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Parameterized quantum circuits have been extensively used as the basis for machine learning
models in regression, classification, and generative tasks. For supervised learning, their expressivity
has been thoroughly investigated and several universality properties have been proven. However, in
the case of quantum generative modelling, much less is known, especially when the task is to model
distributions over continuous variables. In this work, we elucidate expectation value sampling-based
models. Such models output the expectation values of a set of fixed observables from a quantum
circuit into which classical random data has been uploaded. We prove the universality of such
variational quantum algorithms for the generation of multivariate distributions. We explore various
architectures which allow universality and prove tight bounds connecting the minimal required qubit
number, and the minimal required number of measurements needed. Our results may help guide
the design of future quantum circuits in generative modelling tasks.

I. INTRODUCTION

Parameterized quantum circuits are the centrepiece of
numerous approaches to machine learning on quantum
computers, motivated by numerous near-term hardware
limitations [BCLK+22, CAB+21]. The use of these mod-
els for supervised learning has been widely studied, for
example in solving regression problems [MCLS20] where
the goal is to assign continuous labels to data points.
Variational algorithms have also been explored in so-
called generative modelling tasks, where the objective
is to generate new samples following a distribution that
generated the training data [LW18].

A prominent example of distributions with discrete
support is the quantum Born machine [LW18], which
stores a distribution over n-bit strings in a n-qubit state.
Another model for discrete distributions is the quantum
Boltzmann machine [AAR+18]. Going beyond distribu-
tion with discrete support, an approach has been intro-
duced to model distributions where the random variable
can in principle take on any value within a continuous
interval. In such models, the quantum circuit takes clas-
sical randomness as input and outputs expectation val-
ues, consequently, we call this model expectation value
samplers. This model has been extensively used as a
quantum generator in the context of quantum generative
adversarial networks [RAG21, DDK18].

While for quantum Born machines, the expressivity
and universality have been clarified [LW18, CMDK20],
in contrast, expectation value sampling models are not
so well understood. In particular, an interesting feature
of expectation value sampling is that the dimension of
the output is not inherently tied to the number of qubits
used. In this work, we focus on the expressivity of the
generators based on expectation value sampling depend-
ing on the number of qubits and the spectrum of the
observables.

In the first section, we introduce and define expecta-

tion value sampling. We define formally what a universal
generative model family is, and give some background on
random variable transformation and some fundamental
properties.

The second section addresses whether every arbitrary
distribution can be modelled using expectation value
sampling, i.e. whether this model is universal. We re-
call existing results on the universality of parameterized
quantum circuits. We extend existing results and use
them to constructively prove the existence of two fami-
lies of universal expectation value models.

Following this, in the third section, using variants of
the Holevo bound, we look into the necessary conditions
for an expectation value scheme to be universal. We show
that there exists a necessary condition as an upper bound
on the dimensionality of the target distribution as a com-
bination of the number of qubits and the observable spec-
tral norm. By leveraging the scaling with the observable
norm, we show that there exists a trade-off between the
number of measurements and the number of qubits to
reach universality.

The final fourth section provides tools to analyse how
the number of qubits, the data encoding scheme, and
the set of observables affect the expressivity of the ex-
pectation value sampling models, with a focus on the
dependence relationship between random variables.

II. BACKGROUND AND DEFINITIONS

In this section, we give formal definitions of expec-
tation value sampling models and universal generative
model families. We also introduce random variable trans-
formations, a core concept in this work.
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|0⟩
Uθ(X)|0⟩ Y = [⟨Om⟩] ∼ pY when X ∼ pX

|0⟩

FIG. 1: Expectation value sampling model: a random vec-
tor is classically sampled. It is used to generate a random
quantum state using a parameterized quantum circuit. The
expectation values of fixed observables are returned as the
output random vector.

A. Definition of expectation value sampling

The expectation value sampling procedure goes as fol-
lows. A random variable is classically sampled and used
as input to a parameterized quantum circuit which spec-
ifies a random quantum state. The expectation values
of fixed observables are measured and returned as an-
other random variable. We illustrate this procedure in
Figure 1. It is important to note that, in contrast to the
quantum circuit Born machine, the randomness does not
come from the measurement process, but from the clas-
sical randomness provided as an input to the quantum
circuit. Formally we define an expectation value sam-
pling model as follows.

Definition 1 (Expectation value sampling model). An
expectation value sampling model on n qubits is defined
by (Uθ,O, pX), where Uθ : X ⊆ RL → U(2n) is a param-
eterized quantum circuit taking data as input and return-
ing a unitary matrix, O = (Om)1≤m≤M is a vector of M
observables, and pX : X ⊆ RL → R is the input distribu-
tion. We define the associated mapping f as follows:

x ∈ X f−→
(
⟨0|Uθ(x)†OmUθ(x) |0⟩

)
1≤m≤M . (1)

The output of the model is a sample drawn from the dis-
tribution pY with Y = f(X) ∼ pY when X ∼ pX .

In the above, the N -dimensional unitary group is de-
noted U(N).
Notably, unlike QCBMs, expectation value samplers

have continuous support (absolutely continuous random
variables, see Definition 6).

The central question of this work is whether such a
model can generate any multivariate distribution, more
precisely whether expectation value sampling is a univer-
sal generative model, according to the definition we will
give in the next section.

B. Definition of a universal generative model
family

In this subsection, we define universal generative
model families.

Definition 2 (Universal generative model family). A
generative model is a family of parameterized sampling

procedures which enable the sampling from a correspond-
ing set of M -dimensional probability density functions
P(X ) on X ⊆ RM .

A generative model is called universal if for every prob-
ability density function q on X there exists a sequence
{pk|pk ∈ P(X )}1≤k≤∞ such that the sequence of random
variables Xk ∼ pk converges in distribution to X ∼ q.
Equivalently, this means that the sequence of cumulative
distribution functions of pk, which we call Pk, converges
pointwise to the cumulative distribution function of q,
which we call Q.

∀x ∈ X , lim
k→∞

Pk(x) = Q(x). (2)

This definition of closeness for random variables, also
called convergence in distribution, is common in prob-
ability theory. For example, the central limit theorem
precisely states the average of any L independent ran-
dom variables with mean µ and variance Σ converges in
distribution to the normal distribution N (µ,Σ/L).

