
Operational Framework for a Quantum Database

Carla Rieger1,2, Michele Grossi2, Gian Giacomo Guerreschi3, Sofia Vallecorsa2, and
Martin Werner1

1School of Engineering and Design, Technical University of Munich, Germany
2European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland
3Intel Labs, Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA 95054,

United States of America

May 27, 2024

Abstract

Databases are an essential component of modern computing infrastructures and allow
efficient access to data stored persistently. Their structure depends on the type and rela-
tionships of the stored data elements and on the access pattern. Extending the concept of
databases to the quantum domain is expected to increase both the storage efficiency and
the access parallelism through quantum superposition. In addition, quantum databases may
be seen as the result of a prior state preparation ready to be used by quantum algorithms
when needed. On the other hand, limiting factors exist and include entanglement creation,
the impossibility of perfect copying due to the no-cloning theorem, and the impossibility of
coherently erasing a quantum state.

In this work, we introduce quantum databases within the broader context of data struc-
tures using classical and quantum data and indexing. In particular, we are interested in
quantum databases’ practical implementation and usability, focusing on the definition of
the basic operations needed to create and manipulate data stored in a superposition state.
Specifically, we address the case of quantum indexing in combination with classical data.
For this scenario, we define the operations for database preparation, extension, removal
of indices, writing, and read-out of data, as well as index permutation. We present their
algorithmic implementation and highlight their advantages and limitations. Finally, we in-
troduce steps toward defining the same operations in the more general context of quantum
indexing and quantum data.

1 Introduction
Managing and analyzing large amounts of data is a fundamental task in the big-data age when
most decisions are expected to be data-driven. At the same time, new technologies like quantum
computing have been developed to solve computational bottlenecks. It is natural to ask whether
the advantages also extend to the database space. One of the key reasons for quantum computa-
tional advantage, e.g., in Grover’s algorithm [1], is the presence of quantum superposition states
that allow for inherent parallelism and interference. Furthermore, quantum systems have access
to a state space that is exponentially large with respect to the number of qubits, which permits
a compressed representation of data. Intuitively, to take full advantage of this representation,
one needs to process the quantum state without converting it to classical information, e.g., by
avoiding measurement. Prominent algorithms which may operate on quantum databases include
pattern recognition [2, 3], collision finding [4], quantum search of an unstructured database [1],
solving linear systems of equations [5] and many more.

Generally, we can characterize a database formalized by the data type stored and how elements

1

ar
X

iv
:2

40
5.

14
94

7v
1

 [
qu

an
t-

ph
]

 2
3

M
ay

 2
02

4

classical quantum
Type of data

T
yp

e
of

in
de

xi
ng

cl
as

si
ca

l
qu

an
tu

m

CC CQ

QC QQ

Figure 1: The different types of database structured with respect to classical and quantum states
as index and data (C: classical, Q: quantum). Operations defined for each possible combination
of type of data and indexing for a database differ vastly.

are indexed. Thus, we can distinguish four distinct settings as shown in Figure 1. This work fo-
cuses on designing database manipulation operations for the case of quantum indexing, mainly
with respect to classical data encoded in a set of qubits. The community has discussed this
data structure within the framework of a quantum random access memory (QRAM) [6, 7]. The
QRAM query performance is reduced with respect to a classical random access memory call as
fewer logic gates need to be activated. In this model, a register state indexed by the state |j⟩
points to the data element |dj⟩. A QRAM memory call returns a superposition of data states
upon providing a superposition of indices [6]:

∑

j

ψj |j⟩ QRAM call7−−−−−−−→
∑

j

ψj |j⟩|dj⟩ . (1)

In (1), the amplitudes are normalized, i.e.,
∑

j |ψj |2 = 1. The framework on which we base our
work, as introduced in the following, is aligned with the QRAM model.
Recently, the definition of quantum data centers (QDC) [8, 9] as a QRAM combined with a
quantum network has been proposed. In this proposal [8], the applications range from usage as
a T -gate resource for multiparty private quantum communication to distributed sensing through
data compression. Thus, states structured as in the QRAM model in (1) are relevant in many
ways. In the context of quantum databases, recent works aim to define database manipulation
operations acting on a quantum superposition state [10, 8, 11] hinting at the differences with
respect to classical and quantum data.

Several fundamental quantum mechanical phenomena limit the operations that can be done
within the framework of a quantum database, including the no-cloning [12], and the no-deletion
theorem [13, 14]. Other works [10, 8, 11] consider database operations such as select, extend
and delete in a more simplified manner or do not provide an implementation. An example
concerning the QRAM model is given by the Flip-Flop QRAM [15] which demonstrates a specific
implementation for writing classical data in a superposition state.

In this work, we introduce the specific set of operations that we believe are essential to oper-
ating a database in practice and that, thus, constitute the basis of our extension from classical
to quantum databases. Their definition is presented in Table 1, and their implementation will
be discussed for specific cases. In the general case of quantum indexing, we define a quantum

2

database as being the state:

|QDB(k)⟩ =
k−1∑

j=0

ψj |j⟩I |dj⟩D ∈ HI ⊗HD , (2)

with
∑

j |ψj |2 = 1. In the following, we often consider the restricted case of balanced database
entries, namely in (2) we have ψj = 1/

√
k for ∀j. For certain algorithms, we exclude the

amplitude ψ0 corresponding to the index |0⟩I |0⟩D from being balanced and use this state as a
probability reservoir that can be used to add new data elements or be replenished when data are
removed. The superposition state in (2) consists of a separate index (I) and a data register (D).
The index states are orthonormal and belong to the Hilbert spaceHI of dimension at least k. The
data states are part of the Hilbert space HD of dimension m composed of m̃ qubits with m = 2m̃.
For simplicity, we assume that both spaces are formed by qubits. The superposition state
in (2) is a linear combination of k elements. For the data elements, we used the shorthand
notation |dj⟩ = |dαj ⟩ indicating that the j-th data is chosen from a set of states {|dα⟩}α=0,1,...

in HD. The properties of such a set of states determine if we consider the data as quantum
or classical. Specifically, classical data correspond to orthogonal states ⟨dα |dβ⟩ = δαβ that
can be mapped to the computational basis by a known transformation UD. Notice that the
data elements in |QDB(k)⟩ do not have to be chosen uniquely, meaning that it is not necessary
that αj ̸= αi for j ̸= i in (2). The number of qubits is chosen to be the smallest integer that
fulfills k̃ = ⌈log2(k)⌉. By ⌈x⌉ we denote the ceiling function that returns the smallest integer
greater than or equal to x. We consider the different scenarios for orthogonal |dj⟩D and non-
orthogonal data entry states |d̃j⟩D, discuss the former situation in detail and then present an
outlook for the operations on the latter.

The rest of this article is structured as follows. We start by introducing the case of classical
indexing in Section 2 and contrast it with the case of quantum indexing in Section 3.1. For the
case of quantum indexing and classical data states, we formally define the operations:

prepare, extend, remove,
write, read-out and permute

as summarized in Table 1. We then focus on the quantum database extension algorithm pre-
sented in Section 3.1.2. Following that, we summarize implications on the defined operations in
the case of quantum data in Section 3.2 as some of the operations are equivalent to the classical
data case and conclude this work in Section 4.

2 Data structured by classical indices (CC and CQ)

In the classical computer science domain, database models encompass structured frameworks
for efficiently organizing, storing, and managing data, including hierarchical, network, relational,
and object-oriented models. Briefly, the hierarchical model arranges data in a tree-like structure,
while the network model uses a graph structure to handle complex many-to-many relationships.
The relational model stores data in normalized tables, which are accessed via structured query
languages (see, e.g., [16]), offering robust querying and indexing capabilities. Database models
emphasize the importance of individual data relationships in maintaining the integrity of data
and facilitating complex queries. Due to the maturity of this field, we focus on a form of
relational databases that organize and access the data by an integer index. The classical setup
is well known and commonly used and thus, we do not go further into detail but highlight the
relevant quantum extension from now on.
If we consider quantum data accessed by classical indexing, we think of the following setup:

p⊗

i=0

|di⟩D ∈ (HD)⊗p , (3)

3

where the data element |di⟩D associated with the index i resides in a dedicated register. In (3)
there are p individual registers consisting each of m̃ qubits such that dim(HD) = 2m̃. The data
may be drawn from any orthogonal or non-orthogonal set of states. For this approach, operations
that act on a system as given in (3) are well defined and can be formulated as the individual
registers are in product form. An extension corresponds to adding a new quantum state to the
system. One can swap individual registers without creating entanglement. Due to the product
form of (3), individual registers can be traced out (and thus neglected and removed) without
affecting the remaining states. This setup is based on a linear number of quantum resources.
Due to this uncompressed way of storing the data, the framework of (3) is inefficient in the
number of resources corresponding here to the number of qubits. Thus, in the following section,
we consider the case of quantum indexing.

Table 1: Set of defined quantum database (QDB) operations that we consider to be essential
QDB operations. We summarize their respective actions on the QDB state and draw an analogy
to operations in the classical database (DB) scenario to illustrate possible correspondences.

QDB operation QDB action Name DB Analog

Prepare Prepare empty QDB with k index elements. P(k) CREATE

Extend Extend |QDB(k)⟩ by l new index elements. E(l) RESERVE

Remove Remove index f with data element from
|QDB(k)⟩.

R(f) DELETE

Write Write data element with specific index f . W(f) INSERT

Read-out Read-out the data element indexed by f . G(f) SELECT

Permute Permute the index elements based on π. Pπ -

3 Data structured by quantum indices

When the index is itself a quantum state, we allow for superpositions of indices, each correlated
to a data state. In general, we consider balanced superposition states as in (2). For some of the
algorithms introduced below, we exclude the |0⟩I -index state from being balanced as it forms a
reference and is used as a probability reservoir. This term comes from the fact that measuring
the index register collapses the database to a single index-data pair with a probability given by
the squared absolute value of the amplitude ψj .

