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Quantum generative modeling is among the promising candidates for achieving a practical advantage in data
analysis. Nevertheless, one key challenge is to generate large-size images comparable to those generated by
their classical counterparts. In this work, we take an initial step in this direction and introduce the Latent Style-
based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative
Adversarial Networks (GANs) for arbitrary complex data generation. This novel approach relies on powerful
classical auto-encoders to map a high-dimensional original image dataset into a latent representation. The hybrid
classical-quantum GAN operates in this latent space to generate an arbitrary number of fake features, which are
then passed back to the auto-encoder to reconstruct the original data. Our LaSt-QGAN can be successfully
trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion
products) and SAT4 (Earth Observation images) with 10 qubits, resulting in a comparable performance (and
even better in some metrics) with the classical GANs. Moreover, we analyze the barren plateau phenomena
within this context of the continuous quantum generative model using a polynomial depth circuit and propose
a method to mitigate the detrimental effect during the training of deep-depth networks. Through empirical
experiments and theoretical analysis, we demonstrate the potential of LaSt-QGAN for the practical usage in the
context of image generation and open the possibility of applying it to a larger dataset in the future.

I. INTRODUCTION

Over the past few decades, generative modeling has stood
as one of the main pillars in machine learning (ML), revolu-
tionizing not only academia but also industries and everyday
life [1–4]. These models aim to generate synthetic data that
closely resembles the original data by learning the underlying
probability distribution. While operating on high-dimensional
data manifolds posts some key challenges, it also inspires re-
searchers to propose diverse architectures [5–9] and training
strategies [10, 11].

Among those various architectures, generative adversarial
networks (GANs) [6, 10, 12] and diffusion models (DMs) [7,
13, 14] have emerged as two of the most developed and widely
used. On one hand, GANs learn the implicit data distribution
of an arbitrary dataset by simultaneously training two distinct
neural networks in an adversarial minimax game, successfully
being used for a wide range of applications such as image
generation [15, 16], text-to-image synthesis [17, 18], image-
to-image translation [3, 19, 20] and high-energy physics par-
ticle shower simulation [4, 21]. On the other hand, DMs rely
on iteratively learning to reconstruct data which are intention-
ally perturbed by noise. Of particular interest, one DM variant
known as a latent diffusion model (LDM) [22] incorporates a
strength of pre-trained autocoders to embed original data into
a low-dimensional latent space and learns data generation at
this level, directly circumventing the issue of operating in a
high dimensional space. This approach significantly reduces
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the computational resources while retaining high fidelity of
generated data [22].

Meanwhile, due to the rise of quantum computers, quan-
tum machine learning (QML) has emerged as a new paradigm
for data analysis, harnessing the power of quantum mechan-
ics in the hope of achieving a practical advantage over con-
ventional classical ML [23–32]. Such growing interest has
also spurred efforts to extend QML to the context of gen-
erative models by employing parametrized quantum circuits
to learn either discrete or continuous distributions (see Fig-
ure 1 for a visual summary). Discrete generative models
(including quantum Born machines [31, 33–39], quantum
GANs [40–44] and quantum Boltzmann machines [45, 46])
employ a parametrized n-qubit quantum state to represent a
discrete distribution of 2n bit-strings with generated samples
efficiently obtained as measurements in a computational ba-
sis. On the other hand, in the case of continuous models such
as variational quantum generator [47] or style-based quantum
GANs [48, 49], a quantum circuit acts as a feature map and
takes classical random input to produce expectation values as
new samples. Despite less sampling efficiency, this approach
by design naturally handles continuous data generation and is
expected to have a wide range of applications, such as image
synthesis, where each pixel takes a continuous value.

Compared to discrete models where there exists a relatively
larger body of literature [31–40, 43–46, 50], studies of the
continuous quantum generative modeling are much less ex-
plored (see the Section A for details of the recent research ad-
vancements). The proof of concept on small-size data genera-
tion was demonstrated in the context of 3-dimensional Monte
Carlo event generation [48]. Recently, an expressivity of the
continuous model has been investigated and universality is
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Figure 1. Schematic diagram summarizing the general training framework of discrete and continuous quantum GANs. Frequently, we
use a hybrid approach with a quantum generator and classical discriminator [40, 48], although an alternative option exists where a quantum
discriminator is employed [47].

shown to be achievable under some sufficient conditions [49].
Yet, there remain many open questions, both fundamentally
and practically. One of which is how to achieve the capability
of producing an arbitrary number of high-quality images with
large sizes. Given large-size images being generated by clas-
sical ML today, resolving this particular problem is one of the
key pieces for a practical quantum advantage or utility.

In this work, we propose a hybrid quantum-classical GAN
approach, which we call Latent Style-based Quantum GAN
(LaSt-QGAN), capable of generating large-size images. We
leverage the idea of LDMs by first embedding the complex
high-dimensional data into a lower-dimensional latent space
using a pre-trained classical autoencoder and then training a
style-based quantum GAN directly on this compressed latent
representation. After training, expectation values produced by
the quantum generator are considered as new features in the
latent space, which are then mapped back to the original data
space by the autoencoder leading to a new set of large-size
images. Compared with standard style-based quantum GANs,
our method allows us to push a limit to generate much larger
size images despite having the same quantum resources.

Our study focuses on two main objectives. First, we con-
duct empirical research on LaSt-QGAN in order to understand
its potential in practical applications. In comparison to exist-
ing frameworks, we empirically showcase the model’s capac-
ity to generate diverse images by testing it on the standard
MNIST, the Fashion MNIST dataset, and on Earth observa-
tion image dataset, known as SAT4 [51]. Second, we perform
further analysis on the model to assess its robustness against
statistical fluctuations caused by shot noises and evaluate its
trainability at the initial step, a pivotal factor in QML. Cru-
cially, we investigate the barren plateau phenomena of con-
tinuous quantum GANs (using both analytical and numerical
tools) for the first time, as a complementary contribution to
[34, 44] who pioneered this work in the case of the discrete
quantum generative models. In particular, this study suggests
a possible method to trigger the training of LaSt-QGAN at the
initial step with a small angle initialization around the iden-

tity for a polynomial depth quantum circuit, whose loss land-
scape is exponentially flat on average. As the training of our
model happens at the level of latent space, the barren plateau
results here are directly applied to continuous generative mod-
els based on expectation values in general, including the stan-
dard style-based quantum GANs.

The paper is organized as follows. Section II introduces
the general training framework of our novel LaSt-QGAN ap-
proach. We apply the proposed model to three different
datasets and summarize the training results in Section III. In
addition, we compare the performance of LaSt-QGAN with a
classical GAN which has the same training schema but with
a classical generator. The results empirically demonstrate that
LaSt-QGAN outperforms the classical generator with a sim-
ilar model size on these particular tasks. In Section IV, we
study the impact of the finite number of measurements and
argue the robustness of the model against the statistical fluc-
tuations. We confirm that the errors due to the shot noise can-
not be detected by the standard methods for image evaluation.
Section V investigates the trainability of LaSt-QGAN in the
case of the shallow-depth circuit with numerical simulations
and extends the study to the deep-depth circuit case. Finally,
in Section VI, we summarize our study with proposals for fu-
ture research.

II. GENERAL FRAMEWORK

A. Overall training schema

Our work proposes a hybrid classical-quantum GAN ap-
proach, so-called, Latent Style-based Quantum GAN (LaSt-
QGAN), which integrates two distinct components: a classical
autoencoder and a quantum GAN. The autoencoder is an un-
supervised neural network used for dimensionality reduction
and data compression. It consists of an encoder, which em-
beds the high dimensional data into a low dimensional latent
space, and a decoder, which reconstructs the data from these
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latent features. In our approach, the autoencoder functions
as an invertible image preprocessing tool, efficiently reducing
the dimensionality of the complex images and reconstructing
fake images from the generated latent features. On the other
hand, the quantum GAN serves as a generative model for pro-
ducing fake features, employing a quantum generator and a
classical discriminator. The quantum generator is responsible
for generating fake features from a randomly sampled noise,
while the classical discriminator differentiates between real
and fake features.

Encoder

Real images
I

Latent space
(Real Features, x)

Decoder

Quantum
Generator

Gθ

Random noise
z ∼ N (0, 1)

Fake features x̃

Classical
Discriminator

Dϕ

Quantum GAN

Pretrained
AutoEncoder

Recons.
images

Fake
images

Ĩ

Loss LG/LD

Classical

Optimization

Figure 2. Schematic diagram for LaSt-QGAN training. The
model consists of a convolutional auto-encoder that embeds the orig-
inal images into a low-dimensional latent space and a quantum GAN
with a quantum generator 𝐺𝜃 and a classical discriminator 𝐷𝜑. The
features extracted with the autoencoder are used as the training set
of the GAN. At the end of the training, images are reconstructed by
inversely transforming the features generated by the quantum gener-
ator using the pre-trained convolutional auto-encoder.

The overall training schema of LaSt-QGAN is illustrated
on Figure 2. First of all, we extract the essential features, de-
noted as x ∼ Pr, in the latent space of dimension Dℓ from real
images I via a classical convolutional auto-encoder. The auto-
encoder is pre-trained on the original image dataset, thus used
as an invertible dimensionality reduction technique. Those
extracted features are utilized as the real training dataset
Xtrain ⊂ RDℓ for the quantum GAN training. At each step,
G𝜃 reproduces fake data G𝜃(z) = x̃ ∈ X̃ ∼ Pg, X̃ ⊂ RDℓ

from a latent noise z ∈ RDz sampled randomly from a prior
Pz. Then, the fake and the real features are given as input
to the discriminator D𝜑, which returns a scalar value measur-
ing the realness of the samples (i.e., a larger value implies an
image is more likely to be real). We note that for the follow-
ing of the paper, we will keep the tilde mark ◦̃ to denote the
generated samples.

Additionally, Wasserstein loss with gradient penalty [10,
52] is used for better convergence in the model. The gradient
penalty corresponds to a regularization term to enforce Lip-
schitz constraint on the gradients of the discriminator (often

called as critic in Wasserstein GAN). This helps to avoid the
vanishing gradients in the generator observed in the classical
GAN, by excluding the sigmoid functions in the discriminator
activations [52]. In this setup, the generator and the discrim-
inator loss functions measure the Wasserstein distance or the
Earth Mover distance between the output distributions of the
real and the fake samples, with the following expression:

LG(𝜃,𝜑) = − E
z∼Pz

[D𝜑 (G𝜃(z))] (1)

LD(𝜃,𝜑) = − E
x∼Pr

[D𝜑(x)] + E
z∼Pz

[D𝜑(G𝜃(z))]

+ λ E
x̂∼Px̂

[(||∇x̂D𝜑(x̃)||2 − 1)2] (2)

where the last term corresponds to the gradient penalty of the
discriminator. In this term, x̂ = ϵx + (1 − ϵ)x̃ correspond to
points interpolated between real and generated samples with a
random value ϵ sampled from a uniform distribution and λ the
penalty coefficient. These formulas imply that the discrimina-
tor aims to maximize the distance, while the generator aims to
minimize it.

At the end of the training, the generated data distribution
Pg should approach as close as possible to the real data distri-
bution Pr. The generated features are then passed back to the
and inversely transformed into images Ĩ. Thanks to continu-
ity in the latent space, the inverse transform of the generated
features leads to the reconstruction of the correct images in
the image space.

B. Style-based quantum generator

The quantum generator takes the form of a parameterized
quantum circuit, also known as a quantum neural network
(QNN). The n-qubit unitary quantum circuit U𝜃(z) with pa-
rameters 𝜃 transforms the classical latent noise z into an en-
coded quantum state |Ψ𝜃,z⟩ ∈ H with H as a 2n dimensional
Hilbert space. In other words, the parameterized circuit acts
as a feature map that maps for the classical input.

Unlike the architecture firstly introduced in Ref [47] where
the classical noise embedding layer and trainable layers are
separated, the particularity of the style-based architecture is
that the rotation angles in the learning layers are also parame-
terized by the latent noises. Mathematically, the unitary trans-
formation U𝜃(z) can be written as a L-repetition of learning
layers U ℓ

𝜃ℓ
(z) parameterized by the set of parameters 𝜃ℓ for

each layer ℓ = 1, ..., L :

U𝜃(z) = UL
𝜃𝐿

(z) · · ·U1
𝜃1
(z). (3)

Then, the latent vectors, z are embedded into the angles of
qubit rotation action, 𝜃ℓ for each layer ℓ by an affine transfor-
mation :

𝜃ℓ =Wℓz+ bℓ (4)

where Wℓ is the weight matrix of size N𝜃 × Dz with N𝜃

the number of rotation angles in QNNs and bℓ ∈ RN𝜃 the
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Figure 3. Different circuit architecture used for learning layers, 𝑈 ℓ
𝜃 , in the quantum generator. (a) Circuit1 and (b) Circuit2 are taken

from two different quantum GAN papers for continuous data generation by C. Bravo Prieto et al. [48] and J. Romero et al. [47], respectively.
(c) Circuit3 is composed of repeated two-qubit quantum circuits (blue square), responsible for an arbitrary 𝑆𝑈(4) state generation [53].

bias. During the training, the model will be trained by varying
Θ = {Wℓ,bℓ}ℓ=1,...,L with NΘ the total number of trainable
parameters. This can also be regarded as an equivalence of
data reuploading technique, where the input data are embed-
ded into the rotation angles in the learning layers for classifi-
cation task [54, 55], in the context of generative models.

