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Abstract: Weyl fermions of spin 1
2 minimally coupled to Einstein’s gravity in 4 dimen-

sions cannot be produced purely gravitationally in an expanding Universe at tree level.
Surprisingly, as we showed in a recent letter [1], this changes at gravitational 1-loop when
cosmic perturbations, like a gravitational wave background, are present. Such a background
introduces a new scale, thereby breaking the fermions’ conformal invariance. This leads to
a non-vanishing gravitational self-energy for Weyl fermions at 1-loop and induces their pro-
duction. In this paper, we present an extended study of this new mechanism, explicitly
computing this effect using the in–in formalism. We work in an expanding Universe in
the radiation-dominated era as a fixed background. Gravitational wave-induced fermion
production has rich phenomenological consequences. Notably, if Weyl fermions eventually
acquire mass, and assuming realistic – and potentially detectable – gravitational wave back-
grounds, the mechanism can explain the abundance of dark matter in the Universe. More
generally, gravitational-wave induced freeze-in is a new purely gravitational mechanism for
generating other feebly interacting fermions, e.g. right-handed neutrinos. We show that this
loop level effect can dominate over the conventional – tree-level – gravitational production
of superheavy fermions in a sizable part of the parameter space. �
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1 Introduction

Recently in [1], we have identified a new mechanism by which massless fermions minimally
coupled to Einstein’s gravity can be generated purely gravitationally. The key observa-
tion is that at 1-loop level, cosmic perturbations – for instance in the form of stochastic
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gravitational waves – naturally break the conformal symmetry of Weyl fermions in Gen-
eral Relativity by introducing a new scale. Cosmological correlators are usually generated
at tree level with subleading loop contributions. This effect, in contrast, starts at loop
level. This raises the question of whether such perturbations can be responsible for the
production of dark matter (DM) in the early Universe. Surprisingly, as we have shown
in [1], the answer is Yes. This is particularly relevant because the early Universe can be
expected to be permeated by stochastic GWs: they could originate for example from gauge
fields in inflation [2–4], first-order phase transitions [5–8], primordial magnetic fields [9, 10],
preheating and gauge preheating [11, 12], cosmic strings [13, 14], etc.

The intriguing possibility that only gravitational interactions may be needed to create
DM in the Universe has been discussed for a long time [15–18]. The conventional mecha-
nism, though, requires very massive fields with M ≳ 1013GeV [19, 20]. Such superheavy
particles can be produced by the expansion of the Universe itself, a mechanism called
Cosmological Gravitational Particle Production (CGPP) [19, 20]. Alternatively, graviton-
mediated annihilation of SM particles or inflatons can produce dark matter in a very hot
plasma with temperatures Treh ≳ 1013GeV [21–23]. Production of massless spin-12 fermions
(Weyl fermions), in contrast, is not possible based just on the expansion of the Universe.
This is because generating massless fermions requires first breaking their conformal sym-
metry via interactions, for instance with the SM or the inflaton [24–29]. In the context
of inflation and massless fields, chiral gravitational waves (GWs) can also produce Weyl
fermions when parity is broken in Chern–Simons gravity [30] or by non-Abelian gauge
fields [31–34]. The physical concept underlying the latter mechanism is anomalous chiral
fermion production by the (global) gravitational anomaly [35, 36] in the SM and beyond.
In Table 1 we compare the new gravitational fermion production mechanism introduced in
[1] – GW-induced freeze-in – to the other gravitational production mechanisms known in
the literature.

This paper provides an extended study of the findings presented in [1]. In particular,
we show in detail how we evaluate the gravitational 1-loop diagrams, and from there the
energy density of Weyl fermions produced in the presence of a stochastic GW background.
If these fermions later acquire a mass (or have a small, but initially negligible, mass from
the start), they can play the role of the DM today. We will discuss this possibility in detail
as well. To obtain analytic results, we will work with a simple phenomenological broken
power-law parameterization for the GW spectrum during the radiation era presented in
Fig. 5. This model provides a good fit to the results of simulations in many scenarios, e.g.
phase transitions [37] and primordial magnetic fields [38]. We expect that our result is
generic, but accurately estimating this phenomenon for other scenarios of primordial GWs
requires advanced modeling and simulations, which we leave for future work.

The outline of this paper is as follows: in Section 2 we introduce our formalism and
discuss the interaction of Weyl fermions with GWs in a cosmological background. In Sec-
tion 3, we then compute the evolution of the fermion energy density in a stochastic GW
background at 1-loop using the In–In formalism. Turning these results into concrete pre-
dictions requires a phenomenological parameterization of the GW background, which we
introduce in Section 4. In Section 5, we develop an analytical estimate of the energy density
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Production Mechanism Underlying Physics Conditions Ref.
Cosmological Gravitational
Particle Production

Cosmic expansion super-massive fields [19, 20]

Graviton-Mediated
Annihilation (GMA)

SM

SM

Ψ

Ψ

hij Super-massive field
High temperature plasma

[21–23]

Gravitational Leptogenesis ∇µJ
µ
5

Chiral GWs
Chiral fermions

[30, 31]

GW-Induced Freeze-In Ψ Ψ GW background [1]

Table 1: Comparison of the new gravitational fermion production mechanism discussed in
the present work – GW-induced freeze-in – to other gravitational production mechanisms
known in the literature. The curly lines (in red) in the Feynman diagrams represent gravi-
tons, i.e. hij . All of the mechanisms listed here rely only on minimal couplings to Einstein
gravity. For the comparison of the parameter regions in which different mechanisms can
explain the dark matter relic density, see Fig. 8.

and pressure of the produced fermions. The phenomenological consequences of our results
will be the topic of Section 6. We conclude in Section 7 with a summary and a discussion
of future directions. Our Notations and Conventions are collected in Appendix A. The spin
connections and the interaction actions are worked out in Appendix B.

Some of the numerical and computer algebra codes we have developed for this paper
are available from https://github.com/koppj/GW-freeze-in/.

2 Weyl Fermions in an Expanding Universe

Consider Weyl fermions of spin-12 in the early Universe during the radiation era. Their
action is

Sψ =

∫
d4xLψ =

i

2

∫
d4x

√−g
[
ψ
†
Lσ̄

µ
↔
DµψL +ψ†Rσ

µ
↔
DµψR

]
, (2.1)

where ψR,L are the right-/left-handed Weyl fermion fields, respectively, and
↔
Dµ = (

→
Dµ −

←
Dµ). The spinor covariant derivative is Dµ = ∇µ − ωµ where ωµ is the spin-connection.
Moreover, σµ ≡ (I,σi) and σ̄µ ≡ (I,−σi). From this point forward, we focus on right-
handed Weyl fermions and eliminate the “R” subscript. The case of left-handed fermions
can be treated in complete analogy. The energy-momentum tensor of right-handed fermions
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is given as

Tµν = − 2√−g

δ(
√−gLψ)
δgµν

= − i

2
ψ†σ(µ

↔
Dν)ψ+ gµν Lψ, (2.2)

where σµ = gµνσ
ν , and the symmetrization of the indices is denoted as “(·, ·)”, i.e. X(iYj) ≡

XiYj +XjYi. In the Friedmann-Lemaître–Robertson–Walker (FLRW) geometry, the effect
of the expansion of the Universe can be absorbed by redefining the fermion field as (see
Eq. (B.23) in Appendix B)

Ψ ≡ a3/2ψ, (2.3)

where Ψ is the canonically normalized field and a is the scale factor of the FLRW metric.
The fermion energy density is diluted as a−4 with the expansion of the Universe as a
consequence of the conformal symmetry of massless Weyl fermions. Below, we will show
that cosmic perturbations break this conformal symmetry and source the production of
Weyl fermions.

Here and in the following, we will express the time-dependence of the fields in terms of
conformal time τ , which is related to cosmic time t via the scale factor, i.e.

dτ =
dt

a(t)
. (2.4)

The Weyl fermions can be decomposed into Fourier modes as

Ψ(τ,x) =

∫
d3kΨk(τ) e

ik.x , (2.5)

with the operator Ψk(τ) given as

Ψk(τ) =
[
Uk(τ) b̂k +V−k(τ) ĉ

†
−k

]
. (2.6)

Here, b̂k denotes the particle annihilation operators and ĉ†k stands for the antiparticle cre-
ation operators. The corresponding spinors are Uk(τ) and Vk(τ); they are related by CP
symmetry as

Vk(τ) = iσ2U
∗
−k(τ). (2.7)

For the left-handed Weyl field, the relation is VL,k(τ) = −iσ2U
∗
L,−k(τ).

2.1 Free Weyl Fermions in an FLRW Universe

For free Weyl fermions in an FLRW Universe, the Fourier modes Ψ
(0)
k (τ) can be found

explicitly by solving the free Dirac equation, using the Bunch–Davies vacuum as the initial
condition. This gives

U
(0)
k =

e−ikτ
√
2(2π)

3
2

E+
k and V

(0)
k =

eikτ
√
2(2π)

3
2

E−−k, (2.8)
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where k ≡ |k| and E±k are the helicity eigenstates

E+
k =

k̃µσ
µ√

2k(k + k3)

(
1

0

)
and E−k =

k̃µσ̄
µ√

2k(k + k3)

(
0

1

)
, (2.9)

with k̃µ ≡ (k,k). Given that helicity and chirality are equivalent for free, massless fermions,
the zeroth-order solution for left-handed Weyl fermions, is similar, but with E+

k replaced
by E−k . The field equation of free Weyl fermions is not time-dependent, i.e. no particle
production occurs [18].

2.2 Interaction with a Stochastic Gravitational Wave Background

The metric of an expanding FLRW Universe permeated by a GW background is

ds2 = −dt2 + a2(t) ĝij dxidxj , (2.10)

where

ĝij =
(
δij + hij +

1

2
hikhjk + . . .