In this work, we will mostly consider distributions with
finite support, because this is the case in most practical
real-world problems. In particular, their probability den-
sity functions are integrable functions and convergence in
distribution implies convergence in the first Wasserstein
distance W1 [Vil09]. For completeness, we recall below
the definition of the Wasserstein distance, also known as
the Earth Mover’s Distance, that we use in the context
of this work.

Definition 3 (Wasserstein distance). The k-th Wasser-
stein distance between two probability density functions p
and q on [−1, 1]M is defined as:

Wk(p, q) =

(
inf

γ∈Π(p,q)

∫

R2

∥x− y∥kdγ(x, y)
) 1

k

, (3)

where Π(p, q) is the set of couplings of p and q, and ∥ · ∥
denotes the Euclidean distance. The parameter k ≥ 1 de-
termines the so-called order of the Wasserstein distance.

For the rest of the paper, we will only consider the first-
order Wasserstein distance (k = 1) and therefore simply
refer to it as the Wasserstein distance.

Note: Universality is defined on a given support noted
as X in Definition 2. For this work, we choose the sup-
port to be X = [−1, 1]M , because the first step of most
machine learning pipelines is to rescale the data to fit on
a given interval.

Choosing universality on a cubic support [−1, 1]M al-
lows the expression of fully independent variables. Re-
stricting X to smaller subsets would yield constraints on
the dependence relationship expressible. For example,
proving universality of a family of models for Dirichlet
distributions would correspond to choosing X = S11 where
S11 := {x ∈ RM ≥ 0 |∑m xm = 1} is the unit sphere for
the 1-norm.
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C. Random Variable Transformation

A core concept in this work is that of random variable
transformation. In this subsection, we introduce it and
provide some of the associated fundamental properties.

The first step in our analysis is the observation that
an expectation value sampling model is a process that
maps an input random vector (parameterizing the quan-
tum circuit) to an output random vector (the expectation
values of a set of observables). The literature on optimal
transport and measure theory [BKM05] states that for
every pair of absolutely continuous random variables of
the same dimension, there exists a mapping to transform
one into the other.

Lemma 1. For every pair of probability density func-
tions pX ∈ P(X ⊆ RM) and pY ∈ P(Y ⊆ RM), there
exists a mapping f : X → Y, that maps Y ∼ pY to
X ∼ pX as Y = f(X).

We give intuition on how to construct this mapping
and show that it can be chosen to be bounded piece-wise
continuous in Appendix A.

Many generative modelling systems including Gener-
ative Adversarial Networks, Variational Auto-Encoders
and normalizing flows rely on this idea to generate arbi-
trary distributions. In particular, we choose the initial
distribution to be something simple, and then by altering
the mapping applied to this random input, we obtain a
rich spectrum of possible output distributions.

Then, sufficient conditions for a family of mappings to
yield a universal generative model, in the sense of Defi-
nition 2, are well-known, and expressed in terms of the
universality of mappings themselves. From [KPB21], it
is sufficient for a family of mappings to be dense in the
set of all monotonically increasing functions in the point-
wise convergence topology to yield a universal genera-
tive model. We explain the difference between pointwise
topology and uniform topology in Appendix C. Since
these are sufficient conditions and monotonic functions
are included in all functions, the following holds.

Theorem 1. If a family of mappings G = {g : X ⊆
RM → Y ⊆ RM} is dense in the set of all functions
in the pointwise convergence topology, then this family
of mappings G together with a probability density func-
tion pX with non zero support on X yields a universal
generative model family on Y (cf Definition 2).

Note: In conventional machine learning, this notion
of universality is common. It has been proven for several
families of mappings in the context of normalizing flows,
which are mappings with the additional property of being
invertible: generic triangular mappings [BKM05], neural
networks mappings [HKLC18] and polynomial mappings
[JSY19].

In the next section, to prove the universality of expec-
tation value samplers, we make explicit the connection
between universal mapping families and the known re-

sults on the universality of parameterized quantum cir-
cuits as supervised learning models.

III. PARAMETERIZED QUANTUM CIRCUITS
AS UNIVERSAL GENERATORS

A. Universality of the product encoding circuit

In recent literature, a number of universality proper-
ties of parameterized quantum circuits have been proven.
In [PSLNGS+21], a family of single qubit quantum cir-
cuits with an increasing number of layers is proven to
be universal in the uniform sense for continuous multi-
dimensional input functions as complex coordinates of
the quantum state in the computational basis (see The-
orem 9). We extend this result to fit our needs.
In Appendix B we modify universality results from

functions as coordinates in the computational basis to
functions as the expectation value of an observable. In
Appendix C we broaden the universality of quantum re-
uploading models to some discontinuous functions by re-
laxing the required strength of convergence. More pre-
cisely we go from the uniform density in bounded con-
tinuous functions to the pointwise density in bounded
piece-wise continuous functions. Finally, by stacking M
universal circuits, we extend universality to multivariate
output functions. All these extensions of [PSLNGS+21]
together yield the theorem below.

Theorem 2. For every natural number M , for every
mapping f ∈ B([0, 1]M → [−1, 1]M ), there exists a se-
quence of sets of M single qubit quantum circuits and
unit norm observables (indexed by k).

{(Uk,m : [0, 1]M → U(2), Ok,m)1≤m≤M}1≤k≤∞ (4)

such that the sequence of functions {gk}1≤k≤∞ defined as

gk,m(x) = ⟨0|Uk,m(x)†Ok,mUk,m(x) |0⟩ (5)

converges pointwise to f .
B is the set of piecewise continuous functions, and the

norm of observable is the spectral norm.

The theorem above shows that there exists a family of
M -qubit circuits with unit norm observables that yield a
family of functions that is pointwise dense in the set of
bounded piece-wise continuous functions. This matches
the sufficient conditions of Theorem 1 for mappings to
yield a universal generative model. This yields that there
exists a family of expectation value sampling models as
defined in Definition 1 and illustrated in Figure 2 that is
universal in the sense of Definition 2.

Theorem 3. For any M, for all M -dimensional prob-
ability density functions pZ with support included in
[−1, 1]M , and for all accuracy ϵ > 0 there exists a M -
qubit circuit U and set of M observables O with unit
spectral norm ∥Om∥ = 1 such that the expectation value



4

|0⟩ Uf1(X1, X2, · · · , XM )

Y1 := ⟨Z1⟩

|0⟩ Uf2(X1, X2, · · · , XM )

Y2 := ⟨Z2⟩

...

|0⟩ UfM (X1, X2, · · · , XM )

YM := ⟨ZM ⟩

FIG. 2: Product Encoding Circuit as a universal generator,
stacking circuits Uf approximating f from [PSLNGS+21]. It
yields the random variable Y = g(X), X ∼ U([0, 1]M ) with

fm =
√

(gm + 1)/2.

sampling model (U,O, pX) where pX is the uniform dis-
tribution on [0, 1]M yields a probability density function
pY that is ϵ-close to pZ in the Wasserstein distance.

