, . . . , Nm + 1, . . . , NM ⟩ ,

âm |N0, . . . , Nm, . . . , NM ⟩ =
√
Nm |N0, . . . , Nm − 1, . . . , NM ⟩ .

(A1)

They satisfy the commutation relations

[â†m, â
†
m′ ] = [âm, âm′ ] = 0 ,

[âm, â
†
m′ ] = δm,m′ .

(A2)

The (Hermitian) particle number operator is given by â†mâm. The (Hermitian) position q̂m and momentum p̂m
operators can be defined from the creation and annihilation operators as

q̂m =
âm + â†m√

2
, p̂m = i

â†m − âm√
2

. (A3)

Which in turn conversely implies that

âm =
q̂m + ip̂m√

2
, â†m =

q̂m − ip̂m√
2

. (A4)

The corresponding commutation relations for position and momentum are

[q̂m, q̂m′ ] = [p̂m, p̂m′ ] = 0 ,

[q̂m, p̂m′ ] = iδm,m′ .
(A5)

Let us collect the positions and momenta in a vector ẑ = (q̂1, . . . , q̂M , p̂1, . . . , p̂M )T . This allows us to write the
commutation relations in Eq. (A5) as [

ẑ, ẑT
]
= iΩ , (A6)

where the Ω matrix is

Ω =

(
0 11M

−11M 0

)
= iY ⊗ 11M . (A7)

Here, Y is the usual 2× 2 Pauli matrix and 11M the M ×M identity matrix. It will be convenient for us to explicitly
write down the matrix entries of Ω, which are

Ωγ,γ′ = δγ,γ′−M − δγ,γ′+M . (A8)

Let us assume that our quantum bosonic system is governed by a quadratic time-independent Hamiltonian of the
form

Ĥ =
1

2
ẑTKẑ , (A9)
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where K is a real 2M × 2M symmetric matrix. In the Heisenberg picture, the equation of motion of an observable Ô
is

∂Ô

∂t
= i[Ĥ, Ô] . (A10)

Therefore, we find

∂ẑγ

∂t
= i[Ĥ, ẑγ ] =

i

2

[∑
αβ

ẑαKαβ ẑβ , ẑγ

]
=
i

2

∑
αβ

Kαβ

[
ẑαẑβ , ẑγ

]
=
i

2

∑
αβ

Kαβ

(
ẑα

[
ẑβ , ẑγ

]
+
[
ẑα, ẑγ

]
ẑβ

)
=
i

2

∑
αβ

Kαβ (ẑαi(δβ,γ−M − δβ,γ+M ) + i(δα,γ−M − δα,γ+M )ẑβ)

=
1

2

∑
αβ

Kαβ (−ẑαΩβγ − Ωαγ ẑβ) =
1

2

∑
αβ

(ΩγβKβαẑα +ΩγαKαβ ẑβ)

= (ΩKẑ)γ ,

(A11)

where we used [AB,C] = A[B,C] + [A,C]B, and the fact that K is symmetric and Ω anti-symmetric. Hence, we
arrive at

∂ẑ

∂t
= ΩKẑ . (A12)

The solution to this differential equation is given by

ẑ(t) = etΩK ẑ(0) . (A13)

The solution of Eq. (A12) must preserve the commutation relations of Eq. (A5) in order to leave the kinematics
invariant. Let us call Q(t) = etΩK the propagator that takes the vector ẑ(0) at time 0 to the vector ẑ(t) at time t.
We impose

[
ẑ(t), ẑ(t)T

]
= [ẑ(0), ẑ(0)T ], which leads to

[
Q(t)ẑ(0), (Q(t)ẑ(0))T

]
αβ

=

(∑
γ

Q(t)αγ ẑγ

)
,

∑
γ′

Q(t)βγ′ ẑγ′

 =
∑
γ,γ′

Q(t)αγQ(t)βγ′ [ẑγ , ẑγ′ ]

= i
∑
γ,γ′

Q(t)αγQ(t)βγ′(δγ,γ′−M − δγ,γ′+M ) = i
∑
γ,γ′

Q(t)αγΩγ,γ′Q(t)Tγ′β

= i
(
Q(t) ΩQT (t)

)
αβ

.

(A14)

It is clear then that Q(t) ΩQT (t) = Ω if we are to maintain the commutation relations between positions and momenta.
This is precisely the defining condition of symplectic matrices. Hence, the time evolution of ẑ in phase space is given
by a 2M × 2M real symplectic matrix belonging to the group SP(M,R).
Let us now address the question of how the expectation value ⟨ẑ⟩ = (⟨q̂1⟩, . . . , ⟨q̂M ⟩, ⟨p̂1⟩, . . . , ⟨p̂M ⟩)T of ẑ evolves

in time, given an initial quantum state ρ0. We find that

∂⟨ẑγ⟩
∂t

=
∂ Tr[ẑγρ0]

∂t
= Tr

[
∂ẑγ

∂t
ρ0

]
= Tr [(ΩKẑ)γρ0] = Tr

∑
αβ

ΩγαKαβ ẑβ

 ρ0

 =
∑
αβ

ΩγαKαβTr [ẑβρ0] = (ΩK⟨ẑ⟩)γ ,

(A15)

which implies

∂⟨ẑ⟩
∂t

= ΩK⟨ẑ⟩ , (A16)

and

⟨ẑ⟩(t) = etΩK⟨ẑ⟩(0) . (A17)

We can also collect the expectation value of products of quadrature operators over ρ0 in the 2M × 2M positive-
definite covariance matrix σ whose entries are given by

σαβ =
1

2
⟨ẑαẑβ + ẑβ ẑα⟩ − ⟨ẑα⟩⟨ẑβ⟩ . (A18)
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Let us derive the corresponding equation of motion. We start by considering

∂(ẑγ ẑδ)