Figure 3 illustrates three different circuit types for a single
parameterized layer, U ℓ

𝜃(z), used in this paper for numerical
simulations. Circuit1 is the quantum circuit architecture em-
ployed in style-based quantum GAN for Monte Carlo event
generation [48], and Circuit2 is inspired by the quantum cir-
cuit presented in Ref. [47], used as a variational quantum gen-
erator (VQG) for continuous distribution. Additionally, we
also consider Circuit3, which consists of repeated two-qubit
quantum filters (blue square). These filters are responsible
for generating an arbitrary SU(4) state [53], thus serving as a
universal quantum state generator at least at the level of two-
qubits.

After transforming the classical input through the QNN, we
measure the expectation values of some observables at the end
of the generator to extract some information from the encoded
state. Unlike the original architecture [48], which performs
only the measurement of the Pauli Z operator, σz , our archi-
tecture uses expectation values of both Pauli X and Z opera-
tors, σx and σz . The measured values are then concatenated
into a single vector, also called a latent feature, which will be
given as input to the discriminator:

x = {⟨σ1
x⟩z,𝜃, ..., ⟨σn

x ⟩z,𝜃, ⟨σ1
z⟩z,𝜃, ..., ⟨σn

z ⟩}z,𝜃 ∈ R2n, (5)

where ⟨σi
x⟩z,𝜃, ⟨σi

z⟩z,𝜃 denote the expectation values of σx
and σz on i-th qubit for an input latent noise z and the gener-
ator angle 𝜃, i.e., :

⟨σi
µ⟩z,𝜃 = ⟨0|U𝜃(z)

†σi
µU𝜃(z)|0⟩ (6)

with µ ∈ {x, z}. We note that this strategy does not satisfy
the sufficient conditions specified in Ref. [49] for universality.
Nevertheless, the numerical results in the following sections
demonstrate the model can be adequately used to generate the
samples in the training set for the given tasks. More generally,

one can employ a polynomial number of expectation values to
construct a latent feature with a larger dimension.

We note that the multi-observable or multi-basis strategy
has also been employed in the previous study for multi-
classification task [56] or probability learning task [37] to cap-
ture the hidden information of the quantum circuit adequately.
This way of interpreting the quantum output state allows using
only n qubits for Dℓ = 2n values, also bringing an advantage
in terms of quantum resources.

C. Evaluation metrics

Unlike the classification task, where the evaluation meth-
ods are quite straightforward for the final test accuracy, it is
less clear how to evaluate the generative models. There have
been efforts to define the appropriate metrics to evaluate the
performance of Quantum GAN in previous studies. However,
the proposed metrics are limited for discrete generative mod-
els [58] as they require one-to-one comparisons of the dataset,
or for continuous data with small dimensions [59] where the
direct comparison of the probability distribution is available.
Therefore, it is important to choose the appropriate metrics to
compare the performance between models for image genera-
tion. In this paper, we evaluate the performance of GAN with
three different metrics: Inception Score (IS) [60, 61], Fréchet
Inception Distance (FID) [16, 62] and Jensen-Shannon diver-
gence (JSD) [63].

IS evaluates the quality and the diversity of generated im-
ages by calculating the Kullback-Leibler (KL) divergence be-
tween marginal distributions obtained by summing up the out-
puts of the Inception V3 Network [64] applied on real and
generated images. Inception V3 Network is a convolutional
neural network widely used in classical ML for image recog-
nition task, pretraind on ImageNet dataset (only used for met-
rics calculation in this paper). Note that the KL divergence for
discrete distribution is computed with the following formula :

DKL(P ||Q) =
∑︁
x∈X

P (x) log

(︂
P (x)

Q(x)

)︂
(7)
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Figure 4. Examples of images generated via LaSt-QGAN (Circuit1, depth 2) and a classical GAN ([50, 30]) for different datasets:
MNIST, FashionMNIST and SAT4. The fake features are obtained using 𝒟z = 10 and 𝒟ℓ = 20 and the images are reconstructed using
a pre-trained convolutional auto-encoder from the features obtained by the GAN in the latent space. The images are presented in columns
classified using a pre-trained ResNet50 [57] for MNIST and FashionMNIST, and in rows for SAT4.

for the empirical distribution P and target distribution Q de-
fined on discrete space X . The maximum value of IS is the
number of classes in the dataset, and the higher the IS value,
the better the result.

FID also measures the quality of the images using the out-
put of the Inception V3 model, but calculates the Frechet dis-
tance between the real and fake embedding from the model
given by the expression:

d(X,Y ) = ||µX − µY ||2 − Tr
(︁
ΣX +ΣY − 2

√︀
ΣXΣY

)︁
(8)

where µX , µY are the mean vector of multi-dimensional data
X and Y (in this case, the real and fake embedding from the
Inception V3) and ΣX ,ΣY their covariance matrices. This
distance measures the similarity between the distribution of
the real and the generated images in the feature space obtained
using the Inception V3. The lower the FID value, the better
the quality of the images.

Finally, the Jensen-Shannon divergence measures the dis-
tance between two discrete probability distributions, similar to
the Kullback-Leibler divergence but symmetric and smoother
with the following formula :

DJS(P ||Q) =
1

2
DKL

(︁
P
⃦⃦1
2
(P +Q)

)︁
+

1

2
DKL

(︁
Q
⃦⃦1
2
(P +Q)

)︁
. (9)

As JSD requires discrete distributions, in the case of the un-
labelled continuous dataset, we first classify the train samples
intoK bins using K-mean clustering to generate a discrete tar-
get distribution, Q. The generated samples are also classified
according to the lowest distance from the centers of the train
set clusters, returning the generated distribution P , on which
we compute the JSD value. The lower the JSD, the more di-
verse the images.

III. MAIN RESULTS

A. Experimental setup

This section presents the results of LaSt-QGAN trained
on MNIST [65] (28 × 28 × 1 pixels), Fashion MNIST [66]
(28×28×1 pixels) and SAT4 [51] (28×28×4 pixels), which
contains 4 classes of Earth Observation images with RGB and
Near Infrared channels. We then compare them with the re-
sults of their classical counterpart. To keep the latent space
embedding model comparable, we used only the RGB chan-
nels in the SAT4 dataset. Unless specified, the same model
architecture and hyperparameters are used for the following
simulations.

The images are embedded into the latent space of dimen-
sion Dℓ = 20 with a convolutional auto-encoder. The detailed
architecture of the auto-encoder is given in Appendix. B. As
the output of quantum generator ⟨σx⟩ and ⟨σz⟩ are defined in
[−1, 1], the latent space should also be constrained in the same
interval. The quantum generator takes n = 10 qubits with the
latent noises of Dz = 10, each component sampled indepen-
dently from a normal distribution, N (0, 1). To guarantee the
convergence of the model, the initial quantum generator pa-
rameters, Wℓ and bℓ, are chosen randomly from a uniform
distribution between [−0.01, 0.01]. The classical discrimina-
tor consists of two hidden dense layers with 100 and 50 nodes
for MNIST and FashionMNIST and 200 and 100 nodes for
the SAT4 dataset, followed by leaky Relu activation functions
and an output node of size one.

To assess the performance of LaSt-QGAN against classical
models, we construct a classical GAN that follows the iden-
tical training framework as LaSt-QGAN, as depicted in Fig-
ure 2, but employing a classical linear generator instead of
a quantum one. The classical generator consists of an input
layer with Dz nodes, two hidden layers with [h1, h2] nodes
followed by a leaky Relu activation function, and the output
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G𝜃 config. NΘ FID ↓ IS ↑ JSD (features/10−2) ↓ JSD (images/10−2) ↓

LaSt-QGAN

Circ. 1 (d = 2) 1360 17.2± 0.35 8.29± 0.02 0.79± 0.05 1.63± 0.09

Circ. 1 (d = 4) 2280 14.85± 0.34 8.49± 0.04 0.75± 0.07 1.49± 0.18

Circ. 1 (d = 6) 3200 14.13± 0.73 8.53± 0.05 0.71± 0.07 1.29± 0.1

Circ. 2 (d = 2) 1010 19.13± 0.54 8.10± 0.06 1.22± 0.19 2.08± 0.17

Circ. 2 (d = 4) 1690 16.2± 0.32 8.34± 0.03 0.94± 0.09 1.66± 0.17

Circ. 2 (d = 6) 2370 14.85± 0.61 8.47± 0.06 0.85± 0.05 1.39± 0.11

Circ. 3 (d = 2) 3300 14.29± 0.38 8.5± 0.04 0.76± 0.06 1.5± 0.12

Circ. 3 (d = 4) 6600 12.72± 0.4 8.65± 0.05 0.71± 0.07 1.14± 0.12

Circ. 3 (d = 6) 9900 11.99± 0.56 8.71± 0.04 0.72± 0.09 1.13± 0.12

Classical
[50, 30] 2960 18.24± 3.6 8.24± 0.28 3.74± 1.64 4.51± 2.0

[100, 50] 7660 12.56± 0.91 8.8± 0.06 1.18± 0.17 1.56± 0.13

Table I. Training results of LaSt-QGAN and the classical GAN for MNIST dataset. Number of parameters used in the generator and
different metrics (averaged over 10 runs) to compare the performance of LaSt-QGAN and the corresponding classical GAN using 10,000
generated images (best results highlighted in bold). For FID and JSD, the lower, the better and for IS, the higher, the better. We observe that
with a similar model size (≈ 3𝑘 parameters), LaSt-QGAN outperforms the classical GAN for all metrics. Note that our results are close to the
result of SoTA vanilla GAN models, which have FID of 7.87 [67] and 12.88 [68].

layer with Dℓ nodes attached to a Tanh function to constrain
the generator output between -1 and 1. For the following sim-
ulations, we consider two different classical generators: 1)
[h1, h2],= [50, 30], 2) [h1, h2] = [100, 50]. The first one is
chosen to have a similar number of parameters as the quan-
tum generators, while the second one is constructed to have
the same hidden layers as the discriminator for a balanced
GAN architecture. In order to also guarantee faster conver-
gence for classical neural networks, we use LeCun normal
initialization [65] for the parameters.

In all cases, the model parameters are updated with an
Adam optimizer using a learning rate of 0.001 for both dis-
criminator and generator with β1 = 0.5 and β2 = 0.999.
Those hyperparameters are chosen empirically to assure the
fastest convergence and stability of the model. For loss cal-
culation, λ = 10 is chosen as the penalty coefficient (c.f.
Eq. (2)).

Our codes used Jax [69] and Flax [70] packages for training
algorithms implementation, and Pennylane [71] for quantum
circuits construction and optimization.

B. Generic results

We display in Figure 4 the images of different datasets gen-
erated by LaSt-QGAN and the corresponding classical coun-
terpart using the features extracted by the pre-trained convo-
lutional auto-encoder. The results prove that the model can re-
produce images correctly, although further improvements are
required for a higher quality of the results.

Figure 5 visualizes the distribution of features generated by
the classical and style-based quantum generators, downsam-
pled using t-distributed Stochastic Neighbor Embedding (t-
SNE) [74, 75] for MNIST and Fashion MNIST dataset. Each
feature is labeled after classifying the generated images using
the ResNet50 pre-trained on the real image dataset. Although

(a) MNIST

(b) FashionMNIST

Figure 5. Visualization of generated features embedded into two
dimensions using t-SNE for MNIST and FashionMNIST dataset.
The labels of generated samples are obtained via classification with
pre-trained ResNet50. The clustering of features reveals that the un-
derlying similarity in each class is preserved in the latent space with
the proposed models.

the separation of the generated features is not as clear as that
of the real training set, the clustering of samples within a class
reveals that the underlying structure of the data distribution is
preserved during the data generation.

The performance of the GAN training is also quantified in
terms of the metrics introduced in Section II C. In Table I, II
and III, we present the comparison of the top-performing re-
sults of LaSt-QGAN with different quantum generator archi-
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G𝜃 config. NΘ. FID ↓ IS ↑ JSD (features/10−2) ↓ JSD (images/10−2) ↓

LaSt-QGAN

Circ. 1 (d = 2) 1360 29.42± 0.59 8.27± 0.04 1.01± 0.095 1.61± 0.2

Circ. 1 (d = 4) 2280 27.59± 0.56 8.37± 0.02 0.85± 0.05 1.42± 0.1

Circ. 1 (d = 6) 3200 26.89± 0.57 8.44± 0.02 0.76± 0.08 1.28± 0.11

Circ. 2 (d = 2) 1010 32.26± 0.43 8.12± 0.05 1.28± 0.12 2.06± 0.14

Circ. 2 (d = 4) 1690 29.2± 0.3 8.34± 0.03 0.94± 0.09 1.69± 0.12

Circ. 2 (d = 6) 2370 28.1± 0.77 8.47± 0.06 0.85± 0.05 1.40± 0.16

Circ. 3 (d = 2) 3300 27.8± 0.88 8.34± 0.03 0.81± 0.08 1.35± 0.12

Circ. 3 (d = 4) 6600 25.96± 0.52 8.5± 0.05 0.75± 0.09 1.50± 0.23

Circ. 3 (d = 6) 9900 25.43± 0.4 8.56± 0.04 1.08± 0.2 1.50± 0.23

Classical
[50, 30] 2960 28.32± 0.88 8.52± 0.09 3.06± 0.45 2.73± 0.29

[100, 50] 7660 27.36± 1.51 8.57± 0.04 2.49± 0.63 2.81± 0.68

Table II. Training results of LaSt-QGAN and the classical GAN for FashionMNIST dataset. Number of parameters used in the generator
and different metrics (averaged over 10 runs) to compare the performance of LaSt-QGAN and the corresponding classical GAN using 10,000
generated images (best results highlighted in bold). For FID and JSD, the lower, the better and for IS, the higher, the better. We observe that
with a similar model size (≈ 3𝑘 parameters), LaSt-QGAN outperforms the classical GAN for all metrics, except for IS. Note that our results
are among the best results obtained with the classical SOTA generative models [72], close to the FID of 21.73 [67] and 28.0 [73].

