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We present the first ab initio calculation at physical quark masses of scattering amplitudes de-
scribing the lightest pseudoscalar mesons interacting via the strong force in the vector channel.
Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived
resonances, the ρ(770) and K∗(892), which manifest as complex energy poles in ππ and Kπ scatter-
ing amplitudes, respectively. The calculation proceeds by first computing the finite-volume energy
spectrum of the two-hadron systems, and then determining the amplitudes from the energies us-
ing the Lüscher formalism. The error budget includes a data-driven systematic error, obtained
by scanning possible fit ranges and fit models to extract the spectrum from Euclidean correlators,
as well as the scattering amplitudes from the latter. The final results, obtained by analytically
continuing multiple parameterizations into the complex energy plane, are Mρ = 796(5)(50) MeV,
Γρ = 192(10)(31) MeV, MK∗ = 893(2)(54) MeV and ΓK∗ = 51(2)(11) MeV, where the subscript
indicates the resonance and M and Γ stand for the mass and width, respectively, and where the
first bracket indicates the statistical and the second bracket the systematic uncertainty.

Introduction
Over the last decade, precision has become increasingly

crucial in particle-physics investigations of deviations be-
tween theory and experiment. In this vein, it is essential
to reliably incorporate the strong force, defined by the
theory of quantum chromodynamics (QCD), in all such
predictions. In particular, resonances such as the ρ(770)
and K∗(892), play an important role in the search for
new physics beyond the standard model, because their
detailed properties affect a wide range of observables,
from the anomalous magnetic moment of the muon [1]
to heavy flavor weak decays that could reveal new CP-
violating physics [2].

This letter presents a state-of-the-art calculation of the
properties of the aforementioned two resonances, each of
which is clearly visible in experimental cross-sections of
their corresponding decay products: ππ → ρ(770) → ππ
(isospin I = 1) and Kπ → K∗(892) → Kπ (isospin
I = 1/2) [3–6]. More precisely, such cross sections are
used to extract partial-wave projected scattering ampli-
tudes, where the resonances can be unambiguously char-
acterized as poles in the complex energy plane. In this
work, we extract the same partial-wave amplitudes and
poles from a first-principles computation in the frame-
work of lattice QCD. The only inputs are the QCD La-
grangian and the masses of pions and kaons as well as the
omega baryon mass to set the fundamental energy scale
of the theory.

In lattice QCD, the path integral defining the theory
is evaluated numerically using Monte Carlo importance
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sampling. This is only feasible when the theory is de-
fined in a discretized finite volume, with imaginary (Eu-
clidean) time. As a result, all extracted correlation func-
tions carry these modifications. As we detail in the fol-
lowing, it is possible to reliably extract finite-volume en-
ergies from such correlators which, while still depending
on the lattice spacing and finite volume, do not carry any
effects of the metric signature. In a second step, following
the seminal work of Lüscher and its many extensions [7–
18], these finite-volume energies can be related to the
ππ → ππ and Kπ → Kπ partial wave amplitudes.

A number of previous works have applied this work-
flow to investigate both the ρ(770) [19–33] and the
K∗(829) [26, 34–39]. The calculation presented here is
the first to directly use a physical implementation of both
the light and strange quark masses, both in the defini-
tion of explicit quarks within the scattering hadrons (va-
lence quarks) and the quark anti-quark pairs arising as
quantum fluctuations (sea quarks). It is additionally the
first study of both resonances that uses the domain-wall
quark discretization [40–42], which is known to have de-
sirable chiral symmetry properties, making it easier to
reach physical masses without losing stability in the cal-
culation.

The rest of this letter is organized as follows: Af-
ter briefly introducing our lattice setup, we describe in
detail how we have implemented the workflow outlined
above. The first step is the spectrum determination,
in which we extract finite-volume energies for the chan-
nels of interest. Subsequently, we present our phase-
shift determination and explain our data-analysis pro-
cedure, designed to capture both the systematic and sta-
tistical uncertainties present in our data. By analytically
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FIG. 1: Finite-volume energy spectra extracted in this work for K∗(892) (left panel) and ρ(770) (right panel)
quantum numbers and all irreducible representations considered. The span of the black rectangles represents
statistical uncertainty and that of the colorful lighter ones is a data-driven systematic uncertainty determined from
model averaging, as described in the main text. Relevant thresholds are indicated with grey lines.

continuing the phase shifts, we compute the resonance
poles in the complex plane, which comprise the main
results of this work. We close with some discussion
and outlook concerning the future of scattering com-
putations using numerical lattice QCD. This letter is ac-
companied by a more detailed manuscript [43]. The data
generated for this project will be made available at a later
stage.