∂t
= i[Ĥ, ẑγ ẑδ] =

i

2

[∑
αβ

ẑαKαβ ẑβ , ẑγ ẑδ

]
=

i

2

∑
αβ

Kαβ

[
ẑαẑβ , ẑγ ẑδ

]
=

i

2

∑
αβ

Kαβ

(
ẑα

[
ẑβ , ẑγ

]
ẑδ +

[
ẑα, ẑγ

]
ẑβ ẑδ + ẑγ ẑα

[
ẑβ , ẑδ

]
+ ẑγ

[
ẑα, ẑδ

]
ẑβ

)
= −1

2

∑
αβ

Kαβ (ẑα(δβ,γ−M − δβ,γ+M )ẑδ + (δα,γ−M − δα,γ+M )ẑβ ẑδ + ẑγ ẑα(δβ,δ−M − δβ,δ+M ) + ẑγ(δα,δ−M − δα,δ+M )ẑβ)

= −1

2

∑
αβ

Kαβ (ẑαΩβγ ẑδ +Ωαγ ẑβ ẑδ + ẑγ ẑαΩβδ + ẑγΩαδẑβ)

= −(ẑTKΩ)γ ẑδ − ẑγ(ẑ
TKΩ)δ = (ΩKẑ)γ ẑδ + ẑγ(ΩKẑ)δ ,

where we used that [AB,CD] = A[B,C]D+[A,C]BD+CA[B,D]+C[A,D]B, and the fact that K (Ω) is symmetric
(anti-symmetric). In matrix form, we get

∂(ẑẑT )

∂t
= ΩKẑẑT − ẑẑTKΩ . (A19)

Let us now look at the evolution of the expectation value of two-point correlators. Analogously to Eq. (A15), we have

∂⟨ẑγ ẑδ⟩
∂t

=
∂ Tr[ẑγ ẑδρ]

∂t
= Tr

[
∂ẑγ

∂t
ẑδρ+ ẑγ

∂ẑδ

∂t
ρ

]
= Tr [(ΩKẑ)γ ẑδρ+ ẑγ(ΩKẑ)δρ]

= Tr

∑
αβ

ΩγαKαβ ẑβ

 ẑδρ+ ẑγ

∑
αβ

ΩδαKαβ ẑβ

 ρ

 =
∑
αβ

ΩγαKαβTr [ẑβ ẑδρ] +
∑
αβ

ΩδαKαβTr [ẑγ ẑβρ]

= (ΩK⟨ẑẑT ⟩)γδ − (⟨ẑẑT ⟩KΩ)γδ , (A20)

or, in matrix form,

∂(⟨ẑẑT ⟩)
∂t

= ΩK⟨ẑẑT ⟩ − ⟨ẑẑT ⟩KΩ . (A21)

Therefore, we arrive at

∂σ

∂t
= ΩKσ − σKΩ . (A22)

If K represents a particle-preserving Hamiltonian, then [Ω,K] = 0 according to Supplemental Proposition 2, so we
can write

∂σ

∂t
= [ΩK,σ] . (A23)

The solution to this equation is

σ = eΩKt σ(0) e−ΩKt . (A24)

If instead K represents a non-particle-preserving Hamiltonian such that {Ω,K} = 0, we can write

∂σ

∂t
= {ΩK,σ} , (A25)

whose solution is

σ(t) = eΩKt σ(0) eΩKt . (A26)
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2. Pauli basis for the symplectic algebra

Here we present a useful Supplemental Proposition that provides a Pauli basis for the symplectic algebra sp(M,R).

Supplemental Proposition 1. An orthogonal basis for the standard representation of the sp(M,R) algebra, where
M = 2n, is given by the set

Bsp(M,R) ≡ i{Y ⊗ Ps} ∪ i{11⊗ Pa} ∪ {X ⊗ Ps} ∪ {Z ⊗ Ps} , (A27)

where Ps and Pa belong to the sets of arbitrary symmetric and anti-symmetric Pauli strings on n qubits, respectively,
and 11, X, Y, Z are the usual 2× 2 Pauli matrices.

Proof. We first recall that any 2M ×2M matrix A satisfying ATΩ = −ΩA belongs to sp(M,R) ⊂ End(R2M ). Clearly,
the (phased) Pauli operators on n+1 qubits in Eq. (A27) constitute 2n+1×2n+1 = 2M ×2M matrices, with M = 2n.
Also, note they are all real-valued (although not all anti-Hermitian), which follows from the fact that a Pauli string
is real (purely imaginary) when it contains an even (odd) number of Y ’s, i.e. when it is symmetric (anti-symmetric).
Thus, Bsp(M,R) ⊂ End(R2M ). We know from Proposition 1 in Ref. [12] that they satisfy the symplectic property,
implying Bsp(M,R) ⊂ sp(M,R). Given they are Hilbert-Schmidt orthogonal, and that |Bsp(M,R)| = M(2M + 1) =
dim(sp(M,R)), to prove they constitute an orthogonal basis it simply remains to show that they are closed under
commutation.

To do so, we first recall that the commutator of two anti-symmetric or symmetric matrices is anti-symmetric,
whereas the commutator of a symmetric matrix and an anti-symmetric one is symmetric. We start with the (non-
zero) commutator X ⊗ Ps and X ⊗ P ′

s, which gives an operator of the following form

[X ⊗ Ps, X ⊗ P ′
s] ∝ ±i11⊗ Pa . (A28)

The ±i factor follows from the fact that the Pauli strings Ps and P ′
s differ at an odd number of sites. The same is

true if we replace X by Z on the first qubit,

[Z ⊗ Ps, Z ⊗ P ′
s] ∝ ±i11⊗ Pa . (A29)

We continue by computing the (non-zero) commutator of two operators of the form X ⊗ Ps and Z ⊗ P ′
s,

[X ⊗ Ps, Z ⊗ P ′
s] ∝ ±iY ⊗ P ′′

s . (A30)

Again, the ±i factor follows from the fact that X ⊗Ps and Z ⊗P ′
s differ at an odd number of sites. Next, let us look

at the non-zero commutator of operators X ⊗ Ps or Z ⊗ Ps with i11⊗ Pa,

[X ⊗ Ps, i11⊗ Pa] ∝ ±X ⊗ P ′
s or [Z ⊗ Ps, i11⊗ Pa] ∝ ±Z ⊗ P ′

s . (A31)