G𝜃 config. NΘ FID ↓ IS ↑ JSD (features/10−2) ↓ JSD (images/10−2) ↓
LaSt-QGAN Circ. 3 (d = 2) 3300 168.28± 2.06 3.57± 0.01 1.26± 0.21 2.07± 0.27

Classical [100, 50] 7660 172.6± 5.02 3.5± 0.03 6.99± 1.13 4.25± 0.65

Table III. Training results of LaSt-QGAN and the classical GAN for SAT4 dataset. Number of parameters used in the generator and
different metrics (averaged over 10 runs) to compare the performance of LaSt-QGAN and the corresponding classical GAN using 10,000
generated images. For FID and JSD, the lower, the better and for IS, the higher, the better. We observe that LaSt-QGAN outperforms the
classical benchmark for all metrics by using only half the number of parameters. Note that the highest IS value for the SAT4 dataset is 4, as it
consists of 4 classes.

tectures and the classical GAN, using FID, IS and JSD com-
puted on 10,000 samples. In particular, for JSD, we assess the
performance by analyzing both the generated features and re-
constructed images to gauge its ability to mimic the original
data distribution before and after image reconstruction. We
see that with a similar number of parameters, LaSt-QGAN
outperforms the classical benchmark for all types of datasets
not only in terms of quality (FID, IS) but also in terms of di-
versity (JSD) in both features and images, showing that the
model can successfully learn the hidden distribution of the
real data. Notably, our LaSt-QGAN achieves the FID value
close to the state-of-the-art GAN techniques for the MNIST
dataset, which are 7.87 [67] and 12.884 [68].

The rate of convergence serves as another crucial aspect in
GAN training. Figure 6 illustrates the progression of various
evaluation metrics for LaSt-QGAN and its classical counter-
part with different model architectures. As empirically ob-
served in the plot, faster convergence is exhibited for LaSt-
QGAN compared to the classical GAN for both MNIST and
FashionMNIST datasets. Notably, for the MNIST dataset, we
reach the FID value below 20 in fewer than 20 training epochs
for all depth d, which is at least twice as fast as the classical
one. One might argue that the faster convergence is due to
the fact that the quantum generator has a low number of pa-
rameters. However, the faster convergence is also observed
using Circuit3 with depth 6 in the LaSt-QGAN which is com-

posed of more parameters compared to the classical GAN,
empirically showing that this is independent of the number
of parameters. We further stress that small standard devia-
tions reveal the stability of training with LaSt-QGAN during
the whole training process, solving the training instability, one
of the major issues in GANs [11]. This aligns with the pre-
vious studies on the beneficial capacity properties and faster
training convergence, which were experimentally proven in
the previous papers in the context of classification task [76]
and discrete QGAN [44].

C. Dependence on the dataset size

In this section, we train LaSt-QGAN with smaller train-
ing sets for MNIST and FashionMNIST datasets, comparing
the outcomes against the classical GAN to study the gener-
alization power of the quantum generator. That is, we study
how close the underlying distribution of a generator trained
on a small set of training data is to a true target distribution
of the original images as a function of a training data size.
In particular, the models are trained on varying sample sizes,
N = 2k × 1000, k = 0, ..., 5 samples, as well as on the com-
plete training set, N = 60, 000. To maintain consistency in
the number of updates per epoch, we employ batch sizes of
Nbs = 4k for each N = 2k × 1000, where k = 0, ..., 5, and a
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(a) MNIST

(b) FashionMNIST

Figure 6. Evaluation of training dynamics and stability (aver-
aged over 10 runs) for LaSt-QGAN and classical GANs. The
metrics computed over 10,000 samples generated during the train-
ing of LaSt-QGAN and the classical GAN for MNIST and Fashion-
MNIST dataset. We observe faster convergence and higher stability
with LaSt-QGAN than the classical model for both datasets using
a similar number of parameters. Furthermore, for all tested mod-
els, LaSt-QGAN reaches lower JSD compared to the classical model,
highlighting its power to learn the hidden data distribution.

batch size of Nbs = 46 = 256 for the entire training set.

Figure 7 depicts the values of FID and JSD obtained at
the end of the training with varying dataset sizes N using
10,000 generated samples every time. For both datasets, the
LaSt-QGAN results in slightly better performance in terms of
different evaluation metrics compared to the classical GAN
with a similar number of parameters ([h1, h2] = [50, 30])
for smaller N , proving a higher generalization power with
a small training set. In particular, the improvement is more
pronounced with the MNIST dataset for the small generator
size: we reach FID less than 20 only with N = 4k sam-
ples with LaSt-QGAN. Conversely, with a larger generator
size, the quantum generator demonstrates improved distribu-
tion learning capabilities for the FashionMNIST dataset. This
dataset is distinguished by a strong correlation among latent
features compared to the MNIST dataset, indicating the poten-
tial applicability of this architecture for datasets characterized
by significant correlation. This observation can be elucidated
through the measurements of Z and X observables, inherently
correlated in their construction of outputs. It is also notable
that in terms of JSD, we observe that it always outperforms the
classical GAN for all model sizes, even with twice the num-
ber of parameters. Furthermore, lower standard deviations ob-
tained in all cases with LaSt-QGAN prove the stability of the
quantum generator compared to the classical one.

(a) MNIST

(b) FashionMNIST

Figure 7. Comparison of the generalization power in LaSt-
QGAN and its classical counterpart with varying dataset sizes,
𝑁 . Metrics are computed over 10,000 samples generated at the end
of the training with different training set sizes and averaged over 10
runs. For small dataset sizes, we observe that LaSt-QGAN using
Circuit1 with 𝑑 = 4 consistently performs better than the classi-
cal GAN with [50, 30] hidden nodes, which has a similar number of
parameters (see Table I), indicating its ability to generalize from lim-
ited data. Additionally, the larger quantum model (Circ3 - 𝑑 = 6)
shows stronger performance with the FashionMNIST dataset, mak-
ing it suitable for datasets with a more complex feature correlation.

IV. ROBUSTNESS AGAINST STATISTICAL NOISE

Up to this section, LaSt-QGAN has been trained analyti-
cally, under the infinite number of shots assumption. Nonethe-
less, in practical application, the quantum states are sampled
with a finite number of shots and one might argue that the re-
sulting statistical noise might potentially degrade the quality
of images in the real-case scenario. In this section, we demon-
strate that the model is robust against the statistical fluctuation
coming from the finite number of shots.

We denote x̃∞ and Ĩ∞ the feature and the image generated
analytically, and x̃i the ith component in the sample x̃. For
simplicity, we use the parameters of LaSt-QGAN pre-trained
analytically and generate the features x̃shots to reconstruct im-
ages Ĩshots using varying numbers of shots, Nshots = 2k for
k = 4, ..., 13.

On Figure 8a, we plot the Euclidean distance ∥∆x̃∥ =
∥x̃shots − x̃∞∥, where x̃shots and x̃∞ are generated with the
same input noise, averaged over 10,000 samples for MNIST
dataset. Furthermore, as a reference, we indicate the mean and
minimum separation between two samples in the training set,
i.e. ∥∆xtrain∥ = ∥xi−xj∥xi,xj∈Xtrain

. It is noteworthy that
∥∆x̃∥ drops below min ∥∆xtrain∥ after Nshots = 256. This
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(a) Euclidean distance between x̃𝑠ℎ𝑜𝑡𝑠 and x̃∞.
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(b) KL-divergence between 𝐻̃𝑠ℎ𝑜𝑡𝑠 and 𝐻𝑡𝑟𝑎𝑖𝑛.

Figure 8. Quality of the features generated with different num-
bers of measurements. (a) The 𝐿2 distance between x̃𝑠ℎ𝑜𝑡𝑠 and
x̃∞ for MNIST dataset. The dashed line and the dotted line repre-
sent the mean and the minimum separation between samples inside
the training set, i.e., ‖x𝑖 − x𝑗‖xi,xj∈𝒳train . (b) The KL-divergence
𝐷𝐾𝐿 calculated between the histograms 𝐻̃𝑖

𝑠ℎ𝑜𝑡𝑠 and 𝐻𝑖
𝑡𝑟𝑎𝑖𝑛 over 𝑥𝑖

and 𝑥̃𝑖
𝑡𝑟𝑎𝑖𝑛 using 500 bins. The final values are averaged over all

the components 𝑖 = 1, ..., 20. Unlike ‖Δx̃‖2 which decays expo-
nentially with respect to the number of shots, 𝐷𝐾𝐿 converges from
𝑁𝑠ℎ𝑜𝑡𝑠 = 256.

implies that the features generated with more than 256 shots
are close enough to the analytical features, positioning them
within the vicinity of the corresponding x̃∞ to differentiate
them from other samples.

To understand the general statistics over the generated fea-
tures, we construct the histogramsHi

shot for x̃ishot andHi
train

for x̃itrain to compute the KL-divergence between them. Fig-
ure 8b displays the KL-divergence averaged over i = 1, ..., 20.
This underlines that, despite an exponential number of shots
required for the exact outcomes, the overall statistics of each
feature converge towards those of the training set with a finite
number of shots larger than Nshots = 512.

To make this line of argument more concrete, we analyze
the impact of a finite number of measurements on the gener-
ated images. Figure 9 shows the images generated with differ-
ent numbers of shots for the MNIST and the FashionMNIST
datasets. With bare eyes, we observe that the quality of images
becomes already faithful with Nshots = 256, which aligns
with the threshold observed for ∥∆x̃∥. This can be confirmed
with a quantitative analysis of the images using FID metrics.
As shown on Figure 10a, the absolute pixel-by-pixel differ-
ence between Ĩshot and Ĩ∞ decreases exponentially with the
number of shots, which might lead the readers to confirm the
necessity of the infinite number of shots. However, on con-

(a) MNIST

(b) FashionMNIST

Figure 9. (a) MNIST and (b) FashionMNIST images generated
with various number of measurements. We can observe that the
images get closer to the ℐ∞ from 256 shots.
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(a) Pixel-by-pixel 𝐿2 distance between ℐ̃𝑠ℎ𝑜𝑡𝑠 and ℐ̃∞.
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(b) FID calculated for ℐ̃𝑠ℎ𝑜𝑡𝑠.

Figure 10. Quality of the images generated with different num-
bers of measurements. (a) The pixel-by-pixel 𝐿2 distance between
ℐ̃𝑠ℎ𝑜𝑡𝑠 and ℐ̃∞ for MNIST dataset. The exponential decay in ‖Δx̃‖
shown on Figure 8a is also leveraged for ‖Δℐ̃‖. (b) FID value com-
puted for ℐ𝑠ℎ𝑜𝑡𝑠 with different number of shots. Despite an expo-
nential decay in the absolute pixel-by-pixel difference between the
ℐ𝑠ℎ𝑜𝑡𝑠 and ℐ∞, the FID converges to FID∞ after 𝑁𝑠ℎ𝑜𝑡𝑠 = 512.

trary, the FID value shown on Figure 10b converges to the
FID of Ĩ∞ from Nshots = 512. Indeed, in practical imple-
mentation, the standard methods used to evaluate the quality
of the images do not detect the difference occurring by sta-
tistical fluctuation. This empirically demonstrates that with a
good construction of the classical autoencoder responsible for
post-processing, the impact of shot noise can be alleviated, al-



10

luding to the feasibility of using a finite number of shots for
image generation.

It is important to acknowledge that when training on actual
quantum hardware, the gradient computation will also be af-
fected by finite shots, impacting the quality of the resulting
features at the end of the training. Nevertheless, this study
still provides valuable insight into mitigating the fluctuations
in the features thanks to postprocessing, as long as the features
converge towards real values within a certain range.

V. MITIGATING BARREN PLATEAUS

One of the main challenges in PQC training is the problem
of the exponentially vanishing loss gradients, also known as
barren plateaus [77, 78]. In particular, consider a loss func-
tion L(𝜃) of the form

L(𝜃) = ⟨ψ0|U†(𝜃)OU(𝜃)|ψ0⟩ , (10)

where U(𝜃) is some parametrized circuit, O is some observ-
able and |ψ0⟩ is some initial state. We say that the loss func-
tion L(𝜃) exhibits a barren plateau if, for all the parameters
θν , there exists b > 1 such that :

Var𝜃[∂νL(𝜃)] ∈ O
(︂

1

bn

)︂
, (11)

where we introduce a shorthand notation ∂νL(𝜃) :=
∂L(𝜃)/∂θν . Note that the definition of the barren plateau
is also equivalent to showing that Var𝜃[L(𝜃)] ∈ O( 1

b′n ) for
some b′ > 1, which implies the exponentially flat loss land-
scape [79]. Consequently, the number of measurement shots
required to navigate through the flat region scales exponen-
tially with the number of qubits, posing a serious scaling prob-
lem for trainability of PQCs.

