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ABSTRACT

The relations between causality violation and singularities are investi-
gated. We give a theorem that singularities necessarily occur when the
boundary of causality violating set exists in a space-time under the physically
suitable assumptions in the Hawking-Penrose singularity theorems except the
global causality. The present theorem combined with the Hawking-Penrose
theorem shows that mere existence of a trapped surface in a physical space-
time implies the existence of singularities without referring to the causality
condition.

1 Introduction

The space-time singularity has been discussed for a long time 1 general rel-
ativity, In 1970. Hawking aud Penrose{l] showed that singularities, which
mean causal geodesic incompleteness. could occur in a space-time under
seemingly reasonable conditions i classical gravity. Their singularity theo-
rem has an important nuplication that our universe has an initial singularity
if we do not consider ¢quantum effects. However, this theorem is physically
unsatisfactory i the sense that the causality requirement everywhere in a
space-time seems too restrictive. We can only know local events and there is
no guarantee that the causality holds for the entire universe. For example,
we cannot say by this theorem that there are singularities i Nerr tvpe black
holes, which have causality violating regions. Therefore. it is important to
imvestigate the nature of causality violation.
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There are some works on a causality violation concerned with the occui-
rence of singularity. For a question whether one can manufacture closed time-
like curves as a time-machine or not by the future technology, Tipler|2],[7]
has shown that any attempt to evolve closed timelike curves from an ini-
tial regular cauchy data would cause singularities to form in a space-time
i a classical theory. This work is also motivated by a question whether
causality violation can prevent singularities or not. He answered to it by
presenting his singularity theorem in which the global causality condition in
the Hawking-Penrose theorem is replaced by the weaker one and adding the
stronger energy condition. It has also been shown that causality violating set
had incomplete null geodesics if the boundaries of causality violating set were
compact (Kriele[3]). Kriele[4] also proved a generalization of the singularity
theorem of Hawking-Penrose. Unfortunately his theorem is not very useful
for predicting whether singularities exist or not, because it is too difficult to
confirm that the conditions in the theorem are satisfied in a given space-time.
In any case, these theorems are unsatisfactory because the conditions seem
too restrictive.

Newman[5] found a black hole solution which had no singularities. This
black hole solution was obtained by a suitable conformal transformation of

the Godel universe. His conclusion was that causality violating set could pre-

vent singularities from occurring. However. this case is too special, because
causality 1s violated in the whole space-time. On the other hand, there must
be causality preserving regions in a physical space-time. Moreover, when we
inspect exact solutions. for example Kerr black hole, Taub-NUT universe,
which contain causality violating regions, it seems that the boundaries of
causality preserving and violating regions just cause singularities.

In this paper we shall present a theorem that causality violating set nec-
essarily makes singularities if only its boundary exists and energy conditions
are satisfied in a given space-time. We also discuss the relation between our
theorem and the Hawking-Penrose theorem.

In the next section, we briefly review Tipler's and Kriele's singularity
theorems. In section 3. the definition and the lemmas for discussing causal
structure and singularities are listed up. We present our singularity theorems

for partially causality violating space-times in section 4. Conclusions are
sumarized in section 5.

2 Tipler and Kriele’s theorems

We review Tipler and Kriele's theorems in this section. In addition, we dis-

cuss whether one can apply these theorems to various space-times in which
causalities are violated.



Definition

A space-time (M, g) is said to be asymptotically deterministic if
(1) (M, g) contains a partial cauchy surface S such that

(ii) either H(S) = H*(S)U H~(S) is empty, or if not, then

lim[inf Ty K°K°] > 0
on at least one of the null geodesic generators y(s) of H(S), where a is the
past limit of the affine parameter along v if v € H*(S). and the future limit
if vy e H=(S). (K¢ is the tangent vector to 7v.)

Tipler’s theorem(1977)

A space-time (M, ¢) cannot be null geodesically complete if
(1) R, K°K® > 0 for all null vectors K

(2) there is a closed trapped surface in M;

(3) the space-time is asymptotically deterministic, and the Einstein equa-
tions hold;

(4) the partial Cauchy surface defined by (3) is non-compact.

The condition (3) of this theorem is too restrictive because of the energy
condition (ii) in the definition of an asymptotically deterministic spacetime.
The null geodesic v has infinite conjugate points on H*(S) or H~(S) by this
condition and therefore nobody knows whether this new energy condition is
satisfied or not in a space-time under consideration.