Here, the i factor arising from commuting the Pauli strings cancels out with the i in i11⊗ Pa. Similarly, the non-zero
commutator of X ⊗ Ps or Z ⊗ Ps with iY ⊗ P ′

s is as follows

[X ⊗ Ps, iY ⊗ P ′
s] ∝ ±Z ⊗ P ′′

s or [Z ⊗ Ps, iY ⊗ P ′
s] ∝ ±X ⊗ P ′′

s . (A32)

Furthermore, commuting iY ⊗Ps and iY ⊗P ′
s, or i11⊗Pa with i11⊗P ′

a leads to either zero or an operator of the form

[iY ⊗ Ps, iY ⊗ P ′
s] ∝ ±i11⊗ Pa or [i11⊗ Pa, i11⊗ P ′

a] ∝ ±i11⊗ P ′′
a . (A33)

Finally, the non-zero commutator of iY ⊗ Ps and i11⊗ Pa gives ±iY ⊗ Ps,

[iY ⊗ Ps, i11⊗ Pa] ∝ ±iY ⊗ Ps . (A34)

Therefore, we conclude that the setBsp(M,R) ⊂ sp(M,R) of mutually orthogonal operators is closed under commutation
and satisfies dim(Bsp(M,R)) =M(2M +1) = dim(sp(M,R)). Thus, it constitutes an orthogonal basis for the standard
representation of sp(M,R).

3. Particle-preserving gates

Next, we show that particle-preserving Gaussian bosonic (GB) gates lead to unitary evolutions at the qubit level.
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Supplemental Proposition 2. When a gate generator is of the form

Ĥ =

M∑
m,m′=1

hmm′ â†mâm′ +
Tr[h]

2
112M , (A35)

where h is a Hermitian matrix, then [Ω,K] = 0, and the propagator etΩK is the real time evolution under the effective
Hamiltonian −iΩK.

Proof. Expressed in terms of position and momentum operators, we find

Ĥ =
1

2

2n∑
m,m′=1

hmm′ (qm − ipm)(qm′ + ipm′) +
Tr[h]

2
112M (A36)

=
1

2

2n∑
m,m′=1

hmm′ (qmqm′ + pmpm′ + iqmpm′ − ipmqm′) +
Tr[h]

2
112M

=
1

2

2n∑
m=1

hmm (q2m + p2m) +

2n∑
m,m′=1
m′>m

Re[hmm′ ] (qmqm′ + pmpm′) +

2n∑
m,m′=1
m′>m

Im[hmm′ ] (qmpm′ − pmqm′) , (A37)

where we used the commutation relations from Eq. (A5). In other words, particle-preserving gate generators are
such that the K matrix is a real linear combination of Paulis of the form 11 ⊗ Ps (corresponding to the first two
sums in Eq. (A36)) and/or Y ⊗ Pa (corresponding to the last sum in Eq. (A36)). This automatically implies that
[Ω,K] = 0. Finally, either ΩK is a real combination of Paulis of the form (iY ⊗ 11M )(11 ⊗ Ps) = iY ⊗ Ps or
(iY ⊗ 11M )(Y ⊗Pa) = i11⊗Pa (both of which are in the symplectic algebra according to Supplemental Proposition 1).
That is, ΩK is anti-Hermitian and the symplectic propagator etΩK is unitary. Hence, these types of gate generators
result in unitary dynamics in phase space.

4. Non-particle-preserving gates

We here show that a family of non-particle-preserving GB gates lead to an imaginary-time evolution at the qubit
level.

Supplemental Proposition 3. When a gate generator is of the form

Ĥ =

M∑
m,m′=1

∆†
mm′ âmâm′ +

M∑
m,m′=1

∆mm′ â†mâ
†
m′ , (A38)

where ∆ is a symmetric matrix, then {Ω,K} = 0, and the propagator etΩK is an imaginary time evolution under the
effective Hamiltonian −ΩK.

Proof. In terms of positions and momenta, we find

Ĥ =
1

2

2n∑
m,m′=1

∆†
mm′ (qm + ipm)(qm′ + ipm′) +

1

2

2n∑
m,m′=1

∆mm′ (qm − ipm)(qm′ − ipm′)

=
1

2

2n∑
m,m′=1

∆†
mm′ (qmqm′ − pmpm′ + iqmpm′ + ipmqm′) +

1

2

2n∑
m,m′=1

∆mm′ (qmqm′ − pmpm′ − iqmpm′ − ipmqm′)

=

2n∑
m,m′=1

Re [∆mm′ ] (qmqm′ − pmpm′) +

2n∑
m,m′=1

Im [∆mm′ ] (qmpm′ + pmqm′) . (A39)

In this case, the K matrix is a real linear combination of Paulis of the form Z ⊗ Ps (corresponding to the first sum
in Eq. (A39)) and/or X ⊗ Ps (corresponding to the second sum in Eq. (A39)). This implies that {Ω,K} = 0. Then,
either ΩK is a real combination of Paulis of the form (iY ⊗ 11M )(Z ⊗ Ps) = X ⊗ Ps or (iY ⊗ 11M )(X ⊗ Ps) = Z ⊗ Ps

(both of which are in the symplectic algebra according to Supplemental Proposition 1). That is, ΩK is Hermitian and
the symplectic propagator etΩK is given by the imaginary-time evolution of the effective gate generator −ΩK.
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Appendix B: From bosonic gates to qubit gates

1. Local gates

• Phase gate: This gate is described by the generator Ĥ = q̂2m + p̂2m in terms of bosonic operators. Therefore
the real symmetric K matrix can be expressed as

K = 2 (|m⟩⟨m|+ |m+M⟩⟨m+M |) = 2 (|0⟩⟨0| ⊗ |m⟩⟨m|+ |1⟩⟨1| ⊗ |m⟩⟨m|) = 211⊗ |m⟩⟨m| . (B1)

The associated generator acting on the qubit picture is ΩK = 2iY ⊗ |m⟩⟨m|, and thus

etΩK =

∞∑
s=0

(tΩK)s

s!
=

∞∑
s=0

(2it Y ⊗ |m⟩⟨m|)s

s!
= 112M + (cos(2t)− 1)11⊗ |m⟩⟨m|+ i sin(2t)Y ⊗ |m⟩⟨m| (B2)