3.1 Classical Data (QC)

In this section, we consider classical data states indexed by quantum indices. As a reminder,
by |dj⟩ we denote a state non-uniquely drawn from an orthogonal set of states {dα}α ∈ HD. We
assume that classical data is defined as being drawn from the aforementioned set of orthogonal
states, and it is given that we know the unitary transformation UD that maps each element in
this set to the computational basis.

4

Figure 2: Schematic of the quantum database extension procedure consisting of adding new
qubits and creating new indices that are correlated to the empty data string. In contrast to
Algorithm 4, Algorithm 5 does not include the amplitude transfer step and uses a specifically
imbalanced database with the zero-index state acting as a probability reservoir. Both protocols
are described in detail in Section A.3.

3.1.1 Preparation of an empty QDB

To prepare a database with balanced amplitudes, quantum indexing, and an empty data register,
we apply the following operation:

HI ⊗HD → HI ⊗HD

|0⟩I⊗D
P(k)7−−→ (4)

1√
k

k−1∑

j=0

|j⟩I |0⟩D =: |QDB(k)
empty⟩ .

In (4), P(k) is particularly simple when log2(k) ∈ N>0. This case corresponds to the Walsh-
Hadamard transform applied only to the index register I with a circuit depth of O(1). The
indices remain in a product state with respect to the empty data register D. Thus, the operation
is given as follows:

P(k) = H⊗ log2(k) ⊗ ID . (5)

By creating the state |QDB(k)⟩empty, we have prepared an empty database with k indices in
superposition. All indices are correlated to the empty data string given by |0⟩D. The general case
of the preparation operation for a balanced superposition state with k indices and log2(k) /∈ N>0

is presented in Appendix A.1 together with the case including the probability reservoir.

3.1.2 Extend the QDB by new indices correlated to an empty data string

The operation of extending the quantum database corresponds to expanding the number of
indices in the superposition and, crucially, correlating them to the empty data string. This
operation seems straightforward, but we will see that the possibility of having entanglement
between index and data registers is very consequential. In general, we may correlate a number
of new ancilla qubits to the index basis for the index extension procedure and aim to add as
many new indices as possible. If the database initially holds a superposition of k indices, adding
a qubit to the index basis doubles the maximal number of possible indices to 2k. Next to the
demand that the new indices be correlated to the empty data string, the database should remain
in a balanced superposition with equally distributed amplitudes. The extension operation for

5

adding l > 0 new elements is described by:

HI ⊗HD −→ HI′ ⊗HD := (H0 ⊗HI)⊗HD

|QDB(k)⟩ = 1√
k

k−1∑

j=0

|j⟩I |dj⟩D (6)

E(l)7−−→ |QDB(k+l)⟩ = 1√
k + l

k+l−1∑

j=0

|j⟩I′ |dj⟩D ,

with

|dj⟩D = |0⟩D for ∀j > (k − 1) and j = 0 .

The transformation in (6) is non-trivial to define as there is no general unitary map E(l) fulfilling
it. A proof of this fact is presented in Appendix A.2. Thus, the unitary operation E(l) depends
on the specific database and is not generally applicable.

In the simplest case of (6) that still requires adding an extra index register H0, we add a
single qubit to the index basis and consider log2(k) ∈ N>0, that forms an initial database with
all available indices already in use. Thus, we would have dim(H0) = 2 and HI′ = H0 ⊗HI . In
this case, we can add l new index elements with 0 < l ≤ k. The data string corresponding to
the newly added indices is empty. We present two different protocols for the extension of the
quantum database:

1. Insert a QDB containing data, transfer amplitude to zero-index, and create new indices.

2. Initialize an empty database with an adjusted amplitude distribution, write data in the
data registers, and create new indices afterward.

Regarding the first version, the quantum index extension protocol consists of two steps: an
amplitude transfer operation to ensure the amplitudes remain balanced and an index creation
step. The amplitude transfer operation is built on the generalized amplitude amplification
algorithm with modified step sizes as presented by Brassard et al. [17]. The modified amplitude
amplification algorithm generally allows us to find a good solution with certainty [17] and can
be adapted to set a known amplitude to any other desired value. As this modification allows the
transfer of small amplitudes onto a specific subspace, we may use it to re-balance the amplitudes
of the superposition. Specifically, we transfer amplitude to the zero index state that we use as a
probability reservoir. As this state is correlated to the empty data state, we create new indices
from it based on the generalized prepare method described in Section A.1 after correlating
an ancilla register. The whole procedure is costly as it involves knowing and applying the
unitary U|QDB(k)⟩ (and its inverse U†

|QDB(k)⟩
) that creates the whole database (including the data

elements) during the amplitude transfer step. There is a need for a less demanding approach
that is not based on amplitude amplification.

The second protocol starts from an unbalanced database and can add new elements only
until the probability reservoir is fully depleted. Thus, it is important to know an estimate
or at least an upper bound on the number of data elements that one desires to store in the
database (denoted here by k+ l) This version initializes a database with a higher amplitude on
the zero index state. Next, the data registers are filled, an ancilla register is added, and new
index states are created that are correlated to the empty data state. In the Appendix A.3, we go
into the details for both variants of the extension protocol. The second approach appears more
practical, and we observe that it uses a controlled Prepare operation. Thus, any improvements
in the implementation of that operation directly translate to an improvement of the Extend
operation, too.

6

3.1.3 Removing an index and corresponding data element from the QDB

Similarly to adding new indices to the database, we aim to define an operation that allows
removing indices and the respective indexed data element from the database. When the index
to remove is not the highest one, we obtain a database with non-continuous indexing. If this is
undesirable, one can subsequently apply the Permute operation to do re-indexing appropriately.
In general, the removal operation, which we name R(f), reduces the number of indices with a
nonzero amplitude from the superposition, and the state would be re-normalized. In its simplest
form, this operation would, e.g., remove the index state f and the corresponding data register
from the superposition. Thus, by index removal, we understand the following map:

HI ⊗HD −→ HI ⊗HD

|QDB(k)⟩ = 1√
k

k−1∑

j=0

|j⟩I |dj⟩D
R(f)7−−−→ 1√

k − 1

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D , (7)

with dim(HI) = k. Similarly to the extension operation presented in (6), the transformation R(f)

presented in (7) cannot be implemented in general by a unitary transformation. The proof is
similar to the one of the extension presented in A.2 and can be intuitively understood considering
the case of removing all indices and their data. This would correspond to an erasure operation
that is clearly not unitary since it is a many-to-one function. Thus, the operation depends on
the specific database and its indexed orthogonal data elements. We consider the case where the
element |f⟩I |df ⟩D is removed. To keep the superposition balanced, we need to take into account
the re-normalization of the amplitudes, i.e., 1√

k
7→ 1√

k−1
as in (7). In a quantum information

setting, the no-cloning theorem applies [12] for a general quantum state. Thereof follows the
no-deletion theorem [13]. If one aims to remove an index from the superposition, one intends to
achieve the following reset operation:

|j⟩I |dj⟩D 7→ |j⟩I |0⟩D . (8)

This can be achieved by knowing the state preparation unitary |dj⟩D = U |0 . . . 0⟩D. Since in
this section we consider classical data in the form of orthogonal data states, another possible
option would be to correlate a sensor state equivalent to |dj⟩D and delete the data in register D
utilizing CNOT gates with additional controls on the index register being in j. This procedure
only works for orthogonal states with a known unitary that maps the orthogonal basis states
to the computational basis, but this is assumed to be our definition of classical data. Next,
the amplitude of the “resetted” index state can be transferred back to the |0⟩I⊗D state. This
requires knowing the specific index element j that is removed. This operation has the following
effect:

(|0⟩I + |j⟩I) |0⟩D 7→ |0⟩I |0⟩D . (9)

The transformation described in (9) can be achieved by a specific rotation in the two-dimensional
space spanned by span{ |0⟩I |0⟩D, |j⟩I |0⟩D}. Thus, it is a non-trivial operation to remove ele-
ments in the quantum superposition state and requires specific data-dependent operations for
each state that fulfills the requirements listed above. Finally, we comment on a non-deterministic
implementation that works in the general case but has a finite probability of fully erasing the
database. One can measure the index with a binary observable with an eigen-subspace corre-
sponding to the span of the indices to remove and their respective orthogonal subspace. This
solution may be acceptable when the database is easy to prepare or multiple copies are available
but is not scalable.

3.1.4 Writing data in the QDB

In the following, we consider the process of writing individual data elements dj (with 1 ≤ j ≤
(k − 1)) in the data register that are each associated with a specific index in the index register.

7

We assume the data register states associated with the new elements are initially empty, as is the
case after the Extend operation, e.g., the all-zero state |0⟩D. By writing the data element |df ⟩D
indexed by f we understand the following operation:

HI ⊗HD −→ HI ⊗HD

|QDB(k)⟩ = |QDB(k)⟩ ̸=f +
1√
k
|f⟩I |0⟩D

W(f)7−−−→ |QDB(k)⟩̸=f +
1√
k
|f⟩I |df ⟩D , (10)

with

|QDB(k)
̸=f ⟩ :=

1√
k

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D .

For the case of data states drawn from an orthogonal set with a known unitary transformation to
the computational basis, we can use a writing procedure based on CNOT gates. Conceptually,
we can view the writing process based on the sensor state |df ⟩S as follows. We transform the
orthonormal basis states to the computational basis and apply CNOT gates to copy the data
into the superposition of the quantum database. Thus, the operation is schematically given as:

W(f)

((
|QDB(k)⟩̸=f +

1√
k
|f⟩I |0⟩D

)
|df ⟩S

)
7→
(
|QDB(k)⟩ ̸=f +

1√
k
|f⟩I |df ⟩D

)
|df ⟩S , (11)

with

W(f) =
(
(II ⊗ UD ⊗ UD) Λτ (σX)

(
II ⊗ U †

D ⊗ U
†
D

))
.