Lattice setup
The computation was performed on a single

RBC/UKQCD domain-wall-fermion (DWF) ensemble
with geometry (L/a)3 × (T/a) = 483 × 96 and masses
mπ = 138. 5(2) MeV and mK = 498. 9(4) MeV, where
a is the lattice spacing, T the temporal extent, and L
the spatial extent. The inverse lattice spacing on this
ensemble has been previously determined to be a−1 =
1. 7295(38) GeV [44]. In all cases, values with physical
units are determined by requiring the omega baryon mass
to have its physical value, as is described in detail in
Ref. [44], where many other technical details of the en-
semble are also given.1

1 The exact values ofmπ andmK are new to this work, determined
by combining our results for amπ and amK with the previously
determined lattice spacing.

The key primary quantities determined on this ensem-
ble are Euclidean two-point correlation functions of the
form

Cij(t) ≡
1

Nts

∑
ts

⟨Oi(t + ts)Oj(ts)
†⟩ , (1)

where Oi(t) is an operator, described in more detail be-
low. The correlation functions are averaged over 90 gauge
configurations, Nts = 96 is the number of time slices, and
the sum runs over all possible values, giving an additional
average that takes advantage of the periodic boundary
conditions in time to improve the statistical uncertainty.

Spectrum determination
Any operator with a given set of quantum numbers will

generically have nonzero overlap with all finite-volume
states sharing those quantum numbers. Relevant exam-
ples for this calculation are the vector bilinears:

Oρ(P, t) = a3
∑
x

e−iP·xd̄(x)γu(x) , (2)

OK∗(P, t) = a3
∑
x

e−iP·xs̄(x)γu(x) , (3)

where x = (t,x) is a Euclidean four-vector and each
operator is projected to definite spatial momentum P,
as shown. The total momentum satisfies P = (2π/L)d
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where d ∈ Z3 is an integer three-vector. Here we
have also introduced the Dirac spinor quark fields
u(x), d(x), s(x) as well as the spatial-component Dirac
matrices γ = (γx, γy, γz). In the infinite-volume con-
text, the Dirac matrix ensures that the operator trans-
forms as a component of a spatial three-vector. In the
finite volume, this can be related to a definite row, r, in
an irreducible representation (irrep), Λ, of the relevant
finite-volume symmetry group. The latter depends on
the value of P: for P = 0, the group is the 48-element oc-
tahedral group with parity, and for non-zero momenta a
subgroup thereof. Details of the finite-volume group the-
ory and corresponding operator construction are given in
Refs. [45–51].

In addition to the vector bilinears, we use non-local
two-bilinear interpolators of the form

OKπ(x, y) = −K+(x)π0(y) +
√

2K0(x)π+(y) , (4)

Oππ(x, y) = π+(x)π0(y) − π0(x)π+(y) , (5)

where each local field on the right-hand side is a
pseudoscalar quark bilinear with the quantum num-
bers of a kaon or pion, as indicated by the label,
e.g. K+(x) = s(x)γ5u(x). We momentum-project these

OMM ′(p1,p2, t) = a6
∑
x,y

e−i(p1·x+p2·y)OMM ′(x, y) ,

(6)

where MM ′ ∈ {Kπ, ππ}, x = (t,x), y = (t,y). The
individual three-vectors, x and y, are projected to def-
inite spatial momentum in the same way as in Eqs. (2)
and (3). The resulting functions of two spatial momenta
are then combined to form operators with definite total
momentum P, as well as a definite irrep Λ and row r.

This procedure leads to a set of interpolators with def-
inite flavor, P, Λ, and r, a set of quantum numbers
that we collectively denote by Q. Such interpolators
will generically overlap all states with the same Q, and
to obtain operators with improved overlap on a specific
state, one requires a matrix of correlation functions, con-
structed from a set of operators as shown in Eq. (1). In
the following, this is denoted by CQ(t) to emphasize that
it carries the same definite quantum numbers.

Such matrices can be efficiently evaluated using the
method of distillation [52, 53], which has been success-
fully applied in many lattice computations of resonance
scattering processes [22, 24, 25, 27, 29, 30, 35–37]. In this
work we use exact distillation, taking advantage of the
open-source implementation available in the Grid and
Hadrons libraries [54, 55].