)
, det ĝ = 1. (2.11)

Here, hij describes the metric perturbation due to the GW, for which we choose the
transverse–traceless gauge. In this work, we only consider perturbations due to the GW
background during the radiation era, leaving the inclusion of cosmological curvature per-
turbations and cosmic inflation for future work [39]. Notice that we used the conventional
notation in cosmology literature (e.g. Refs. [40, 41]) in defining the perturbed metric as
gµν = ḡµν + hµν . The alternative notion used in gravity literature (e.g. Refs. [42, 43]) is
defined as gµν = ḡµν +

1
MPl

h̃µν .
During the radiation era, a, τ , and H are related as

H ≡ aH =
1

τ
, a =

τ

τ∗z∗
, (2.12)

in which τ∗ is a pivot time and z∗ is the redshift at τ∗.
The metric perturbation can be decomposed into Fourier modes as

hij(τ,x) =
∑
s=±

∫
d3q ĥs,q(τ) e

s
ij(q̂) e

iq.x , (2.13)

where the sum runs over the two circular polarization states of GWs and the hs,q(τ) operator
is

ĥs,q(τ) =
[
hs,q(τ) â

s
q + h∗s,−q(τ) â

s†
−q

]
, (2.14)

The Fourier coefficients h±q give the amplitudes of the Fourier mode with momentum
q and polarization ±, while âsq denotes the canonically normalized graviton annihilation
operators and e±ij(q̂) are the circular polarization tensors of helicity ±2. The sum runs over
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Vhψψ Vhhψψ

Figure 1: The graviton–fermion cubic and quartic vertices Vhψψ and Vhhψψ respectively,
originated from L(1)

int and L(2)
int .

these circular GW polarization states. The polarization tensors satisfy the normalization
condition es∗ij (q̂) e

s′
ij(q̂) = 2δss

′ .1

Although in this work we consider unpolarized GWs, working with circular polarization
states (h±) is more convenient here than using plus- and cross-polarization states (h+,×),
even though the latter are more common in the GW literature. We have worked out the
spin connections and interaction actions for the metric, Eq. (2.10), in Appendix B. Here we
report the final results.

Cubic Interaction Vhψψ: The first-order interaction Lagrangian between the Dirac
field ΨD = (ΨL,ΨR) and GWs is (see Appendix B.1)

L(1)
int = − i

2a4
hijΨ̄Dγ

i
↔
∂ jΨD. (2.15)

which corresponds to the cubic vertex Vhψψ in Fig. 1. It is straightforward to find the
associated interaction for the Weyl fermions from this.

Quartic Interaction Vhhψψ: At second order in the metric perturbation, the fermion–
GW interaction is (see Appendix B.2)

L(2)
int = − i

16a3
eµαhij∂µhikΨ̄DΓ

αjkΨD, (2.16)

where Γαjk is the totally antisymmetrized product of three gamma matrices, and eµα are
the tetrads.

3 Gravitational 1-Loop Corrections to Fermionic In–In Correlations

In this section, we compute the gravitational 1-loop corrections to the fermion two-point
correlation function, taking into account the interactions L(1)

int and L(2)
int . We work in the

In–In formalism, where the expectation value of an arbitrary operator Q(t) [44] is

〈
Q(t)

〉
=

〈
T̄ exp

[
i

∫ t

t−i

dt′′Hint(t
′′)

]
QI(t) T exp

[
− i

∫ t

t+i

dt′Hint(t
′)

]〉
, (3.1)

1The explicit form of e±
ij(q̂) in spherical coordinates is esij(q̂) =

√
2 êsi (q̂)⊗ êsj(q̂), where ê±(q̂) = 1√

2
(θ̂±

iϕ̂) are circular polarization vectors, with θ̂ and ϕ̂ two orthogonal unit vectors in the plane perpendicular
to q̂ [40].
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Figure 2: The Schwinger–Keldysh contour at zero temperature in the complex conformal
time plane, τ , starting and ending at (1± iϵ)τi were ϵ is an infinitesimal real quantity. C+
is the forward branch, and C− is the backward branch.

where (T̄) T denotes (anti-)time ordering, QI(t) is the operator Q(t) in the interaction
picture, and t±i ≡ (1 ± iϵ)ti is a time variable with an infinitesimal imaginary part (see
Fig. 2). The interaction Hamiltonian is

Hint(t) = −
∫
d3x a3(t)Lint(t,x), (3.2)

where Lint = L(1)
int + L(2)

int .
The quantity of our interest is the energy density of Weyl fermions,

ρψ(τ,x) = Tµνn
µnν =

i

a4
Ψ†
↔
∂τΨ− Lψ, (3.3)

where nµ is the unit normal to equal time hypersurfaces. We have used the fact that in the
presence of GWs, nµ = (1, 0, 0, 0). Note that Lψ vanishes on-shell but must be considered
for off-shell fermions. In the following, we compute the contribution of L(1)

int and L(2)
int to the

fermion energy density. We note that in the context of chiral gravitational waves (GWs), a
topic beyond the scope of the present study, the triangle diagram in Table 1 corresponding
to the global gravitational anomaly should also be considered [35]. See for instance Refs. [30]
and [31].

3.1 Contribution of the Cubic Vertex

We start by computing the contribution of the first-order interaction (cubic vertex) L(1)
int

to the energy density. Expanding the In–In expectation value ⟨ρψ(τ,x)⟩L(1)int
up to second

order in L(1)
int , we obtain

⟨ρψ(τ,x)⟩L(1)int
≡ ϱ1 + ϱ2, (3.4)

where

ϱ1 ≡
〈(∫

d3x′′
∫ τ

τ−i

dτ ′′a4(τ ′′)L(1)
int(τ

′′,x′′)
)
ρ
(0)
ψ (τ,x)

(∫
d3x′

∫ τ

τ+i

dτ ′a4(τ ′)L(1)
int(τ

′,x′)
)〉

− Re
[〈

T̄
(∫

d3x′′ d3x′
∫ τ

τ−i

dτ ′′ dτ ′ a4(τ ′′) a4(τ ′)L(1)
int(τ

′′,x′′)L(1)
int(τ

′,x′)
)
ρ
(0)
ψ (τ,x)

〉]
,

(3.5)
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and

ϱ2 ≡
〈(

− i

∫
d3x′

∫ τ

τ−i

dτ ′ a4(τ ′)L(1)
int(τ

′)
)
ρ
(1)
ψ (τ,x)

〉
+ c.c.. (3.6)

Diagrammatically, ϱ1 and ϱ2 can be represented as

ϱ1 =

〈
ρ
(0)
ψ × ⊗

〉
, ϱ2 =

〈
ρ
(1)
ψ × ⊗

〉
, (3.7)

where the curly lines (in red) represent background GWs, solid lines (in black) are fermions,
⊗ denotes the background gravitational wave bath in the early Universe, and × stands for
the insertion of the operator ρ(0)ψ (τ,x) or ρ(1)ψ (τ,x). In the following, we evaluate these two
diagrams.

The ϱ1 term

Equation (3.5) can be decomposed as

ϱ1(τ) ≡
1

a4(τ)

[
G1(τ) + G2(τ)

]
, (3.8)

where up to a factor a4(τ), G1 is the first line of Eq. (3.5), i.e.

G1(τ) ≡
〈(∫

d3x′′
∫ τ

τ−i

dτ ′′a4(τ ′′)L(1)
int(τ

′′,x′′)

)
a4(τ)ρ

(0)
ψ (τ,x)

(∫
d3x′

∫ τ

τ+i

dτ ′a4(τ ′)L(1)
int(τ

′,x′)

)〉
(3.9)

and G2 is similarly related to the second line of Eq. (3.5):

G2(τ)≡−Re
[〈

T̄

∫
d3x′′ d3x′

∫ τ

τ−i

dτ ′′dτ ′a4(τ ′′) a4(τ ′)L(1)
int(τ

′′,x′′)L(1)
int(τ

′,x′) a4(τ)ρ
(0)
ψ (τ,x)

〉]
(3.10)

In the following, we begin by calculating G1, followed by the computation of G2.

i) The G1 term: The first step in evaluating Eq. (3.9) is to expand the fermion field
operators as well as the metric perturbation into Fourier modes and to factor the expec-
tation value, ⟨ · ⟩, into an expectation value over the fermionic current and an expectation
value over the GW degrees of freedom. Assuming stochastically isotropic and circularly
unpolarized GWs, the latter contribution can be simplified as〈

ĥs,q′(τ ′′) ĥ†s,q(τ ′)
〉
=
〈
hq(τ

′′) h∗q(τ
′)
〉
δss′δ

(3)(q− q′). (3.11)

The resulting δ-function can be used to eliminate one of the eight momentum integrals
that appear from the Fourier decomposition of the fields. Two more momentum-conserving
δ-functions arise from the integrals over x′ and x′′. The remaining expression is

G1(τ) = (2π)6 i

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
∫
q

〈
hq(τ

′′) h∗q(τ
′)
〉 ∫

k′′

∫
k′
k′k′′

∑
s=±

∫
k1

∫
k2

ei(k1−k2).x

×
〈
Ψ†k′′(τ

′′)Xs
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k2

(τ)
↔
∂ τΨk1(τ)Ψ

†
k′−q(τ

′)Xs†
k̂′,q̂

Ψk′(τ ′)
〉
, (3.12)
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Figure 3: The coordinate system used in this work, with k = kẑ aligned along the z-axis,
and q at an angle (θ, ϕ). We use ω as the frequency of k−q, i.e. ω =

√
k2 + q2 − 2kq cos θ.

where we have used the shorthand notation
∫
k ≡

∫
d3k. The fermion fields Ψk(τ) in

Eq. (3.12) are meant to be the free fields Ψ
(0)
k (τ) from Section 2.1, but to avoid cluttering

we have omitted the superscript (0). For the interaction vertex, we have introduced the
shorthand notation

Xs
k̂,q̂

≡ σ.es(q̂).k̂, (3.13)

where k̂ is a unit vector in the direction of k.
The fermion 6-point function in Eq. (3.12) can be contracted as

⟨...⟩ =
〈
Ψ†k′′(τ

′′)Xs
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k2

(τ)
↔
∂ τΨk1(τ)Ψ

†
k′−q(τ

′)Xs†
k̂′,q̂

Ψk′(τ ′)
〉

+
〈
Ψ†k′′(τ

′′)Xs
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k2

(τ)
↔
∂ τΨk1(τ)Ψ

†
k′−q(τ

′)Xs†
k̂′,q̂

Ψk′(τ ′)
〉

+
〈
Ψ†k′′(τ

′′)Xs
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k2

(τ)
↔
∂ τΨk1(τ)Ψ

†
k′−q(τ

′)Xs†
k̂′,q̂

Ψk′(τ ′)
〉
. (3.14)

Here, we have used different colors in addition to the usual brackets to highlight the con-
tractions. The last line describes a disconnected (vacuum) graph, which does not contribute
to physical observables.