The central operation Λτ (σX) consists of m̃multi-controlled X gates, each controlled on τ := k̃+1
qubits. The gate Λτ (σX) behaves like a CNOT gate with τ -control qubits. An adapted imple-
mentation of Λτ (σX) is presented in [15]. Decompositions of Λτ (σX) are considered in [18].
The operation defined in (11) keeps the additional system S in the product with respect to the
database. This allows for tracing out and removing the subsystem S without any information
loss in the database, as no entanglement is created between the QDB and system S.

One may wonder why not using a conditional SWAP operation to write data data in the
database. If we condition the SWAP operation on a specific index f , we obtain the following:

W(f)

(1√
k

(k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D + |f⟩I |0⟩D
)
|df ⟩S

)
=

1√
k

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D |df ⟩S + |f⟩I |df ⟩D |0⟩S

̸=

1√
k

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D +
1√
k
|f⟩I |df ⟩D

 |df ⟩S . (12)

In general, this state does not remain in product form due to entanglement between the database
and system S. Hence, one either accepts a system growth by keeping the ancilla state or takes
a process of disentangling S from the database into account. If only classical correlations are
present, one may rely on the disentangling operation introduced in [19]. Thereby, an ancilla
qubit is decorrelated from the system by adding an ancilla qubit in the state |0⟩ and applying
a combination of (multi-)controlled CNOT gates. The general process of disentanglement for
systems, including non-classical correlations, is further described in [20, 21, 22, 23] and shortly
summarized in Appendix A.4.

8

3.1.5 Read-out data in the QDB

The quantum database contains data elements indexed by orthogonal states that one aims to
process in some form. On the one hand, one can directly apply a quantum algorithm on the
database state itself, such as Grover’s search algorithm for unstructured search [1], and operate
on, and thus, modify the entire QDB state. On the other hand, one may think of a read-
out operation that does or does not affect the remaining data states in the QDB. A read-out
operation could have the following effect with |d0⟩D ̸= |dj⟩D for some 0 < j ≤ (k − 1) and an
ancilla system with the same dimension as the data register (dim(HD) = dim(HA)):

|QDB(k)⟩ |0⟩A ̸7→ |QDB(k)⟩ |dj⟩A . (13)

One correlates the ancilla system A to the database in order to transfer the data contained in
the jth data state to the ancilla system. The transformation in (13) is not possible in general
due to linearity. Instead, an exemplary copying procedure based on CNOT gates for orthogonal
states would result in the following transformation:

HI ⊗HD ⊗HA → HI ⊗HD ⊗HA

|QDB(k)⟩ |0⟩A
G(f)7−−−→ |QDB(k)

̸=f ⟩|0⟩A +
1√
k
|f⟩I |df ⟩D|df ⟩A , (14)

again with

|QDB(k)
̸=f ⟩ :=

1√
k

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D .

In (14), the ancilla system A gets entangled with the quantum database. For orthogonal data
states, one could proceed with the copying procedure described in (14) for every data element
in the QDB and essentially would create a copied data register in a superposition. This state
looks as follows:

1√
k

k−1∑

j=0

|j⟩I |dj⟩D |dj⟩A ∈ HI ⊗HD ⊗HA . (15)

To obtain the state in (15), one would apply m̃ CNOT gates that are controlled by the ith qubit
in the data register D and apply the controlled not operation on the ith qubit in the ancilla
register A. One notices in (15) that the registers D and A are also entangled if at least two
states in A are different, i.e., |dj⟩A ̸= |di⟩A for some i ̸= j.
Another possibility to define the read-out of a data state would be via a projective measurement.
Thereby, we aim to do the projective measurement [24] on the index register and return the
corresponding data state indexed by f :

|df ⟩D =
P̂|f⟩ |QDB(k)⟩√

⟨QDB(k)| ˆP|f⟩ |QDB(k)⟩
. (16)

The idempotent projection operator P̂|f⟩ is given by

P̂|f⟩ = |f⟩ ⟨f |I ⊗ ID . (17)

The resulting state of this projective measurement is the data state |df ⟩D corresponding to
index f , which is retrieved with a probability of 1

k . Hence, with the given probability of 1
k we

obtain the data state |df ⟩D corresponding to index j. This projective measurement essentially

9

returns a specific data state corresponding to an index and thus forms a query to the quantum
database. This query procedure returning the state in (16) “consumes” the whole database. This
is the case as the applied projective measurement collapses the superposition state that forms
the quantum database onto a single state. An interesting application could be that the qubits
belonging to the index and the qubits belonging to the data registers could be located at different
spatial positions. Hence, a projective measurement on the index register would simultaneously
collapse the data register at another physical location [25].

3.1.6 Permute data in the QDB

For this operation, we would like to permute database elements according to their indices. We
notate this operation by Pπ and the permutation π(·) ∈ Sk. Thereby, Sk denotes the symmetric
group over a finite set of k elements. We write Pπ for a quantum database with k elements as
follows:

1√
k

k−1∑

j=0

|j⟩I |dj⟩D Pπ7−−→ 1√
k

k−1∑

j=0

|π(j)⟩I |dj⟩D =
1√
k

k−1∑

j=0

|j⟩I |dπ−1(j)⟩D . (18)

A general permutation π(·) ∈ Sk, or its inverse π−1(·), can always be decomposed into transpo-
sitions (i, j) as two-element transpositions generate the group Sk. We denote a transposition of
indices (i, j) by:

iσi,jx ∈ SU(k) (19)

with the individual entries given by
(
σi,jx
)
n,m

:= δn,m − δn,i δm,i − δn,j δm,j + δn,j δm,i + δn,i δm,j . (20)

In the special case with dim(I) = 4, one obtains P(2,3) = CNOT. For every transposition (i, j)
with 0 ≤ i, j ≤ (k − 1), one applies the following operation to the database

P(i,j) := (iσi,jx)I ⊗ ID . (21)

By concatenating adjacent transpositions as defined in (21), one may generate any permuta-
tion π(·) ∈ Sk. A general permutation on the index register π−1(·) as presented in (18) can be
represented by its permutation matrix Mπ−1 = M t

π ∈ U(k). By M t
π we denote the transpose

of Mπ. Hence, we have:
Pπ :=Mπ ⊗ ID ∈ U(k ·m) . (22)

As mentioned before, any permutation π(·) can be decomposed into (adjacent) transpositions,
which can be implemented by P(i,i+1) defined in (21). It is important to observe that this
construction produces a possible decomposition and not the most efficient one. For example,
consider the action of a single Pauli-x gate on an index qubit. This changes all indices (by flipping
one bit in their binary representation) and may be used as an additional permutation in the
decomposition of π(·) in addition to transpositions. Special cases of the permute operation Pπ
appear in the classical scenario, such as a shift or swap operation.

3.2 Outlook towards Quantum Data (QQ)

If we consider the bottom-right quadrant in Figure 1, the database contains both quantum
indices and quantum data. We defined quantum data as being drawn from a non-orthogonal or
orthogonal set of states with an unknown unitary transformation to the computational basis.
This definition of “quantum” data leads to the fact that this type of data generally cannot
be copied exactly as perfect cloning is only possible for states belonging to a known set of

10

orthogonal states [26]. Furthermore, from the no-cloning theorem [12] follows the non-deletion
theorem [14]. This theorem states that even though information can be deleted perfectly in a
reversible manner in classical computation with respect to a copy, the analogous task on quantum
information cannot be done for an arbitrary quantum state [14]. It holds due to the linearity of
quantum theory [14].
The database preparation does not depend on the type of data written in the respective data
register. For the extension operation, the first algorithm based on amplitude amplification
only works if we know and are able to implement the unitary that prepares the database state.
However, the second version of the database extension algorithm works independently of the data
type. Regarding the permutation operation, one has to take into account that each data element
may be a linear combination of (orthogonal) states. Because of this, data in a superposition
corresponds to the same index state. One must consider this fact when conditioning an operation
as an individual index transposition on a single data register (corresponding to one element in
the data superposition). Also, it is different that data can no longer be removed or written in
the QDB, as was the case for orthogonal data states based on CNOT gates. For this, alternative
methods that are described below can be considered. The Read-out operation differs as the
operation in (14) cannot be done for non-orthogonal states; instead, one may consider a swap
operation with the following effect:

HI ⊗HD ⊗HA → HI ⊗HD ⊗HA

|QDB(k)⟩ |0⟩A
G(f)7−−−→ |QDB(k)

̸=f ⟩|0⟩A +
1√
k
|f⟩I |0⟩D|df ⟩A . (23)

As before, the database and the ancilla system A are entangled in (23). A projective measure-
ment as a read-out operation would return a general quantum state.