Definition

e focal point

Let S be a locally spacelike surface { not necessary achronal surface) and let
us consider a future directed null geodesic, 3(t), from S parameterized by t.
If for any points 3(t) such that t > ¢, there exists an arbitrary close timelike
curve from S to the point J3(t), then 3 is called a focal point to S.

e Generalized future horismos of S

Generalized future horismos of S. denoted by e*(S, Af), is a closure of all
future null geodesics J from S which have no focal points(the future end
points of e™ (S, M) correspond to the focal points).

ecut locus: cl(S, M. +)
The set of future end points of e™ (S, ).

ealmost closed causal curve
Choose an arbitrary Riemannian metric i of M. Let o be a curve and J be
a reparametrization of o with h(3'..3) = 1. Then « 1s called almost closed



if there exists an \' € 3'(t) such that for every neighbourhood U of X' in
the tangent bundle, TAf, there exists a deformation 7y of 4 in 7y (U7) which
yields a closed curve and satisfies y(t) € #(U) = ~'(t) € U.

Kriele's theorem

Theorem 1(1990)

(M, g) 1s causal geodesically incomplete if:

(1) RepKeK® > 0 for every causal vector ' and the generic condition is
satisfied.

(2) (a) there exists a closed locally spacelike but not necessarily an achronal
trapped surface S or (b) there exists a point r such that on every past {or
every future) null geodesic from r the divergence 6 of the null geodesics from
r becomes negative or (c) there exists a compact achronal set S without edge.
(3) neither cl(S, M, +) (respectively cl(r. M, +)) nor any cl(D, M, —), where
D is a compact topological submanifold (possibly with boundary) with D N
S # 0 (respectively r € D), contains any almost closed causal curve that is
a limit curve of a sequence of closed timelike curves.

Up to now, this theorem is the maximum generalization of Hawking-
Penrose theorem in the sense that causality may be violated in the almost
all regions except the cut locus.

However 1t is very difficult to verify whether the condition (3) 1s satisfied
or not in a given space-time. In theorem 2 it is shown that there exist sin-
gularities when the causality violating region is compact even if there is no
trapped surface .

Theorem 2(1989)

Let (M, g) be a space-time with chronology violating set V' that satisfies:
(1) ReyK®K® > 0 for every null vectors K and the generic condition is sat-
1sfied.

(2) V has a compact closure but M — 1" # .

Then V is empty or 17 is generated by almost closed but incomplete null
geodesics.

However, the condition (2) is not so reasonable. For example, in the Kerr
space-time, this condition is not satisfied. Because the region of causality vi-
olation extends to infinity as the INerr space-time has a timelike killing vector.



3 Preliminaries

We consider a space-time (M, g), where M is a four-dimensional connected
differentiable manifold and g is a Lorentzian and suitably differentiable met-
ric. In this section, we quote some definitions and useful lemmas from (HE)(1]
for the discussion of causal structure and space-time singularities.

Definition (HE)

A point p is said to be a limit point of an infinite sequence of non-spacelike
curves [, if every neighbourfood of p intersects an infinite number of the [,,.
A non-spacelike curve [ is said to be a limit curve of the sequence [, if there
is a subsequence [/, of [, such that for every p € [, I, converges to p.

Proposition 1 (HE 6.4.1)

The chronology violating set V of M is the disjoint union of the form ¥ (q)U
[7(q),qg€ M.

Lemma 1 (HE 6.2.1)

Let O be an open set and let [, be an infinite sequence of non-spacelike curves
in O which are future-inextendible in O. If p € O is a limit point of [, then

through p there is a non-spacelike curve | which is future-inextendible in O
and which is a limit curve of the [,.

Proposition 2 (HE 4.5.10)

If p and q are joined by a non-spacelike curve [(v) which is not a null geodesic
they can also be joined by a timelike curve.

Proposition 3 (HE 4.4.5)

If Ry K®K® > 0 everywhere and if at p = y(v), [\"C[\"dl{[aRb]Cd(e[\'ﬂ 1S non-
zero, there will be vy and vy such that ¢ = y(vy) and r = y(v,) will be
conjugate along v(v) provided ~v(v) can be extended to these values.

Proposition / (HE 4.5.12)
If there is a point r in {(q,p) conjugate to ¢ along () then there will be a
variation of v(t) which will give a timelike curve from ¢ to p.

Proposition 5 (HE 6.4.6)

If M is null geodesically complete, every inextendible null geodesic curve has

pair conjugate points, and chronology condition holds on M, then the strong
causality condition holds on M.