Recently, it has been argued that various sources of barren
plateaus previously discovered [77, 80–87] can be unified un-
der one key concept of the curse of dimensionality whereby
quantum states in the exponentially large Hilbert space are in-
appropriately handled [78, 88–91]. While initially discussed
in the setting of the loss function in Eq. (10), the studies of
BPs have largely been extended to various QML frameworks
which take into account training data and non-linear loss func-
tions [32, 37, 44, 87, 92, 93] – even quantum models that are
trained solely on classical computers [29, 94–97]. Of our par-
ticular interest, Ref. [37, 44] investigates barren plateau in
quantum generative models [37, 44], but only in the case of
the discrete models.

In this section, we study the barren plateau phenomena
in the LaSt-QGAN by analyzing the generator loss given by
Eq. (1). Although the generator loss does not take the form of
an expectation value as shown in Eq. (10), it can be seen as
a post-processing of expectation values. We begin by empiri-
cally investigating the variance of the partial derivative ∂νLG

of the generator loss. Here, the derivative is only with re-
spect to the generator parameters (since those are parameters
in the quantum circuits) and the variance is taken over both the

generator and the discriminator parameters, Θ and 𝜑. For the
quantum generator, the weightsW and the biases b are initial-
ized randomly from a uniform distribution [−δ, δ] and the in-
put noises z are sampled from a normal distribution, N (0, 1).
In addition, the rotation angles are rescaled with respect to the
latent space dimension Dz i.e.,

𝜃 =
1√Dz

Wz+ b . (12)

Due to the Central Limit Theorem [98], each element of 𝜃
independently follows a normal distribution, centered around
0 with a standard deviation σ ≈ δ.

Figure 11. Variance of the partial derivative of ℒ𝐺 versus the
number of qubits 𝑛 using logarithmic depth quantum circuit.
The variance is computed with 𝒟z = 𝑛 for different initializa-
tion ranges, 𝛿, and averaged over the parameters of the first layer.
The quantum generator consists of Circuit1, with logarithmic depth,
𝑑 = ⌊log(𝑛)⌋. Regardless of 𝛿, ℒ𝐺 does not exhibit BP with poly-
nomially decaying variance, as the loss function only contains local
observables, with zero initial state.

To understand the behavior of the gradients, we numeri-
cally compute the variance of partial derivatives ∂νLG with
respect to the number of n for different initialization bounds δ
as shown on Figure 11. Here, we note that a quantum circuit is
said to be free of the barren plateau if ∂νLG decays polynomi-
ally at least with respect to one of the parameters. Therefore,
in our analysis, we focus on calculating the derivatives with
respect to the parameters in the first layer of the generator cir-
cuit and take an average over them. On Figure 11, the fitting
curves clearly prove that VarΘ,𝜑[∂νLG] decays polynomially
with n, i.e., VarΘ,𝜑[∂νLG] ∈ O(1/nb) with b > 1, although b
increase with n. This polynomial decay indicates an absence
of barren plateaus and is indeed expected from the fact that
the quantum generator only consists of single-qubit local ob-
servables together with limited expressivity of log-depth cir-
cuits [81].

We extend the study to the polynomial depth scenario with
different initialization range δ. In this regime, the circuit
is sufficiently expressive to give rise to barren plateaus. As
shown in Figure 12, when randomly initializing the parame-
ters with δ = π, the variance of the loss gradients vanishes ex-
ponentially in the number of qubits. On the other hand, in the
case where we use a small angle initialization with the initial
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Figure 12. Variance of the partial derivative of ℒ𝐺 versus the
number of qubits 𝑛 using polynomial depth quantum circuit.
The variance is computed with 𝒟z = 𝑛 for different initializa-
tion ranges, 𝛿, and averaged over the parameters of the first layer.
The quantum generator consists of Circuit1, with logarithmic depth,
𝑑 = ⌊poly(𝑛)⌋. We observe a clear existence of the BP for 𝛿 = 𝜋.
However, using warm start with 𝛿 = 0.1 and 𝛿 = 1, ℒ𝐺 decays
polynomially, showing BP free regime.

parameters sampled from a certain range with δ = 1, δ = 0.1
and δ = 1/n around the circuit identity, VarΘ,𝜑[∂µL] is em-
pirically observed to decay polynomially, which mitigates the
effect of barren plateaus. For larger system size, while there is
no analytical guarantee on the scaling with fixed small δ and
one could in principle expect the scaling to turn into exponen-
tial, we can analytically guarantee that the variance scaling
remains polynomial with δ scaling with the system size.

To further probe this with some analytics, we first note that,
since the loss is a post-processing of expectation values which
essentially are of the form Eq. (10), the loss function does not
suffer from barren plateaus if these expectation values do not
exponentially concentrate over the parameters. For more de-
tails, Appendix. C gives an insight regarding the lower bound
on the loss concentration in the polynomial depth circuit with
the small angle initialization initialization [99, 100] using Ef-
ficientSU2 ansatz [101] for both local and general observ-
ables. It supplements the prior research on normal initializa-
tion [100] by providing a tight lower bound and a comprehen-
sive insight into the behavior of the loss function based on the
initial quantum state and final measurement. In particular, for
the EfficientSU2 ansatz, if the initial range δ scales as 1/n,
the loss function L decays as :

Var𝜃[L(𝜃)] ≳
1

nb
, b > 2 . (13)

On Figure 11 and 12, we plot as well VarΘ,𝜑[∂νLG] with
varying δ = 1/n. In this plot, we use Circuit1 as the quan-
tum generator instead of EfficientSU2 ansatz, but we observe
that the variance also decays polynomially as expected by
Eq. (13), indicating the mitigation of barren plateau within
a certain range.

Lastly, we remark that while the circuits with log-depth
or the small angle initialization are shown to evade barren
plateaus in our model, the loss landscape can be classically

simulable as discussed in the recent study [88]. The subtle
difference between the two cases is that the circuit with log-
depth leads to a classical simulability of the loss at any point
of an entire landscape while only a small region around iden-
tity initialization can be classically simulated on average with
the deep circuit. Although there is no guarantee of achieving
the optimal solution, the small angle initialization will allow
at least reaching the local or suboptimal minimum in the loss
landscape.

VI. DISCUSSION

Quantum generative modeling has attracted much recent at-
tention as one of the promising applications of quantum com-
puters in data analysis. Nonetheless, there remain fundamen-
tal and practical challenges before a practical quantum advan-
tage could be achieved. One of which is how to generate im-
ages with a dimension comparable to those generated by clas-
sical generative models.

In this paper, we introduced LaSt-QGAN , which combines
a classical latent embedding and a quantum GAN under a uni-
fied framework. By using the latent technique, images are
mapped into a latent space with smaller dimensions where a
style-based quantum GAN is trained to learn the latent rep-
resentation of the images. This combined approach enables
us to larger image generation with a hybrid quantum-classical
generative model.

Our empirical results demonstrate that the model can effec-
tively synthesize images with a better quality level than the
classical counterpart using approximately the same resources.
In particular, from various quantitative evaluation metrics, we
empirically observe that for these specific learning tasks, the
quantum GAN is capable of achieving, and in some cases
even surpassing, the performance of classical GAN in terms of
both quality and diversity of the generated samples across all
tested datasets while maintaining a similar number of train-
able parameters. Furthermore, we investigated the perfor-
mance of the models under varying dataset sizes and observed
that LaSt-QGAN reaches a comparable level of performance
to the classical GAN, even when using a smaller dataset size,
as well as the effect of shot noise on the resolution of the
generated images. These empirical findings constitute a first
step to demonstrate our model’s potential for practical appli-
cations. Nevertheless, since our model relies on the classical
autoencoders to amplify the outputs from a quantum GAN, it
is a fundamental open question to see whether the interplay
between the classical and quantum parts can be quantified.

We also study the barren plateau phenomena in the continu-
ous generative models. Crucially, by using a mix of analytical
and numerical tools, we show that LaSt-QGAN with a poly-
nomially deep generator circuit can be trained with a small
angle initialization around the identity. Despite the loss land-
scape being exponentially flat on average, the strategy allows
us to initialize on a region with substantial gradients and train
towards some local minimum. Nevertheless, while providing
a temporary remedy to a barren plateau problem, the strategy
has certain drawbacks. We cannot guarantee the quality of the
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local minimum if the circuit itself contains no inductive bias
that aligns with the target distribution. In addition, the small
region around the initialization can be classically simulable
on average. Crucially, we note that our barren plateau results
here are also directly applicable to other continuous quantum
generative models based on sampling expectation values such
as the original style-based quantum GANs.

To go beyond the identity initialization, one could consider
a warm-start strategy, i.e., a smart initialization that incorpo-
rates the problem structure into consideration [88, 102–104].
Recently, a warm start in the context of variational quantum
simulation has been analytically studied in Ref. [102], show-
ing the potential of a warm-start strategy to circumvent barren
plateaus but at the same time highlight additional challenges
for achieving global minimum. Further investigation of warm-
starts in the generative modeling setting is of particular impor-
tance for both fundamental and practical aspects.

Lastly, it is crucial to remark that the role of a quantum
circuit in the continuous generative model as a feature map
shares a great similarity in the supervised quantum machine
learning with classical data. This implies some of the pieces
of knowledge in the literature can be applied to the generative
setting. For example, one fundamental concern is the risk of

the continuous generative models being classical surrogatable
by similar techniques such as random Fourier feature [105].
On the other hand, a provable quantum advantage based on
cryptographic hardness [26, 31] strongly suggests the exis-
tence of classically hard continuous quantum generative mod-
els. Since the fundamental natures between discriminative and
generative models do not perfectly align, to what extent one
can apply the results from one field to another remains unan-
swered, leaving a great opportunity for future research.
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Appendix A: Related Work

In this section, we provide a brief summary of the recent research on classical and quantum generative models. Especially, we
underline the difference between the discrete and the continuous quantum GAN. Table IV summarize the characteristics of the
two different generative models for comparison.

Discrete Quantum Generative Models Continuous Quantum Generative Models

Task Encode a probability distribution over discrete values Generate continuous outputs
Outputs Discrete bit strings Continuous values

Sample Complexity One measurement per sample Set of measurements per samples

Randomness
Use the probabilistic nature of quantum physics Sampled from a classical random distribution

(quantum randomness) (classical randomness)
Projector |𝑥⟩ ⟨𝑥| Estimate a vector of expectation values

Output size 𝒪(2𝑛) 𝒪(𝑛)

Examples
Quantum Circuit Born Machine (QCBM) [33] Variational Quantum Generator (VQG) [47]

Quantum Generative Adversarial Networks (qGAN) [40] Style-based Quantum GAN [48]

Table IV. Comparison between discrete and continuous quantum generative models. The discrete generative model treats each quantum
measurement as a single output, focusing on learning the probability distribution across computational basis states. In contrast, the continuous
model uses expectation values obtained from multiple shots, embedding external classical noise into the quantum circuit to generate samples.
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Classical generative models for image generation. GANs were proposed by I. Goodfellow in 2014 as an effective way
of learning to generate data which follow a given distribution [6]. It consists of two neural networks competing with each
other: a generator and a discriminator of fake data. Being a successful generative model for the creation of realistic data and
images, variations of GANs were also explored, such as conditional GAN [12] to generate data of a given class, the more stable
Wasserstein GAN [52], and Style-GAN [106] for detailed image generation.

Recently, Diffusion Models (DMs) proved to be powerful alternative generative models, trained by injecting noise into the
images and then learning the reverse process to remove it [7, 13]. In the recent work, Rombach et al.introduced Latent DM,
which operate on the latent space instead of the image space by mapping the image to a lower-dimensional latent space and
learning the latent representation to reduce the complexity of the model and improve the visual fidelity [22].

Quantum GANs for discrete data The introduction of quantum GANs by Ref. [107] has suggested the possibility of learning
the hidden statistics of a quantum or classical data set based on the intrinsically probabilistic nature of quantum systems. For
example, C. Zoufal et al.introduced a hybrid GAN model with a classical discriminator and a n-qubit quantum generator which
can efficiently learn a classical probability distribution over 2n discrete variables with QNNs [40]. They have demonstrated that
the model can be used for an efficient initialization of a quantum state with an arbitrary probability distribution, one of the most
crucial challenges in quantum computing, or even used for a realistic use case such as finance. This discrete quantum GAN
handles the computational basis of the quantum circuit Hilbert space as discrete data and explicitly constructs the probability
distribution over them by performing a set of measurements at the end of the quantum generator. A similar strategy was applied to
mimic the prototypical Bars-and-Stripes dataset images in Ref. [108]. Assouel et al.also proposed a quantum GAN model, which
is called QuGAN, for discrete data generation in the context of finance but using a quantum discriminator directly connected to
the quantum generator [109].