Due to the aforementioned limitations, we highlight possible modifications that allow us to
operate on quantum data. Firstly, one may consider the application of approximate or prob-
abilistic cloning that we summarize in the following [26, 27, 28]. In the case of approximate
cloning, one creates an approximate copy by means of a unitary transformation. With regard
to the non-trivial approximate cloning strategy, the optimal case would be the universal cloner
by Bužek and Hillery [29]. Thereby, the transformation done by a general unitary is the follow-
ing [29, 30]:

|ψ⟩A |R⟩B |M⟩M 7→ |Ψ⟩ABM . (24)

This forms an optimal and symmetric universal quantum cloner [29, 30] with a single qubit
ancilla in this simple example. In (24), the qubit to be cloned is the A-system, the system that
contains the approximate clone in the B-system and the ancilla marked by M . In the optimal
case, this transformation obtains the following [29, 30]:

ρA = TrBM (|Ψ⟩ ⟨Ψ|ABM) = ρB = TrAM (|Ψ⟩ ⟨Ψ|ABM) = F |ψ⟩ ⟨ψ|+ (1− F) |ψ⊥⟩ ⟨ψ⊥| , (25)

with F = 5
6 . Thus, we have a mixed state if one traces out the ancilla in (24). For the case of

the quantum database, this procedure means that the database would get entangled with the
qubit containing the data to be written in the database. Thus, either one allows the quantum
database system to essentially “grow,” or one has to rely on a disentanglement mechanism aiming
to disentangle the state from the quantum database [20, 21, 22, 23].
Secondly, the case of probabilistic cloning describes the procedure of creating a perfect copy of
an unknown quantum state with a success probability smaller than 1. In [31], it was shown that
states that were secretly chosen from a set

S = {|ψ1⟩ , |ψ2⟩ , . . . , |ψt⟩} (26)

11

can be cloned probabilistically by a general unitary reduction operation if and only if the indi-
vidual states in S are linearly independent. Thereby, the unitary transformation U that is later
followed by a post-selective measurement operation looks as follows [31, 26]:

U(|ψi⟩ |0⟩ |A0⟩) =
√
pi |ψi⟩ |ψi⟩ |A0⟩+

n∑

j=1

cij |Φj⟩ |Aj⟩ , for i = 1, 2, . . . , t . (27)

In (27), the ancilla states are all orthogonal to each other, i.e., ⟨Ak|Al⟩ = δkl for 0 ≤ k, l ≤ t.
Therefore, the desired perfect clone is achieved with a probability of pi when measuring the
ancilla in the basis {Ak}. In [31], a simple example of the cloning efficiency for a linearly
independent set of two states S = {|ψ1⟩ , |ψ2⟩} is given. In this case, the success probabilities
are bound as follows [31, 26]:

1

2
(p1 + p2) ≤

1

1 + |⟨ψ1|ψ2⟩|
(28)

with |⟨ψ1|ψ2⟩| ̸= 1. Let us consider this procedure for writing data items in the data states
(with all the data elements being part of a linearly independent set). As a simple example of a
one-qubit data register, we have the following database state:

1√
k

k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D + |f⟩I |0⟩D

 |df ⟩ |A0⟩ . (29)

Aiming to write in the data register indexed by f , we apply the unitary presented in (27)
conditioned on index f and obtain:

1√
k
(
k−1∑

j=0
j ̸=f

|j⟩I |dj⟩D |df ⟩ |A0⟩+ |f⟩I (
√
pi |df ⟩D |df ⟩ |A0⟩+

n∑

j=1

cij |Φ′
j⟩ |Aj⟩)) . (30)

If one now post-selectively applies a measurement on the ancilla in the basis {Ak}k, measur-
ing |A0⟩ we end up successfully in the subspace containing the QDB with the copy of |df ⟩ or failed
the cloning when measuring the ancilla in any other state than |A0⟩. This means that this ancilla
measurement either returns the preferred QDB state or a failure state when measuring {|Aj⟩}j
for ∀j ̸= 0.

4 Conclusion

We presented a framework of quantum databases that distinguishes between classical and quan-
tum indexing and data values. Our definition of a quantum database consists of a balanced
superposition state storing data correlated to specific orthogonal index states in a quantum
superposition. We have highlighted essential database operations and presented possible imple-
mentations focusing on the case of quantum indexing. We note that multiple possible imple-
mentations exist for each operation, and we leave it as an open problem to refine and improve
each of them individually.

The operations we showcase here already allow for general recommendations for best practices
when working on a quantum database. For example, for the index extension operation, differently
from the classical indexing case, extending the database is very costly, and one should rather set
the total (or maximum) number of items to be added in advance and prepare the database ac-
cordingly. Furthermore, the available resources should be exhausted by adding all possible index
states during the extension operation. We observe that new index states are released in bunches

12

most efficiently, and one should use that to have a low circuit depth. Furthermore, to unlock
quantum advantage from using databases, we recommend avoiding projective measurements in
order to keep the superposition state and employ its quantum nature algorithmically.

In this work, we considered a noise-free scenario. However, amplitude noise would affect
the balanced amplitudes in the superposition state, especially when many states are present
in the superposition, and the amplitudes get small. Bit-flip errors in the computational basis
would disturb the correspondence of data and index elements, but one can rely on efficient error
correcting codes, see, e.g., [32], that are expected to improve in the future. A detailed study on
the impact of noise in the context of a QDB is left for future work.

We believe it is important to examine the differences between databases in the classical and
quantum scenarios due to the naturally different conditions dictated by quantum mechanics.
In this context, one needs to rethink even basic operations, which is essential to formalize
a database version based on quantum data. The presented framework gives a more precise
outlook on the practicality and usefulness of each of the operations. Furthermore, for applying
a set of algorithms operating on a quantum database before a state collapse (e.g., through
measurement), the presented operations are applicable as a state preparation and allow for
dynamical manipulation after initialization of a certain quantum state.

Acknowledgements

CR and MG are supported by CERN through the CERN Quantum Technology Initiative. CR
has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of
Education and Research (grant no. 13E18CHA). CR would like to thank Tobias Duswald for
his invaluable support throughout this work.

References

[1] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Page 212–219.
STOC ’96 New York, NY, USA (1996). Association for Computing Machinery.

[2] Carlo A Trugenberger. “Quantum pattern recognition”. Quantum Information Processing
1, 471–493 (2002). url: https://doi.org/10.1023/A:1024022632303.

[3] Pradeep Niroula and Yunseong Nam. “A quantum algorithm for string matching”. npj
Quantum Information 7, 37 (2021). url: https://doi.org/10.1038/s41534-021-00369-3.

[4] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum cryptanalysis of hash and claw-free
functions: Invited paper”. Page 163–169. Springer Berlin Heidelberg. (1998).

[5] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear
systems of equations”. Phys. Rev. Lett. 103, 150502 (2009).

[6] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum random access mem-
ory”. Phys. Rev. Lett. 100, 160501 (2008).

[7] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Architectures for a quantum
random access memory”. Phys. Rev. A 78, 052310 (2008).

[8] Junyu Liu, Connor T. Hann, and Liang Jiang. “Data centers with quantum random access
memory and quantum networks”. Phys. Rev. A 108, 032610 (2023).

[9] Junyu Liu and Liang Jiang. “Quantum data center: Perspectives” (2023). arXiv:2309.06641.

13

https://dx.doi.org/10.1145/237814.237866
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1038/s41534-021-00369-3
https://dx.doi.org/10.1007/bfb0054319
https://dx.doi.org/10.1103/PhysRevLett.103.150502
https://dx.doi.org/10.1103/PhysRevLett.100.160501
https://dx.doi.org/10.1103/PhysRevA.78.052310
https://dx.doi.org/10.1103/PhysRevA.108.032610
http://arxiv.org/abs/2309.06641

[10] Ahmed Younes. “Database manipulation operations on quantum systems”. Quantum In-
formation Review 1, 9–17 (2013). url: https://www.naturalspublishing.com/files/
published/332fckl634r9zt.pdf.

[11] Rihan Hai, Shih-Han Hung, and Sebastian Feld. “Quantum data management: From theory
to opportunities” (2024). url: https://arxiv.org/pdf/2403.02856.pdf.

[12] William K Wootters and Wojciech H Zurek. “A single quantum cannot be cloned”. Nature
299, 802–803 (1982). url: https://doi.org/10.1038/299802a0.

[13] Arun K. Pati and Barry C. Sanders. “No-partial erasure of quantum information”. Physics
Letters A 359, 31–36 (2006).

[14] Arun Kumar Pati and Samuel L Braunstein. “Impossibility of deleting an unknown quantum
state”. Nature 404, 164–165 (2000). url: https://doi.org/10.1038/404130b0.

[15] Daniel K Park, Francesco Petruccione, and June-Koo Kevin Rhee. “Circuit-based quantum
random access memory for classical data”. Scientific reports 9, 3949 (2019). url: https:
//doi.org/10.1038/s41598-019-40439-3.

[16] Chris J Date. “A guide to the sql standard”. Addison-Wesley Longman Publishing Co., Inc.
USA (1986).

[17] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. “Quantum amplitude am-
plification and estimation”. Contemporary Mathematics 305, 53–74 (2002). url: https:
//doi.org/10.1090/conm/305.

[18] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Mar-
golus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. “Elementary
gates for quantum computation”. Physical Review A 52, 3457–3467 (1995).

[19] John A. Cortese and Timothy M. Braje. “Loading classical data into a quantum com-
puter” (2018). arXiv:1803.01958.

[20] Tal Mor. “Disentangling quantum states while preserving all local properties”. Phys. Rev.
Lett. 83, 1451–1454 (1999).

[21] P. J. Dodd and J. J. Halliwell. “Disentanglement and decoherence by open system dynamics”.
Phys. Rev. A 69, 052105 (2004).

[22] Mario Berta and Christian Majenz. “Disentanglement cost of quantum states”. Phys. Rev.
Lett. 121, 190503 (2018).

[23] Somshubhro Bandyopadhyay, Guruprasad Kar, and Anirban Roy. “Disentanglement of pure
bipartite quantum states by local cloning”. Physics Letters A 258, 205–209 (1999).

[24] Michael A Nielsen and Isaac L Chuang. “Quantum computation and quantum information”.
Phys. Today 54, 60 (2001).

[25] A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description of physical
reality be considered complete?”. Phys. Rev. 47, 777–780 (1935).

[26] Dagmar Bruß and Chiara Macchiavello. “Approximate quantum cloning”. Chapter 4, pages
53–71. John Wiley & Sons, Ltd. (2006).

[27] Daowen Qiu. “Combinations of probabilistic and approximate quantum cloning and delet-
ing”. Phys. Rev. A 65, 052329 (2002).