= 11⊗ |m⟩⟨m|+ 11⊗ |m⟩⟨m|+ (cos(2t)− 1)11⊗ |m⟩⟨m|+ i sin(2t)Y ⊗ |m⟩⟨m| (B3)

= 11⊗ |m⟩⟨m|+ (cos(2t))11⊗ |m⟩⟨m|+ i sin(2t)Y ⊗ |m⟩⟨m| (B4)

= 11⊗ |m⟩⟨m|+ e2itY ⊗ |m⟩⟨m| . (B5)

Above we have used the fact that 112M = 11⊗ |m⟩⟨m|+ 11⊗ |m⟩⟨m| where |m⟩⟨m| := 11− |m⟩⟨m| is the projector
onto the orthogonal complement of |m⟩. Hence this gate acts trivially when the state in the register qubits is
|m′⟩ such that m′ ̸= m, while it applies an Ry(4t) rotation on the symplectic qubit otherwise (here we assume

the standard definition Ry(θ) = e−iθY/2). Hence, the associated qubit gate is a SELECT-Ry(4t).

• Beamsplitter: This gate is described by Ĥ = q̂mp̂m′ − q̂m′ p̂m, where m ̸= m′, in bosonic operators. Therefore
the real symmetric K matrix can be expressed as

K = 2 (|m′ +M⟩⟨m|+ |m⟩⟨m′ +M | − |m+M⟩⟨m′| − |m′⟩⟨m+M |) = 2iY ⊗ (|m⟩⟨m′| − |m′⟩⟨m|) . (B6)

Therefore ΩK = 2i11⊗ (i|m⟩⟨m′| − i|m′⟩⟨m|). Here, instead of directly exponentiating this operator and finding
a closed formula (as we did with the phase gate), we will derive a sequence of gates whose combined actions
lead to eΩK .

We begin by noting that ΩK acts trivially on the symplectic qubit. Therefore we focus on the action on the
register qubits, where it corresponds to a y rotation in the subspace spanned by |m⟩ and |m′⟩. We write the
associated classical bitstrings as m = mn · · ·m1, and analogously for m′. We denote the bitstring operation x as
taking the bit-wise negation of each individual bit. We separate the bitstring indices between those where the
bits of m and m′ match, and those where they differ. We call the first set e = {ej}1≤j≤E , such that mej = m′

ej

∀j, and the second set d = {dj}1≤j≤D, such that mdj
= m′

dj
∀j, where E + D = n. We can then factorize

Eq. (B6) to obtain

ΩK = 2i11⊗

 E∏
j=1

|mej ⟩⟨mej |ej · (i|md⟩⟨md| − i|md⟩⟨md|)d

 , (B7)

where the notation |mej ⟩⟨mej |ej indicates a projector on |ej⟩ on qubit ej and identity on the rest, and (i|md⟩⟨md|−
i|md⟩⟨md|)d acts non-trivially on the qubits whose indexes belong in d. In fact, it is a y-rotation in the subspace
spanned by (|md⟩ , |md⟩). We (arbitrarily) choose to map this rotation to the least-significant qubit where the
m and m′ bitstrings differ, that is, on qubit d1. To do so we are going to implement a change of basis using

controlled multi-NOTs, so that |md⟩ → |0⟩ ⊗ |0⟩⊗D−1
and |md⟩ → |1⟩ ⊗ |0⟩⊗D−1

. First, we apply B := X
md1

d1

so that the least-significant qubit matches the previous expression. Then we apply the two following controlled
multi-NOT:

C0 := CTRL(|0⟩⟨0|d1
)

D∏
j=2

X
mdj

dj
, C1 := CTRL(|1⟩⟨1|d1

)

D∏
j=2

X
mdj

dj
, (B8)

where CTRL(Π)Uk is the gate U applied to qubits from set k controlled on the single-qubit local projector
Π, for example, CTRL(|1⟩⟨1|5)X1 is an X-gate on qubit 1 controlled by the qubit 5. Then we can apply the
SELECT-Ry gate with a target on the qubit whose index is d1, whose gate generator is as follows.

SY :=

E∏
j=1

|mej ⟩⟨mej |ej
D∏

j=2

|0⟩⟨0|dj
Yd1

. (B9)
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Finally, we apply the Hermitian conjugate of the change of basis B†C†
0C

†
1 = BC0C1 to return to our original

basis. Overall the transformation goes as follows:

e2it11⊗i(|m⟩⟨m′|−|m′⟩⟨m|) = e2it11⊗C1C0BSY BC0C1 = 11⊗ C1C0Be
2itSYBC0C1 = (B10)

11⊗ (C1C0B)SELECT

 E∏
j=1

|mej ⟩⟨mej |ej
D∏

j=2

|0⟩⟨0|dj

Ry(4t)d1(BC0C1) . (B11)

where SELECT(Π)Uk is the gate U applied to qubits from set k controlled on the projector Π, for example,
SELECT(|0⟩⟨0|3|1⟩⟨1|5)X1 is an X-gate on qubit 1 controlled by the qubit 5 and 0-controlled by qubit 3.