Quantum generative models for continuous data generation. As a complement to the previously presented studies, which
focus on reproducing the probability distribution over discrete data, several papers studied constructing quantum GANs to learn
the hidden data distribution over continuous data. Romero and Aspuru-Guzik introduce the idea of a quantum generator to learn
a continuous distribution with latent noise embedded via rotation gates [47]. Unlike the discrete quantum GAN which explicitly
generates the probability distribution over the discrete data, the continuous GANs work in a similar way as the classical GAN
by generating samples at the end of the generator. The classical latent noises are embedded into the quantum circuit by an
encoding process, the so-called quantum feature map or quantum encoding [110]. We measure the expectation value of quantum
observables such as Pauli operators (σx, σy, σz), which are continuous by definition, to construct the output sample for each
latent noise. This leads to learning the hidden data distribution from the continuous latent noise distribution in an implicit way.
In Ref. [48], C. Bravo Prieto et al.employed a style-based quantum generator for Monte Carlo event generation, proving that
the quantum GAN is able to reproduce a highly correlated multi-dimensional probability distribution. The particularity of this
architecture is that the latent noises are embedded in the rotation angles of the learning layers via an affine transformation,
with the weights and biases updated during the training. Instead of using a purely quantum generator, the possibility of using a
hybrid generator (HG) has also been proposed by J. Li et al.for small molecule drug discovery [111]. The proposed QGAN-HG
architecture consists of a quantum circuit attached to a classical layer with the latent noise embedded with single qubit gates. It
showed a learning accuracy comparable to the classical MolGAN with 98% reduced parameters.

Quantum generative models for image generation. In the realm of image generation, quantum patch GAN has been
proposed to generate the patches in images using a set of subgenerator sequence [43, 112]. However, their applications were
only tested to a limited number of classes in MNIST [43] or in FashionMNIST dataset [112].

Instead of using a quantum circuit as a data generator, certain studies propose the possibility of using it as an additional
component in GAN to improve performance. For example, Rudolph et al.suggested a hybrid GANs schema where the prior
distribution of the classical GAN is generated by a Quantum Circuit Born Machine (QCBM) [37]. The architecture showed an
ability to generate high-quality MNIST images on discretized latent space with up to 216 = 65536 samples using 8 qubits.

Appendix B: Architecture of Classical Autoencoder

On Figure 13, we display the classical convolutional autoencoder used to reduce the image dimension. The model is trained
based on the Mean Squared Error (MSE) loss using the Adam optimizer with a learning rate of 0.001 for 100 epochs.

Figure 14 display the original and the reconstructed images obtained using the suggested autoencoder architecture with latent
space of dimension 20 for MNIST and FashionMNIST datasets. The reconstructed images are slightly blurry compared to the
original ones, with a loss of details, but their general shape is recovered.
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Figure 13. Architecture of the convolutional autoencoder used in the paper. We apply the Tanh activation function at the end of the
encoder to ensure that the latent features are confined within the range of [−1, 1]. The autoencoder is pre-trained on the original image datasets
with 28× 28× 1 pixels, following the format of 𝑤𝑖𝑑𝑡ℎ× ℎ𝑒𝑖𝑔ℎ𝑡× 𝑐ℎ𝑎𝑛𝑛𝑒𝑙.

Original Reconstructed

(a) MNIST

Original Reconstructed

(b) FashionMNIST

Figure 14. Comparison of original and reconstructed images utilizing the autoencoder in Figure 13. Employing a 20-dimensional latent
space, the reconstructed images maintain their overall form, with a loss of finer details.

Appendix C: Proof on Absence of Barren Plateau

In Section V of the main text, we have numerically demonstrated that the identity initialization with normally distributed
quantum circuit parameters mitigates the barren plateau of the generator loss function of the form :

LG = − E
z∼Pz

[D𝜑 (G𝜃(z))] (C1)

where G𝜃(z) is a vector of the expectation value with a classical input zi. In this section, we provide analytical insight into
the absence of a barren plateau using the small angle initialization mentioned in Section V. To do so, we leverage the most
general form of the quantum circuit, without any style-based architecture. The generator loss function can be seen as a function
depending on the generator outputs, post-processed with the classical discriminator. Hence, under the realistic assumption that
the classical discriminator does not exhibit any vanishing gradient, it is enough to prove that the generator outputs do not decay
exponentially to imply the absence of barren plateau for the generator loss function LG(𝜃). In other words, we need to find a
polynomial decaying lower bound for an expectation value of the quantum circuit with a certain observable. Furthermore, in
Section V, while we sampled the trainable parameters Wℓ and bℓ from a uniform distribution, the final rotation angles 𝜃ℓ in
the style-based quantum circuits are normally distributed due to the Central Limit Theorem [98]. Consequently, the analysis of
the barren plateau phenomenon in the style-based architecture can be considered equivalent when the parameters are initialized
using a normal distribution.
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From now on, we take the loss function of the form L(𝜃) = ⟨ψ0|U†(𝜃)OU(𝜃)|ψ0⟩ = Tr
(︀
OU(𝜃)ρU†(𝜃)

)︀
with U(𝜃) an

arbitrary quantum circuit, O the observable, |ψ0⟩ the initial state, and ρ its corresponding density matrix. We evaluate the lower
bound on the variance of the loss function for a normal initialization N (0, σ) with zero mean and standard deviation σ, following
an argument similar to that given in the appendix of Ref. [44] for a uniform initialization [−π, π]. Normal initialization has been
suggested as a strategy to escape barren plateau in the prior study [100]. As an extension of this research, we will introduce a
lower bound on the variance, linked to the types of the initial states and the measurement operator in general circuits, building
a more rigorous understanding of the loss decay. In particular, we compute a tight lower bound for a specific quantum circuit
ansatz, EfficientSU2 [101], and prove it numerically.

Let us denote P𝛼 ∈ Pn the Pauli string which consists of n single-qubit Pauli matrices written as σi ∈ {I, X, Y, Z} =
{σ0, σ1, σ2, σ3} :

P𝛼 =

n⨂︁
i=1

σαi , 𝛼 ∈ {0, 1, 2, 3}n , (C2)

where αi is the i-th component of 𝛼. We use a bold symbol 𝛼 in order to clarify that it is a vector of n indices. Similarly, the
Pauli string rotation gates P𝛼(θ) with shorthand notation:

P𝛼(θ) := RP𝛼(θ) = exp

(︂
−iP𝛼

θ

2

)︂
= cos(θ)I− i sin(θ)P𝛼 , (C3)

for some θ ∈ R. We consider a general quantum ansatz UL(Θ) [44] with trainable parameters Θ, which consists of two
orthogonal layers of single-qubit rotations for state initialization, V1 and V2, and an entangling layer WL of depth L :

UL(Θ) =WL(𝜃)V2(𝜑)V1(𝜔) , Θ = (𝜃,𝜑,𝜔) . (C4)

with

V1(𝜔) =

n⨂︁
i=1

σµi(ωi) , V2(𝜑) =

n⨂︁
i=1

σνi(ϕi) , W (𝜃) =

L∏︁
ℓ=1

W̃ℓ(Kℓ)(𝜃ℓ) =

L∏︁
ℓ=1

(︃
Kℓ∏︁
i=1

Pℓ,i(θℓ,i)

)︃
Cℓ (C5)

whereCℓ are n-qubit Clifford gates, Pℓ,i the ith rotation gate andKℓ the number of Pauli rotation gate at layer ℓ. It is important to
note that Θ being the collection of rotation angles in UL does not correspond to the generator parameters defined in Section II for
the style-based architecture. By definition of orthogonality, we ensure that µi, νi ∈ {1, 2, 3} with µi ̸= νi for all i. Additionally,
we take into account the most general form of the loss function with the observable O =

∑︀
𝛼 a𝛼P𝛼:

L = Tr
(︀
OU(Θ)ρU†(Θ)

)︀
=
∑︁
𝛼

a𝛼 Tr
(︀
P𝛼U(Θ)ρU†(Θ)

)︀
=
∑︁
𝛼

a𝛼L𝛼 , (C6)

where ρ is the initial density matrix, decomposed as a sum of Pauli strings :

ρ =
1

2n

∑︁
𝜆

c𝜆P𝜆 , c𝜆 ∈ R . (C7)

In particular, if ρ is a product state, c𝜆 should be less or equal to 1 for all 𝜆.

1. Expectation value with normal initialization

a. 𝐿 = 0 case

To start with, let us calculate the expectation value of L over the initial parameters Θ ∼ N (0, σ)1. By linearity of the
expectation, we have EΘ[L] =

∑︀
𝛼 a𝛼EΘ[L𝛼] from Eq. (C6), and thus, it is enough to compute EΘ[L𝛼] to find the final

formula. We first consider the base case with L = 0 without any entangling layer WL. The loss function L𝛼 can be explicitly

1 To avoid potential confusion, we clarify the notation used in this paper: 𝜎𝛼i denotes the Pauli matrices, while 𝜎 (without subscript) represents the standard
deviation. The presence of the subscript 𝛼𝑖 distinguishes the Pauli matrix notation from the standard deviation symbol 𝜎.
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written as a product of the loss functions on each qubit :

L𝛼 = Tr
(︀
P𝛼U(Θ)ρU†(Θ)

)︀
=

1

2n

∑︁
𝜆

c𝜆 Tr
(︀
U†(Θ)P𝛼U(Θ)P𝜆

)︀
=
∑︁
𝜆

c𝜆
∏︁
i

1

2
Tr(σµi(−ωi)σνi(−ϕi)σαiσνi(ϕi)σµi(ωi)σλi) =

∑︁
𝜆

c𝜆
∏︁
i

Li
𝛼𝜆, (C8)

where Li
𝛼𝜆 is the loss defined on each qubit i. On one hand, if σαi = I or σλi = I with αi ̸= λi, it is evident that Li

𝛼𝜆 = 0.
On the other hand, if σαi = σλi = I, we have Li

𝛼𝜆 = 1. Thus, we only need to consider the qubits where αj and λj are both
non-trivial.

In case of the uniform initialization over [−π, π], it is straightforward to show that EΘ[Li
𝛼𝜆] vanishes due to the periodicity

of the trigonometric functions [44]. However, the calculation requires a bit more effort in the case of the normal initialization as
the results vary depending on µj , νj , αj and λ. First of all, if αj = νj , then σαj

commutes with σνj
(ϕj) and Eq. (C8) simplifies

into

Lj
𝛼𝜆 =

1

2
Tr
(︀
σµj

(−ωj)σαj
σµj

(ωj)σλj

)︀
=

1

2
Tr
(︀
σµj

(−2ωj)σαj
σλj

)︀
=

1

2
cos(ωj) Tr

(︀
σαj

σλj

)︀
+
i

2
sin(ωj) Tr

(︀
σµj

σαj
σλj

)︀
(C9)

recalling that σβσγ(ω) = σγ(−ω)σβ for β ̸= γ . We have three different cases :

Lj
𝛼𝜆 =

⎧⎪⎨⎪⎩
1
2 cos(ωj)Tr

(︀
I
)︀
+ i

2 sin(ωj) Tr
(︀
σµj

)︀
= cos(ωj) αj = λj

− i
2 sin(ωj)Tr

(︀
σµjσλjσαj

)︀
= − i

2 sin(ωj) Tr
(︀
σαj

)︀
= 0 αj ̸= λj = µj

− i
2 sin(ωj) Tr

(︀
σµj

σλj
σαj

)︀
= − i

2
1
2 sin(ωj)Tr

(︀
± 2iσµj

σµj

)︀
= ± sin(ωj) αj ̸= λj ̸= µj

(C10)

The third line is derived from the fact that [σλj
, σαj

] = ±2iσµj
as αj ̸= µj by orthogonality. From the equation above, the loss

function can be summarized as :

Lj
𝛼𝜆 = cos(ωj)δαjλj ± sin(ωj)δ̄αjλj δ̄λjµj , (C11)

where we denote δ̄ij = 1− δij , i.e. δ̄ij = 1 if i ̸= j and 0 if i = j.