This is the first central result of this work: n-qubit ex-
pectation value samplers with constant observable norm
are universal for M -dimensional distributions with con-
stant support radius, for M = n.
Note: We stated our result for distributions on the

cube [−1, 1]M , but the universality straightforwardly
generalizes. In particular, the size of the cube can be
rescaled, by rescaling the norm of the observables. Fi-
nally, since any distribution with infinite support but fi-
nite moments can be arbitrarily approximated by a dis-
tribution with finite support, as we show in Appendix D,
this means that if we allow the observable norm to scale,
we can also approximate any distribution with finite mo-
ments (but perhaps infinite support).

B. Universality with less qubits

It is worth noting that the construction presented in
the previous section uses the same number of qubits as
the dimension of the output distribution. However, as we
mentioned in the introduction, the dimension of the out-
put does not need to be directly linked to the number of
qubits used. This raises the question of the existence of
a more qubit-frugal family of universal circuits, in which
the output dimension is (much) larger than the qubit
number. We will call such constructions ”observable-
dense expectation value samplers”.

In Appendix E we show the existence of such a fam-
ily if we allow for observables to have large norms. We
formalize this in the following theorem and illustrate the
corresponding circuit in figure Figure 3.

Theorem 4. For any M , for all M -dimensional prob-
ability density functions pZ with support included in
[−1, 1]M , and for all accuracy ϵ > 0 there exists a n =
Θ(logM)-qubit circuit U taking L input variables and set
of M observables O with spectral norm ∥Om∥ ∈ Θ(M)
such that the expectation value sampling model (U,O, pX)

n
|0⟩⊗n V (X1, X2, · · · , XL)

{Ym := ⟨Pm⟩}1≤m≤M

FIG. 3: Dense Encoding Circuit as a universal generator,
based on a universal state preparation circuit V , with each
parameterized gate replaced by a circuit from [PSLNGS+21].
n = log(M + 1) and Pm = 2M |m⟩ ⟨m| − I.

where pX is the uniform distribution on [0, 1]L yields a
probability density pY that is ϵ-close to pZ in the Wasser-
stein distance.

In this section, we have proven a number of sufficient
universality conditions for expectation value samplers.
In particular, we have shown the existence of two ex-
tremal families of parameterized quantum circuits that
are universal generators on [−1, 1]M . There is a “prod-
uct encoding” design, illustrated in Figure 2, with n =M
qubits and with unit norm observables (local Pauli), and
a “dense encoding” design, illustrated in Figure 3 with
n = log(M) qubits and M norm observables (amplified
probabilities of bitstrings). The product encoding circuit
has a large number of qubits for a constant observable
norm, and the dense encoding circuit has a logarithmic
number of qubits but large observable norms. This hints
that there might be a trade-off between the number of
measurements and the number of qubits. In the next
section, we prove this is the case, by proving some nec-
essary universality conditions.

IV. NECESSARY CONDITIONS FOR
UNIVERSALITY

In this section, we use Holevo-like bounds to prove
some necessary conditions on the number of qubits and
the observable norm for an expectation value sampling
model to be universal on [−1, 1]M .

A. Dimension of the observables space

As previously mentioned, an appealing feature of ex-
pectation value sampling models is that the dimension of
the output vector is a priori independent of the number
of qubits n, unlike in the case of quantum Born machines
where each qubit corresponds to exactly one binary ran-
dom variable. In particular, we can imagine using even
just a single qubit with an arbitrary number of observ-
ables Om to generate an M -dimensional random vector.
However, it is obvious that in this case, the random vari-
ables corresponding to each observable cannot all be fully
independent. Indeed, any observable can be expressed as
a linear combination of the three Pauli matrices. There-
fore the distribution output by a single qubit expecta-
tion value sampler will have at most three degrees of
independence, and for M > 3 it is impossible to have
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universality because it is impossible to approximate e.g.
the 4-dimensional uniform distribution. Extending this
reasoning to several qubits, we find the first necessary
condition, that the dimension of the target dimension
has to be lower or equal to the dimension of the space of
observables. We formalize this in the following theorem.

Theorem 5. For an n-qubit expectation value sampling
model (Uθ(x),O, pX) to be able to approximate any dis-
tribution with support in [−1, 1]M to any accuracy ϵ > 0,
it is necessary that M ≤ 4n − 1.

B. Holevo’s bound

Another necessary condition for an expectation value
sampling model to be universal on distributions with
support in [−1, 1]M can be derived using a combina-
tion of Holevo’s bound found in [ANTSV02] and Chernoff
bound. We formalize it in the following theorem, which
we prove in Appendix F.

Theorem 6. For an n-qubit expectation value sampling
model (Uθ,O, pX) to be able to approximate any distribu-
tion with support in [−1, 1]M to any accuracy ϵ > 0 with
respect to the Wasserstein distance, it is necessary that
for every m ≤M :

1. λmin(Om) ≤ −1 + ϵ and λmax(Om) ≥ +1− ϵ

2. n ∈ Ω
(
M(1−ϵ)2

∥Om∥2

)

with λmin/max(O) returning respectively the minimum
and maximum eigenvalues of observable O.

The above necessary conditions use results which in-
volve a more general case where we assume that prior to
measurement we use a general parameterized quantum
channel which can also prepare mixed states. However,
we can reduce this to the special case of unitaries as well.
By purification, mixed states can be mimicked by using
2n qubits pure states, since we are only interested in scal-
ings, the factor 2 plays no role in the second condition
of Theorem 6, and the necessary conditions also hold for
pure states.

The combination of both previous necessary conditions
is the second central result of this paper. It formalizes
that even if expectation value sampling models may out-
put arbitrary large dimensional distributions, in practice
their expressivity is limited by the number of qubits and
observables.

C. Asymptotic optimality of the product and
dense encoding families

It is a natural question to ask whether the universal
families we found in Section III saturate the necessary
conditions found in the previous subsection. We illus-
trate such considerations in Figure 4.