Proposition 6 (HE 6.4.7)
If the strong causality condition holds on a compact set ., there can be no



past-inextendible non-spacelike curve totally or partially past imprisoned 1n

¥

Prop.5 physically means that chronology condition is equivalent to the strong
causality condition if energy conditions are satisfied.

4 The theorem

A chronology violating set, 17, can be seen in some exact solutions, for exam-
ple, in the Kerr black hole and the Taub-NUT universe. These space-times
have closed null geodesic curves of which one lap affine lengths are finite on
their causal boundaries. The exact solutious suggest that the causal bound-
ary generates a geodesically incompleteness. These motivate us to consider
a possibility that more physically reasonable space-times also have closed
null curves on their causal boundary and singularities. * More precisely, we
consider the chronology violating space-times in which there exists at least
one causal curve which is closed 1 a finite length through some points on
the boundary of V.

Theorem 1

If a space-time (M, ¢) 1s causally complete, then the following three condi-
tions cannot be all satisfied together:

(a) There exists a chronology violating region 1" which does not coincide with
the whole space-time, i.e. M — V7 # (),

(b) every inextendible non-spacelike geodesic in (M, ¢g) contains a pair of
conjugate points,

(c) there exists at least one point p on the boundary of V such that each
closed timelike curve through a point in the 1" N ¢ can be contained in some
compact set. (¢ is an arbitrary small neighbourhood of p)

As mentioned above, if the condition (c¢) is satisfied, one can always pick
out an infinite sequence such that the one lap length of each closed timelike
curve does not diverge and their shape does not change abruptly when a
point on each closed curve approaches to the boundary of 1.

Here, we regard the one lap length of closed causal curve as the one measured

3When Hawking[6] discussed the chronology violations appearing in a bounded region
of general space-time without curvature singularities, he introduced the notion of the
compactly generated cauchy horizon defined as a cauchy horizon such that all the past
directed null geodesic generators enter and remain within a compact set. This is analogous
to the existence of closed null curves on the boundary of V. He asserted that one cannot
make such a Cauchy horizon while the weak cnergy condition is satisfied. These also
supports our expectations above.



by a generalized affine parameter([1)].

Proof.

The chronology violating set V' is an open set by Prop 1. If V # @, from the
condition (a), we can find a boundary set V somewhere in M — V. Let us
consider a sequence of points g, in VVNe which converges to p (lim, _o ¢, = p).
By definition of V' there is a closed timelike curve [, through ¢,. From the
condition (c), there exists a compact set K such that each [, is contained in
KNV. Let ! be alimit curve of the sequence [,, which passes through the limit
point p. Choosing a suitable parameter of each [, so that [, is inextendible,
the limit curve [ is also non-spacelike inextendible curve in K NV by Lemma
1.

Let us consider the case that the limit point p € .j+(q), q € V' without
loss of generality. This limit curve must also be contained in K N1 because
of the condition (c). Therefore [ is totally past and future imprisoned in
K N V. If some point p’ of | which is in the past of p is contained in V,
there exists a closed non-spacelike curve but not null geodesic through p.
Because one can connect the limit point p to some point ¢ in V' in the future
of the p with some non-spacelike curve A, one can always find a closed non-
spacelike curve but not null geodesic such that p = ¢ = ¢ — p' — p as
depicted in Figure 1. This curve can be varied to a closed timelike curve
through p by Prop.2. This contradicts with the achronality of the causal
boundary V in which p is contained. If any point of { in the past of p is
not contained in V', [ is past imprisoned in J*(g). On the other hand if each
null geodesic generator of j+(q) is null geodesically complete, then the strong
causality condition holds on J*(q) from the condition (b) because chronology
condition is satisfied on V (see Prop.5). Therefore, from Prop.0, there can be
no past-inextendible non-spacelike curve totally or partially past imprisoned
in J*(q). This contradicts with the fact that { is past imprisoned in J*(q).
a

Combining Theorem [ and the Hawking-Penrose theorem|l|, we immedi-
ately get the following corollary.

Corollary

If a space-time (M, g) is causally complete, then the following conditions
cannot all hold:

(1) every inextendible non-spacelike geodesic contains a pair of conjugate
points,

(2) the chronology condition holds everywhere on (M, g) or even if chronol-
ogy condition is violated somewhere, such a region satisfies the condition (c}),
(3) there exists a future-(or past-)trapped set S.