14

https://www.naturalspublishing.com/files/published/332fckl634r9zt.pdf
https://www.naturalspublishing.com/files/published/332fckl634r9zt.pdf
https://arxiv.org/pdf/2403.02856.pdf
https://doi.org/10.1038/299802a0
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2006.05.077
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2006.05.077
https://doi.org/10.1038/404130b0
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1090/conm/305
https://doi.org/10.1090/conm/305
https://dx.doi.org/10.1103/physreva.52.3457
http://arxiv.org/abs/1803.01958
https://dx.doi.org/10.1103/PhysRevLett.83.1451
https://dx.doi.org/10.1103/PhysRevLett.83.1451
https://dx.doi.org/10.1103/PhysRevA.69.052105
https://dx.doi.org/10.1103/PhysRevLett.121.190503
https://dx.doi.org/10.1103/PhysRevLett.121.190503
https://dx.doi.org/https://doi.org/10.1016/S0375-9601(99)00280-7
https://dx.doi.org/10.1103/PhysRev.47.777
https://dx.doi.org/https://doi.org/10.1002/9783527618637.ch4
https://dx.doi.org/https://doi.org/10.1002/9783527618637.ch4
https://dx.doi.org/10.1103/PhysRevA.65.052329

[28] Marius Lemm and Mark M. Wilde. “Information-theoretic limitations on approximate
quantum cloning and broadcasting”. Phys. Rev. A 96, 012304 (2017).

[29] V. Bužek and M. Hillery. “Quantum copying: Beyond the no-cloning theorem”. Phys. Rev.
A 54, 1844–1852 (1996).

[30] Valerio Scarani, Sofyan Iblisdir, Nicolas Gisin, and Antonio Acín. “Quantum cloning”. Rev.
Mod. Phys. 77, 1225–1256 (2005).

[31] Lu-Ming Duan and Guang-Can Guo. “Probabilistic cloning and identification of linearly
independent quantum states”. Phys. Rev. Lett. 80, 4999–5002 (1998).

[32] Sergey Bravyi, Andrew W Cross, Jay M Gambetta, Dmitri Maslov, Patrick Rall, and
Theodore J Yoder. “High-threshold and low-overhead fault-tolerant quantum memory”.
Nature 627, 778–782 (2024). url: https://doi.org/10.1038/s41586-024-07107-7.

[33] G. Brassard and P. Høyer. “An exact quantum polynomial-time algorithm for simon’s
problem”. In Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems. ISTCS-97. IEEE Comput. Soc (1997).

[34] Maria Schuld and Francesco Petruccione. “Machine learning with quantum computers”.
Springer. (2021). url: https://doi.org/10.1007/978-3-030-83098-4.

[35] Dagmar Bruß, David P. DiVincenzo, Artur Ekert, Christopher A. Fuchs, Chiara Macchi-
avello, and John A. Smolin. “Optimal universal and state-dependent quantum cloning”.
Phys. Rev. A 57, 2368–2378 (1998).

[36] Daniel R Terno. “Nonlinear operations in quantum-information theory”. Physical Review
A 59, 3320 (1999). url: https://link.aps.org/doi/10.1103/PhysRevA.59.3320.

[37] Rafaella Vale, Thiago Melo D. Azevedo, Ismael C. S. Araújo, Israel F. Araujo, and
Adenilton J. da Silva. “Decomposition of multi-controlled special unitary single-qubit
gates” (2023). arXiv:2302.06377.

15

https://dx.doi.org/10.1103/PhysRevA.96.012304
https://dx.doi.org/10.1103/PhysRevA.54.1844
https://dx.doi.org/10.1103/PhysRevA.54.1844
https://dx.doi.org/10.1103/RevModPhys.77.1225
https://dx.doi.org/10.1103/RevModPhys.77.1225
https://dx.doi.org/10.1103/PhysRevLett.80.4999
https://doi.org/10.1038/s41586-024-07107-7
https://dx.doi.org/10.1109/istcs.1997.595153
https://doi.org/10.1007/978-3-030-83098-4
https://dx.doi.org/10.1103/PhysRevA.57.2368
https://link.aps.org/doi/10.1103/PhysRevA.59.3320
http://arxiv.org/abs/2302.06377

A Appendix

A.1 General implementation of the Prepare operation

In this section, we generalize the prepare operation described in Section 3.1.1. This generalized
algorithm allows for preparing a superposition state with balanced amplitudes that contains a
number of elements k for the case of log2(k) /∈ N. Furthermore, we present a modified algorithm
that may be used for preparing a balanced superposition state, with the exception that the zero
index |0⟩I is used as a probability reservoir relevant with respect to database extension. Hence,
we aim to prepare the general state with l ∈ N:

√
l + 1

k + l
|0⟩I +

√
1

k + l

k−1∑

j=1

|j⟩I . (31)

This state reassembles the completely balanced case if l = 0. For creating the state in (31) one
can use Algorithm 1. This procedure includes unitary gates Y (p) and Ỹ (p) with 0 ≤ p ≤ 1, p ∈ R
defined below. The gate Y (p) plays a similar role to the Hadamard gate for p = 1/2 when acting
on the |0⟩ state (i.e., H |0⟩ = Y (1/2) |0⟩), but, in general, it corresponds to a Ry rotation. It is
defined as follows:

Y (p) =

√
p −√1− p

√
1− p √

p

 . (32)

such that Y (p) = Ry(θ) for θ = 2arccos (
√
p) and Y (1) = I. Furthermore, based on the previous

Algorithm 1 Prepare unbalanced superposition of k computational basis states with extra
weight for the |0⟩ state:

√
l + 1/

√
k + l |0⟩+ 1/

√
k + l

∑k−1
j=1 |j⟩ .

Require: k > 1, k ∈ N and l ∈ N≥0

Ensure: 0 ≤ p ≤ 1
1: procedure Prepare(k, l) ▷ prepare unbalanced superposition
2: Compute t = ⌈log2 k⌉
3: Express s = k − 1 in binary form: s =

∑t−1
j=0 2

jsj ▷ one has st−1 = 1
▷ note that bit 0 is the least significant bit

4: Compute p = 2t−1+l
k+l

5: Apply Y (p) to qubit t− 1
6: for j = t− 2, · · · , 0 do
7: Apply Y (1/2) to qubit j
8: if sj = 0 then
9: Apply Y (1/2)−1 controlled on [s]t−1,...,j+1 ▷ controlled on qubits
t− 1, t− 2, ..., j + 1

▷ being equal to the corresponding bits of s
10: else
11: Compute p = 2j

[s]j,j−1,...,0+1

12: Apply Ỹ (p) controlled on [s]t−1,...,j+1

13: end if
14: Compute p = 2j+l

2j+1+l

15: Apply Ỹ (p) controlled on [0]t−1,...,j+1 ▷ if l = 0 then p = 1/2 and Ỹ (p) = I
16: end for
17: end procedure

16

definition of Y (p), we define the following in order to simplify the notation

Ỹ (p) := Y (p) · Y (1/2)−1 . (33)

The implementation of Algorithm 1 presents the most general case. In order to facilitate a more
intuitive understanding, we showcase concrete examples.

Example case of Algorithm 1 for k = 22 and l = 0 .
For this, consider the case of initializing up to k = 22 with l = 0. Hence, the circuit acts on a
5-qubit register I. The goal in this exemplary case is to create a balanced superposition state

1√
22

21∑

j=0

|j⟩ (34)

in the register I. The first step is expressing k−1 as a binary number, here k−1 = 21 =: b10101.
Then, we apply unitary gates Y (p) starting from the qubit of the highest significance, noting
that certain gates will be controlled on the higher-significance qubits according to the binary
representation of (k − 1). In general, for qubit a, consider the a-th bit of k − 1 and denote it
by (k − 1)a. The initial layer of one-qubit gates creates a balanced superposition except with
regard to the splitting of the most significant bit. In the later stages of the algorithm, balanced
splitting is reverted in order to achieve an imbalanced distribution. Thereby, probabilities are
distributed according to the final number of branches in the respective binary tree diagram. The
corresponding quantum circuit for initializing k = 22 is shown in Figure 3. The circuit depth
scales linearly according to the number of qubits.

circuits

Carla Rieger

May 2024

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

Y
(

b10000
b10101+1

)

Y
(
1
2

)

Y
(
1
2

)

Y
(
1
2

)

Y
(
1
2

)

Ỹ (1)

Ỹ
(

b100
b101+1

)

Ỹ (1)

Ỹ
(

b1
b1+1

)

1

Figure 3: Circuit diagram for creating the balanced quantum superposition state with k = 22
elements (where log2(k) ̸∈ N). The presented quantum circuit acts on the index register of the
database, and we apply the identity otherwise. The resulting state here is given by 1√

22

∑21
j=0 |j⟩.

Example case of Algorithm 1 for k = 14 and some l ∈ N>0 .
Furthermore, we also show an example case for initializing a superposition state with l > 0
and k = 14 given by:

√
l + 1

14 + l
|0⟩+ 1√

14 + l

13∑

j=1

|j⟩ . (35)

We present the binary tree visualization for initializing up to element 1101 in Figure 5. Each
branching step in the binary tree visualization corresponds to applying a Y (p) gate. If the
branching is non-symmetric, symmetric gates must be reverted using controlled Y (p) gates.
The corresponding quantum circuit is shown in Figure 4. The circuit depth scales linearly
according to the number of qubits.

For the aforementioned exemplary cases we had log2(k) ̸∈ N>0. If log2(k) ∈ N>0, the
generalized prepare operation acts as the Walsh-Hadamard transformation, see Section 3.1.1.
This holds true since H |0⟩ = Y (1/2) |0⟩. Thus, the algorithm reduces to the balanced prepare
operation introduced in Section 3.1.1 corresponding to the Walsh-Hadamard transformation,
which has a circuit depth of O(1). This can be visualized by the circuit identity presented in
Figure 6. By applying this circuit, a superposition state with 4 elements is prepared.

17

circuit1101

Carla Rieger

May 2024

|0⟩

|0⟩

|0⟩

|0⟩

Y
(

8+l
14+l

)

Y
(
1
2

)

Y
(
1
2

)

Y
(
1
2

)

Ỹ
(
4
6

)
Ỹ
(

4+l
8+l

)

Ỹ (1) Ỹ
(

2+l
4+l

)

Ỹ
(
1
2

)
Ỹ
(

l+1
l+2

)

1

Figure 4: Circuit diagram for creating the quantum superposition state with k = 14 el-
ements (where log2(k) ̸∈ N). The presented quantum circuit acts on the index register
of the database, and we apply the identity otherwise. The resulting state here is given
by
√

1+l
14+l |0⟩+

√
1

14+l

∑14
j=1 |j⟩ .