We now rewrite the vertices Xs
k̂,q̂

as

Xs
k̂,q̂

Eλk−q =
∑
λ′=±

fsλλ′ (q̂, k̂)E
λ′
k , (3.15)

where Eλk are the helicity eigenstates from Eq. (2.9), and fsλλ′ (q̂, k̂) are eight functions, with
s = ±2 labeling the GW helicity, λ, λ′ = ±1

2 denoting the helicity of the fermions. Without
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loss of generality we can consider k in the ẑ direction and find

X+

k̂,q̂
E+

k−q =
(ω + k + q) sin θ

2
√

ω(ω + k − q cos θ)

(
sin θ

eiϕ(1− cos θ)

)
, (3.16)

X−
k̂,q̂

E+
k−q =

(ω + k − q) sin θ

2
√

ω(ω + k − q cos θ)

(
sin θ

−eiϕ(1 + cos θ)

)
, (3.17)

X+

k̂,q̂
E−k−q = − (ω + k − q) sin θ

2
√

ω(ω + k − q cos θ)

(
e−iϕ(1 + cos θ)

sin θ

)
, (3.18)

X−
k̂,q̂

E−k−q =
(ω + k + q) sin θ

2
√

ω(ω + k − q cos θ)

(
e−iϕ(1− cos θ)

− sin θ

)
, (3.19)

where ω =
√

k2 + q2 − 2kq cos θ, and θ is the angle between k and q (see Fig. 3). Using
Eq. (2.7), in evaluating the fermion 6-point function in Eq. (3.14), we encounter expressions
of the form

Dλ(q̂, k̂) ≡
∑
s

(
E−λ†k Xs

k̂,q̂
Eλ

k−q
) (

Eλ†
k−qX

s†
k̂,q̂

E−λk

)
=
∑
s

∣∣∣(E−λ†k Xs
k̂,q̂

Eλ
k−q

)∣∣∣2, (3.20)

where λ = ± distinguishes between right-handed and left-handed fermions. We find that

D+(q̂, k̂) = D−(q̂, k̂) = 2 sin2 θ − 1

2

(ω + k)2 + q2

ω(ω + k − q cos θ)
sin4 θ ≡ D(q̂, k̂), (3.21)

which is a positive quantity vanishing around θ = 0 and π, and has a maximum around
θ ≈ 3π

5 . Note that Xs
k̂,q̂

∝ sin θ, and the cubic interaction therefore vanishes for fermions
propagating parallel to the propagation direction of GWs, i.e., k ∥ q.

With the help of Eq. (3.21), the fermion 6-point function in Eq. (3.14) can now be
evaluated (keeping in mind that fermion fields anti-commute):

(2π)6 i

∫
k1

∫
k2

∫
k′′

k′k′′ ei(k1−k2).x⟨. . . ⟩ = 1

4(2π)3
(k′ + ω′)k′2 ei(k

′+ω′)(τ ′−τ ′′)D(q̂, k̂′) + c.c. ,

(3.22)

where, ω′ ≡
√

k′2 + q2 − 2k′q cos θ. For G1(τ), this leads to

G1(τ) =
1

4π

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
∫
q2dq

〈
hq(τ

′′)h∗q(τ
′)
〉 ∫

k4dk

∫
dθ sin3 θ ei(k+ω)(τ

′−τ ′′)

× (k + ω)
[
2− sin2 θ((ω + k)2 + q2)

2ω(ω + k − q cos θ)

]
+ c.c. . (3.23)

ii) The G2 term: We now evaluate Eq. (3.10) in the same way as we have evaluated G1.
We begin again by exploiting the isotropy and lack of polarization of the GW background,
and we expand the fields in Fourier modes. We find

G2(τ) = (2π)6 Im

[
i

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
∫
q

〈
hq(τ

′′) h∗q(τ
′)
〉 ∫

k′′

∫
k′
k′k′′

∑
s=±

∫
k1

∫
k2

ei(k1−k2).x

×
〈
Ψ†k′′(τ

′′)Xs†
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k′−q(τ

′)Xs
k̂′,q̂

Ψk′(τ ′)Ψ†k2
(τ)
↔
∂ τΨk1(τ)

〉]
. (3.24)
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The fermion 6-point function can be contracted as

⟨...⟩ =
〈
Ψ†k′′(τ

′′)Xs†
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k′−q(τ

′)Xs
k̂′,q̂

Ψk′(τ ′)Ψ†k2
(τ)
↔
∂ τΨk1(τ)

〉
+
〈
Ψ†k′′(τ

′′)Xs†
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k′−q(τ

′)Xs
k̂′,q̂

Ψk′(τ ′)Ψ†k2
(τ)
↔
∂ τΨk1(τ)

〉
+
〈
Ψ†k′′(τ

′′)Xs†
k̂′′,q̂

Ψk′′−q(τ
′′)Ψ†k′−q(τ

′)Xs
k̂′,q̂

Ψk′(τ ′)Ψ†k2
(τ)
↔
∂ τΨk1(τ)

〉
. (3.25)

The last line is once again a disconnected graph, which vanishes. Moreover, the first and
second lines also vanish since they are both proportional to

Ψ†k2
(τ)
↔
∂ τΨk1(τ)δ

(3)(k1 − k2) ∝ Eλ†
k1
E−λk1

= 0. (3.26)

As a result, the fermion six-point function in Eq. (3.24) vanishes, hence

G2(τ) = 0, (3.27)

and ρ1 is simply given by G1 from Eq. (3.23):

ϱ1(τ) =
1

4π

1

a4(τ)

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
∫

q2dq
〈
hq(τ

′′)h∗q(τ
′)
〉 ∫

k4dk

∫
dθ sin3 θ ei(k+ω)(τ

′−τ ′′)

× (k + ω)
[
2− sin2 θ((ω + k)2 + q2)

2ω(ω + k − q cos θ)

]
+ c.c. . (3.28)

Let us pause here and take a closer look at the asymptotic form of the time integrals. In
this work, we are interested in GW spectra that evolve dynamically between an initial time,
τi, and a “settling time”, τ∗. After the time τ∗ where GW production ends and the GW
background has reached a steady state, the time integrals approach a constant in time, i.e.

lim
τ≫τ∗

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
〈
hq(τ

′′)h∗q(τ
′)
〉
ei(k+ω)(τ

′−τ ′′) ≡ f(k, q, ω). (3.29)

For explicit computations of these integrals in a phenomenological model for the GW back-
ground, see Eqs. (5.4) and (5.14). As a result, the asymptotic form of Eq. (3.28) for τ ≫ τ∗
is ϱ1(τ) ∝ 1/a4(τ).

The ϱ2 term

Expanding the fields appearing in Eq. (3.6) in Fourier space, we can write ϱ2 as

ϱ2(τ) = −4(2π)3

a4(τ)

∫
d3q

∫
d3k k2 Im

[ ∫ τ

τ+i

dτ ′
〈
hq(τ) h

∗
q(τ
′)
〉

×
∑
s

〈
Ψ†k−q(τ)X

s†
k̂,q̂

Ψk(τ)Ψ
†
k(τ
′)Xs

k̂,q̂
Ψk−q(τ

′)
〉]

. (3.30)

The fermion 4-point function in the second line is

⟨. . . ⟩ =
〈
Ψ†k−q(τ)X

s†
k̂,q̂

Ψk(τ)Ψ
†
k(τ
′)Xs

k̂,q̂
Ψk−q(τ

′)
〉]

. (3.31)
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In analogy to the calculations in Section 3.1 we find

ϱ2(τ) = − 1

π

1

a4(τ)

∫
k4dk

∫
q2dq

∫
dθ sin3 θ Im

[ ∫ τ

τ+i

dτ ′
〈
hq(τ) h

∗
q(τ
′)
〉
ei(ω+k)(τ

′−τ)
]

× (k + ω)
[
2− sin2 θ((ω + k)2 + q2)

2ω(ω + k − q cos θ)

]
. (3.32)

Considering once again the limit τ ≫ τ∗ where hq(τ) ∝ a−1(τ), we find that the time
integral is asymptotically damped like

lim
τ≫τ∗

∫ τ

τ+i

dτ ′
〈
hq(τ)h

∗
q(τ
′)
〉
ei(ω+k)(τ

′−τ) ∝ 1

a(τ)
. (3.33)

Therefore we have

ϱ2(τ)

ϱ1(τ)
∝ 1

a(τ)
. (3.34)

As a result, ϱ2(τ) is damped faster than radiation and is therefore negligible in cosmolgy.