• Squeezing Gate: This gate is described by the generator Ĥ = ±(p̂mq̂m+ q̂mp̂m). Therefore the real symmetric
K matrix can be expressed as

K = 2(|m⟩⟨m+M |+ |m+M⟩⟨m|) = 2(|0⟩⟨1|+ |1⟩⟨0|)⊗ |m⟩⟨m| = 2X ⊗ |m⟩⟨m| . (B12)

The associated qubit generator is ΩK = ±2Z ⊗ |m⟩⟨m|. It is an imaginary time evolution e±2tZ⊗|m⟩⟨m| =

e∓it′2Z⊗|m⟩⟨m|, where t′ = it, under the effective Hamiltonian ΩK. For small t we have e±2tZ⊗|m⟩⟨m| = 11 ±
2tZ ⊗ |m⟩⟨m|+O(t2). And therefore we want the state |ẑ⟩ to be transformed (up to normalization) as

|ẑ⟩ → (1± 2t)⟨q̂m⟩ |0⟩ ⊗ |m⟩+ (1∓ 2t)⟨p̂m⟩ |1⟩ ⊗ |m⟩+
∑

m′ ̸=m

⟨q̂m′⟩ |0⟩ ⊗ |m′⟩+ ⟨p̂m′⟩ |1⟩ ⊗ |m′⟩ . (B13)

This can be implemented by a heralded protocol as a Linear Combination of Unitaries (LCU) of the form

a11 + b(11⊗ |m⟩⟨m| − 11⊗ |m⟩⟨m|) + c(Z ⊗ |m⟩⟨m|+ 11⊗ |m⟩⟨m|) + d(−Z ⊗ |m⟩⟨m|+ 11⊗ |m⟩⟨m|) , (B14)

with a+ b+ c+ d = 1 and a, b, c, d ≥ 0. Applied to the state |ẑ⟩ the above LCU yields the following state

(a+ b+ c− d)⟨q̂m⟩ |0⟩ |m⟩+ (a+ b− c+ d)⟨p̂m⟩ |1⟩ |m⟩+ (a− b+ c+ d)
∑

m′ ̸=m

⟨q̂m′⟩ |0⟩
∣∣m′〉+ ⟨p̂m′⟩ |1⟩

∣∣m′〉 . (B15)

We want this state to be proportional to the one in Eq. (B13) by a factor γ < 1. We thus need to solve the
linear system of equations 

a+ b+ c+ d = 1

a+ b+ c− d = γ(1± 2t)

a+ b− c+ d = γ(1∓ 2t)

a− b+ c+ d = γ

, (B16)

whose solution is

a =
3γ − 1

2
, b =

1− γ

2
, c =

1− γ ± 2γt

2
, d =

1− γ ∓ 2γt

2
. (B17)

Since c and d need to be larger than 0,

γ ≤ 1

1∓ 2t
, γ ≤ 1

1± 2t
. (B18)

In order to maximize the probability of success we should choose the maximum γ that satisfies these constraints.
Depending on the sign of Ĥ one or the other inequalities above is saturated. Therefore we choose γ = 1/(1+2t).
This yields

a =
1− t

1 + 2t
, b =

t

1 + 2t
, c =

t± t

1 + 2t
, d =

t∓ t

1 + 2t
. (B19)

Let us calculate the probability of success as the norm of the state (B15) for small t,

1

(1 + 2t)2
(
(1± 2t)2⟨qm⟩2 + (1∓ 2t)2⟨pm⟩2 + (1− ⟨qm⟩2 − ⟨pm⟩2)

)
≈ 1± 4t⟨qm⟩2 ∓ 4t⟨pm⟩2

1 + 4t
. (B20)
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When Ĥ = p̂mq̂m + q̂mp̂m, we can see that the best case is ⟨qm⟩ = 1 and ⟨pm⟩ = 0, which yields a probability
of failure of 0, and the worst case is ⟨pm⟩ = 1, which yields a probability of failure of ∼ 8t.

For a squeezing gate, we are given a bitstring description of the mode to which it applies, and the squeezing
parameter t. This allows us to compute (a, b, c, d) as per the above equations. In practice, we add two ancillary

qubits initialized to zero. We design a unitary U such that |00⟩ U−→
√
a |00⟩ +

√
b |01⟩ +

√
c |10⟩ +

√
d |11⟩, and

apply it to the ancillary register. Then we apply the SELECT-unitaries as per the LCU, derived above. As
one unitary is the identity, we do not need to apply this gate, and as either c or d is zero we do not need to
apply the corresponding gate either. Each SELECT gate also has controls on the register to select the mode it
is being applied to). If the gate generator Ĥ has a positive sign, then d = 0, and we apply successively:

B := SELECT(|01⟩⟨01|a)(eiπ)0SELECT(|m⟩⟨m|)r (B21)

C := SELECT(|10⟩⟨10|a)Z0SELECT(|m⟩⟨m|)r . (B22)

We denote Oa/0/r operations applied to the ancillary/ symplectic/ register qubit(s). We then apply the hermitian

conjugate of the state preparation U†, and post-select those states where the ancillary qubits are measured to
be the |00⟩ state. Overall the transformation is |00⟩⟨00|aU†

aBCUa|00⟩⟨00|a.

• Displacement gate: Displacement gates cannot be implemented as qubit gates on a single copy of the input
states. Indeed displacement implies adding a number to an amplitude, whereas unitaries acting on a single copy
of a state can only multiply amplitudes. While access to multiple copies could in principle be used to implement
non-linear transformations [24], we do not consider this setting here.

2. Global bit-structured gates

In this section, we present a list of global bosonic gates that can be easily translated to qubit gates. In particular,
the local interferometric gates map to global qubit gates composed of multi-qubit controlled operations. To mitigate
this issue, we can combine local GB gates into global ones, such that their qubit counterparts require fewer multi-qubit
controls. We will henceforth refer to the GB gates which effectively translate into local qubit operations as global
bit-structured Gaussian gates.

• Phase gate: It is defined with a binary condition describing which modes the same local gate is applied to. It
is given as pairs of indices and binary values. For example, ((1, 1), (3, 0)) translates into the binary condition
m1m3 = 1, which means that the least significant bit should be 1 and the third bit should be 0. For 23 modes
this implies that the rotation gates apply to modes 001 = 1 and 011 = 3. In the corresponding qubit gate, this
bitstring condition directly translates into a SELECT on the register. We denote these gates as P (((kj , bj))j , t).
Using the same notations as for the local gates, and using 0 as the index for the symplectic qubit, for the
example m1m3 = 1 we find

P (((1, 1)(3, 0)), t) → SELECT (|1⟩⟨1|1|0⟩⟨0|3)Ry(4t)0 . (B23)

The shorter the bitstring condition of the phase gate is, the more local the operation is in qubits (fewer controls
in the SELECT) and the less local it is in the interferometer (more modes are acted upon non-trivially). In the
case no bit condition is given, the same rotation gate is applied to all modes and therefore it is simply an Ry

on the symplectic qubit.