1·|0000⟩I

√
l+8
14+l ·|0000⟩I

√
l+4
14+l ·|0000⟩I

√
l+2
14+l ·|0000⟩I

√
l+1
14+l ·|0000⟩I

√
1

14+l ·|0001⟩I

√
2

14+l ·|0010⟩I

√
1

14+l ·|0010⟩I
√

1
14+l ·|0011⟩I

√
4

14+l ·|0100⟩I

√
2

14+l ·|0100⟩I

√
1

14+l ·|0100⟩I
√

1
14+l ·|0101⟩I

√
2

14+l ·|0110⟩I

√
1

14+l ·|0110⟩I
√

1
14+l ·|0111⟩I

√
6

14+l ·|1000⟩I

√
4

14+l ·|1000⟩I

√
2

14+l ·|1000⟩I

√
1

14+l ·|1000⟩I
√

1
14+l ·|1001⟩I

√
2

14+l ·|1010⟩I

√
1

14+l ·|1010⟩I
√

1
14+l ·|1011⟩I

√
2

14+l ·|1100⟩I

√
2

14+l ·|1100⟩I

√
1

14+l ·|1100⟩I
√

1
14+l ·|1101⟩I

0·|1110⟩I

0·|1110⟩I 0·|1111⟩I

Figure 5: Binary tree that visualizes the step-by-step creation of new indices for a database
with a probability reservoir. In this case, 14 elements are initialized (up to binary element 1101)
and visualized in a binary tree structure. Each branching point visualizes the application of a
(conditional) Y (p) gate that leads to the creation of a new state per branching, starting from
the root towards the tree’s leaves.

|0i

|0i

|0i

Y
�

1
2

�

Y
�

1
2

�

Y
�

1
2

�
Ỹ
�

1
2

�

Ỹ
�

1
2

�

|0i

|0i

|0i

Y
�

1
2

�

Y
�

1
2

�

Y
�

1
2

�

1

|0i

|0i

|0i

Y
�

1
2

�

Y
�

1
2

�

Y
�

1
2

�
Ỹ
�

1
2

�

Ỹ
�

1
2

�

|0i

|0i

|0i

Y
�

1
2

�

Y
�

1
2

�

Y
�

1
2

�

1

=

Figure 6: Circuit diagram for creating the quantum superposition state with k = 4 elements
(example for log2(k) ∈ N and l = 0). The operation reduces to the Walsh-Hadamard transfor-
mation, introduced in the prepare operation in Section 3.1.1 as the initial state is given by |0⟩⊗3.
The presented quantum circuit acts on the index register of the database, and we apply the
identity otherwise. The resulting state here is given by 1

2

∑3
j=0 |j⟩ .

A.2 Problem with the Extend operation

The operation E(l) described in (6) cannot be implemented by a unitary operation. This holds
as the overlap is not preserved by E(l) (as it would be if E(l) is unitary) for l > 0. We formally
write this observation in the following Lemma.

Lemma 1. There does not exist a general unitary operation E(l) with l ∈ N>0 that fulfills the
transformation in (6) for a general QDB state with k ≥ 2 elements.

Proof. As before, we denote the newly added ancilla by A, and the index and data register by I
and D, respectively. We extend two individual databases containing different data elements,

18

assuming there exists a unitary V := E(l) as in (6) with the following effect:

1√
k
(|0⟩I |0⟩D +

k−1∑

j=1

|j⟩I |dj⟩D)
V7−→ 1√

k + l

|0⟩A (|0⟩I |0⟩D +

k−1∑

j=1

|j⟩I |dj⟩D) + |1⟩A
l−1∑

i=0

|i⟩I |0⟩D

 ,

1√
k
(|0⟩I |0⟩D +

k−1∑

j=1

|j⟩I |d′j⟩D)
V7−→ 1√

k + l

|0⟩A (|0⟩I |0⟩D +

k−1∑

j=1

|j⟩I |d′j⟩D) + |1⟩A
l−1∑

i=0

|i⟩I |0⟩D

 .

(36)

If we assume the map in (6), which has the effect as given in (36), can be implemented by a
unitary V , the overlap has to be preserved. Thus, we compare the overlap before and after
applying V for the two databases for general data states {|dj⟩D , |d′j⟩D}j and

∑k−1
j=1 ⟨d′j | dj⟩D <

(k − 1) in (36):

1

k

1 +

k−1∑

j=1

⟨d′j | dj⟩D

 ̸= 1

k + l

1 + l +

k−1∑

j=1

⟨d′j | dj⟩D

 , (37)

where we took advantage of the orthogonality of the index states. As seen in (37), the overlap
is not preserved except if and only if

∑k−1
j=1 ⟨d′j | dj⟩D = (k− 1), meaning that the two databases

must be equal. Hence, there does not exist a unitary V that does the transformation in (6) for
an arbitrary database.

A.3 Extension of the quantum database size

In this section, we present in detail the two extension algorithms summarized in Section 3.1.2.
We introduce the individual operations and include the specific algorithmic implementation in
Algorithm 4 and Algorithm 5. We remind ourselves that there does not exist a general unitary for
the extension operation as in (6); hence, each proposed extension mechanism is data-dependent
as seen in Section A.2.

A.3.1 Transfer and unfold

First, we present a protocol for extending a database state using amplitude transfer. In general,
the operation is defined as:

HI ⊗HD −→ HI′ ⊗HD := (HA ⊗HI)I′ ⊗HD
|QDB(k)⟩ 7→ |QDB(k+l)⟩ . (38)

Thereby, the newly created indices k ≤ i < (k+l) are all correlated to the empty data string |0⟩D.
For the first approach, the amplitudes are adjusted so that the database will be a balanced
superposition of equally distributed amplitudes after the index creation procedure is applied
(i.e., after l indices are added, with 0 < l ≤ k). If we tolerate an error in the amplitude
distribution, we may apply the general amplitude transfer algorithm presented by Brassard et
al. [17]. On the other hand, if the amplitudes have to be transferred exactly, one applies the
exact amplitude amplification algorithm [17] that includes two additional parameters ϕ, ρ. Thus,
the former is a particular case of the latter with ϕ, ρ = π for the following step operator with
the angles 0 ≤ ϕ, ρ < 2π [17]:

Q = Q(U|QDB(k)⟩, χ, ϕ, ρ) = −U|QDB(k)⟩ S0(ϕ)U†
|QDB(k)⟩

Sχ(ρ) . (39)

19

This is equivalent to the operator for Grover search if the unitary U|QDB(k)⟩ is substituted by the
Walsh-Hadamard transform [1]. In our case, the unitary U|QDB(k)⟩ corresponds to the operations
needed to prepare the database state and satisfies:

U|QDB(k)⟩ (|0⟩I |0⟩D) =
1√
k

k−1∑

j=0

|j⟩I |dj⟩D , (40)

while the operator Sχ(ρ) is defined as:

|x⟩ 7→
{
eiρ |x⟩ , if χ(x) = 1 ,

|x⟩ , if χ(x) = 0 .
(41)

Thereby, χ(x) = 1 if and only if |x⟩ = |0⟩I⊗D and χ(x) = 0 otherwise. Furthermore, S0(ϕ) is
acting as a phase multiplication by eiϕ to the all-zero string and equals to the identity operation
otherwise. Hence, in the approximate case, one would apply the step operator m-times (i.e., this
is given by (Q(U|QDB(k)⟩, χ, π, π))

m) with m = ⌊m∗⌋ and ⌊x⌋ denoting the floor function that
returns the greatest integer ≤ x for x ∈ R. Thereby, m∗ ∈ R is given by the relation:

m∗ =
∓ arcsin

(
1√
k+l

)
− arcsin

(
1√
k

)
+ πn

2 arcsin
(

1√
k

) (42)

with n ∈ Z, 0 < l ≤ k and k ≥ 2 such that m∗ > 0. As the step operator (Q(U|QDB(k)⟩, χ, π, π))
m

is only applied in integer multiples, the last step is done with respect to the generalized step
operator given in (39) to obtain an exact amplitude transfer. To transfer the correct amount of
amplitude, one can make arbitrarily small rotations by varying the angles ρ, ψ in (39). This is
because if parameters ρ, ψ are varied continuously between 0 and 2π. Hence, to achieve a correct
amplitude transfer in the last step of the operation, the parameters are chosen accordingly to
fulfill the following equation:

⟨0|(Q(U|QDB(k)⟩, χ, ϕ, ρ) · (Q(U|QDB(k)⟩, χ, π, π))
m)|0⟩I⊗D =

√
l + 1

k + l
. (43)

The normalization condition implies:

⟨QDB’(k)̸=0|(Q(U|QDB(k)⟩, χ, ϕ, ρ) · (Q(U|QDB(k)⟩, χ, π, π))
m)|QDB’(k)̸=0⟩ =

√
k − 1

k + l
, (44)

with

|QDB’(k)̸=0 ⟩ :=
1√
k − 1

k−1∑

j=1

|j⟩I |dj⟩D (45)

being the re-normalized superposition state of k indices and data elements without the state |0⟩I⊗D.
The best practice for the index extension scenario is to add as many indices as possible and thus
be resource-efficient concerning each newly added ancilla qubit. In this case, we have l = k.
Thus, the total number of indices doubles during the operation. After the amplitude transfer is
applied, the imbalanced amplitudes are now given in the exact case:

|ψ1⟩I⊗D :=

√
l + 1

k + l
|0⟩I⊗D +

1√
k + l

k−1∑

j=1

|j⟩I |dj⟩D =

√
l + 1

k + l
|0⟩I⊗D +

√
k − 1

k + l
|QDB’(k)̸=0⟩ .