Let’s consider the normal initialization of the parameters with the mean µ = 0 and the standard deviation σ. If we take the
expectation value Eωj

[L𝛼𝜆] over the parameter space ωj , the contribution of the sin(ωj) will cancel out, because sin(ωj) is an
odd function at ωj = 0 over R, while the Gaussian distribution is an even function, leaving only the contribution of the even
function cos(ωj). Thus, Eωj [Lj

𝛼𝜆] can be written as :

Eωj

[︁
Lj
𝛼𝜆

]︁
= δαjλj

1

σ
√
2π

∫︁ ∞

−∞
cos(ωj)e

−
ω2
j

2σ2 dωj = e−
σ2

2 δαjλj . (C12)

Similarly, in the case of αj ̸= νj , each term in Eq. (C8) is written as :

Lj
𝛼𝜆 =

1

2
cos(ϕj)Tr

(︀
σµj (−ωj)σαjσµj (ωj)σλj

)︀
+
i

2
sin(ϕj)Tr

(︀
σµj (−ωj)σνjσαjσµj (ωj)σλj

)︀
. (C13)

We should distinguish two different cases: 1) αj = µj and 2) αj ̸= µj . In 1) σαj and σµj (ωj) commute, hence :

Lj
𝛼𝜆 =

1

2
cos(ϕj)Tr

(︀
σαj

σλj

)︀
+
i

2
sin(ϕj) Tr

(︀
σµj

(−2ωj)σνj
σαj

σλj

)︀
=

1

2
cos(ϕj) Tr

(︀
σαjσλj

)︀
+
i

2
sin(ϕj)

(︀
cos(ωj) Tr

(︀
σνjσαjσλj

)︀
+ i sin(ωj) Tr

(︀
σµjσνjσαjσλj

)︀)︀
=

⎧⎪⎨⎪⎩
cos(ϕj) αj = λj
sin(ϕj) sin(ωj) αj ̸= λj = νj
± sin(ϕj) cos(ωj) αj ̸= λj ̸= νj

(C14)
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When we compute the expectation value, the last two cases vanish due to the parity over ϕj . On the other hand, in 2) we have :

Lj
𝛼𝜆 =

1

2
cos(ϕj) Tr

(︀
σµj

(−2ωj)σαj
σλj

)︀
+
i

2
sin(ϕj) Tr

(︀
σνj

σαj
σλj

)︀
,

=
1

2
cos(ϕj) cos(ωj) Tr

(︀
σαj

σλj

)︀
+
i

2
cos(ϕj) sin(ωj) Tr

(︀
σµj

σαj
σλj

)︀
+
i

2
sin(ϕj) Tr

(︀
σνj

σαj
σλj

)︀
=

⎧⎪⎨⎪⎩
cos(ϕj) cos(ωj) αj = λj
± sin(ϕj) αj ̸= λj = µj

± cos(ϕj) sin(ωj) αj ̸= λj = νj

(C15)

Similar to before, the expectation value of the last two terms vanishes over ϕj and ωj due to parity, leading to :

Eωj ,ϕj
[Lj

𝛼𝜆] =

⎧⎨⎩e
−σ2

2 δαjλj µj = αj(︁
e−

σ2

2

)︁2
δαjλj µj ̸= αj

(C16)

Combining Eq. (C12) and Eq. (C16), the expectation value EΘ[Li
𝛼] can be summarized as :

EΘ

[︁
Lj
𝛼𝜆

]︁
=
(︁
e−

σ2

2

)︁1+δ̄αjµj
δ̄αjνj

δαjλj . (C17)

From now on, we define J𝛼 = {j |αj ̸= 0} as a set of the qubit indices where the Pauli string P𝛼 has non-trivial Pauli
matrices and the weight of P𝛼, denoted as w(P𝛼) := |J𝛼|. Then, the expectation of the final loss across the whole input state ρ
(c.f. Eq. (C8)) will be :

EΘ [L𝛼] =
∑︁
𝜆

c𝜆
∏︁
j

EΘ

[︁
Lj
𝛼𝜆

]︁
=
∑︁
𝜆

c𝜆

(︁
e−

σ2

2

)︁w(P𝛼) ∏︁
j∈J𝛼

δαjλj

(︁
e−

σ2

2

)︁δ̄αjµj
δ̄αjνj

= K𝛼 (c𝜆)
(︁
e−

σ2

2

)︁w(P𝛼)

, (C18)

where K𝛼 (c𝜆) = c𝜆∗ if there exists 𝜆∗ such that 𝜆∗ = 𝛼, and K𝛼 (c𝜆) = 0 otherwise. We underline that if there is at least one
qubit j such that αj ̸= λj , the expectation value EΘ [L𝛼𝜆] will be zero. In particular, if ρ is a product state, we have c𝜆 ≤ 1 for
all c𝜆 and the inequality can be simplified as:

EΘ [L𝛼] ≤
(︁
e−

σ2

2

)︁w(P𝛼)

. (C19)

b. 𝐿 ≥ 1 case

We use recursive steps to derive the expectation value for L ≥ 1. For clarity, we will use superscript L(L) to denote the loss
function with UL(Θ). Taking into account the definition of UL and W̃L(KL) in Eq. (C4) and Eq. (C5), we write explicitly the
loss function in terms of UL−1 and take out PL,KL

(θL,KL
) from W̃L(KL) in order to make the recursion steps clear:

L(L)
𝛼 = Tr

(︁
U†
LP𝛼ULρ

)︁
= Tr

(︁
U†
L−1W̃

†
L(KL)P𝛼W̃L(KL)ULρ

)︁
= Tr

(︁
U†
L−1W̃

†
L(KL−1)PL,KL

(−θL,KL
)P𝛼PL,KL

(θL,KL
)W̃L(KL−1)UL−1ρ

)︁
, (C20)

where W̃L(KL−1) =
(︁∏︀KL−1

i=1 PL,i(θL,i)
)︁
CL. As P𝛼 is a Pauli string, it will either commute or anti-commute with PL,i which

is also a Pauli string. In the former, PL,KL
(−θL,KL

) commutes with P𝛼 and Eq. (C20) will be written as :

L(L)
𝛼 = L̃(L)

𝛼 := Tr
(︁
U†
L−1W̃

†
L(KL−1)P𝛼W̃L(KL−1)UL−1ρ

)︁
, (C21)

which has the same form as Eq. (C20) but with W̃L(KL−1).

On the other hand, if PL,KL
anti-commutes with P𝛼, we have P𝛼PL,KL

(θL,KL
) = PL,KL

(−θL,KL
)P𝛼. This leads to the
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following expression :

L(L)
𝛼 = Tr

(︁
U†
L−1W̃

†
L(KL−1)PL,KL

(−2θL,KL
)P𝛼W̃L(KL−1)UL−1ρ

)︁
= cos(θL,KL

) Tr
(︁
U†
L−1W̃

†
L(KL−1)P𝛼W̃L(KL−1)UL−1ρ

)︁
+ i sin(θL,KL

) Tr
(︁
U†
L−1W̃

†
L(KL−1)PL,KL

P𝛼W̃L(KL−1)UL−1ρ
)︁

(C22)

As both P𝛼 and PL,KL
are Pauli strings, there exists a Pauli string P𝜏 such that [PL,KL

, P𝛼] = 2iP𝜏 . Furthermore, due to the
additivity of the trace, we have :

Tr(APL,KL
P𝛼B) = −Tr(AP𝛼PL,KL

B) ==
1

2
Tr(A[PL,KL

, P𝛼]B) = iTr(AP𝜏B) , (C23)

with A and B two matrices. While taking into account the definition of L̃(L)
𝛼 in Eq. (C21), we can simplify Eq. (C22) as

following:

L(L)
𝛼 = cos(θL,KL

)L̃(L)
𝛼 + sin(θL,KL

)L̃(L)
𝜏 . (C24)

From its expression, we notice that L(L)
𝛼 can be expressed as a weighted sum of two loss functions L̃(L)

𝛼 and L̃(L)
𝜏 for the

observable P𝛼 and P𝜏 while excluding PL,KL
from UL. Hence, the loss function can be extended as a product of cosine and

sine functions of 𝜃L by repeating Eq. (C21) and Eq. (C22) for all PL,i with i = KL − 1, ..., 1 depending on whether PL,i and
P𝛼 commute.

For the following calculations, we define N ℓ
A(P𝛼) the set of indices of the Pauli string in ℓ-th layer which anticommutes with

P𝛼, i.e,.

N ℓ
A (P𝛼) = { k | [Pℓ,k, P𝛼] ̸= 0 , k ∈ {1, ...,Kℓ} } , (C25)

and nℓA (P𝛼) its cardinality. At the end of the recursive steps, we obtain:

L(L)
𝛼 =

∏︁
ij∈NL

A (P𝛼)

cos
(︀
θL,ij

)︀
Tr
(︁
U†
L−1C

†
LP𝛼CLUL−1ρ

)︁
+

∑︁
ij∈NL

A (P𝛼)

sin
(︀
θL,ij

)︀ ∏︁
ik∈NL

A (P𝛼)
ik>ij

cos(θL,ik)
∏︁

im∈NL
A([PL,ij

,P𝛼])
im<ij

cos(θL,im) Tr

(︂
U†
L−1C

†
L

i

2
[PL,ij , P𝛼]CLUL−1ρ

)︂

+O(sin
(︀
θL,ij

)︀
sin(θL,ik)) . (C26)

More explicitly, the first term in Eq. (C26) captures the contributions involving only the cosine terms for the Pauli strings Pij

Figure 15. Schematic diagram of 𝑊̃𝐿 to illustrate the second term in Eq. (C26). The figure visualizes the Pauli gates that are located before
𝑃𝑖j (in yellow) and after 𝑃𝑖j (in green). The second term of Eq. (C26) consists of cos(𝜃𝑖k ) for 𝑖𝑘 ∈ 𝒩𝐿

𝐴 (𝑃𝛼) located after 𝑃𝑖j and cos(𝜃𝑖m)

for 𝑖𝑚 ∈ 𝒩𝐿
𝐴 (𝑃𝛼) located before 𝑃𝑖j .

that anti-commute with P𝛼. The second term comprises all the sine contributions of Pij . Specifically, each term in the sum
captures the cosine contribution from Pik(θik) with ik > ij that anti-commute with P𝛼 and from Pim(θim) with im < ij that
anti-commute with [Pij , P𝑎𝑙𝑝ℎ𝑎]. Figure 15 is provided to aid in understanding this term. Finally, the last term in Eq. (C26)
is dependent on the higher order of sin(θ) and contains all the possible combinations of cos

(︀
θij
)︀

and sin
(︀
θij
)︀
, multiplied

the nested commutation relations. Since we are interested in small angle initialization, sin
(︀
θij
)︀

is much smaller compared to
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cos
(︀
θij
)︀
. Hence, the last term is negligible compared to the first two terms. This natural emergence of nested commutators in

the loss function is fundamentally related to the Dynamical Lie Algebra (DLA) that determines the expressivity of the circuit.
although the equation above looks overwhelming, taking an expectation over it significantly simplifies the final equation. As

CL is a Clifford gate, there exists a Pauli string P𝛾 ∈ Pn such that C†
LP𝛼CL = P𝛾 . Thus, the trace in the first term can be

rewritten as

Tr
(︁
U†
L−1C

†
LP𝛼CLUL−1ρ

)︁
= Tr

(︁
U†
L−1P𝛾UL−1ρ

)︁
:= L(L−1)

𝛾 , (C27)

where L(L−1)
𝛾 corresponds to the loss function of the observable P𝛾 with L− 1 layers. Similar to the previous justifications, all

the expectation values except the first term in Eq. (C26) vanish due to the parity of the sine function. Thus, we have:

EΘ

[︁
L(L)
𝛼

]︁
= E𝜃L

⎡⎣ ∏︁
ij∈NL

A (P𝛼)

cos
(︀
θij
)︀⎤⎦EΘ/𝜃L

[︁
L(L−1)
𝛾

]︁
=

∏︁
ij∈NL

A (P𝛼)

E𝜃L

[︀
cos
(︀
θij
)︀]︀

EΘ/𝜃L

[︁
L(L−1)
𝛾

]︁
= e−nL

A(P𝛼)σ2

2 EΘ/𝜃L

[︁
L(L−1)
𝛾

]︁
, (C28)

where we use the commutativity between the product and expectation for independent variables in the second line.
Now, let us call Cin

i1
:= Cin · · ·Ci1 , Ci1†

in
:= C†

i1
...C†

in
and Ci1†

in
P𝛼C

in
i1

, the Pauli observable P𝛼, conjugated between C†
i

and Ci for all i = i1, ..., in. By definition of the Clifford gates, Cℓ†
L P𝛼C

L
ℓ is also a Pauli string for all ℓ = 1, ..., L with

CL+1†
L P𝛼C

L
L+1 = P𝛼, and hence, there exists a Pauli string P𝜂 such that P𝜂 = C1†

L P𝛼C
L
1 . Then, we have the final equation

for the expectation value of the loss :

EΘ

[︁
L(L)
𝛼

]︁
=
(︁
e−

σ2

2

)︁NL
A

EΘ

[︁
L(0)
𝜂

]︁
= K𝜂 (c𝜆)

(︁
e−

σ2

2

)︁NL
A+w(P𝜂)

, (C29)

with NL
A =

∑︀L
ℓ=1 n

ℓ
A

(︁
Cℓ+1†

L P𝛼C
L
ℓ+1

)︁
.

In particular, if ρ is a product state and there exists at least one Pℓ,i which anti-commutes with Cℓ+1†
L P𝛼C

L
ℓ+1 for all ℓ , NL

A
will scale linearly with respect to L and the expectation value will decay exponentially with respect to the number of qubits for
a polynomial depth circuit :

EΘ

[︁
L(L)
𝛼

]︁
≤
(︁
e−

σ2

2

)︁poly(n)+w(P𝜂)

. (C30)

This will be the case of EfficientSU2 ansatz which will be presented in Appendix C 3.