• Global Beamsplitter: It is also defined with a binary condition describing which modes the same local gate
is applied to. But as a beamsplitter is a two-mode gate, an additional index l is given to determine how the
modes are paired. The l-th bit cannot be part of the bitstring condition. Each mode whose index satisfies the
bitstring condition is paired with the one whose index has all bits in common but the l-th one.

For example, the global bit-structured beamsplitter on 23 modes described by ((3, 0)), l = 1 is applied to the
second half of the modes (m3 = 1), pairing even modes 0m20 with odd modes 0m21. Therefore it pairs modes
(000, 001) and (010, 011). We denote these gates as BS(((kj , bj))j , l, t). The example gate may then be written
as

BS(((3, 0)), 1, t) → CTRL (|0⟩⟨0|3)Ry(4t)1 . (B24)

Note that this particular example is of interest because it corresponds to the 0-controlled-Ry gate that is used
extensively in the BQP-completeness proof.



15

• Squeezing gate: The modes to which the squeezing applies are also described as a bitstring condition. It is
the same as for the rotation gates but with the squeezing apparatus on the ancillary register instead of the Ry

on the symplectic qubit. We denote them as S(((kj , bj))j , r).

Notice that when the binary condition applies to all bits, then we retrieve one local gate from the previous section.

Appendix C: BQP-completeness

Here we provide proof that Problem 1 is BQP-complete. Let us first recall Definition 1 and Problem 1.

Definition 1 (Bit-structured interferometer). A bit-structured interferometer acting on 2n nodes consists of L global
beamsplitters, such that each global beamsplitter acts on 2n−1 modes. A global beamsplitter is specified by two natural
numbers, k ̸= l, between 1 and n. The global beamsplitter then acts on all the modes with indices {m} such that their
k-th bit is equal to 0, by applying local beamsplitters between modes with indices m,m′ that only differ in their l-th
bit.

Problem 1. Consider a bit-structured interferometer (see Definition 1) acting on 2n modes with L ∈ O(poly(n)),
and an input state such that the first mode is displaced in position by a real constant x while the state of the remaining
modes is the vacuum. Then, decide whether the expectation value of the position on the first mode at the output of
the interferometer is

1. ⟨q̂1⟩ >
2

3
x , or 2. ⟨q̂1⟩ <

1

3
x ,

given the promise that either one or the other is true.

We prove our main result by showing that Problem 1 reduces to a BQP-complete problem and vice-versa.

Theorem 1. Problem 1 is BQP-complete.

Proof. We recall the following problem, known to be BQP-complete.

Problem 2. Given a uniform family of quantum circuits on n qubits with J ∈ O(poly(n)) local gates {Uj}1≤j≤J

taken from a universal gate set S, which are applied to the state |0⟩⊗n
to produce |ψ⟩ =

∏
j Uj |0⟩⊗n

, decide whether

1. |ψ⟩ has an overlap larger than 2/3 with |0⟩⊗n
or 2. |ψ⟩ has an overlap smaller than 1/3 with |0⟩⊗n

,

given the promise that either one or the other is true.

Inclusion in BQP

First, we prove that Problem 1 is in BQP by showing that Problem 1 can be efficiently reduced to Problem 2. We
are given access to an algorithm to solve Problem 2 and a bit-structured interferometer composed of polynomially
many layers of global beamsplitters. The initial state in Problem 1 is a tensor product of coherent states such that
⟨q̂m⟩ = xδm=1 and ⟨p̂m⟩ = 0. We consider a quantum circuit over n+1 qubits, composed of the symplectic qubit and
the n register qubits, as explained in the main text. The initial coherent state then corresponds to an input state
(1, 0, . . . , 0)T = |0⟩⊗n+1

in the qubit picture.
We recall that a uniform family of quantum circuits is a set of circuits {Cn} such that a classical Turing machine

can produce a description of Cn on input n in time polynomial in n. In our case, the classical description of the
beamsplitter gates is a pair of natural numbers smaller or equal than n for a problem of size n. As such, this
description can be efficiently translated to a circuit description using the dictionary we provided in Appendix B, as
we know that a single layer of global beamsplitters can be mapped to a 0-controlled-Ry gate on the register (see
Definition 1). Therefore, we can construct a uniform family of quantum circuits implementing the action in phase
space of bit-structured interferometers over 2n modes.
We use access to the solver of Problem 2 with the polynomial-size sequence of 0-controlled-Ry gates corresponding

to the global beamsplitters to determine whether the output state has an overlap with |0⟩⊗n+1
that is > 2/3 or < 1/3.

This directly answers the question of whether the final coherent state has a position expectation value for the first
mode > 2x/3 or < x/3. We have therefore proved that Problem 1 reduces to Problem 2, implying that it is in BQP.

As a side note, in Appendix B we show that a broader class of particle-preserving gates can be simulated efficiently
by a quantum computer. Indeed we have mapped each local and bit-structured global interferometric gate to a
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constant number of multi-controlled qubit gates. Each of the multi-controlled gates can be decomposed into O(n)
two-qubit gates. Therefore any interferometer made of a polynomial number of local or bit-structured global gates
over 2n modes can be simulated efficiently by a polynomial-depth circuit acting on (n+ 1) qubits.

BQP hardness

Second, we prove that Problem 1 is BQP-Hard. To do so, we show that Problem 2 efficiently reduces to Problem 1.
As for the inclusion proof, the reduction is based on the fact that the beamsplitters composing a structured inter-
ferometer as in Definition 1 translate to 0-controlled-Ry rotations between all pairs of register qubits (as proven in
Appendix B). The key point for the hardness is that 0-controlled-Ry gates constitute a universal gate set for quantum
computation, as stated in the following Lemma (which is a restatement of a result in [21]).

Lemma 1. The set of 0-controlled-Ry(θ) rotation gates with control qubit k and target qubit l, with 1 ≤ k ̸= l ≤ n+2

and θ ∈ [0, 2π], applied to the initial state |0⟩⊗n+2
, is universal for quantum computation on n qubits.