3.2 Contribution of the Quartic Vertex

The energy density also receives contributions from the quartic interaction, Eq. (2.16). We
write these contributions as

⟨ρ(τ,x)⟩L(2)int
= ϱ3 + ϱ4, (3.35)

where

ϱ3 =

〈
ρ
(0)
ψ × ⊗

〉
, ϱ4 =

〈
ρ
(2)
ψ × ⊗

〉
. (3.36)

Both diagrams include the bubble diagram involving the quartic vertex Vhhψψ,

A(k, τ) ≡ k (3.37)

Expanding hij in L(2)
int in Fourier modes, we find

A(k, τ) ∝
∑
s

∫
dq3

[(
− γ0γ5qjϵ

j
ln es†in(q̂) e

s
il(q̂) + iγiqke

s†
kj(q̂) e

s
ij(q̂)

)〈
ĥ†s,q(τ)ĥs,q(τ)

〉
− iγiγ5ϵ j

in es∗lj (q̂) e
s
ln(q̂)

〈
ĥ†s,q(τ)ĥ

′
s,q(τ)

〉]
. (3.38)

Using the explicit form of the GW polarization tensors, we find

qjϵ
j

ln es†in(q̂) e
s
il(q̂) = −isq and σjϵ

j
ln es†in(q̂) e

s
il(q̂) = −isq̂.σ. (3.39)
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Figure 4: Long-wavelength GW modes with momentum q act as a homogeneous field for
a short-wavelength fermion mode with momentum k, where q ≪ k.

The two terms in the first line of Eq. (3.38) are thus proportional to
∑

s s
〈
ĥ†s,q(τ)ĥs,q(τ)

〉
,

and the term in the second line is proportional to
∑

s s
〈
ĥ†s,q(τ)ĥ

′
s,q(τ)

〉
. We assume that

the mechanism producing the stochastic GW background is parity-conserving, in which
case the GWs are unpolarized, and these expectation values are zero. Consequently, the
gravitational bubble diagram associated with the quartic vertex, Eq. (3.37), vanishes. That
implies ϱ3 and ϱ4 vanish, hence

⟨ρ(τ,x)⟩L(2)int
= 0. (3.40)

Therefore, for unpolarized GWs, the quartic vertex Vhhψψ does not contribute to the energy
density of fermions.

3.3 Background Waves

Before we proceed to further study Eq. (3.23) – which, as we have seen, is the only cosmo-
logically relevant contribution to ⟨ρψ(τ)⟩ – we need to address one subtlety that we have not
discussed yet. This is the choice of the integration limits in q. Here, we argue that mainly
GW modes with q ≳ k are relevant. Intuitively, this means that fermions of momentum k

can only be created by gravitons of momentum q ≳ k.
The gravitational wave is a space-time fluctuation that appears as below in the per-

turbed metric

gij(t,x) dx
idxj = a2e2hij(t,x)dxidxj . (3.41)

The perturbation hij(x) is gauge invariant (perturbatively) up to local diffeomorphisms.
The main idea here is to separate the classical (sourced) GW spectrum into long-wavelength
and short-wavelength contributions with respect to the wavelength of the fermion. For a
fermion mode with momentum k, a GW perturbation with much smaller momentum, q ≪ k

can be considered as spatially homogeneous background (see Fig. 4). A long-wavelength
GW mode hlong

ij (t,x) ≈ Cij(t) where Cij(t) is a homogenous tensor mode, can be recast as
a change in coordinates [40, 45]:

hlong
ij 7→ 0 and xi 7→ xi

′
= eh

long
ij xj . (3.42)

In other words, it can be considered as a large gauge transformation. As a result, after
this coordinate transformation, a short-wavelength fermion mode in the presence of long-
wavelength GWs becomes a free fermion, i.e.,

Ψshort(t,x)
∣∣
hlong
ij

= Ψ′(t,x′)
∣∣
0
. (3.43)
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In terms of the fermion energy density, ρψ, it can be written as

⟨ρψ,short(x)⟩
∣∣
hlong
ij

= ⟨ρψ,short(x
′)⟩
∣∣
0
= 0. (3.44)

In other words, long-wavelength GWs do not contribute to fermion production. Following
this, and as an approximation, we only consider GWs with momentum q > k when evalu-
ating the momentum integrals. This approach is sometimes referred to as the background
field method.

3.4 Asymptotically Flat Spacetime and Astrophysical Sources of GWs

While we have so far discussed the mechanism of GW-induced production of Weyl fermions
only in the context of an expanding FLRW Universe, the careful reader may have real-
ized that it should also work in asymptotically flat spacetimes. Thanks to the conformal
symmetry of Weyl fermions at tree-level, we can go to the asymptotically flat case in our
calculations by setting a(τ) = 1. The geometry is then given as

gµν = ηµν + hµν , |hµν | ≪ 1, (3.45)

where ηµν is the Minkowski metric and hµν is a small perturbation which includes GWs.
Crucially, though, these GWs are produced by local astrophysical sources such as inspirals
and mergers of compact objects. At distance r from the source, the GW amplitude decreases
as [46]

hs(t, r) ∝
1

r
(3.46)

The physical reason underlying this behavior is the finiteness of the total GW energy and
the asymptotic flatness of the spacetime [47]. Unfortunately, this makes fermion freeze-in
induced by GWs from astrophysical sources negligible compared to the case of cosmological
sources, which is the main focus of this work.

3.5 Master Formula for GW-induced fermion production in an Expanding Uni-
verse

To wrap up this section, let us recapitulate our finding. We have seen that four differ-
ent gravitational one-loop diagrams contribute to the final fermion energy density, namely
Eqs. (3.7) and (3.36), associated with the cubic vertex Vhψψ and the quartic vertex Vhhψψ,
respectively. We have computed the two diagrams from Eq. (3.7) separately in Eqs. (3.28)
and (3.32), and have found that the second one gives a contribution that dilutes faster than
radiation and is therefore unimportant in cosmology (see Eq. (3.34)). Moreover, in Sec-
tion 3.2, we have shown that the diagrams from Eq. (3.36) vanish for circularly unpolarized
GW backgrounds. As a result, only the first diagram in Eq. (3.7) contributes to the final
fermion energy density at gravitational 1-loop, therefore we arrive at the master formula

⟨ρψ(τ)⟩ =
1

4π

1

a4(τ)

∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′
∫

q2dq
〈
hq(τ

′′)h∗q(τ
′)
〉 ∫

k4dk

∫
dθ sin3 θ ei(k+ω)(τ

′−τ ′′)

× (k + ω)
[
2− sin2 θ((ω + k)2 + q2)

2ω(ω + k − q cos θ)

]
+ c.c. . (3.47)
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One can also work out the pressure density of the produced fermions which is

⟨Pψ(τ)⟩ =
1

3
⟨ρψ(τ)⟩ ∝

1

a4(τ)
. (3.48)

This implies that as long as the fermions are effectively massless, they behave like radia-
tion. Unlike the vacuum energy of fermions which is negative, the fermions produced via
gravitational wave-induced freeze-in carry energy, i.e., ⟨ρψ(τ)⟩ > 0.

In the following sections, we will further evaluate Eq. (3.47), using the background-wave
approximation from Section 3.3 as well as specific parameterizations of the GW background.

4 Essentials of Stochastic Gravitational-Wave Backgrounds

Before proceeding further with the evaluation of the fermion abundance resulting from
GW-induced freeze-in, we collect important formulas and conventions related to stochastic
GW backgrounds, and we review the phenomenological parameterization we use to describe
such backgrounds.

Stochastic GW backgrounds in the early Universe are commonly assumed to be sta-
tistically homogeneous and isotropic, unpolarized, and Gaussian. These assumptions are
adopted also in the current work. For a comprehensive review of cosmological GW back-
grounds see [38, 41, 46].

4.1 Energy Density of Stochastic Gravitational Waves

The GW energy density is related to the metric perturbation in the transverse–traceless
gauge by the relation [46]

ρgw(t,x) = T 00
gw =

1

32πG

〈
ḣij(t,x) ḣ

ij(t,x)
〉
. (4.1)

Here T 00
gw denotes the (00) component of the energy-momentum tensor, and a sum over the

spatial indices i, j is implied. In Fourier space, the spectral energy density is correspondingly

dρgw(τ, q)

d ln q
= 2πq3M2

Pl

∑
s

⟨ḣ∗s,q(τ)ḣs,q(τ)⟩

≃ 2πq5M2
Pl

a2

∑
s

⟨h∗s,q(τ)hs,q(τ)⟩, (4.2)

where q is the comoving momentum (see Eq. (2.13)). In the second line, we have used the
approximation valid for modes inside the horizon, ḣs,q = h′s,q/a ≈ iqhs,q/a (see ref. [38] and
references therein). In units of the critical density, ρc = 3H2/(8πG), the spectral energy
density is

Ωgw(τ, q) ≡
1

ρc(τ)

dρgw(τ, q)

d ln q
=

2πq5

3H2(τ)
Pgw(τ, q), (4.3)
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where H = aH is the conformal Hubble parameter (see Eq. (2.12)), and where we have
defined the GW power spectrum as

Pgw(τ, q) ≡
∑
s

⟨h∗s,q(τ)hs,q(τ)⟩

= 2 ⟨h∗q(τ)hq(τ)⟩, (4.4)

where in the second line we assumed GWs are circularly unpolarized (see Eq. (3.11)). Below,
we will often need the GW power spectrum and dimensionless energy density today. We
will refer to them as Pgw,0(q) and Ωgw.0(q), respectively. Big Bang Nucleosynthesis (BBN)
imposes an upper bound on Ωgw,0, namely [41]∫ ∞

fCMB

d ln q Ωgw,0(q) ≲ 3.5× 10−6. (4.5)

Here, Ωgw,0 denotes the spectral energy density fraction today, and fCMB ≃ 3 × 10−17Hz

is the frequency associated with the Hubble radius at the CMB scale.