2. Variance with normal initialization

a. 𝐿 = 0 case

In this section, we calculate the lower bound for the variance of the loss function, VarΘ[L]. For simplicity, we are inter-
ested in the scenario where the covariance between the loss functions for two different Pauli strings, L𝛼 and L𝛽 vanishes, i.e.
VarΘ[L𝛼L𝛽] = 0 for 𝛼 ̸= 𝛽. Then, VarΘ[L] can be written as a sum :

VarΘ[L] =
∑︁
𝛼

a𝛼VarΘ[L𝛼] =
∑︁
𝛼

a𝛼

(︁
EΘ

[︀
L2
𝛼

]︀
− EΘ [L𝛼]

2
)︁
. (C31)

with L2
𝛼 that can be decomposed explicitly as :

L2
𝛼 =

∑︁
𝜆

∑︁
𝜆′

c𝜆c𝜆′

∏︁
i

Li
𝛼𝜆

∏︁
j

Lj
𝛼𝜆′ =

∑︁
𝜆

∑︁
𝜆′

c𝜆c𝜆′

∏︁
i

Li
𝛼𝜆Li

𝛼𝜆′ . (C32)

Now, we will explicitly compute EΘ

[︀
Li
𝛼𝜆Li

𝛼𝜆′

]︀
by distinguishing different cases of αj ̸= 0. To begin with, let us consider
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the case where αj = νj . With Eq. (C11), we have :

Lj
𝛼𝜆L

j
𝛼𝜆′ = cos2(ωj)δαjλjδλjλ′

j
+ sin2(ωj)δ̄αjλj

δ̄λjµj
δλjλ′

j
+ odd , (C33)

where the last term indicates the term which is proportional to cos(ωj) sin(ωj), thus odd at ωj = 0 over R. This term cancels out
as it is an odd function integrated with an even probability distribution. By integrating the first two terms over normal probability
distribution for ωj , we obtain :

Eωj

[︀
cos2(ωj)

]︀
=

1

σ
√
2π

∫︁ ∞

−∞
cos2(ωj)e

−
ω2
j

2σ2 dωj = e−σ2

coshσ2 =
1 + e−2σ2

2
, (C34)

Eωj

[︀
sin2(ωj)

]︀
=

1

σ
√
2π

∫︁ ∞

−∞
sin2(ωj)e

−
ω2
j

2σ2 dωj = e−σ2

sinhσ2 =
1− e−2σ2

2
. (C35)

Therefore, we can write the expectation value of Eq. (C33) as :

Eωj

[︁
Lj
𝛼𝜆L

j
𝛼𝜆′

]︁
=

1 + e−2σ2

2
δαjλj

δλjλ′
j
+

1− e−2σ2

2
δ̄αjλj

δ̄λjµj
δλjλ′

j
. (C36)

On the other hand, if αj ̸= νj , there are two different cases : 1) αj = µj and 2) αj ̸= µj . We start with the first case of
αj = µj . Using Eq. (C14), we can expand the expression of Lj

𝛼𝜆L
j
𝛼𝜆′ as:

Lj
𝛼𝜆L

j
𝛼𝜆′ = cos2(ϕj)δαjλj

δλjλ′
j
+ sin2(ωj) sin

2(ϕj)δ̄αjλj
δλjνj

δλjλ′
j
+ cos2(ωj) sin

2(ϕj)δ̄αjλj
δ̄λjνj

δλjλ′
j
+ odd , (C37)

which gives the following expectation value Eωj ,ϕj

[︁
Lj
𝛼𝜆L

j
𝛼𝜆′

]︁
using Eq. (C34) and Eq. (C35):

Eωj ,ϕj

[︁
Lj
𝛼𝜆L

j
𝛼𝜆′

]︁
=

1 + e−2σ2

2
δαjλj

δλjλ′
j
+

(︃
1− e−2σ2

2

)︃2

δ̄αjλj
δλjνj

δλjλ′
j
+

1− e−4σ2

4
δ̄αjλj

δ̄λjνj
δλjλ′

j
. (C38)

Now, let’s consider the case with αj ̸= µj . With the similar justification as before, Lj
𝛼𝜆L

j
𝛼𝜆′ can be written as :

Lj
𝛼𝜆L

j
𝛼𝜆′ = cos2(ωj) cos

2(ϕj)δαjλj
δλjλ′

j
+ sin2(ϕj)δ̄αjλj

δλjµj
δλjλ′

j
+ cos2(ϕj) sin

2(ωj)δ̄αjλj
δλjνj

δλjλ′
j
+ odd . (C39)

where the last odd term is proportional to cos(ωj) sin(ωj) and cos(ϕj) sin(ϕj). This leads to :

Eωj ,ϕj

[︁
Lj
𝛼𝜆L

j
𝛼𝜆′

]︁
=

(︃
1 + e−2σ2

2

)︃2

δαjλjδλjλ′
j
+

1− e−2σ2

2
δ̄αjλjδλjµjδλjλ′

j
+

1− e−4σ2

4
δ̄αjλjδλjνjδλjλ′

j
. (C40)

We can notice that in all cases, Eωj ,ϕj

[︁
Lj
𝛼𝜆L

j
𝛼𝜆′

]︁
cancels out if λj ̸= λ′j . Thus, the final expression will be summarized as

a sum over 𝜆. Combining the expressions above, we have the expression for the expectation value E[L2
𝛼]:

EΘ

[︀
L2
𝛼

]︀
=
∑︁
𝜆

c2𝜆
∏︁
j

EΘ

[︂(︁
Lj
𝛼𝜆

)︁2]︂
=
∑︁
𝜆

c2𝜆
∏︁
j∈Jα

c̃αjµjνjλj

(︃
1 + e−2σ2

2
δαjλj +

1− e−2σ2

2
δ̄αjλj

)︃
, (C41)

where c̃αjµjνjλj is the coefficient indicating different possibilities depending on the value of αj , µj , νj and λj as follows:

c̃αjµjνjλj =
(︀
δαjνj + δ̄αjνjδαjµj + δ̄αjνj δ̄αjµj

)︀
δαjλj +

1 + e−2σ2

2
δ̄αjλjδαjνj δ̄λjµj

+ δ̄αjλj
δ̄αjνj

(︃
δ̄αjµj

δλjµj
+

1− e−2σ2

2
δαjµj

δλjνj
+

1 + e−2σ2

2
(δαjµj

δ̄λjνj
+ δ̄αjµj

δλjνj
)

)︃
. (C42)

Eq. (C41) implies that EΘ

[︀
L2
𝛼

]︀
scales differently depending on whether the Pauli matrix in P𝛼 is the same as the one in the
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initial state ρ at each qubit j and this will highly influence the lower bound of the variance calculated in the following steps.

b. 𝐿 ≥ 1 case

To calculate the lower bound of EΘ

[︁
(L(L)

𝛼 )2
]︁

for L > 0, we can follow a recursive approach similar to the previous steps.

We begin by squaring Eq. (C26) to compute
(︁
L(L)
α

)︁2
:

(︁
L(L)
𝛼

)︁2
=

∏︁
ij∈NL

A (P𝛼)

cos
(︀
θL,ij

)︀2 (︁L(L−1)
𝛾

)︁2
+

∑︁
ij∈NL

A (P𝛼)

sin2(θij )
∏︁

ik∈NL
A (P𝛼)

ik>ij

cos2(θL,ik)
∏︁

im∈NL
A([PL,ij

,P𝛼])
im<ij

cos2(θL,im)
(︁
L(L−1)
𝛿ij

)︁2

+O(sin4(θ)) + odd (C43)

where P𝛿ij
= i

2C
†[PL,ij , P𝛼]C ∈ G and the odd term containing all the terms depending on cos(θL,i) sin(θL,i) and

sin(θL,i) sin(θL,k) for i ̸= k. Taking the expectation value over Eq. (C43) and cancelling out all the odd terms leads to :

EΘ[(L(L)
𝛼 )2] =

(︃
1 + e−2σ2

2

)︃nL
A(P𝛼)

EΘ/𝜃L

[︂(︁
L(L−1)
γ

)︁2]︂

+
∑︁

ij∈NL
A (P𝛼)

(︃
1− e−2σ2

2

)︃(︃
1 + e−2σ2

2

)︃ñL
A(ij)

EΘ/𝜃L

[︂(︁
L(L−1)
𝛿ij

)︁2]︂

+O

⎛⎝(︃1− e−2σ2

2

)︃2
⎞⎠ , (C44)

where ñLA(ij) is the number of cosine terms multiplied to sin
(︀
θij
)︀

in Eq. (C43). Rigorously, it can be mathematically written as:

ñℓA(ij) = |{ik ∈ NL
A (P𝛼) | ik > ij }|+ |{im ∈ NL

A

(︀
[Pℓ,ij , P𝛼]

)︀
| im < ij }| (C45)

Indeed, it counts all the Pauli gates in W̃ℓ that anti-commute with P𝛼 if they are located after Pℓ,ij , and those that anti-commute
with [Pℓ,ij , P𝛼] if they are located before Pℓ,ij (see Figure 15).

As EΘ[(L(L)
𝛼 )2] depends on P𝛼 and all possible nested commutators including PL,i, it is extremely complicated to generalize

the exact equation. Therefore, for the general case, we will compute an exact lower bound depending on σ. However, this bound
does not provide much information about the scaling with respect to the system’s size without further assumption on the circuit
architecture. In Appendix C 3, we consider an EfficientSU2 architecture as a specific example and provide some approximate
bounds which show the polynomial scaling of the variance for the leading order in σ. These bounds, despite being approximate,
are rather tight as supported by our numerics.

First of all, let us consider the case with σ ≪ 1. As e−2σ2

is close to 1, 1+e−2σ2

2 dominates over 1−e−2σ2

2 , and therefore, the
first term will mainly contribute in the lower bound :

EΘ[(L(L)
𝛼 )2] >

(︀1 + e−2σ2

2

)︀nL
A(P𝛼)EΘ[(L(L−1)

𝛾 )2] >
(︀1 + e−2σ2

2

)︀NL
AEΘ[(L(0)

𝜂 )2], (C46)

where we obtain the last inequality by induction. Combining Eq. (C29) and Eq. (C46), we have the lower bound for the variance
VarΘ[L(L)

𝛼 ] :

Var[L𝛼] = E[(L𝛼)
2]− E[L𝛼]

2 ≥
(︁1 + e−2σ2

2

)︁NL
A

EΘ[(L(0)
𝜂 )2]− (e−σ2

)N
L
AEΘ[(L(0)

𝜂 )]2. (C47)
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In particular, if there exist a 𝜆∗ such that ηj = λj for all ηj ̸= 0, we have :

Var[L𝛼] = E[(L𝛼)
2]− E[L𝛼]

2 > c2𝜆∗

(︁1 + e−2σ2

2

)︁NL
A+w(P𝜂)

− c𝜆∗(e−σ2

)N
L
A+w(P𝜂), (C48)

otherwise, EΘ[L(L)
𝜂 ] = 0, and thus,

Var[L𝛼] = E[(L𝛼)
2] >

∑︁
𝜆

c2𝜆

(︁1 + e−2σ2

2

)︁NL
A+

∑
j∈J𝜂

δηjλj
(︁1− e−2σ2

2

)︁∑
j∈J𝜂

δ̄ηjλj

. (C49)

On the other hand, if σ ≫ 0, the identity initialization is not valid anymore, and a poly(n) depth unstructured circuit is suffi-
ciently expressive to induce exponential concentration of the loss function.

3. Case study: Absence of barren plateau in EfficientSU2 ansatz

V1(ω) V2(ϕ) W̃1(θ1) W̃2(θ2)

· · ·

· · ·

RX RY RX RY RX RY

RX RY RX RY RX RY

RX RY RX RY RX RY

RX RY RX RY RX RY

(a) Pairwise entanglement

V1(ω) V2(ϕ) W̃1(θ1) W̃2(θ2)

· · ·

· · ·

RX RY RX RY RX RY

RX RY RX RY RX RY

RX RY RX RY RX RY

RX RY RX RY RX RY

(b) Circular entanglement

Figure 16. Circuit architecture of the EfficientSU2 ansatz [101]. The circuit is initialized with two orthogonal layers of single-qubit Pauli
rotation gates and 𝐿 layers of entanglement layers with CNOT gates and single-qubit rotation gates. The entanglement gates can have either
(a) a pairwise structure, or (b) a circular structure.

In this section, we will analyze the decay of the gradient variance in the EfficientSU2 ansatz shown on Figure 16, which
consists only of single-qubit Pauli rotations and CNOT gates. The single-qubit rotations can be chosen in different combinations,
and the entanglement map can be either pairwise or circular. Although we only use the EfficientSU2 ansatz for the study, the
result can also be generalized to other types of quantum circuits. Our results show that with small σ the variance of the loss
scales polynomially with the number of qubits. We note that while we rely on some approximations to obtain these approximate
lower bounds of the variance (i.e., the bounds are written in the leading order of σ), these bounds are rather tight, as supported
by our numerics.

We will analyze how the loss function behaves depending on the type of observables and the entanglement map for both local
and global observables. Let us start with two different local observables P𝛼 = σα0

⊗ I⊗n−1 and P𝛽 = σβ0
⊗ I⊗n−1 such that

α0 ̸= β0. Furthermore, we assume that ρ only consists of P𝜆 such that λj ∈ {0, α0} for all 𝜆. This is the case if we have zero
initial state ρ = |0⟩ ⟨0|⊗n

= (I+ Z)⊗n/2n with σα0
= Z and σβ0

= X .
Table V summarizes L𝛼 and L𝛽 for all possible combinations of µ0 and ν0 in L = 0 case. As the table shows, the covariance

between L𝛼 and L𝛽 vanishes, as assumed in Appendix C 2 and thus, Eq. (C31) holds.