Proof. Let us suppose that we have an n-qubit quantum state

|ψ⟩ =
2n−1∑
r=0

are
iθr |r⟩ , (C1)

where the ar and θr are real numbers, together with the following universal gate set,

Rz(τ) =

(
eiτ 0
0 1

)
, Ry(τ) =

(
cos(τ/2) − sin(τ/2)
sin(τ/2) cos(τ/2)

)
, F

(π
2

)
=

 0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (C2)

where our Rz(τ) is equivalent to the standard one, as they only differ by a global phase and a relabeling τ → −τ .
Moreover, our F (π/2) gate can be readily mapped to that in the universal set from Ref. [21], by using single-qubit X
gates. Since Rz(τ) and Ry(τ) can generate any single-qubit gate, both gate sets are equivalent and hence universal.
Let us furthermore suppose that we have an (n+ 1)-qubit quantum state with real amplitudes,

|ϕ⟩ =
2n−1∑
r=0

ar cos θr |r⟩ |0⟩+ ar sin θr |r⟩ |1⟩ . (C3)

Clearly, the states in Eqs. (C1) and (C3) contain the same information. We refer to the extra qubit in |ϕ⟩ as the ancilla.
The action of the universal gates (C2) on |ψ⟩, such that |ψ⟩ → |ψ′⟩, will then induce an action |ϕ⟩ → |ϕ′⟩. We need
to show that this induced action can be efficiently implemented using controlled-Ry rotations that act non-trivially
when the control qubit is in the |0⟩ state.
We begin with the Rz gate, whose action on a single-qubit state is

Rz(r0e
iθ0 |0⟩+ r1e

iθ1 |1⟩) = r0e
i(θ0+τ) |0⟩+ r1e

iθ1 |1⟩ . (C4)

The induced evolution is

r0 cos θ0 |0⟩ |0⟩+ r0 sin θ0 |0⟩ |1⟩+ r1 cos θ1 |1⟩ |0⟩+ r1 sin θ1 |1⟩ |1⟩
↓

r0 cos(θ0 + τ) |0⟩ |0⟩+ r0 sin(θ0 + τ) |0⟩ |1⟩+ r1 cos θ1 |1⟩ |0⟩+ r1 sin θ1 |1⟩ |1⟩ . (C5)

This can be achieved by performing a 0-controlled-Ry(τ) gate where the control is the first qubit (i.e., the qubit on
which Rz(τ) would act) and the target is the ancilla.
Next, let us look at the action of Ry(τ). To implement this gate, we simply need an additional auxiliary qubit in

the |0⟩ state and to apply a 0-controlled-Ry gate conditioned on this extra qubit.
Finally, we have the F

(
π
2

)
gate, whose action on a two-qubit state is given by

r0e
iθ0 |00⟩+ r1e

iθ1 |01⟩+ r2e
iθ2 |10⟩+ r3e

iθ3 |11⟩
↓

r1e
iθ1 |00⟩ − r0e

iθ0 |01⟩+ r2e
iθ2 |10⟩+ r3e

iθ3 |11⟩ . (C6)
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The corresponding induced action is

r0 cos θ0 |000⟩+ r0 sin θ0 |001⟩+ r1 cos θ1 |010⟩+ r1 sin θ1 |011⟩+
r2 cos θ2 |100⟩+ r2 sin θ2 |101⟩+ r3 cos θ3 |110⟩+ r3 sin θ3 |111⟩

↓
r1 cos θ1 |000⟩+ r1 sin θ1 |001⟩ − r0 cos θ0 |010⟩ − r0 sin θ0 |011⟩+
r2 cos θ2 |100⟩+ r2 sin θ2 |101⟩+ r3 cos θ3 |110⟩+ r3 sin θ3 |111⟩ . (C7)

The previous can be achieved by simply applying a 0-controlled-Ry(π) in the first two qubits (i.e. the ancilla is not
necessary). Therefore, we conclude that the set of 0 is universal for quantum computation, given the initial state

|0⟩⊗n+2
.

We are given a circuit composed of a polynomial number of 0-controlled-Ry gates. We are also given access to a
solver for Problem 1. We add a qubit on top of the given circuit which is acted trivially upon, and consider it as the
symplectic qubit. We query the given solver with the sequence of global bit-structured beamsplitters corresponding
to the sequence of 0-controlled-Ry gates as input. Similarly to the inclusion proof, because the input state is the
all-zero state, the reduction directly follows. We conclude that Problem 1 is BQP-complete.

Appendix D: From unitary quantum circuits to interferometers

1. Separating real and imaginary parts of the amplitudes of a quantum state

Consider a unitary quantum circuit on n qubits. Such a circuit is applied to a complex state on n qubits of the
following form

|ψ⟩ =
2n−1∑
r=0

(ar + bri) |r⟩ . (D1)

Adding one qubit (as the left-most in the tensor product) which we call the symplectic qubit for reasons that will
become clear later, we can define the real-valued state over n+ 1 qubits.

|ϕ⟩ =
2n−1∑
r=0

ar |0⟩ |r⟩+ br |1⟩ |r⟩ . (D2)

First, we recall that a set of universal one-qubit gates, together with any entangling gate forms a universal set.
We can use Rz and Ry gates to generate any Rx gate we wish, and thus Rz and Ry form a universal gate set for
unitaries. Therefore together with CRy, they form a universal gate set for unitaries on n qubits. This yields the
following lemma.

Lemma 2. The set of gates {Rz,Ry,CRy} is universal.

We are going to prove that this universal set of gates {Ry,Rz,CRy} for unitary circuits can be translated to a
specific set of orthogonal gates on n+1 qubits. It is easy to see that for any real gate, such as Ry, the gate is simply
applied to the register.

Ry(τ) =

(
cos(τ/2) − sin(τ/2)
sin(τ/2) cos(τ/2)

)
→ 11⊗Ry(τ/2) =

cos(τ/2) − sin(τ/2) 0 0
sin(τ/2) cos(τ/2) 0 0

0 0 cos(τ/2) − sin(τ/2)
0 0 sin(τ/2) cos(τ/2)

 = exp(−iτ11⊗Y/2).