To obtain the finite-volume energy spectrum, the final
step is to solve a generalized eigenvalue problem (GEVP)
given by [56–58]

CQ(t)uQ
n (t) = λQ

n (t)CQ(t0)uQ
n (t) , (7)

where n indexes the solution. The GEVP eigenvalues are
known to behave like

λQ
n (t) = ZQ

n exp
(
−EQ

n t
) [

1 + O(e−∆Q
n t)

]
, (8)

where EQ
n denotes a finite-volume energy level in the

spectrum and ∆Q
n > 0 encodes the residual excited state

contamination.2. We obtain numerical estimates of EQ
n

by fitting a single exponential model to the λQ
n (t) data

for sufficiently large t.
In this work, we consider five different values of

spatial momentum in the finite-volume frame (d2 =
P2(L/(2π))2 ∈ {0, 1, 2, 3, 4}), which are useful as they ef-
fectively change the finite-volume geometry via a Lorentz
contraction, leading to additional constraints on the scat-
tering amplitudes. As shown in Fig. 1, we are able to re-
liably extract a total of 13 finite-volume energies across 6
irreps for the Kπ scattering analysis. For the ππ analysis,
we extract 21 finite-volume energies across 10 irreps.

Phase-shift determination
In the case that only a single flavor channel is relevant,

the partial-wave projected scattering amplitude t(ℓ)(p)
can be expressed in terms of the scattering phase shift
δℓ(p) via

tℓ(p) =
1

cot δℓ(p) − i
, (9)

where p is the magnitude of the center-of-mass frame
momentum of one of the scatterers and ℓ denotes the
orbital angular momentum. In the present case, we are
interested in ℓ = 1.

Lüscher’s formalism (and generalizations) [7–18] allows
one to extract the scattering phase shift from the finite-
volume energies. In the case where the ℓ = 3 scattering
phase shift is negligible, the general relation reduces to a
simple algebraic expression

δ1(pQn ) = nπ − ϕ[P,Λ](pQn ;L,m1,m2) , (10)

where pQn is related to the extracted finite-volume energy
via√

(EQ
n )2 −P2 =

√
m2

1 + (pQn )2 +
√
m2

2 + (pQn )2 . (11)

Here ϕ[P,Λ] is a geometric function (depending on the to-
tal momentum and the irrep: P,Λ), which can be readily
computed to high precision, and m1,m2 ∈ {mπ,mK} are
the masses of the hadrons in the relevant scattering pro-
cess.

Though the single-channel expression gives a direct de-
termination of δ1 for each energy, we prefer to constrain

2 See also the discussion in Ref. [59].
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FIG. 2: Left panel: Results for the scattering phase shift for Kπ → Kπ and ππ → ππ (colorful), where the bands
represent the uncertainties from statistical and data-driven systematic sources and do not include other systematic
errors, together with experimental phase-shift data (gray) [3–6]. Right panel: Resonance pole positions extracted
from the second Riemann sheet, with statistical and data-driven systematics (colorful, larger error caps), and the
other estimated systematics (colorful, fainter, smaller error caps) dominated by a conservative estimation of
discretization effects due to the use of a single lattice spacing. In each case, all uncertainties were added in
quadrature. The PDG averages (gray) come from unitarized chiral perturbation theory and dispersive analysis
applied to experimental data [60–63].

the curve by fitting various models to the full data set.
One advantage is that this allows analytic continuation to
the complex plane, to determine the resonance pole po-
sition. A second is that fit quality can be assessed across
the entire workflow, e.g. by examining how the quality of
a given phase shift fit depends on the time ranges used
to determine the energies.

We denote a particular phase-shift model, with label m,
by the function δm1 (p;αm), where αm is a vector of model
parameters. Using this in Eq. (10) allows one to predict
a set of model energies, denoted by {EQ,m

n (αm)}. These
can be combined with numerically determined energies
{EQ

n } to form a correlated chi-squared function χ2
m(αm),

which can be minimized with respect to αm to determine
the best-fit model parameters: α⋆

m.

A key aspect of this work is a data-driven determina-
tion of the systematic uncertainty of α⋆

m. This is achieved
as follows: First, we assign an Akaike information crite-
rion (AIC) [64–67] to each energy-level fit

[AICcorr]
Q
n,k = [χ2]Qn,k + 2npar − ndata

k , (12)

where npar = 2, the number of parameters entering the
single-exponential fit, is fixed throughout. In addition to
the state label n and the quantum number label Q, here
we have included the label k indexing all possible choices
of the fit range [tmin, tmax] used to extract EQ

n from λQ
n (t).

A given choice, denoted [tmin(k), tmax(k)], leads to a value
for ndata

k = tmax(k) − tmin(k) + 1, and to a resulting value
for the correlated chi-squared, [χ2]Qn,k.