1
√
M/ logM M

observable norm ||O||

M

log(M)

n
u

m
b

er
of

q
u

b
it

s
n

n ∈ Ω(M/||O||2)

n ∈ Ω(log(M))

dense encoding

product encoding

FIG. 4: Visual summary of results. We show the asymptotic
use of resources for expectation value samplers to reach uni-
versality for a M -dimensional target distribution: the neces-
sary conditions from Section IVA and Section IVB, as well as
the existence of families from Section IIIA and Section III B.

Corollary 1. The product encoding family defined in
Section IIIA has a number of qubits n ∈ Θ(M) and an
observable norm of 1. It is optimal with respect to the
necessary condition from Section IVB.

Corollary 2. The dense encoding family defined in Sec-
tion III B has a number of qubits n ∈ Θ(log(M)) and
an observable norm of ∥O∥ ∈ Θ(M). It asymptotically
saturates the condition from Section IVA. However, it
is not optimal with respect to the condition from Sec-
tion IVB, that yields ∥O∥ ∈ Ω(

√
M/ log(M)), leaving a

quasi-quadratic gap.

We may conjecture that there exists a family of
(Pareto) optimal circuits, balancing between observable
norms and qubit numbers, with varying “encoding densi-
ties” in between the two extremal cases. In practice, the
observable spectral norm relates to the number of mea-
surements required to approximate it up to an additive
accuracy. This highlights a trade-off between the num-
ber of qubits and the number of measurements, or space
versus time complexity, which we formalize in the next
subsection.

D. Observable norm and number of measurements

To estimate an expectation value up to a desired con-
stant additive error, the number of measurements re-
quired is proportional to the norm of the observables.
Therefore, large observable norms require a large num-
ber of measurements. This intuition is sharpened in the
following lemma, proven in Appendix G.

Lemma 2. An arbitrary expectation value sampler out-
puts an M -dimensional random vector Y ∼ pY with an
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infinite number of measurements, i.e. with access to ex-
act expectation values. We consider the same circuit
but with a finite number of measurements T that esti-
mates expectation value by sampling and averaging for
each observable and yields a random vector Ŷ ∼ pŶ .
The number of measurements T required to guarantee
that the Wasserstein distance between both distributions
is smaller than ϵ satisfies

T ∈ Θ

(
M∥O∥
ϵ2

)
. (6)

This lemma can be applied to both the product en-
coding circuit and the dense encoding circuit to show the
trade-off between the number of qubits and the number
of measurements.

E. On correlations in the target distribution

It is interesting to note that the parameter driving the
necessary conditions is not the dimension of the target
distribution itself M but rather the number of indepen-
dent variables M ′. Because we defined universality as
being able to capture full independence we use M =M ′

in the proofs of the necessary conditions. However, by
restricting our interest to universality for classes of dis-
tributions with certain dependence conditions fulfilled,
we can obtain much more economic bounds than for the
general case, which is illustrated in Figure 4. We give
two examples of universality for a restricted family of
distributions.

First, consider the family of distributions that are M -
dimensional but that have their support included in a
2-dimensional linear subspace. We choose the expecta-
tion value sampler as the circuit from [PSLNGS+21] and

observables {
√
2X,

√
2Z} we have a universal generator

on one qubit for this 2-linear family for any target dis-
tribution dimension M .

Second, consider the family of M -dimensional Dirich-
let distributions, for which each coordinate is positive,
and such that the sum of all coordinates is unity. For
this case, we can take the “dense encoding” circuit with
n = logM qubits, see Figure 3, and instead of amplified
probabilities we take the raw probabilities as observables.
This constitutes a universal model for the Dirichlet fam-
ily. In this case, we get away with exponentially fewer
qubits than the general case.

These observations may be used to suggest that expec-
tation value samplers are better suited to generate highly
correlated distributions. Note that for the Dirichlet case,
the result is not surprising as the normalization condition
perfectly matches the normalization of quantum states,
making this type of universality particularly well suited
to expectation value samplers.

V. CHARACTERIZING EXPECTATION VALUE
SAMPLING DISTRIBUTIONS

In this section, we propose additional tools to refine
our understanding of expectation value sampling models,
exploring how the choice in encoding, input distribution,
and observables affects the expressivity.

A. Observable choice and primary mapping

In this subsection we explore the expressivity that
comes with the choice in observables, considering expec-
tation value models with fixed encoding U(x) on n qubits
and M -dimensional inputs. We are using the standard
Pauli basis for the space of 2n × 2n Hermitian operators
P. It is composed of all possible combinations of n Pauli
matrices σ0,1,2,3, which yields |P| = 4n. We formalize as
follows

P :=(Pk, k ∈ {0, 1, 2, 3}n) (7)

=(⊗1≤i≤nσki , ki ∈ {0, 1, 2, 3}). (8)

Any vector of M observables O = (Om), can be ex-
pressed as a linear mapping applied on the vector of all
Pauli strings: O = AP, where A is anM×4n matrix, and
P is a 4n dimensional vector. Therefore the distribution
associated with the Pauli basis encompasses any distri-
butions, which leads us to define the primary mapping
as follows.

Definition 4 (Primary mapping). The primary map-
ping g of an n-qubit encoding circuit Uθ(x) is defined as
the mapping of the associated expectation value sampling
model with the Pauli basis P, defined as (Uθ(x),P, pX)
according to Definition 1. It can be expressed as follows

x ∈ [0, 2π)N
g−→
(
⟨0|Uθ(x)†PkUθ(x) |0⟩

)
1≤k≤2n

. (9)

It yields the 4n-dimensional random variable Z = g(X)
when X ∼ pX .

It is easy to see that any distribution obtained by
an expectation value sampling model can always be ex-
pressed by considering an intermediary output of the 4n

set of observables, followed by the linear mapping A. We
capture this idea in the following theorem.

Theorem 7. Given an encoding circuit Uθ(x) and ran-
dom variable with distribution pX , for any the choice
of observables O, the expectation value sampling model
(Uθ(x),O, pX) (according to Definition 1) is a linear
transformation of the expectation value sampling model
(Uθ(x),P, pX), where P is the Pauli basis per definition
of the primary mapping in Definition 4.

This concept of primary mapping has immediate conse-
quences on the possible correlation of output variables of
expectation value sampling models. For a given data en-
coding part on n qubits, the primary mapping will yield a
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random variable Z with a covariance matrix Cz. Because
any expectation value sampling model based on the same
data encoding is a linear transformation of the primary
mapping, the number of uncorrelated variables is limited
by the number of non-null eigenvalues of the covariance
matrix Cz, which is upper bounded in any case by 4n−1.