(D3)
This is also true for controlled-Ry, which yields the same controlled-Ry on the register

CkRyl(τ/2) → 11⊗ CkRyl(τ/2) = exp(−iτ11⊗ |1⟩⟨1|kYl/2). (D4)

For complex gates, the symplectic qubit is involved in the corresponding orthogonal gate. We show a derivation for
Rz below,

Rz(τ/2) |a+ ic, b+ id⟩ =
(
1 0
0 cos(τ/2) + i sin(τ/2)

)(
a+ ic
b+ id

)
=

(
a+ ic

(cos(τ/2)b+ sin(τ/2)d) + i(− cos(τ/2)d+ sin(τ/2)b)

)
.

(D5)
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Finally we conclude that Rz(τ/2) → C1RY0(τ/2) = exp(−iτY ⊗ |k⟩⟨k|/2)

C1RY0(τ/2) |a, b, c, d⟩ →

1 0 0 0
0 cos(τ/2) 0 − sin(τ/2)
0 0 1 0
0 sin(τ/2) 0 cos(τ/2)


abc
d

 . (D6)

We take note that for all of the gates in a universal set, we have derived an orthogonal gate that belongs to the unitary
symplectic algebra as in Appendix A 2, with the generators of 11 ⊗ Ry ∈ {i11 ⊗ Pa}, those of 11 ⊗ CRy ∈ {i11 ⊗ Pa}
and those of Rz → CkRy0 ∈ {iY ⊗ Ps}.

2. Unitary gates to global bit-structured interferometric gates

We now show that each of the gates derived in the previous section maps in turn to a global bit-structured
interferometric gate, as follows.

• An Rz gate on qubit k gate is mapped to a CkRy0 gate in the symplectic picture. Its corresponding GB gate
is the phase gate on half of the modes, whose k-th bit of the index is 1. Using notation from Appendix B it is
P((k, 1)).

• An Ry gate on qubit k gate is mapped to a Ryk gate in the symplectic picture. Its corresponding GB gate is the
beamsplitter where all modes are paired such that their index differs only by their k-th qubit. Using notation
from Appendix B it is BS(∅, k).

• A CRy gate controlled on qubit l and target on qubit k gate is mapped to a ClRyk gate in the symplectic
picture. Its corresponding GB gate is the beamsplitter where all the modes whose l-th bit of the index is 1 are
paired such that their indices only differ by their k-th qubit. Using notation from Appendix B it is BS((l, 1), k).

We summarize the previous equivalences in the below table.

Unitary gate Symplectic gate GB gate
Rzk CkRy0 P((k, 1))
Ryk 11⊗Ryk BS(∅, k)

ClRyk 11⊗ ClRyk BS((l, 1), k)

Table I. Mapping between unitary, symplectic and bosonic gates.

3. From unitary circuits to interferometers

In this subsection, we show how a unitary qubit computation can be mapped to the evolution by an interferometer
of the first moments of expectation values of quadrature operators of coherent states over exponentially many modes.

Gates. Based on the derivations above, given a unitary on n qubits composed of L gates from the universal
set {Rz,Ry,CRy}, we can map it to an equivalent interferometer on 2n modes composed of exactly L global bit-
structured interferometric gates (global bit-structured beamsplitters and global bit-structured phase gates). In that
picture, the k-th mode tracks the amplitude of the qubit state on the computational-basis state |m⟩ with the position
as the real part and the momentum as the imaginary part.

State preparation. To prepare a sparse qubit state, we start from the vacuum, and each non-zero entry a+ ib is
position displaced by a and momentum displaced by b for the corresponding mode. Note we have a degree of freedom
to upload a state |ψ⟩ onto our modes up to a multiplicative coefficient. For example the state ((1 + i) |0⟩ −

√
2 |1⟩)/2

can be prepared as q0 = 1, p0 = 1, q1 =
√
2 but also as q0 = 10, p0 = 10, q1 = 10

√
2. We use the expectation value

of the sum of the number operator for each mode ⟨n̂m⟩ = 1
2 ⟨
∑

m q̂2m + p̂2m⟩ to characterize this degree of freedom
when encoding qubit states into bosonic states. This expectation value also corresponds to the number of photons
P =

∑
m⟨n̂m⟩ in the circuit. We recall that coherent states are eigenstates of the anihilation operator â |α⟩ = α |α⟩,

therefore ⟨n̂⟩ = ⟨â†â⟩ = |α|2 = 1
2

(
⟨q̂⟩2 + ⟨p̂⟩2

)
.

Measurements. We consider the photon counting measurement and show that it corresponds to sampling bit-
strings from the qubit circuit. The probability of detecting p photons on the m-th mode is a Poissonian distribution
Pr(p) = exp(−em)epm/p! with an average equal to the energy of the mode em = ⟨n̂m⟩. We recall that the Poissonian
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distribution expresses the probability of a given number of events occurring when these events occur independently at
a known constant mean rate, which is in that case em. Therefore considering that a number of photons P =

∑
m⟨n̂m⟩

has been injected at the beginning of the interferometer we should get P photons at the output, distributed according
to a compound Poissonian distribution where each mode has a rate of occurrence em. Effectively we are getting P
bitstring samples according to the distribution [e0, e1, · · · , em]. Recalling that em = 1

2

(
⟨q̂⟩2 + ⟨p̂⟩2

)
, which is effec-

tively proportional to the probability of sampling the bitstring m at the output of the qubit circuit. The more energy
injected at the beginning of the circuit the more samples we get.

Now we consider homodyne detection which measures in the basis of p̂, q̂ or any combination of the two x̂ =
cos θq̂ + sin θp̂. This yields a Gaussian distribution centered around ⟨x̂⟩, and for coherent states, with variance 1/2.
Effectively this is equivalent to doing a Hadamard test to access either the real part or the imaginary part of the
amplitude of a state on the computational basis, which is affected by shot noise. Increasing the energy at the input of
the interferometers increases the precision with which we can measure the real and imaginary parts of the amplitude
on |m⟩.
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