4.2 The Gravitational Wave Spectrum

The properties of cosmological GW backgrounds today depend on the production mecha-
nism (dynamics) as well as the cosmic expansion history (kinematics). For phenomenolog-
ical purposes, it is useful to separate the kinematics (which is simply the redshift from the
production era to the present time) from the dynamics. We do this by writing

hs,q(τ) = a−1(τ) T (τ, q) hsq,0, (4.6)

where hsq,0 is the gravitational wave amplitude today, the factor a−1(τ) describes the
redshift between conformal time τ and today, and T (τ, q) is a transfer function which
captures the dynamics of how the GW spectrum is built up over time. We denote the
conformal times associated with the start and end of the GW production as τin and τ∗
(settling-time) respectively. The transfer function should satisfy the boundary conditions

T (τin, q) = 0, (4.7)

T (τ, q) ≃ e−iqτ for τ > τ∗, (4.8)

such that for τ > τ∗, T (τ, q) asymptotically approaches the free wave-like behavior.
The spectral energy density of GWs before the settling-time τ∗ is related to Ωgw(τ∗, q)

as

Ωgw(τ, q) ≃
( a∗
a(τ)

)4
|T (q, τ)|2Ωgw(τ∗, q) for τ < τ∗. (4.9)

The relation to the GW energy density today, Ωgw,0, in turn is

Ωgw,0(q) = Ωrad,0
ρrad,∗
ρrad,0

(a∗
a0

)4
Ωgw,∗(q), (4.10)
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with the obvious notation for the dimensionless (Ωrad,0) and dimensionful (ρrad,0) radiation
energy density today and at the settling time (ρrad,∗). During the radiation-dominated era,
we have ρrad = (π2/30) g(T )T 4 where g(T ) is the effective number of relativistic degrees of
freedom at temperature T . We can write H as

H =
1

τ
=

π

3

√
g(T )

10

T 2

MPl

1

z
, (4.11)

with z being the redshift. Numerically, we find

Ωgw,0(q) = 3.3× 10−5
(

g(T∗)

106.75

)(
gs(T∗)

106.75

)− 4
3

Ωgw,∗(q), (4.12)

where we have used Ωrad,0 ≈ 4.2× 10−5/h2 ≈ 8.5× 10−5, and gs(T ) is the effective number
of relativistic degrees of freedom appearing in the calculation of the entropy density. (gs(T )
equals g(T ) as long as all relativistic species share the same temperature.) In this work,
we are interested in T∗ above the electroweak scale, and we assume the dark fermions are
never in thermal equilibrium with the hot plasma. This fixes g(T∗) = gs(T∗) = 106.75.
Now, using Eq. (4.9) in Eq. (4.12), we can write Ωgw(τ, q) at τ ≤ τ∗ in terms of Ωgw,0(q) as

Ωgw(τ, q) ≃ 3.0× 104
( a∗
a(τ)

)4
|T (q, τ)|2Ωgw,0(q)h

2 for τ < τ∗. (4.13)

Using Eq. (4.13) in Eq. (4.3) we can also express the GW power spectrum numerically as

P(τ, q) ≃ 1.8× 105

4π
H2(τ) T 2(q, τ)

Ωgw,0(q)h
2

q5
, (4.14)

We now need to model the transfer function T (τ, q) and the spectral energy density
today, Ωgw,0(q). For T (τ, q), we use the parameterization

Ts(q, τ) ≈ (1− e−πβ(τ−τin)) e−iqτ , (4.15)

where β−1 is the time scale characterizing the duration of the cosmological process that
sources GWs. The motivation for choosing this particular form is purely phenomenological.
It is a simple way to model a signal that starts at τ = 0 and levels out at τ > β−1 to
take the form of a propagating wave. It is assumed that β−1 is faster than the Hubble
time, i.e. β/H∗ > 1. In this work, the notation β denotes the exponent combined with
conformal time, similar to the convention used in [38]. It is worth noting that β is sometimes
defined differently, namely as a rate with respect to cosmic time instead of conformal
time [41]. With this alternative definition, the transfer function would be proportional to
(1− e−πβ(t−tin)) instead of (1− e−πβ(τ−τin)). Consequently, in the former, a dimensionless
quantity is introduced as β/H∗, while in the latter it is β/H∗.

The spectral energy density of the stochastic GW background depends on the produc-
tion mechanism and typically needs to be determined using sophisticated simulations. In
many cases, however, the results can be well described by simple analytic fitting functions.
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Figure 5: Schematic illustration of the spectral energy density of stochastic GWs generated
by phase transitions and primordial magnetic fields. The spectrum has three distinct physi-
cal scales, qmin ≡ qH = a∗H∗ (the horizon size at the time of phase transition), qmax = a∗T∗
(the smallest wavelength of the GW generated by the phase transition), and qpeak (the
wavenumber at the peak of the spectrum). Note this illustration is a simplified toy model,
intended for conceptual clarity rather than exhaustive detail.

i) Phase transitions generate a GW spectrum that can be fitted by a broken power law
[37, 48] (see Fig. 5):

Ωgw,0(q) ≈

Ωpeak
( q
qpeak

)m for qmin < q < qpeak,

Ωpeak
( q
qpeak

)−n for qpeak < q < qmax,
(4.16)

where Ωpeak is the value of the spectrum at the peak and qpeak is the momentum at the
peak. This spectrum has three physical scales. The low-frequency cutoff qmin = a∗H∗
is the horizon size, while the high-frequency cutoff qmax ≈ a∗T∗ is a characteristic
(physical) scale of the system associated with the smallest scales beyond which the
source decays. The spectral indices are m ≈ 3 and n ∼ (1 − 4); the exact value of n
varies across different scenarios with different degrees of coherence in time [37, 48].2

The BBN bound from Eq. (4.5) imposes the condition

Ωpeak ≲ 3.5× 10−6
mn

m+ n
. (4.17)

ii) Primordial magnetic fields can also source a stochastic gravitational wave back-
ground [38]. Similar to the case of phase transitions, the resulting GW energy spec-
trum can be modeled as a broken power law [49]. For the purpose of our analytical
approximations, we will therefore use the parameterization from Eq. (4.16) also for
GWs from primordial magnetic fields.

2If the anisotropic stress spectrum of the source decays as q−γ , then, for perfect temporal coherence, the
gravitational wave energy density decays as q−(1+γ) at high frequencies. If the source is partially coherent,
i.e., for about one wavelength, the GW energy density decays as q−(γ−1). Finally, a totally incoherent
source leads to a much softer GW energy spectrum, falling as q−(γ−3) [37, 48].
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iii) Reheating and gauge reheating produce GW spectra with one or multiple peaks,
and with a fast drop-off towards high frequencies [11, 12]. The detailed shape of the
spectrum varies model by model. Since our momentum integrand rapidly decays for
the decreasing portions of the spectrum, we can simplify the approximation by focusing
solely on the initial peak, effectively represented by Eq. (4.16).

iv) Cosmic strings typically lead to a GW spectrum featuring a flat plateau which decays
at very high frequencies [13, 14]. This scenario is not well described by Eq. (4.16), so
we leave it for future work involving more advanced modeling.

4.3 Temporal Coherence of GWs

The unequal-time two-point correlation function of the GW background, which appears in
Eq. (3.47), is considerably more challenging to determine than the GW power spectrum.
In particular, it requires information about the temporal coherence of the source. We
will desccribe the latter using simple phenomenological models [37, 50], which fall into
three distinct categories: (i) fully incoherent in time, (ii) fully coherent in time, and (iii) an
intermediate regime characterized by a finite coherence time. For instance, bubble collisions
during a first-order phase transition can be modeled as fully coherent, i.e., deterministic in
time. Turbulence and magnetic fields, on the other hand, are partially coherent [37]. The
two-point correlation function can be written as [51]〈

h∗q(τ
′′)hq(τ

′)
〉
= γq

(
|τ ′ − τ ′′|

)√
⟨|hq(τ ′)|2⟩ ⟨|hq(τ ′′)|2⟩, (4.18)

where γq
(
|τ ′−τ ′′|

)
is a function of |τ ′−τ ′′| which specifies the degree of temporal coherence.

For the sake of our analytical estimate, we specifically focus on cases (i) and (ii) above.

• For fully incoherent GWs, the coherence function is

γq(
∣∣τ ′ − τ ′′

∣∣) = ∆η δ(τ ′ − τ ′′), (4.19)

where the characteristic coherence time ∆η is much shorter than the dynamical time
scales in the system, i.e. ∆η ≪ β−1 [37].

• For fully coherent GWs, we have instead

γq(
∣∣τ ′ − τ ′′

∣∣) = 1. (4.20)

5 Analytical Estimates

Having worked out the master formula for the energy density of the fermions generated by
gravitational wave-induced freeze-in in Section 3, and having discussed our phenomenolog-
ical models for the primordial GW background in Section 4, we are now ready to find an
analytical estimate for the fermion energy density. Notably, we wish to evaluate Eq. (3.47)
for ⟨ρψ(τ)⟩. A critical part of this expression is the time integral

T(τ ;k,q) ≡
∫ τ

τ+i

dτ ′
∫ τ

τ−i

dτ ′′Re
[〈
hq(τ

′′) h∗q(τ
′)
〉
ei(k+ω)(τ

′−τ ′′)
]
, (5.1)
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which depends on the unequal-time correlator of the GWs, and therefore on their degree of
temporal coherence. In the following, we will consider the two extreme cases introduced in
Section 4.3: fully coherent and fully incoherent GWs.