Lemma 3. Given an encoding circuit U(x) over n qubits
and random variable with distribution pX , we note L the
number of non-zero eigenvalues of the covariance matrix
of the primary mapping. For any choice of observables,
any expectation value model using (U(x), pX) will yield at
most L uncorrelated variables. In addition L ≤ 4n − 1.

B. Random variable encoding as a polynomial
chaos expansion

After focusing on the choice of observables, in this
subsection, we analyze the impact of the choice of the
input random variable and the circuit encoding on the
expressivity. We propose the polynomial chaos expan-
sion [Xiu10] as a useful tool to analyze the expressivity
of expectation value sampling models, as the analogue
of the Fourier decomposition. The general polynomial
chaos expansion is a representation of random variables
as a vector in a Hilbert space of orthogonal functions, as
defined below.

Definition 5 (Generalized Polynomial Chaos Expan-
sion). A generalized chaos expansion is characterized by
a probability density function pX defined on the support
X ⊆ RM with finite moments (usually chosen as standard
distributions, such as Gaussian or uniform). This choice
defines an inner product for functions in {f : X → R}:

⟨f |g⟩pX :=

∫

X
f∗(x)g(x)pX(x)dx. (10)

This choice of inner product comes with the choice of an
ordered family of functions, usually polynomials, that are
orthonormal with respect to the above inner product.

ΦpX = {ϕl : X → R,∀(k, l), |ϕl⟩ ⟨ϕk| = δk,l} (11)

A generalized chaos expansion is a representation of a
random variable Y with probability density pY as a vector
α in this Hilbert space, such that:

Y =

∞∑

l=0

αlϕl(X) ∼ pY , X ∼ pX (12)

This provides a Hilbert space as a potential structure
to study random variable mappings. In particular, one
of the main results of polynomial chaos expansion is that
they are universal generative models.

Common pairs of distribution and associated orthog-
onal polynomials family can be found in Table I. In the
context of expectation value sampling, we focus on the

Normal distribution Hermite polynomials

Uniform distribution Legendre polynomials

Exponential distribution Laguerre polynomials

Beta distribution Jacobi polynomials

TABLE I: Pairs of distributions and corresponding orthonor-
mal families commonly used in General Polynomial Chaos
expansion.

family of functions orthonormal with respect to the in-
ner product associated with the uniform distribution on
X = [0, 2π)M

Φ = {
∏

1≤m≤M

eikmxm , k ∈ ZM} (13)

Quantum reuploading circuits are a widely used class
of parameterized quantum circuits that output a func-
tion of the data. They are used in a regressive context,
where optimization techniques are used such that their
output fits a target function. It has been widely stud-
ied and used that if they use integer-valued spectrum
Hamiltonian, their output hypothesis function can be de-
composed as an exact finite Fourier series [SSM21]. This
means that there exists ck,l ∈ C such that the hypothe-
sis function f can be exactly written as a finite Fourier
series:

f(x) =

+K∑

k0,k1,··· ,kM=−K

ck,l
∏

1≤m≤M

eikmxm , . (14)

This fact extends to a generative modelling context
where expectation value sampling models using integer-
valued quantum reuploading circuits yield distributions
with an exact finite polynomial chaos expansion. We
formalize this below.

Theorem 8. Any expectation value sampling model us-
ing a quantum reuploading model with integer-valued
spectrum Uθ(x), together with the uniform distribution
on [0, 2π)M outputs a random variable Y that has an ex-
act finite polynomial chaos expansion for any choice of
observables.

This subsection formalizes the tight connection be-
tween quantum circuits used in a regressive context with
their use in a generative context. Therefore it is expected
that, beyond the universality, many properties of such
models can be transferred from a regressive context to a
generative context, but we leave that for future work.

C. Choice of input random variable

We discuss the choice of input random variable, noted
as pX in Definition 1. We have shown several reasons
to consider the uniform distribution as a good design
choice as an input random variable, mostly based on the
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fact that it has a bounded support. Indeed, it is known
that the most commonly used parameterized quantum
circuits are periodic, in particular when they have a fi-
nite Fourier decomposition. This is also why the uni-
versality of quantum reuploading circuits is proven for
functions on bounded domains, corresponding to a half
period. In contrast, let us consider an expectation value
sampler (U,O, pX), where the input random variable fol-
lows a Gaussian distribution X ∼ N (0, 1), which has
unbounded support and for which the mapping f is 1-
periodic. X = 0 is the highest probability event and will
yield the exact same output as a very low probability
event, for example, X = 100. This means that a very
low probability input event and a very high probability
input event will yield the same output sample, which is
a feature rarely considered desirable. This choice of uni-
form distribution is in contrast to classical GANs where
Gaussians are typically preferred.

VI. CONTRIBUTIONS AND DISCUSSION

The first central result of this work is that expecta-
tion value samplers, based on parameterized quantum
circuits, are universal generative models. We provide
constructive proofs for two extremal circuit designs. The
“product encoding” design has a number of qubits linear
in M and unit norm observables. In contrast, the “dense
encoding” design has a number of qubits logarithmic in
M and observable norm linear in M . The second cen-
tral result is necessary conditions on resources such as
the number of qubits and number of measurements for
expectation value sampling models to be universal. This
allows us to assess the optimality of the universal fam-
ily we constructed. We conjecture there exists a series
of universal circuits with varying “encoding densities” in
between these two extremal cases, that are optimal with
respect to the necessary conditions we have proven in this
work. In addition, we propose additional tools to analyse
the expressivity of expectation value samplers. We hope
that the knowledge presented in this work will guide the
choice of random variable encoding and observables in
future designs.