(46)

20

Algorithm 2 Transfer amplitude to zero-index state of |QDB(k)⟩ (an application of Quantum
Amplitude Amplification [33, 17]).
Require: k > 1, k ∈ N and l,m ∈ N>0

1: procedure Transfer(k, l) ▷ transfer amplitude to the |0⟩I
2: |QDB(k)⟩ ← 1√

k

∑k−1
j=0 |j⟩I |dj⟩D ▷ insert |QDB(k)⟩

3: |QDB(k)
imb⟩ ←

(
Q (U|QDB(k)⟩, χ, ϕ = π, ρ = π)

)m
|QDB(k)⟩ ▷ apply m times

4: |QDB(k)
imb⟩ ←

(
Q (U|QDB(k)⟩, χ, ϕ, ρ)

)
|QDB(k)

imb⟩ ▷ apply with χ, ρ as in (43)
5: end procedure

As the amplitude transfer is achieved, an ancilla qubit in the state |0⟩ is added as a next
step. A conditional Y -rotation gate is applied that acts non-trivially on the added ancilla
qubit. The Y -rotation is conditioned on the index being the zero-string and the angle θ is given
by θ = 2arccos (1√

l+1
). The operation is explicitly given by:

CRy(θ) := Ry(θ)⊗ |0⟩⟨0|I⊗D + IA ⊗ (II⊗D − |0⟩⟨0|I⊗D) . (47)

Applying this operation from (47), one obtains the state:

CRy(θ) (|0⟩A |ψ1⟩I⊗D) =
(√

1

k + l
|0⟩A +

√
l

k + l
|1⟩A

)
|0⟩I⊗D +

1√
k + l

k−1∑

j=1

(|0⟩A |j⟩)I |dj⟩D .

(48)

The state given in (48) can be rewritten as:

√
l

k + l
|1⟩A |0⟩I⊗D +

1√
k + l

k−1∑

j=0

(|0⟩A |j⟩I)I′ |dj⟩D . (49)

Thereby, we used the following notation |0⟩I⊗D := |0⟩I |0⟩D as before. Given the state in (49),
the index of the zero-index I part in the state |1⟩A|0⟩I |0⟩D is unfolded. If we read the index
basis from left to right, the new indices correlated to empty data strings will be all odd numbers.
To create l new odd indices correlated to the empty data state |0⟩D, we apply the following
operation:

|1⟩⟨1|A ⊗ (P(l))I ⊗ ID + |0⟩⟨0|A ⊗ II ⊗ ID . (50)

As before, the operation P(l) reduces to the Walsh-Hadamard transformation for log2(l) ̸∈ N>0.
One observes that it makes sense to fully use the available resources by adding all possible
new indices per added ancilla qubit with regard to the circuit depth for each index extension
operation. The circuit depth of P(l) is O(1) if log2(l) ∈ N>0 and scales linearly for log2(l) ̸∈ N>0

according to O(n) with n = ⌈log2(l)⌉.
The extension operation presented here is expensive as the step operator in (39) includes the

database creation unitary U|QDB(k)⟩, and its inverse U†
|QDB(k)⟩

, that one might not even have at
hand. One has to apply this unitary repeatedly if m > 1. Hence, we considered an alternative
approach that requires setting the maximal number of indices to be added beforehand. In the
next section, we discuss a protocol in which one initializes a specifically imbalanced database
during the preparation stage of the empty database and creates new indices later.

21

Algorithm 3 Unfold zero index-string based on Walsh-Hadamard (WH) transformation with
one ancilla qubit.
Require: k > 1, k ∈ N and l ∈ N>0

1: procedure Unfold(k, l) ▷ unfold zero index string into l new index states
2: |QDB(k)

imb⟩ ▷ insert imbalanced QDB
3: |QDB(k)

imb⟩ ← |0⟩A|QDB(k)
imb⟩ ▷ add |0⟩A

4: |QDB(k)
imb⟩ ← CRy(θ)|QDB(k)

imb⟩ ▷ CRy(θ) as in (47)
5: |QDB(k+l)

imb ⟩ ←
(
|1⟩⟨1|A ⊗ (P(l))I ⊗ ID + |0⟩⟨0|A ⊗ II⊗D

)
|QDB(k)

imb⟩ ▷ apply P(l) on
register I

6: end procedure

Algorithm 4 Extension of |QDB(k)⟩ by arbitrary l > 0.
Require: k > 1, k ∈ N and l ∈ N>0

1: procedure Extend(k, l) ▷ extend database by l indices correlated to |0⟩D
2: while l > k do
3: Set l′ ← k and l← (l − k)
4: Apply TRANSFER(k, l′) ▷ amplitude transfer using Alg. 2
5: Apply UNFOLD(k, l′) ▷ create new index states by using Alg. 3
6: k ← k + l′

7: end while
8: if l ≤ k then
9: Set l′ ← l

10: Apply TRANSFER(k, l′) ▷ amplitude transfer using Alg. 2
11: Apply UNFOLD(k, l′) ▷ create new index states by using Alg. 3
12: k ← k + l′

13: end if
14: return |QDB(k)⟩ ▷ balanced superposition as database with k + l index elements
15: end procedure

A.3.2 Initialize and unfold

This extension technique does not depend on using the unitary U|QDB(k)⟩ (or its inverse). In
general, the extension mechanism is described by the following map:

HI ⊗HD −→ HI′ ⊗HD := (HA +HI)I′ ⊗HD
|QDB(k)

imb⟩ 7→ |QDB(k+f)
imb′ ⟩ . (51)

The dimensions are given as follows: dim(HA) = z, dim(HI) = k and dim(HD) = m as before.
We make use of a modification of the generalized prepare operation P(l) given in A.1 or alterna-
tively general amplitude encoding (see e.g., [34]). Thereby, we know that we would like to add
at most l new elements to the database. Thus, we initialize the following state:

|QDB(k)
imb⟩ :=

√
l + 1

l + k
|0⟩I⊗D +

√
1

l + k

k−1∑

j=1

|j⟩I |0⟩D . (52)

A corresponding quantum circuit for amplitude encoding operates on k̃ qubits and has a depth
of O(poly(k)) [34]. Following this operation, we write the first (k − 1) data elements to the

22

empty database we just prepared, and we obtain the following:

|QDB(k)
imb′⟩ =

√
l + 1

l + k
|0⟩I⊗D +

√
1

l + k

k−1∑

j=1

|j⟩I |dj⟩D . (53)

Next, we correlate z ancilla qubits in the |0⟩-state, denoted by |0⟩A, in order to create at
most l ≤ (2z − 1) · k new indices correlated to the empty data string:

|0⟩A

√
l + 1

l + k
|0⟩I⊗D +

√
1

l + k

k−1∑

j=1

|j⟩I |dj⟩D

 . (54)

In this case, we can read the binary indices from right to left, and thus, all newly added indices
have an absolute value larger than k. Hence, if we add new indices in a parallelized manner, we
proceed as follows for l′ ≤ (2z − 1):

CPA(z) :=
(
(P(l′+1))A ⊗ |0⟩⟨0|I + IA ⊗ (II − |0⟩⟨0|I)

)
⊗ ID . (55)

The best practice here is to create as many new indices as possible. This reduces the opera-
tion (55) to:

CHA(z) :=
(
(H⊗z)A ⊗ |0⟩⟨0|I + IA ⊗ (II − |0⟩⟨0|I)

)
⊗ ID , (56)

and we have l′ = (2z−1) when using (56). Thereby, l′ is chosen to be l′ = (2z−1) if l ≥ (2z−1)
and l′ = l otherwise. Applying the operator given in (55) on the database state in (54) results
in:

√
l + 1

(l′ + 1) · (l + k)

l′∑

i=0

|i⟩A|0⟩I⊗D +

√
1

l + k
|0⟩A

k−1∑

j=1

|j⟩I |dj⟩D . (57)

By applying (55) on the state (54) we bring the indices in the A-subspace in superposition, con-
ditioned on the index in I being |0⟩I . As given in (57), the operation decreases the amplitude
of the initial |0⟩I⊗D state by a factor of

√
1/(l′ + 1). We created a superposition of all possible

combinations of orthogonal states in the A-subspace that are all in a product state concerning
the empty old index string part I and the all-zero data part, i.e., the state |0⟩I⊗D. The operation
defined in (55) thus creates l′ new index states correlated to the empty data register. Alter-
natively, if one aims to add more indices, one may bring the old index I-subspace (correlated
to indices with a Hamming weight larger than one in the A-subspace) into superposition. In
the case that l ≤ (2z − 1), we do not need to apply the next steps as we have already added
enough indices. If l > (2z − 1), we add l − l′ =: l′′ ≤ (k − 1) · (2z − 1) new indices. For this,
we mark all states with a Hamming weight larger than one by an ancilla qubit based on the
algorithm in Appendix A.5. Conditioned on this ancilla qubit being in |0⟩, we create new indices
in the old index subspace I. Alternatively to adding a marker qubit, one can apply the following
conditional operation with the effect (with l′ ≤ (log2(k)− 1)):

CPI(k) :=
(
|0⟩⟨0|A ⊗ II⊗D

)
+
(
(IA − |0⟩⟨0|A)⊗ (P(l′′))I ⊗ ID

)
. (58)

This transformation decreases the amplitude of all states (except those correlated to |0⟩A) by a
factor of 1√

l′′
. As a result, we added in total l′ · l′′ new index states correlated to the empty data

string. A complete amplitude balance is only achieved in a special case for this operation. The
final state after applying this extension procedure and adding all the indices is given as follows:

|QDB(k+l′·l′′)
imb ⟩ := α · |0⟩A|0⟩I⊗D +

k−1∑

j=1

β · (|0⟩A|j⟩I)|dj⟩D +

l′′−1∑

h=0

l′+1∑

j=1

γ · |j⟩A|h⟩I |0⟩D , (59)

23

Algorithm 5 Extend imbalanced database by l new index elements with multiple ancilla qubits.
Require: k > 1, k ∈ N and l, l′, l′′, z ∈ N>0

1: procedure Imbalanced Extend(k, l) ▷ extend imbalanced |QDB(k)
imb⟩

2: |QDB(k)
imb⟩ ←

√
l+1
k+l |0⟩I⊗D + 1√

k+l

∑k−1
j=1 |j⟩I ⊗ |0⟩D ▷ prepare empty QDB

3: |QDB(k)
imb⟩ ←

√
l+1
k+l |0⟩I⊗D + 1√

k+l

∑k−1
j=1 |j⟩I ⊗ |dj⟩D ▷ write data in register D

4: |QDB(k)
imb⟩ ← |0⟩A|QDB(k)

imb⟩ ▷ correlate z ancilla qubits to index
5: |QDB(k+l′)

imb ⟩ ← CPA(z)|QDB(k)
imb⟩ ▷ create (l′) new indices

6: |QDB(k+l′·l′′)
imb ⟩ ← CPI(k)|QDB(k+l′)

imb ⟩ ▷ create (l′) · (l′′ − 1) new indices
7: end procedure

with

α :=

√
l + 1

(l′ + 1) · (l + k)
, β :=

√
1

l + k
, γ :=

√
l + 1

l′′ · (l′ + 1) · (l + k)
. (60)

Therefore, we obtain a database that is balanced except with respect to the |0⟩A |0⟩I⊗D state,
if l+1

(l′+1)·l′′ ≡ 1. As a note, we add here that, in general, one may add individual indices instead
of applying (59) based on a combination of Hadamard and CNOT operations. When using this,
one must keep track of the newly added indices to avoid adding the same index twice. This
would “disturb” the correlated data state.