5.1 Temporally incoherent GW background

According to Eq. (4.18) and Eq. (4.19), for a GW background that is totally incoherent in
time, and after using the transfer function Eq. (4.15), we can write〈

hq(τ
′′) h∗q(τ

′)
〉
≈ ∆η δ(τ ′ − τ ′′)

〈
|hq(τ ′)|2

〉
≈ 1

2

∆η

a2(τ ′)
(1− e−πβ(τ

′−τin))2 δ(τ ′ − τ ′′)Pgw,0(q). (5.2)

The factor 1/a2(τ) arises when we express Pgw(τ, q) in terms of Pgw,0(q). To evaluate the
time integral from Eq. (5.1), T(τ ;k,q), we need the explicit τ dependence of a(τ) which,
in the radiation era, can be written as

a(τ)

a0
=

τ

τ∗z∗
, (5.3)

with z∗ the redshift at τ∗. Using moreover that H = aH = 1/τ during radiation domination,
we then find

T(τ ;k,q) =
1

2
∆η z2∗

∫ τ

τi

dτ ′
(τ∗
τ ′

)2(
1− e−πβ(τ

′−τin)
)2 Pgw,0(q)

≈ 3

2
ln 2 z2∗

∆η β

H2
∗

H2
0

q5
Ωgw,0, (5.4)

where in the second line we have considered the limits τin ≪ β−1, β ≫ H∗, and τ ≫ τ∗,
thereby effectively extending the integration region to the interval (0,∞). We have required
that GW emission proceeds fast compared to Hubble expansion. We have also used Eq. (4.3)
to express Pgw,0(q) in terms of Ωgw,0. Inserting the above in Eq. (3.47), we find

⟨ρψ(τ)⟩ =
3 ln 2

8π

z2∗ ∆η β

a4(τ)

H2
0

H2
∗

∫
dq

1

q3
Ωgw,0(q)

∫ q

qH

k4dkA(k, q), (5.5)

in which A(k, q) is the angular integral

A(k, q) ≡ 2

∫
dθ sin3 θ (k + ω)

[
2− 1

2

(ω + k)2 + q2

ω(ω + k − q cos θ)
sin2 θ

]
=

8q

3
+

16k

5
+

16k2

15q
+

8k4

35q3
− 32k6

315q5
. (5.6)

The leading factor of two arises from the complex-conjugate term in Eq. (3.47). Note
that in Eq. (5.5), we have restricted the range of the integral over fermion momenta k

to the region k < q, following the arguments given in Section 3.3. The lower integration
boundary is qH = a(τ∗)H(τ∗), corresponding to horizon-size GW modes at the settling
time. Evaluating the integral over k leads to∫ q

qH

k4dkA(k, q) =
856q6

693
− 8q5Hq

15
− 8q6H

15
− 16q7H

105q
− 8q9H

315q3
+

32q11H
3465q5

. (5.7)
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To be able to evaluate the integral over GW momenta q, we use the broken power law
spectrum in Eq. (4.16) for Ωgw,0(q), and we split the integral into the region below qpeak

and the region above. Using moreover qpeak ≫ qH , we have∫ qpeak

qH

dq

q3

( q

qpeak

)m ∫ q

qH

k4dkA(k, q) ≈ 856

693

q4peak

m+ 4
, (5.8)

and ∫ qmax

qpeak

dq

q3

( q

qpeak

)−n ∫ q

qH

k4dkA(k, q) ≈

856
693

q4peak
4−n

[( qmax
qpeak

)4−n − 1
]

n ̸= 4,

856
693q

4
peak ln

(
qmax
qpeak

)
n = 4.

(5.9)

Putting everything together, the final energy density of Weyl fermions is then given as

⟨ρψ(τ)⟩ =
(qpeak

a(τ)

)4 (H0

H∗

)2
z2∗ Cincoh Ωpeak, (5.10)

where for realistic scenarios in which qH ≪ qpeak ≪ qmax, Cincoh is

Cincoh ≈ 107 ln 2

231π
∆η β


1

4−n
( qmax
qpeak

)4−n
n < 4,

ln
(
qmax
qpeak

)
n = 4,

(n+m)
(4+m)(n−4) n > 4.

(5.11)

We observe that the behavior of ρψ(τ) ∝ Cincoh is governed by the slope of the GW spectrum
at high frequencies, n. Cincoh is an order-one number for n ≥ 4, but becomes notably large
for n < 4.

5.2 Temporally Coherent GW Background

The computation of the integrals for a temporally coherent GW background is more in-
volved. As discussed in Section 4.3, the GW background in this case can be factorized
as

⟨h∗q(τ ′′)hq(τ ′)⟩ =
√
⟨|hq(τ ′)|2⟩ ⟨|hq(τ ′′)|2⟩, (5.12)

Using this expression in Eq. (5.1) and writing the GW power spectrum at conformal time
τ in terms of the power spectrum today with the help of Eqs. (4.6) and (4.15), we find

T(τ ;k,q) =
1

2

z2∗
H2
∗

∣∣∣∣ ∫ τ

τi

dτ ′

τ ′
(
1− e−πβτ

′)
ei(ω+k+q)τ

′
∣∣∣∣2 Pgw,0(q) (5.13)

≈ 1

2

z2∗
H2
∗
ln
[
1− iπβ

ω + q + k

]
ln
[
1 +

iπβ

ω + q + k

]
Pgw,0(q). (5.14)

The prefactor z∗/(H∗τ ′) arises from the relation between a and τ , Eq. (5.3). In the second
line, we have assumed βτ∗ ≫ 1. The fermion energy density is then

⟨ρψ(τ)⟩ =
2

8π

1

a4(τ)

z2∗
H2
∗

∫
q2dqPgw,0(q)

∫ q

qH

k4dk

∫
dθ sin θ(k + ω)D(q̂, k̂)

× ln
[
1− iπβ

ω + q + k

]
ln
[
1 +

iπβ

ω + q + k

]
, (5.15)
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Figure 6: Comparison of the approximate expressions for the integral K(q) from Eq. (5.17)
to the numerical value of K(q). We have chosen β = 1 here.

with D(q̂, k̂) from Eq. (3.21). The leading factor of two is again due to the complex-
conjugate term in Eq. (3.47). The next step is to carry out the integrals over θ and k,

K(q) ≡ 2

∫ q

qH

dk k4
∫
dθ sin θ(k + ω)D(q̂, k̂) ln

[
1− iπβ

ω + q + k

]
ln
[
1 +

iπβ

ω + q + k

]
, (5.16)

which can be approximated as

K(q) ≈
{(

3.1− 0.077 ln β
q + 1.2 ln2 βq

)
q6 for H∗ ≲ q ≲ β,

38π2

315 β2q4 for q ≳ β.
(5.17)

In the first case (low q), we have approximated ln
[
1 ± iπβ

ω+q+k

]
≃ ln

[
± iπβ

ω+q+k

]
, while in

the second case (high q), we haved used ln
[
1 ± iπβ

ω+q+k

]
≃ ± iπβ

ω+q+k . Note that the exact
coefficients in the low-q case are rather lengthy, therefore we here give only their approx-
imate numerical values to two significant digits. The goodness of these approximations is
illustrated in Fig. 6, where we compare them to the result of a fully numerical evaluation
of K(q).

Using the broken power law GW spectrum from Eq. (4.16), the relation Eq. (4.3)
between Pgw,0(q) and Ωgw,0(q), as well as qpeak ≈ β, we can now evaluate the integral over
q. For the rising part of the GW spectrum (below the peak frequency), we find∫ qpeak

qH

q2dqPgw,0(q)K(q)

≈ 3H2
0

2π

q4peakΩpeak

m+ 4

[
3.1 +

( 2.5

4 +m
− 0.077

)
ln

β

qpeak
+ 1.2 ln2

β

qpeak

]
, (5.18)

where we have neglected a very weak dependence on m in the first term in square brackets,
and we have again evaluated the somewhat lengthy numerical prefactors to two significant
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Figure 7: The hierarchy of scales in GW-induced freeze-in of Weyl fermions. T∗ is the
temperature at the end of the cosmic event instigating the production of gravitational waves,
and M is the mass of the dark (Majorana/Dirac) fermions. To form the dark matter in the
Universe, the fermions are assumed to be effectively massless during the epoch where they
are produced, but carry a non-zero mass today.

digits. The falling part of the GW spectrum (above the peak) gives∫ qmax

qpeak

q2dqPgw,0(q)K(q) ≈ 3H2
0

2π

38π2

315
q4peakΩpeak

( β

qpeak

)2
×

 1
n−2
[
1− (qmax/qpeak)

2−n] for n ̸= 2,

ln qmax
qpeak

for n = 2.
(5.19)

This finally leads to the following expression for the energy density of Weyl fermions:

⟨ρψ(τ)⟩ ≈
q4peak

a4(τ)

H2
0

H2
∗
z2∗ CcohΩpeak, (5.20)

in which Ccoh is given as

Ccoh ≈ 1

m+ 4

[
0.059 +

( 0.047

m+ 4
− 0.0015

)
ln

β

qpeak
+ 0.023 ln2

β

qpeak

]

+ 0.023
( β

qpeak

)2
×

 1
n−2
[
1− (qpeak/qmax)

n−2] for n ̸= 2,

ln qmax
qpeak

for n = 2.
(5.21)

6 Dark Matter Relic Density

Having analytically estimated the energy density of Weyl fermions generated by a stochastic
GW background, we now explore the possibility that these fermions form the dark matter
in the Universe. Clearly, this requires that they have a non-zero mass M today, in spite
of being effectively massless at the time of production, see Fig. 7. Their mass today could
either come from a tree-level mass term that is negligible at T∗ (i.e. M < H∗), but not
today, or they could be exactly massless early on and acquire a mass later through a Higgs
mechanism or through a confining phase transition.

We will consider only fermion production, neglecting annihilation. This is justified
even in our minimal, CP-symmetric, setup because our fermions are feebly interacting and
never come into thermal equilibrium with the SM or with each other. Therefore, fermion–
antifermion annihilation is unimportant.
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6.1 GW-Induced Freeze-In

If we call τM the conformal time at which T ∼ M , then at τ > τM , the fermion energy
density is (see Eq. (5.10) and (5.20))3

⟨ρψ(τ)⟩
∣∣
τ>τM

=
a0

a(τM )

q4peak

a3(τ)

H2
0

H2
∗
z2∗ C Ωpeak, (6.1)

where C is given in Eq. (5.11) and Eq. (5.21) for incoherent and coherent GW backgrounds,
respectively. Using the conservation of the entropy density s(τ) = (2π2/45)g∗(τ)T

3(τ) in
comoving momentum, s a3 = const, we can substitute

a0
a(τM )

=

(
M

T0

)(
g∗(τ)

g∗,0

) 1
3

, (6.2)

where T0 = 2.3 × 10−4 eV is the temperature of the universe today, g∗,0 = 3.38 is the
effective number of relativistic degrees of freedom today, and g∗(τ) is the corresponding
number at τ = τM . We use g∗(τ) = 106.75, the value above the electroweak scale in the
Standard Model. Using moreover Eq. (4.11) for H∗ and dividing by the critical density
ρc = 3M2

PlH
2
0 , we find the total fractional dark fermion energy density today

Ωψ,0 =
π2

270
g∗(τ∗) C

(
M

T0

)(
g∗(τ∗)

g∗,0

) 1
3(qpeak

H∗

)4( T∗
MPl

)4
Ωpeak (6.3)

≃ 0.36× C
(
M

T∗

)(
qpeak/H∗

100

)4( g∗(τ∗)

106.75

)4/3( T∗
3× 1011GeV

)5(Ωpeak

10−6

)
. (6.4)

Note that GW-induced freeze-in is a non-thermal process and the appearance of T∗ is due
to the redshift and Hubble parameter of the phase transition in Eq. (6.1). Now, let us
pause for a qualitative discussion on the scaling and behavior of the final relic density. It
can be more clearly understood by referring to the master formula in Eq. (3.47). We have 2
time integrals each giving a factor of 1

H∗
(duration of time integration). The GWs 2-point

function can be written as Pgw ∝ ρgw
M2

Pl
. There are also 4 powers of qpeak, arising from the

two momentum integrals. Substituting these into Eq. (3.47), we find ρψ/ρc ∝
q4peak
M4

Pl

1
H2∗

(
ρgw
H2

0
).