While we characterized important properties of expec-
tation value samplers, we did not address the question of
whether it is a good idea to use them. Expectation value
samplers cannot be proven to be a path for certain types
of quantum advantage as easily as is the case in Quantum
Circuit Born Machines [CMDK20]. Indeed, expectation
value samplers, rather than requiring sampling from the
full distribution of quantum measurements, are defined

around expectation values only. Thus the hardness of
simulating distributions from expectation value samplers
does not connect straightforwardly to any hardness-of-
sampling results established in the domain of quantum
supremacy results [CMDK20].
Nonetheless, expectation value samplers still consist

of genuinely quantum computations, and arguments for
non-simulatability can be made. Assuming BQP is not
in BPP, there exists no polynomial time algorithm that
takes a classical description of an arbitrary expectation
value sampler A as an input and outputs a sample from
a distribution that is epsilon close to that of the output
of A. Take as an example the case where a hard-to-
simulate circuit does not depend on input data. This
yields a Dirac delta distribution for which there exist
classical samplers to efficiently sample from it, however,
such classical samplers cannot be easily found based on
the classical description of the expectation value sam-
pler. It may be possible to construct stronger advantage
arguments where we find the existence of an expectation
value sampler such that its output distribution cannot
be sampled by any polynomial-time randomized Turing
machine (subject to standard assumptions) but we leave
this for future work.
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Appendix A: Constructive mapping between a
random variable and the uniform distribution

Let us consider an absolutely continuous random vari-
able Y with probability density function pY on a bounded
set [a, b]M . We recall a definition of an absolutely con-
tinuous variable below.

Definition 6. A random variable X is said to be ab-
solutely continuous if its cumulative distribution func-
tion (CDF) can be expressed as the integral of a non-
negative function, known as the probability density func-
tion (PDF).

This excludes for example Dirac deltas. We are go-
ing to construct an invertible mapping to transform the
uniform random variable X into this random variable
Y = [Yk]. We call G1 : [0, 1] → [a, b] the cumulative dis-
tribution function of the marginal of Y1. It is invertible
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and we define F1 as its inverse,

Y1 = F1(X1), X1 = G1(Y1). (A1)

Next we consider the marginal of Y2 conditioned by Y1,
we define the cumulative distribution G2 : [a, b]2 → [0, 1],

G2(y1, y2) = P (Y2 = y2|Y1 = y1). (A2)

It is invertible with respect to Y2,

G−1
2 (Y1, X2) = Y2 ⇐⇒ G2(Y1, Y2) = X2. (A3)

We define F2 : [0, 1]2 → [a, b] as follows,

F2(X1, X2) = G−1
2 (F1(X1), X2). (A4)

We have Y2 = F2(X1, X2). Continuing this process itera-
tively for all coordinates, it is possible to fully define the
invertible mapping F = [Fk] with inverse G = [Gk] such
that Y = F (X). This is the essence of triangular map-
ping in [BKM05]. In addition, this mapping is bounded
and piece-wise continuous, because it is composed of in-
verse cumulative distribution functions of absolutely con-
tinuous variables on bounded support.

Appendix B: From state coordinate universality to
expectation of observable universality

We start by recalling Theorem 4 from [PSLNGS+21],
which proves that the following circuit is universal. It
has L layers, θ ∈ R(M+2)×L parameters and for x ∈ RM
is defined as

Uθ(x) :=

L∏

l=1

Ry(θ0,l)

(
M∏

m=1

Rz(xmθm,l)

)
Rz(θM+1,l).

(B1)

Theorem 9. For any pair of functions and real number

(f ∈ C([0, 1]M → [0, 1]), ϕ ∈ C([0, 1]M → [0, 2π)), ϵ > 0)

There exists a one qubit circuit U : [0, 1]M → U(2) s.t.

∀x,
∣∣∣⟨1|U(x) |0⟩ − f(x)eiϕ(x)

∣∣∣ < ϵ. (B2)

In this work, C is the set of continuous functions. This
theorem yields the universality of functions embedded in
a quantum state in the uniform sense. In the context
of expectation value sampling, we are interested in the
universality of function as the expectation value of a unit
norm observable, captured by the following theorem.

Theorem 10. For any function g ∈ C([0, 1]M → [−1, 1])
and for any ϵ > 0, there exists a one qubit circuit U(x) :
[0, 1]M → U(2) and an observable O with unit spectral
norm ∥O∥ = 1 s.t.

∀x,
∣∣⟨0|U†(x)OU(x) |0⟩ − g(x)

∣∣ < ϵ. (B3)

Proof: We are given an arbitrary function g ∈
C([0, 1]M → [−1, 1]) and ϵ > 0. We define the function

f =
√

g+1
2 which is well defined on C([0, 1]M → [0, 1]).

We apply Theorem 9 to (f, ϕ = 0, ϵ/4) and get a circuit
U that yields a state close to

|x⟩ =
√
1− f(x)2 |0⟩+ f(x) |1⟩ . (B4)

The Z expectation value of the above state is

⟨x|Z |x⟩ = 2f(x)2 − 1 = g(x). (B5)

We are now going to prove that the expectation value is
close to the target function g. First, we note that the
square function is 2-Lipschitz on [0, 1] and therefore for
every pair of real numbers (x, y) ∈ [0, 1]2

|x− y| < ϵ =⇒
∣∣x2 − y2

∣∣ < 2ϵ. (B6)

We define p0/1 the probabilities of measuring U(x) |0⟩ in
state |0⟩ and |1⟩ respectively. Recalling that

|⟨1|U(x) |0⟩ − f(x)| < ϵ/4, (B7)

we can write
∣∣p1 − f(x)2

∣∣ < ϵ/2 (B8)∣∣p0 − (1− f(x)2)
∣∣ =∣∣∣1− |⟨1|U(x) |0⟩|2 − (1− f(x)2)
∣∣∣ < ϵ/2. (B9)

Finally,

|⟨Z⟩ − g(x)| ≤
∣∣p1 − f(x)2

∣∣+
∣∣p0 − (1− f(x)2)

∣∣ < ϵ.
(B10)

This yields the uniform density of quantum functions in
the set of bounded continuous functions.

Appendix C: From uniform density on continuous
functions to pointwise density on discontinuous

functions

We first start by highlighting the difference between
uniform convergence and pointwise convergence and il-
lustrate it with an example.

Definition 7 (Pointwise convergence). Let {fk|fk : X →
R}1≤k≤∞ be a sequence of functions, and let f : X → R
be another function defined on the same domain X . We
say that the sequence {fk} converges pointwise to f if, for
each x ∈ X , the sequence of real numbers {fk(x)}1≤k≤∞
converges to f(x) as k approaches infinity,

lim
n→∞

fk(x) = f(x) for all x ∈ X .

Definition 8 (Uniform convergence). Let {fk|fk : X →
R}1≤k≤∞ be a sequence of functions, and let f : X → R
be another function defined on the same domain X . We
say that the sequence fk converges uniformly to f if, for
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FIG. 5: A sequence of continuous functions converging point-
wise but not uniformly to the step function.

any given ϵ > 0, there exists an K ∈ N such that for all
k ≥ K and for all x ∈ X , the difference |fk(x)− f(x)| is
less than ϵ,

∀ϵ > 0,∃K ∈ N : ∀k ≥ K,∀x ∈ X , |fk(x)− f(x)| < ϵ.