So far, we have considered the case that a chronology violating set sat-
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Figure 1: In the case that the past points of the limit curve [ into the V', we
can find a closed non-spacelike non null geodesic curve like a p — ¢ — g —
p' — p, which is the union of ) and a segment p’ — p.

isfies the condition (¢). Though the reasonableness of the condition (c) 1s
supported by the well-known exact solutions, no one can assure that the
causality violating region appeared in a physical space-time always satisfies
this condition. For instance, a space-time in which the condition (c) does not
hold are illustrated in Figure 2. However, even in such a case, we could still
have a statement concerning the existence of singularities if a given space-
time satisfies the condition below.

condition (c)

Let each chronology violating set be V;. Any V; is causally separated from
Vg for each ¢ € V;, (J(g) U J™(g)) N Vi = 0.

If a space-time (M, g) satisfies this condition (¢’) but not the condition
(c), we can apply Kriele’s theorem to a compact set S := J+(q)ﬂ J7(¢) (even
if S is not compact, the quotient space e™(S)/S is compact. Then we can
use Kriele’s theorem). Hence, we obtain the following theorem.

Theorem 2

A space-time (M, ¢) which satisfies the conditions (a), (b), and either at least
(c) or (¢') is null or timelike geodesically incomplete.

proof.
We suppose that (M. g) is null or timelike geodesically complete. We only
have to prove the case that the condition (c') hold but the condition {c) does
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: removed point (B)

: closed timelike
curve

Figure 2: Two examples of space-times in which the limit curves of infinite
sequences of closed timelike curves do not close are shown.

not. In such a space-time (M, g}, every null geodesic generator on V is not
closed.

Now we consider a non-closed null geodesic on V. This null geodesic be-
longs to J*(g) or J~(q) . as V is [*(q)NI(q) (g € V). Let this null geodesic
belong to .j+(q) without losing generality. If this null geodesic has a past end
point, it must be ¢q. Let us take a point p(# ¢) on this null geodesic and also
let it be on the V. From the fact that for ¢ € V there is a closed timelike
curve through ¢. This means that a timelike curve from ¢ to p exists by
Prop.2. Therefore, p belongs to [*(g). This contradicts p € V. If this null
geodesic has no past end point. it is inextendible in the past. If the boundary
of V' contains this null geodesic entirely, from the condition (b), this bound-
ary can be connected by timelike curves by Prop.4. This is also contradiction
to the achronality of ", Hence, let us consider the case that the boundary
of V' does not contain the whole segment of this null geodesic, that is. the
null geodesic has an end point on the compact surface § := JHq)n T (q).
Extending this null geodesic beyond the future end point, we obtain an inex-
tendible null geodesic lying on J*(¢) and call it outgoing. We also obtain an
inextendible null geodesic belongs to J=(q) and call it ingoing. The outgoing
null geodesic has a pair conjugate points from the condition (b). One of the
pair conjugate points is on the segment lying on the V. The other is on the
segment lying on the J*({¢) — V. The ingoing null geodesic on the J(¢)
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also has a pair conjugate points in the same way as the outgoing case. Thus,
S plavs the same role as the trapped surface in the Kriele's theorem. From
the condition (¢'), the condition (3) of Kriele’s theorem is satisfied in the cut
locuses of S, intersections of outgoing and ingoing null geodesics. because
the condition (c) is not satisfied (if the condition (c) is satisfied, there exists
an almost closed causal curve.). Therefore we can show the existence of sin-
gularities from Iriele's theorem. a

5 Conclusions and discussion

We present the two theorems which state that singularities could occur when-
ever the boundary of causality violating set exists in a space-time under the
physically suitable assumptions. We have shown that the existence of the
boundaries of causality preserving and violating regions are closely related
to singularities. that is, the boundaries of causality violating set cause singu-
larities 1n a physical space-time.

We would like to emphasize that the theorem 1 supplements the Hawking-
Penrose theorem in the sense that global causality is relaxed to some degree
and instead the condition (c¢) is imposed in chronology violating regions,
which may be supported by exact solutions. In other words, it is possible for
a local observer to state about existence of singularities if our space-time has
a causality preserving region which conforms with our experience.

Whether the quasi-global condition (¢) is removable or not is still an
open question.

As well as the Hawking-Penrose theorem, our theorem cannot predict
where singularities exist and how strong they are. We think that how we
predict these things is one of themes in the future.
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