Next, when counting H∗ as T 2
∗ /MPl, it is essential to also count qpeak, since our scaling

is qpeak/H∗ ∼ 102 − 103. Additionally, ρgw is the energy density of stochastic classical
gravitational waves, specified by the early universe processes that generate them. After the
fermions become non-relativistic, a factor of M

T0
arises. Combining these factors, the power

counting of MPl in Ωψ,0 is expressed as Ωψ,0 ∼ M
T0

T 4
∗

M6
Pl

ρgw
H2

0
, as shown in Eq. (6.3).

We plot our result in the T∗-vs-M plane in Fig. 8, demonstrating that our mechanism
can explain the observed DM density in the Universe for a wide range of DM masses and
temperature scales. As shown by the colored lines, the exact values of T∗ and M for which
the correct Ωψ,0 is realized depend on the shape of the GW spectrum, but the mechanism

3Notice that Eq. (5.10) and (5.20) exhibit the expected M−2
Pl suppression through Ωpeak ∝ 1

M2
Pl

. As
a result, the backreaction of relativistic fermion production onto the GW background is negligible, i.e.
ρψ/ρgw ∼ Cq4peak/(H2

∗M
2
Pl) ≪ 1.
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Figure 8: Dark matter freeze-in from stochastic gravitational waves produced in a first-
order phase transition. We have assumed a broken power law GW spectrum, with spectral
index m = 3 below the peak frequency, qpeak, and n at higher frequencies (see Eq. (4.16)).
Green, blue, and orange lines show the phase transition temperature T∗ and DM mass M

required to explain the observed DM density for different values of n. Solid and dashed lines
correspond to incoherent and coherent GWs, respectively. Below the lines, GW-induced
freeze-in can still contribute a fraction of the DM. The bottom edge of the shaded bands
indicates where that fraction is 1%. For comparison, we show in yellow the parameter
regions in which conventional cosmological production of supermassive fermions by the
expansion of the Universe [18–20] and graviton-mediated inflaton annihilation [22, 23] give
the correct relic density. The different panels correspond to different GW peak amplitudes
Ωpeak and peak frequencies qpeak, as indicated in the plots.
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typically favors T∗ well above the electroweak scale and safely below the Planck scale. The
sensitivity to the shape of the GW spectrum is much larger for incoherent GW backgrounds
(solid lines) than for coherent ones (dashed lines). In plotting Fig. 8, we have chosen
particular values of Ωpeak and qpeak (with Ωpeak well below the Big Bang Nucleosynthesis
bound, Ωpeak ≲ 3.5 × 10−6mn/(m + n)), but the scaling at different Ωpeak, qpeak can be
read off immediately from Eq. (6.4).

Note that the values of T∗ and qpeak for which our model explains the DM relic density
correspond to GW peak frequencies today, fpeak, of order kHz to GHz.4 The lower end
of this range falls well within the sensitivity range of future terrestrial gravitational wave
detectors like the Einstein Telescope [52] and Cosmic Explorer [53], which cover frequen-
cies between ∼ 1Hz and 10 kHz. Sensitivity at higher frequencies requires novel detector
technologies [54], though, in this early stage of development, none of them would be able
to probe cosmological backgrounds. Pushing the model towards lower frequencies, possibly
explaining the DM relic abundance with GW backgrounds accessible to LISA [55] would
require low values of qpeak/H∗ (corresponding e.g. to very slow phase transitions), hard
spectra (i.e. low n), and incoherent emission.

6.2 Comparison with gravitational production of superheavy fermions

Let us now compare this new production mechanism for (effectively) massless fermions
by GWs with i) the conventional production mechanism of superheavy fermions by the
expansion of the Universe, i.e. cosmological gravitational particle production (CGPP) [19,
20], and ii) dark matter production via s-channel graviton exchange in the hot primordial
plasma (SS → hij → XX, where S is a SM field or the inflaton) [22, 23]. For an excellent
review article on this topic see Ref. [18].

Consider superheavy fermions with a mass M that satisfies M < H∗ < Hinf, where Hinf

is the Hubble parameter at the end of inflation. The energy density of the dark fermions
today through CGPP is [18]

ρCGPP
Ψ,0

ρDM,0
∼ 7×

(
M

1011GeV

)2( Treh

109GeV

)
, (6.6)

with the reheating temperature Treh. Note that this process is not thermal and the depen-
dence on Treh enters through the redshift. Here, we have used Eq. (4.11) for H∗, assuming
radiation domination, i.e. T∗ ≲ Treh.

For high reheating temperatures, Treh ≳ 1013GeV, the annihilation of inflatons or
SM particles through s-channel graviton exchange presents an alternative gravitational
production mechanism for dark matter [22, 23]. The relic density of dark matter produced

4To see this, note that

fpeak ≡ qpeak = 4.8MHz×
(
qpeak/H∗

100

)(
g∗(τ∗)

106.75

)1/6(
T∗

3× 1011 GeV

)
, (6.5)

as can be seen by invoking the definition of H∗, Eq. (2.12), the expression for the Hubble rate during
radiation domination, H(T ) =

√
8πG/3

√
π2g(T )/30T , as well as entropy conservation, gT 3a3 = const.

– 26 –



by graviton-mediated annihilation of inflatons (GMA) is [18, 22]

ρGMA
Ψ,0

ρDM,0
∼ 5×

(
M

1012GeV

)(
Treh

1013GeV

)3

, (6.7)

where M ≲ Treh is required.
In Fig. 8, the parameter regions in which cosmological gravitational particle production

(Eq. (6.6)) and graviton-mediated inflaton annihilation (Eq. (6.7)) yield between 1% and
100% of DM relic abundance are shown as yellow bands. We see that these mechanisms,
especially CGPP, require larger M and T∗ than gravitational-wave induced production. In
other words, over vast regions of parameter, our loop-induced mechanism dominates over
these tree-level mechanisms.

7 Summary and Outlook

Our study in [1] has unveiled a new mechanism for the production of Weyl fermions in the
early Universe: a gravitational freeze-in process of fermions driven by stochastic gravita-
tional waves in an expanding Universe, i.e. GW-induced freeze-in. This is notable since the
expansion of the Universe alone cannot changes the Weyl fermion number density. But at
the loop level by considering cosmic perturbations, it does. Cosmological correlators are
usually generated at the tree level with subleading loop contributions. In contrast, GW-
induced freeze-in starts at the loop level. In this work, we have presented an extended study
of this new phenomenon. The crucial point is that a GW background introduces new scales
in the system and breaks the fermions’ conformal invariance. Our fermions are coupled
to the rest of the SM only through minimal gravitational interactions, yet a sizeable relic
abundance can be generated. As the fermions are weakly coupled and never reach thermal
equilibrium, this abundance will survive until today. In Table 1 we have compared the new
gravitational fermion production mechanism introduced in [1] to the other gravitational
production mechanisms known in the literature.

We have undertaken a detailed study of GW-induced freeze-in using the in–in formal-
ism during the radiation era. In particular, we have computed the 1-loop contribution of
stochastic gravitational waves to the energy density (Eq. (3.7) and Eq. (3.36)) of Weyl
fermions. We have also calculated their pressure (Eq. (3.48)), showing that they indeed be-
have like radiation. We have first obtained a general expression (Eq. (3.47)), and have then
evaluated it for specific gravitational wave backgrounds, notably those whose frequency
spectrum can be parameterized as a broken power law (Eq. (4.16)). This includes in par-
ticular gravitational waves generated by phase transitions and primordial magnetic fields,
and approximately also gauge fields in inflation and gauge reheating/preheating. Given
that our result is related to the unequal-time 2-point function of GWs, we considered two
extreme scenarios for the temporal coherence of GWs, namely fully incoherent in time and
fully coherent in time. The energy density of Weyl fermions for the incoherent and coherent
cases are given in Eq. (5.10) and Eq. (5.20) respectively.

The final Weyl fermion energy density is tied to the characteristics of the gravitational
wave spectrum that sources it through its proportionality to i) the peak wave number qpeak,
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ii) the peak energy density Ωpeak, as well as iii) the degree of coherence in time of GWs and
iv) the shape of the spectrum through Cincoh and Ccoh. Additionally, the relic density today
depends on v) the redshift and the Hubble rate at fermion production, which is written
in terms of temperature at phase transition T∗. This is why, despite being a non-thermal
production process, our final result depends on T∗.

If the initially massless fermions acquire a mass later in cosmological history, they
can play the role of dark matter (see Eq. (6.4) and Fig. 8). The typical scale T∗ of DM
production in this scenario is between 106GeV and 1015GeV. This corresponds to GW
peak frequencies, fpeak, today ranging from kHz to GHz. The lower end of this range
aligns with the sensitivity band of forthcoming terrestrial gravitational wave detectors such
as the Einstein Telescope [52] and Cosmic Explorer [53], while higher frequencies present
an interesting target for novel detection techniques currently under development [54]. Of
particular interest is the fact that our loop-induced gravitational fermion production mech-
anism works in regions of paramater space not accessible to tree-level gravitational pro-
duction mechanisms, namely cosmological gravitational particle production (CGPP) and
Graviton-Mediated-Annihilation (GMA) (Section 6.2 and Fig. 8).