Uniform convergence is stronger, it implies pointwise
convergence, but the reverse is not true. For example,
consider the step function f .

f(x) =

{
−1, if x ∈ [−1, 0[

+1, if x ∈ [0,+1]
(C1)

It is impossible to define a sequence of continuous func-
tions that would uniformly converge to it, however, it is
possible to have a sequence of continuous functions that
converges pointwise to it, see Figure 5.

fk(x) =





−1, if x ∈ [−1, 1/k[

1 + kx, if x ∈ [−1/k, 0]

+1, if x ∈]0,+1]

(C2)

In [Bai99] Baire defined hierarchical pointwise conver-
gence classes of functions. Baire class 0 is the set of con-
tinuous functions, and the class c is the set of functions
that are the pointwise limit of class c − 1. In particu-
lar in [Lac84, Leb04], it was proven that bounded piece-
wise continuous functions are of class 1. This means that
for any bounded piece-wise continuous function f there
exists a sequence of bounded continuous functions that
converges pointwise to f . This means that bounded con-
tinuous functions are dense in bounded piece-wise con-
tinuous functions in the pointwise topology. Therefore,
building on Theorem 10 we have the following theorem,
writing B as the set of piecewise continuous functions.

Theorem 11. For any function f : B([0, 1]M → [−1, 1]),
there exists a sequence (indexed by k) of one qubit circuit

and observables with unit spectral norm,

{(Uk(x) : [0, 1]M → U(2), Ok)}1≤k≤∞ (C3)

such that the sequence of functions {gk} with

gk(x) = ⟨0|U†
k(x)OkUk(x) |0⟩ (C4)

converges pointwise to f .

Appendix D: Notes on infinite support

We consider a distribution with probability density
function pY with infinite support RM and finite mo-
ments. The goal is to find a sequence of random vari-
ables with bounded support probability density function
that converges pointwise to py. We define the sequence
of random variables {Yk}1≤k≤∞ whose probability den-
sity functions pYk

are proportional to that of Y on the
hypercube [−k−k0,+k+k0]M , where k0 is the first inte-
ger such that Y has non-null support on the hypercube.
This sequence converges in distribution to Y .

Appendix E: Construction of the “dense encoding”
circuit

Note: We have used slight abuse of notations in the
below proof to increase readability, specifically in the ap-
proximations.

Considering architecture such as in [PB11] and univer-
sal one qubit gate as Rx(α)Rz(β)Rx(γ), for any number
of qubits, it is possible to design a circuit U : [0, 2π)L →
U(2n) made only of a finite number of fixed gates (CNOT
and constant rotations) and parameterized σz rotations
gates that can reach any pure quantum state when ap-
plied to state |0⟩,

∀ |ψ⟩ ,∃θ ∈ [0, 2π)L, |ψ⟩ = U(θ) |0⟩ . (E1)

Let’s consider a distribution pψ over pure states. Because
the architecture above can reach any pure state, there ex-
ists a corresponding distribution over the parameters pθ
such that the distribution V (θ) |0⟩ , θ ∼ pθ matches per-
fectly pψ in distribution. We define g : [0, 1]L → [0, 2π)L

as the mapping that transforms the uniform distribution
over [0, 1]L into pθ. We have V (f(X)) |0⟩ , X ∼ U([0, 1]L)
matches perfectly pψ in distribution, where V is com-
posed of a finite number of fixed gates and L σz rotation
gates parameterized by gl(X).

Lemma 4. For any distribution over pure states pψ,
there exists a circuit architecture V made of constant
gates and parameterized σz rotations, and a mapping g
such that

X ∼ U([0, 1]L), V (g(X)) |0⟩ ∼ pψ (E2)
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Next, we decompose Rz ◦ g gates into a sequence of
constant gates and parameterized σz rotations.

From [PSLNGS+21], in the proof in the appendix, it
is shown that there exists a quantum circuit W taking a
multidimensional input and approximating the following
parameterized quantum gate,

∀f : [0, 1]L → [0, 1], ϕ : [0, 1]L → [0, 2π),∃W

W (x) ≡ϵ
[√

1− f(x)2e+iϕ(x) −f(x)e+iϕ(x)
f(x)e−iϕ(x)

√
1− f(x)2e−iϕ(x)

]
.

(E3)

Choosing ϕ = 0, and f = sin g, we have
√
1− f2 = cos g,

and we note that W (x) = Rz ◦ g. We can conclude the
following.

Lemma 5.

∀f : [0, 1]L → [0, 1],∃W,Rz ◦ f ≡ϵ W, (E4)

whereW is a quantum circuit made of constant gates and
Rz gates applied to individual components of x.

Combining both above lemmas we get the following.

Lemma 6. For any distribution over pure states pψ,
there exists a circuit architecture V made of constant
gates and parameterized z rotations such that

X ∼ U([0, 1]L), V (X) |0⟩ ∼ϵ pψ. (E5)

We are now going to use that lemma to prove that
n-qubits expectation value samplers are universal for
exp(n)-dimensional distributions with constant support
if the observables are allowed to have exp(n) norms.

We are given an arbitrary random variable Y following
a M -dimensional distribution pY with support [−1, 1]M .
We define the following state over n qubits with M =
2n − 1.

|ψ(Y )⟩ =
∑

m≤M

Zm |m⟩+
√
1−

∑

m≤M

Z2
m |M + 1⟩ (E6)

Zm =

√
Ym + 1

2M
(E7)

We define as pψ as the probability density functions
over states when Y ∼ pY , using the previous lemma we
get a circuit W composed only of constant gates and
z rotations gates with one of the L parameters as in-
put that approximates pψ. We define the observables
∀m ≤ M,Om = 2M |m⟩ ⟨m| − I. They have spec-
tral norm ∥Om∥ = 2M − 1 = Θ(2n). In addition,
⟨ψ(Y )|Om |ψ(Y )⟩ = Ym. Therefore, the expectation
value sampler (W,O,U([0, 1]L)) approximates pY . This
concludes the proof to Theorem 4.

Appendix F: Proof of theorem in Section IVB

We start by proving the Theorem 6, which we recall
below.