It is more straightforward to show the lower bound of VarΘ[L𝛼], as the EΘ[L(0)
𝛼 ] scales following the dominant term, (1 +

e−2σ2

)/2. As EfficientSU2 ansatz only consists of CNOT gates among the Clifford gates, the Pauli strings Cℓ†
L P𝛼C

L
ℓ , in

particular,C1†
L P𝛼C

L
1 = P𝜂 , only consists of σα0 . Furthermore, the ansatz only contains single-qubit Pauli rotation gates, hence,

the number of anti-commuting Pauli operators, nℓA
(︁
Cℓ+1†

L P𝛼C
L
ℓ+1

)︁
will be proportional to the weight w

(︁
Cℓ+1†

L P𝛼C
L
ℓ+1

)︁
of

the Pauli string at each layer ℓ and, as a result, the total number of anti-commuting gates will be proportional to the sum of
weights, NL

A ≈∑︀L
ℓ=1 w

(︁
Cℓ+1†

L P𝛼C
L
ℓ+1

)︁
.

As NL
A depends on the position of the observable and the types of the entanglement map, it is complex to find a general

formula. Therefore, we will assume that the non-trivial Pauli matrices can span over n-qubits for Cℓ†
L P𝛼C

L
ℓ , ℓ = 1, ..., n , i.e.

for all d ∈ {1, ..., n}, there exists an ℓ ∈ {1, ..., n} such that w(Cℓ†
L P𝛼C

L
ℓ ) = d. Under this assumption, we take the average
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Lα0
Lβ0

E[Lα0
] E[Lβ0

] E[L2
α0
] E[L2

β0
] E[Lα0

Lβ0
]

α0 = ν0, β0 = µ0 cos(ωj) sin(ωj) sin(ϕj) e−
σ2

2 0 1+e−2σ2

2

(︁
1−e−2σ2

2

)︁2
0

α0 = ν0, β0 ̸= µ0 cos(ωj) sin(ωj) cos(ϕj) e−
σ2

2 0 1+e−2σ2

2
1−e−4σ2

4 0

α0 ̸= ν0, β0 = µ0 cos(ωj) cos(ϕj) cos(ωj) sin(ϕj) e−σ2

0
(︁

1+e−2σ2

2

)︁2
1−e−4σ2

4 0

α0 = µ0, β0 = ν0 cos(ϕj) 0 e−
σ2

2 0 1+e−2σ2

2
1−e−2σ2

2 0

α0 ̸= µ0, β0 = ν0 cos(ϕj) cos(ωj) sin(ωj) e−σ2

0
(︁

1+e−2σ2

2

)︁2
1−e−2σ2

2 0

α0 = µ0, β0 ̸= ν0 cos(ϕj) sin(ϕj) e−
σ2

2 0 1+e−2σ2

2
1−e−4σ2

4 0

Table V. Summary of the loss functions ℒ𝛼 and ℒ𝛽 for different circuit architectures. The covariance EΘ [ℒ𝛼0ℒ𝛽0 ] vanish for all cases
as ℒ𝛼0ℒ𝛽0 is always odd with respect to 𝜔𝑗 or 𝜑𝑗 over R.

over w(Cℓ†
L P𝛼C

L
ℓ ) to have w(P𝜂) ≈ n/2 and NL

A ≈ (n2 + n)/2. In addition, we also consider the extreme-case scenario for
the polynomial depth circuit where the NL

A ≈ Ln = n2 , and w(P𝜂) = n. For σ ≪ 1 , Eq. (C48) and Table V lead to :

Var[L𝛼] ≥ min

⎡⎢⎣c2𝜆∗

(︃
1 + e−2σ2

2

)︃n2

2 +n

− c𝜆∗

(︁
e−σ2

)︁n2

2 +n

, c2𝜆∗

(︃
1 + e−2σ2

2

)︃n2+n

− c𝜆∗

(︁
e−σ2

)︁n2+n

⎤⎥⎦ , (C50)

with 𝜆∗ such that 𝜆∗ = 𝜂. In particular, in the case of the zero state, the equation simplifies with c𝜆∗ = 1. It is important to
consider both cases, because the interplay between EΘ [L𝛼]

2 and EΘ

[︀
(L𝛼)

2
]︀

depends greatly on the value of σ and n. Taking
into account only the extreme case will make the calculation deviate too much from the real lower bound.

We also compute the scaling of the variance while assuming the initial zero state. Taking a Taylor expansion with respect to
σ around 0 gives us:

Var[L𝛼] > (1− σ2 + σ4)n
2+n − (1− σ2 +

σ4

2
)n

2+n (C51)

>
1

2
n(n+ 1)σ4 − 1

2
(n2(n+ 1))2σ6 (C52)

≈ 1

2
n2σ4(1− n2σ2) (C53)

>
1

nb
. (C54)

with a b > 1 independent of n, which implies that VarΘ[L𝛼] decays polynomially. Rearranging Eq. (C54), we can conclude that
VarΘ [L𝛼] will scale as O(1/nb) with b > 2 if :

σ ∈ Θ

(︂
1

n

)︂
. (C55)

Note that the max
(︁
w
(︁
Cℓ†

L P𝛼C
L
ℓ

)︁)︁
= n and max

(︀
NL

A

)︀
= n2, and thus, the lower bound given by Eq. (C50) also applies to

the global observable case with P𝛼 = σ⊗n
α0

as shown on Figure 18. On Figure 17 and 18, we display Var[L(L)
𝛼 ] for L = n and its

lower bound calculated with Eq. (C50) with respect to the number of qubits. Furthermore, for σ ≥ 1, we take the lower bound
as VarΘ[L𝛼] = 2−n as justified in Appendix C 2. The figures clearly show that the variance follows the computed lower bound
for both local and global observables in the case of σ ≪ 1 while it decays exponentially for large σ.

On the other hand, understanding the variance of EΘ[L𝛽] requires additional insight due to the presence of sine terms. As
shown on Table V, EΘ[L𝛽] vanishes regardless of the ansatz, thus it suffices to find the scaling of EΘ[L2

𝛽]. We start by rewriting
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Figure 17. Variance of ℒ𝛼 for the local Z observable and its lower bound in polynomial depth circuit with different initialization
ranges. The blue cross represents the simulated variance obtained in EfficientSU2 ansatz with poly(𝑛) depth and the gray dashed line its
lower bound calculated with Eq. (C50).

(a) Pairwise entanglement

(b) Circular entanglement

Figure 18. Variance of ℒ𝛼 for the global Z observable and its lower bound in the polynomial depth circuit with different initialization
ranges. The blue cross represents the simulated variance obtained in the EfficientSU2 ansatz with poly(𝑛) depth and the gray dashed line
its lower bound calculated with Eq. (C50). We observe that VarΘ[ℒ𝛼] for both (a) pairwise and (b) circular entanglement also follows the
theoretical lower bound, and does not exhibit a barren plateau with an appropriate choice of initialization.

Eq. (C44) for the EfficientSU2 ansatz with Kℓ = 2 (c.f. Figure 16) as follows :

EΘ

[︂(︁
L(L)
𝛽

)︁2]︂
=

(︃
1 + e−2σ2

2

)︃2

EΘ

[︂(︁
L(L−1)
𝛾′

)︁2]︂
+

(︃
1 + e−2σ2

2

)︃(︃
1− e−2σ2

2

)︃
EΘ

[︂(︁
L(L−1)
𝛿′
1

)︁2]︂

+

(︃
1 + e−2σ2

2

)︃(︃
1− e−2σ2

2

)︃
EΘ

[︂(︁
L(L−1)
𝛿′
2

)︁2]︂
+O

(︃
1− e−2σ2

2

)︃2

(C56)

where we denote P𝛾′ = C†P𝛽C, P𝛿′
1
= −iC† 1

2 [PL,1, P𝛽]C and P𝛿′
2
= −iC† 1

2 [PL,2, P𝛽]C.

Without losing generality, we assume that [PL,ij , P𝛽] = 2iσα0
⊗ In−1 for ij ∈ {1, 2}. This corresponds to the case of

an X observable with RZ or RY rotations in W̃ℓ. This leads EΘ

[︃(︂
L(L−1)
𝛿′
ij

)︂2
]︃

back to the previous case for L𝛼, scaling as

((1 + e−2σ2

)/2)n
2+n. On the other hand, since P𝛾′ only contains σβ0

, in the worst case scenario, we have w(Cℓ†
L P𝛽C

L
ℓ ) = n,

leading to the the first term scaling as ((1 − e−2σ2

)/2)n. Therefore, the second term will be the dominant term in case of the
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small angle initialization and we can conclude that :

VarΘ[L2
𝛽] > c𝜆∗∗

(︃
1 + e−2σ2

2

)︃n2+n(︃
1− e−2σ2

2

)︃
, (C57)

with c𝜆∗∗ such that P𝜆∗∗ = C1†
L [PL,ij , P𝛽]C

L
1 . The equation is confirmed with Figure 19 showing Var[L(L)

𝛽 ] for L = n and its
lower bound calculated with Eq. (C57).

Figure 19. Variance of ℒ𝛽 for the local X observable and its lower bound in polynomial depth circuit with different initialization
ranges. The blue cross represents the simulated variance obtained in EfficientSU2 ansatz with poly(𝑛) depth and the pairwise entanglement
map. The gray dashed line corresponds to the lower bound calculated with Eq. (C57).

For the zero initial state, by taking the Taylor expansion with respect to σ around 0, Eq. (C57) can be approximated as :

VarΘ[L2
𝛽] > (1− σ2)n

2+nσ2 > σ2 − (n2 + n)σ4 > σ2 − 2n2σ4 >
1

nb
, (C58)

resulting in the same conclusion as before, that VarΘ[L2
𝛽] decays as O(1/n2) if σ ∈ Θ(1/n).

(a) Pairwise entanglement

(b) Circular entanglement

Figure 20. Variance of ℒ𝛽 for the global X observable and its lower bound in the polynomial depth circuit with different initialization
ranges. The blue cross represents the simulated variance obtained in the EfficientSU2 ansatz with poly(𝑛) depth and the gray dashed line its
lower bound calculated with Eq. (C57). We observe that VarΘ[ℒ𝛽] decays exponentially for the (a) pairwise entanglement independent of 𝜎,
while it follows the theoretical lower bound given for (b) circular entanglement. This discrepancy comes from the fact that 𝐶ℓ†

𝐿 𝑃𝛽𝐶
ℓ
𝐿 behaves

differently depending on the entanglement map.

Unlike the Z observable, which exhibits similar behavior in both the global and local observables, the behavior of the global
X observable varies depending on the type of entanglement. In Figure 20, we observe that the variance decays exponentially
regardless of σ with the pairwise entanglement map. However, with the circular entanglement map, it follows the lower bound
given by Eq. (C57), which was computed for the local observable.
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Although it is complicated to justify the result mathematically, we can explain this difference by analyzing Cℓ†
L P𝛽C

L
ℓ . For the

circular entanglement map, it is straightforward to see that P𝛾′ = C†X⊗nC = IXI⊗(n−2). This brings us back to the case of
the local X observable with L(L−1)

𝛾′ in Eq. (C56), resulting in the same lower bound. Conversely, for the pairwise entanglement

map, we have P𝛾′ = C†X⊗nC = (IX)⊗n/2, introducing an additional contribution of ((1− e−2σ2

)/2)n in Eq. (C57). Indeed,
we can easily find that w(Cℓ†

L P𝛽C
L
ℓ ) = n or n/2 for all ℓ = 1, ..., L. Therefore, this higher weight of the X observable leads to

the exponential decay of the variance.
Figure 21 shows the variance of the loss function VarΘ[L𝛼] of EfficientSU2 ansatz with poly(n) depth versus the number of

qubits n using the initialization range varying as σ = 1/n for Z and X observables. As expected, the loss function scales as
O(1/nb) with b > 2, clearly proving the mitigation of the barren plateau in the polynomial depth circuit.

(a) Local Z (b) Global Z (c) Local X

Figure 21. Variance of the loss function with respect to 𝑛 using 𝜎 = 1/𝑛. The blue cross corresponds to the simulated result, the dashed line
its polynomial fit, and the green points the theoretical bounds computed with (a), (b) Eq. (C50) and (c) Eq. (C57). As predicted, the variance
decays as 𝒪(1/𝑛2) with 𝜎 scaling as 1/𝑛.

Appendix D: Study of BP with Other Circuits

Previously, in Section V, we only displayed the results for the variance of the gradients calculated with Circuit1 (see Fig-
ure 3) as a quantum generator in LaSt-QGAN . In this section, we compute the variance for other types of circuits to confirm
that this absence of barren plateau is not only limited to a specific type of circuit. As shown on Figure 22, we observe that
VarΘ,𝜑[∂νLG] decays polynomially with a small angle initialization for other circuits as well. Notably, the varying σ = 1/n
found in Appendix C 3 ensures a polynomial decay, with the slope decreasing as the system size increases.

(a) EfficientSU2 (b) Circuit3

Figure 22. Variance of the partial derivative of ℒ𝐺 versus the number of qubits 𝑛 using polynomial depth quantum generator with
different circuit architecture in LaSt-QGAN . The variance is computed with 𝒟z = 𝑛 for different initialization ranges, 𝛿, and averaged
over the parameters of the first layer. The quantum generator consists of different circuits presented in Figure 3 with polynomial depth,
𝑑 = ⌊log(𝑛)⌋.
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