We then draw N = 50,000 sets {EQ
n }j , each contain-

ing one representative fit (one particular k) for each en-
ergy. For a given energy, the AIC-value distribution over
all k determines the probability for a given fit result to
be drawn into {EQ

n }j . Each set is then used to form a
χ2
m(αm)j function as described above, yielding a partic-

ular α⋆
m,j . In this way, we obtain a distribution of model

phase-shift parameters. In the final step, this distribu-
tion is weighted by the AIC from the phase shift fit. As
the distribution was already weighted by the correlator
AIC in the fit-range sampling step described above, the
final distribution of phase-shift parameter results is thus
weighted by a total AIC, defined by the sum of both AICs.
We assign a systematic error to the phase shift from the
spread of this distribution.

To give a systematic uncertainty for the energies them-
selves, one can make use of the AIC values in Eq. (12),
but not the subsequent AIC values from the phase-shift
fits. The colorful rectangles in Fig. 1 indicate data-driven
systematic uncertainties from this first AIC-weighted dis-
tribution.

Main results
We show the phase shifts for the ρ and K∗ resonances

in Fig. 2. Here, we sampled a total of N = 50,000 repre-
sentative finite-volume energy fit samples and for each of
them computed the phase-shift parameters of the Breit-
Wigner and effective range models, which are the Breit-
Wigner mass and coupling, and the scattering length and
effective range, respectively. We also repeat such a pro-
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cedure varying the minimum fit range and signal-to-noise
allowed in the fits to the GEVP data [43]. A weighted
histogram of these resonance parameters then lets us as-
sign our final error estimates on them, which captures
both systematic as well as statistical fluctuations in our
data. Note that the statistical fluctuation of any single
given fit is below our final quoted uncertainties. Our fi-
nal results are then obtained by solving Eq. (9) over all
the analysis variations described above and lead to the
pole-position parameters

K∗(892)

{
MK∗ = 893(2)(8)(54) MeV

ΓK∗ = 51(2)(11)(3) MeV

and

ρ(770)

{
Mρ = 796(5)(15)(48) MeV

Γρ = 192(10)(28)(12) MeV
,

where M and Γ are the (pole) mass and width of the reso-
nance indicated by the subscript. This is a symmetrized
version of the result also depicted in Fig. 2. The first
uncertainty comes from the statistical variation of the
bootstrap samples, the second one comes from the data-
driven procedure described above and the third one is an
additional 6% error associated with all other systematic
uncertainties. The latter are dominated by the fact that
we only work on a single lattice spacing, but also include
quark-mass mismatch, residual finite-volume effects and
the effects of inelastic thresholds such as Kππ and ππππ.
It also includes the error stemming from the lattice scale-
setting, which is sub-dominant compared to the other
sources of uncertainty. For a deeper discussion on the
uncertainty budget, we refer the reader to [43]. Adding
the systematic uncertainties in quadrature we arrive at

K∗(892)

{
MK∗ = 893(2)(54) MeV

ΓK∗ = 51(2)(11) MeV

and

ρ(770)

{
Mρ = 796(5)(50) MeV

Γρ = 192(10)(31) MeV
.

Discussion and outlook
In this letter, we have presented our calculation of the

ρ(770) and K∗(892) resonance phase shift from lattice
QCD at physical pion mass. This is the first physical-
pion mass computation for the K∗ and the first one with
physical pion mass and a dynamical strange quark for the
ρ. Our result includes a full systematic error budget, ob-
tained from sets of underlying finite-volume energy levels,
sampled by an AIC criterion. As mentioned before, the
dominating uncertainty stems from our result being ob-
tained from a single lattice spacing, necessitating that we

estimate the discretization effects directly as a percent-
age of the final results. This showcases that a crucial step
forward would be to repeat this calculation on additional
lattice spacings and take a continuum limit. In the right
panel of Fig. 2, we compare our final results with the
experimentally determined resonance pole positions, and
find them to be in agreement within the quoted uncer-
tainties at the 1σ level for K∗ and for the mass parameter
of the ρ. The width of the ρ agrees at 1.4σ.

This computation is also a first step towards any QCD
process with Kπ or ππ states present. Two prominent
such processes are B → K∗ℓ+ℓ− and B → ρℓν. Given re-
cent experimental results [68], a lattice result on these de-
cays will be an important input for improved tests of the
standard model. Existing lattice calculations on these de-
cays [69–71] have used the narrow-width approximation
in which the ρ or K∗ are assumed to be a QCD-stable
state. Some progress in going beyond this approximation
has recently been reported in Ref. [72], further demon-
strating that lattice QCD is reaching the era where such
computations, with resonant final states, are realistic.
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