Theorem. For an n-qubit expectation value sampling
model (Uθ,O, pX) to be able to approximate any distribu-
tion with support in [−1, 1]M to any accuracy ϵ > 0 with
respect to the Wasserstein distance, it is necessary that
for every m ≤M :

1. λmin(Om) ≤ −1 + ϵ and λmax(Om) ≥ +1− ϵ

2. n ∈ Ω
(
M(1−ϵ)2
Λ(Om)

)
⊆ Ω

(
M(1−ϵ)2

∥Om∥2

)

with λmin/max(O) returning respectively the minimum
and maximum eigenvalues of observable O, and Λ(O) :=
−λmin(O)λmax(O).

Proof: Let’s suppose there is an n-qubit expectation
value scheme with M observables O that is able to ap-
proximate any distributions with support included in
[−1, 1]M to ϵ with respect to the first Wasserstein dis-
tance W1.
Because the expectation value model is universal, it

means that for any vertex of the hypercube c ∈ {−1, 1}M ,
it can approximate the Dirac delta at c. We then use the
lemma below.

Lemma 7. Any distribution that is ϵ-close (in the
Wasserstein distance) to the Dirac delta at a given point
must have nonzero support within the Euclidean distance
sphere centred in that point with radius ϵ.

This means that there is non-zero support on the ϵ
sphere around c, and therefore there exists a quantum
state ρc whose list of expectations is ϵ-close to that point.
This yields the following result.

∀c ∈ {−1, 1}M ,∃ρc,
M∑

m=1

(Tr(Omρc)− cm)2 ≤ ϵ2. (F1)

Because the above is a sum of positive components, we
can write ∀m

(a) if cm = 0, then −1− ϵ ≤ Tr(Omρc) ≤ −1 + ϵ

(b) if cm = 1, then +1− ϵ ≤ Tr(Omρc) ≤ +1 + ϵ

The above yields conditions on the spectrum of Om. We
note λmin and λmax respectively the minimum and max-
imum eigenvalues of Om. We define γ := 1− ϵ. We know
that ∀ρ,Tr(Oρ) ≥ λmin therefore, −γ ≥ λmin, the same
reasoning applies for the maximum eigenvalue, yielding:

(a) λmin ≤ −γ,

(b) λmax ≥ +γ.
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For the rest of the proof, we combine approaches from
the proof of theorem 2.6 in [Aar07] and that of B.1 in
[JGM+23]. We define the two-outcome POVMs {Em, I−
Em} with

Em =
Om − λmin

λmax − λmin
(F2)

We define β := −λmin

λmax−λmin
. The spectral inequalities yield

β ≥ 1
2 . With this definition, the two conditions above

translate to:

(a) cm = 0, p0 := Tr(Emρc) ≤ β − γ
λmax−λmin

(b) cm = 1, p1 := Tr(Emρc) ≥ β + γ
λmax−λmin

We define the amplified Positive Operator-Valued
Measures (POVMs) that apply {Em, I − Em} to L ≥ 1
copies of ρ and return 1 if and only if at least βL copies
of the original POVMs return 1.

From Holevo’s bound (found as Theorem 5.1 in
[ANTSV02]), for the amplified scheme to correctly iden-
tify the corresponding bit bm = (cm + 1)/2 with proba-
bility q it is necessary that

nL ≥ (1−H(q))M, (F3)

where H is the binary entropy function.
We define the random variable Xm,l which takes the

value of the output of the POVM of the m-th observable

on the l-th copy. We define X
(L)
m := 1

L

∑
lXm,l.

In the case cm = −1, we have E[X(L)
m ] = p0. The

probability of the amplified POVMs yielding the wrong
output is

P (X(L)
m > β) ≤ P

(
X(L)
m > p0 +

γ

λmax − λmin

)
(F4)

Recalling that β ≥ 1/2, we can use the Chernoff bound

on the Bernoulli variable X
(L)
m and we get

P (X(L)
m > p0 +

γ

λmax − λmin
) ≤ exp

{
− γ2L

2(−λmin)λmax

}

(F5)

We define Λ = (−λmin)λmax, we have γ2 ≤ Λ ≤ ∥O∥2.
For the probability of the amplified POVMs to yield

the correct output with probability q it is necessary that

P (X
(L)
m ≤ β) ≥ q.

Finally, we get

log(1/q) ≤ γ2L

2Λ
(F6)

Combining Chernoff’s and Holevo’s inequalities, we
conclude the proof of Theorem 6:

Λ ≥ 1−H(q)

log(1/q)

γ2M

n
. (F7)

Note: The above is a tighter condition than in Theo-
rem 2.6 in [JGM+23] but falls back to it, when Λ = ∥O∥2,

which corresponds to λmin = −∥O∥ and λmax = ∥O∥. In
the opposite scenario, we have Λ = γ2, which corresponds
to constant norm observables, yielding n ∈ Ω(M). The
norm of observables affects the number of measurements
to reach a desired additive accuracy.

Appendix G: Approximation of expectation values

In practice, we do not have access to exact expecta-
tion values and we have to estimate them through sam-
pling. This creates a distribution pŶ (n dimensional)
slightly different from the distribution with exact expec-
tation values pY . For simplicity, we assume that shot
noise ρϵ ∼ N (0, ϵIn) (n dimensional) acts like an addi-
tional Gaussian noise with zero mean and standard de-
viation ϵ. ρϵ and Y are independent and we consider the
random variable Ŷ = Y +ρϵ. Therefore the density pŶ is
the convolution of pY and pρϵ . Using Lemma 7.1.10 from
[AGS05], we know that the Wasserstein distance between
pY and pŶ , Wp(pY , pŶ ) ∈ O(ϵ).
In practice, different techniques exist to estimate ex-

pectation values of observables with different degrees of
measurement efficiency, with shadow tomography tech-
niques [CKWD] surpassing the “vanilla estimation”. For
simplicity, we consider a vanilla estimation where each
observable with norm ∥O∥ is measured t times and the
average is returned. This yields a shot noise close to the
Gaussian model above with ϵ2 ∈ Θ(∥O∥/t). The total
number of measurements T is then T = tM , which yield
T ∈ Θ(M∥O∥/ϵ2)
Note that the first result cannot be trivially applied

to techniques such as shadow tomography [CKWD]. In-
deed the corresponding shot noise ρ cannot in general be
modelled by a Gaussian independent noise, at the least
the covariance matrix will in general not be proportional
to the identity.
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