Example case of Algorithm 5 for z = 1 and l ≤ k .
We present the extension Algorithm 5 for the simplified case in which we add one ancilla

qubit (z = 1) to the index register of the imbalanced database. Initially, we start off in an im-
balanced database state (prepared for l new elements to be added) and have a large amplitude
on the all-zero index state that we see as playing the role of a reservoir. The database contains
already written data elements; thus, we start off in the imbalanced state that is prepared for l
new index elements to be added:

|QDB(k)
imb⟩ =

√
l + 1

l + k
|0⟩I |0⟩D +

1√
l + k

k−1∑

j=1

|j⟩I |dj⟩D . (61)

Next, we add a single ancilla to the index register. We denote the ancilla register by A:

|QDB(k)
imb,A⟩ =

√
l + 1

l + k
|0⟩A |0⟩I |0⟩D +

1√
l + k

k−1∑

j=1

|0⟩A |j⟩I |dj⟩D . (62)

Following that, we apply a conditional Y -rotation to the state in (62) and obtain:

|QDB(k)
imb,A⟩ =

√
l + 1

l + k

(
1√
l + 1

|0⟩A +

√
l

l + 1
|1⟩A

)
|0⟩I |0⟩D +

1√
l + k

k−1∑

j=1

|0⟩A |j⟩I |dj⟩D

=
1√
l + k

|0⟩A |0⟩I |0⟩D +

√
l

l + k
|1⟩A |0⟩I |0⟩D +

1√
l + k

k−1∑

j=1

|0⟩A |j⟩I |dj⟩D .

(63)

Following that, we can create new indices from the state |1⟩A |0⟩I in order not to affect the
already existing indices that correspond to written data elements. To implement this function,

24

we use the generalized prepare operation for l elements:

|1⟩A |0⟩I
P(l)7−−→ |1⟩A

 1√

l

l−1∑

j=0

|j⟩I

 . (64)

Thus, we obtained the following superposition state with l new indices:

|QDB(k+l)⟩ = 1√
l + k

|0⟩A |0⟩I |0⟩D +
1√
l + k

l−1∑

i=0

(|1⟩A |i⟩I) |0⟩D +
1√
l + k

k−1∑

j=1

|0⟩A |j⟩I |dj⟩D .

(65)

In (65), we obtained a balanced quantum database state with l new index elements correlated
to |0⟩D.

A.4 Note on disentangling quantum states

In order to describe the process of disentanglement, we first summarize entanglement concep-
tually. Hence, we consider the Schmidt decomposition for bipartite pure states of a composite
system A+B. The Schmidt decomposition [24] of a pure quantum state is given by:

|ψ⟩ =
rψ∑

i=1

λi(|ai⟩A ⊗ |bi⟩B) (66)

with λi ∈ R, λi ≥ 0 and
∑rψ

i=1 λ
2
i = 1. Thereby, rψ is the Schmidt rank of |ψ⟩, and a state is

entangled if and only if rψ > 1. The reduced density matrices of the subsystems A and B are
given by TrB(|ψ⟩⟨ψ|) =: ρA =

∑rψ
i=1 λ

2
i (|ai⟩⟨ai|A) and TrA(|ψ⟩⟨ψ|) =: ρB =

∑rψ
i=1 λ

2
i (|bi⟩⟨bi|B).

During the general read-in process to the quantum database, a respective sensor would get
entangled with the database state. However, after the data is stored in the database, we no
longer need the sensor and would like to trace out this additional system. This is non-trivial
due to the entanglement between both subsystems (database and sensor). Thus, we consider the
concept of disentanglement while preserving as many local properties as possible. In general, in
the case of the database, we aim to maintain the database but not the sensor system.
Under the process of disentanglement, as introduced in [20, 35], we understand the following
operation:

Theorem 1 (Definition [20, 23]). Disentanglement is the process that transforms a state of two
or more subsystems into an unentangled state in general, i.e., a mixture of product states such
that the reduced density matrices of each of the subsystems are unaffected.

Mathematically, we aim to do the following transformation [36]:

ρAB = |ψ⟩⟨ψ| → ρA ⊗ ρB . (67)

It was shown that there exists no universal disentangling machine (describing the transformation
for a general entangled state ρAB in (67)) that transforms an arbitrary entangled (or inseparable
state) into a separable one [20, 36]. But what happens if we are only interested in a unitary
transformation doing the following operation :

|ψ⟩⟨ψ|AB =

rψ∑

i,j=1

λiλ
∗
j (|ai⟩⟨aj |A ⊗ |bi⟩⟨bj |B)→

rψ∑

i,j=1

λiλ
∗
j |ai⟩⟨aj |A

⊗ σB . (68)

Lemma 2. If the transformation presented in (68) is a unitary transformation, we have H(σB) ≡
0 with H(·) being the von Neumann entropy.

25

Proof. Let us consider the von Neumann entropies: H(|ψ⟩⟨ψ|AB) =
∑rψ

i=1 |λi|2 log2(|λi|2) and
H
(∑rψ

i,j=1 λiλ
∗
j |ai⟩⟨aj |A

)
=
∑rψ

i=1 |λi|2 log2(|λi|2) = H(|ψ⟩⟨ψ|). Suppose the transformation
in (68) is done by a similarity transformation, i.e., ρ 7→ UρU−1 with U ∈ GL(HA) with ρ
being an arbitrary state on S(HAB), the total von Neumann entropy is constant during the
transformation. Thus, H(σB) = 0 and then σB = |Σ⟩⟨Σ|B with |Σ⟩B being necessarily a pure
state with von Neumann entropy zero.

This relates to the preservation of local properties during the disentanglement process.

|ψ⟩AB =

rψ∑

i=1

λi(|ai⟩A ⊗ |bi⟩B)→
(rψ∑

i=1

λi|ai⟩A
)
⊗ |Σ⟩B . (69)

Here, system A would be the quantum database, and system B is the sensor from which we
read the data. During the writing process, both systems get entangled. For specific cases, e.g.,
if only classical correlations are present, techniques such as those presented in [19] can be used.

A.5 Algorithmic Check of Hamming weight

As a sub-algorithm for the QDB extension explained in Appendix A.3, we aim to mark all states
with a Hamming weight larger than one based on an ancilla qubit. To implement this condition,
we correlate an ancilla qubit (initially in the |0⟩ state) that is |1⟩ only if the Hamming weight of
the state in the ancilla subspace A is larger than one (0th qubit here). Next, one would apply
the Algorithm 6. This procedure realizes a function marking the computational basis state with
a Hamming weight H(s) of 0 by taking the ancilla qubit to the |1⟩ state only in this particular
case. Hence, we implement the following function on the ancilla qubit:

f(s) =

{
0, if H(s) = 0 ,

1, if H(s) > 0 .
(70)

H(s) denotes the Hamming weight of the binary string s in Eq. (70). The full algorithmic
description is below (see Algorithm 6). The circuit depth scales as O(|B|) if we aim to use only
single-qubit and CNOT gates. This is due to the decomposition of the multi-controlled CNOT
gate, which is part of the third step of the algorithm. For more details on the decomposition of
this gate, see, e.g., Ref. [37].

Algorithm 6 Mark if the Hamming weight of string s is larger than zero.
Require: s ∈ {0, 1}|B|

1: procedure Hamming Check(s)
2: Insert |0⟩A |s⟩B ∈ HA ⊗HB
3: |0⟩A |s̄⟩B ← IA ⊗

(⊗
|B| σx

)
|0⟩A |s⟩B ▷ revert the state in the B-subspace

4: | ¯f(s)⟩A |s̄⟩B ← Λ|B|(σx) |0⟩A |s̄⟩B ▷ multi-controlled gate applying σx on A iff s̄ = {1}|B|

5: |f(s)⟩ |s⟩ ← σx ⊗
(⊗

|B| σx

)
| ¯f(s)⟩A |s̄⟩B ▷ revert the state back in the B-subspace

6: end procedure

26

	Introduction
	Data structured by classical indices (CC and CQ)
	Data structured by quantum indices
	Classical Data (QC)
	Preparation of an empty QDB
	Extend the QDB by new indices correlated to an empty data string
	Removing an index and corresponding data element from the QDB
	Writing data in the QDB
	Read-out data in the QDB
	Permute data in the QDB

	Outlook towards Quantum Data (QQ)

	Conclusion
	Appendix
	General implementation of the Prepare operation
	Problem with the Extend operation
	Extension of the quantum database size
	Transfer and unfold
	Initialize and unfold

	Note on disentangling quantum states
	Algorithmic Check of Hamming weight