The next step in advancing this line of research is to go beyond our analytical esti-
mates by means of numerical simulations to improve the precision of our predictions. In
a separate work, we plan to apply this approach specifically to gravitational waves gener-
ated by primordial magnetic fields [56] and for fluctuations during inflation [39]. Another
possible direction of future research is the inclusion of CP violation through chiral gravita-
tional waves, which could lead to a difference in the amounts of particles and anti-particles
produced.
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A Notations and Conventions

In this appendix, we summarize our notations and conventions. Throughout our work, a
dot denotes a derivative with respect to cosmic time,

Ẋ ≡ ∂tX, (A.1)

and a prime denotes a derivative with respect to conformal time

X ′ ≡ ∂τX. (A.2)
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We set the cosmic scale factor today to a0 = 1, and we use the notation MPl = (8πG)−
1
2

for the reduced Planck mass.
The Hubble parameter H, conformal Hubble parameter H, and conformal time τ during

the radiation era are related as

H = aH =
1

τ
. (A.3)

Throughout, the following notation is used for symmetric tensor products

X(iYj) ≡ XiYj +XjYi. (A.4)

Our convention for Fourier expansions follows ref. [40], i.e.,

f(x, τ) =

∫
d3q fq(τ) e

iq.x. (A.5)

The following subscripts are frequently used: for a given quantity X,

Xi denotes the initial value,

X∗ denotes the value at the settling time t∗ (see Section 4.2)

X0 denotes the value today,

XI denotes an operator evaluated in the interaction picture.

(A.6)

The following conventions are used for indices:

(µ, ν, ξ, . . . ) denote space-time Lorentz indices,

(α, β, γ, . . . ) denote tangent space coordinates,

(i, j, k, . . . ) denote spatial Lorentz indices,

(a, b, c, . . . ) denote spatial tangent space coordinates.

(A.7)

The 4-component Dirac fermions are denoted as ΨD = (ΨL,ΨR) where ΨL,R are Weyl
fermions. In this manuscript, we mostly work with 2-component spinors which are acted
upon by 2 × 2 matrices, and we use bold symbols for both. In particular, ψ is a 2-spinor
and

Ψ ≡ a3/2ψ, (A.8)

is the corresponding canonically normalized spinor. We have two complete sets of unitary
2× 2 matrices,

σα ≡ (I2,σ
i) and σ̄α ≡ (I2,−σi), (A.9)

in which σi are the Pauli matrices. In addition, we use boldface notation also for the
comoving 3-vectors x, k, q. We denote tetrads, GW helicity states, and spinors as

eαµ = tetrads, (A.10)

esij = GW helicity states(s = ±2), (A.11)

Eλk = spinor helicity states(λ = ±1
2), (A.12)

where s and λ label the spins of GWs and fermions, respectively.
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B Spinors in Curved Space

Here, we work out the spin connections of the FLRW metric with gravitational waves up
to second order in GW perturbation theory. We fix the gauge to second order in small
fluctuations. The perturbed metric can be written as

g00 = −1 and gij = a2ĝij , (B.1)

with

det ĝ = 1, ĝij = (δij + hij +
1
2hikhjk + . . . ). (B.2)

We have hii = 0 and ∂ihij = 0, up to second order in perturbation theory. The inverse
metric is given by

gij =
1

a2
(δij − hij +

1
2hikhjk + . . . ). (B.3)

The metric can be expressed in terms of the tetrads {eαµ},

gµν = eαµe
β
νηαβ, (B.4)

and from Eq. (B.1) it is then straightforward to show that the non-zero components of the
tetrads are

e00 = 1, (B.5)

eai = a δaj (δij +
1
2hij +

1
8hikhjk), (B.6)

The metric connections (Christoffel symbols) are

Γ0
ij = a2

[
H
(
δij + hij +

1

2
hikhjk

)
+

1

2
∂0hij +

1

4
∂0(hikhjk)

]
, (B.7)

Γi0j = Hδij +
1

2
∂0hij +

1

4
∂0(hikhjk)−

1

2
hik∂0hjk, (B.8)

Γijk =
1

2

(
− ∂ihjk + ∂jhik + ∂khij

)
+

1

4

[
− ∂i(hjlhkl) + ∂j(hilhkl) + ∂k(hilhjl)

]
+

1

2

(
hil∂lhjk − hil∂jhlk − hil∂khjl

)
. (B.9)

The spinor covariant derivative Dµ is

Dµ ≡ ∂µ − ωµ, (B.10)

where ωµ ≡ i
2ω

αβ
µΣαβ is the spin connection, Σαβ = i

4 [γα, γβ] are the generators of the
Lorentz group in the spinor representation for Dirac fields, and

ωαβµ ≡ eαν∇µe
β
ν = eαν∂µe

β
ν − Γνµξe

αξeβν . (B.11)
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Here we work out the spin connections for a Dirac field and it is straightforward to find it
for the left- and right-handed Weyl fermions. Expanding around the background up to first
order in the GW amplitude yields

δ1ω
0a
0 = δ1ω

ab
0 = 0, (B.12)

δ1ω
0a
j = a

[
Hδaj +

1

2
δak
(
Hhjk + ∂0hjk

)]
, (B.13)

δ1ω
ab
i =

1

2
δalδbk

[
∂khil − ∂lhik

]
. (B.14)

At second order, we have

δ2ω
0a
0 = 0, (B.15)

δ2ω
ab
0 =

1

8
δaj δ

b
i

(
hil∂0hjl − hjl∂0hil

)
, (B.16)

δ2ω
0a
j = aδak

(1
8
Hhjlhkl +

1

4
hlj∂0hkl

)
, (B.17)

δ2ω
ab
i =

1

4
δaj δ

b
k

(1
2
hkl∂ihjl −

1

2
hjl∂ihkl + hil∂khjl − hil∂jhkl + hjl∂lhik − hkl∂lhij

)
,

(B.18)

where δ2 denotes second order in hij . The full spin connections up to 2nd order in hij are

ω0 =
i

16
ϵkjahij∂0hik

(
σa 0

0 σa

)
, (B.19)

ωi =
a

2

[
Hδai +

1

2
δak
(
Hhik + ∂0hik +

1

2
hli

(
∂0hkl +

H

2
hkl

))](σa 0

0 −σa

)

+
i

2
ϵ a
lk

[
∂khil +

1

2

(1
2
hkj∂ihlj + hij∂khlj + hlj∂jhik

)](σa 0

0 σa

)
. (B.20)

B.1 First order Dirac operator

We now work out the Dirac equation in the presence of GWs. The general form of the Dirac
equation for a massless field in curved space is

e µ
α γαDµψ = 0. (B.21)

Up to first order in hij , we have

e µ
α γαDµ =

= γ0∂0 + γbe i
b

(
∂i −

a

2

[
Hδai +

1

2
δak
(
Hhik + ∂0hik

)](σa 0

0 −σa

)
+

i

4
ϵ a
lk ∂lhik

(
σa 0

0 σa

))

= γ0∂0 +

{
γi

1

a
(∂i −

1

2
hij∂j)−

1

2

[
Hγk +

1

2
γi
(
Hhik + ∂0hik

)](σk 0

0 −σk

)

− 1

4a

(
γj∂ihij − γj∂jhii

)}
. (B.22)
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Imposing the traceless and transverse condition on hij , we find the first-order Dirac operator
as

e µ
α γαDµ = γ0

(
∂0 +

3

2
H
)
+

1

a
γi
(
∂i −

1

2
hij∂j

)
(B.23)

This implies that the canonically renormalized Dirac fermion field is ΨD ≡ a
3
2ψD. The

first-order interaction Lagrangian can be simplified as

δ1Lint = − i

2a4
hijΨ̄Dγ

i
↔
∂ jΨD. (B.24)

The field equation in terms of Ψ is(
γ0∂0 +

1

a
γi∂i −

1

2

hij
a
γj∂i

)
ΨD = 0. (B.25)

As we see, the effect of the expansion of the Universe has disappeared in the dynamics of
the canonically normalized field. This is a consequence of the conformal symmetry of the
Weyl fermions.

B.2 Second order Dirac operator

At second order in hij , we have 4 contributions, namely

δ2(γ
0ω0) =

i

16
ϵkjahij∂0hik

(
0 σa
σa 0

)
, (B.26)

γbδ1e
i
b δ1ωi =

1

8
γbhijδ

j
bδ
ak

[(
Hhik + ∂0hik

)(σa 0

0 −σa

)
+

i

a
ϵ k
ln ∂lhin

(
σa 0

0 σa

)]
,

γbδ2e
i
b ωi = −H

16
γbδjbδ

akhijhik

(
σa 0

0 −σa

)
,

γbe i
b δ2ωi = − i

8a
γbδjbδ

akϵ k
ln

[
− 1

2
hin∂jhil + hij∂lhin + hin∂ihjl

](
σa 0

0 σa

)

− 1

8
γbhijδ

j
bδ
ak
(
∂0hik +

H

2
hik

)(σa 0

0 −σa

)
. (B.27)

These terms can be combined into

δ2(e
µ
α γαDµ) = γ0

i

16a
ϵ j
ln hin∂jhilγ

5 +
1

a
γi
( 1

16
hkj∂khij −

ia

16
ϵ j
in hlj∂0hlnγ

5
)

=
i

16

(1
a
γ0ϵ j

ln hin∂jhil − ϵ j
ln hij∂0hinγ

l
)
γ5, (B.28)

where in the second line we have dropped a total derivative. The second-order interaction
Lagrangian can therefore be simplified as

δ2Lint = − i

16a3
eµαhij∂µhikΨ̄DΓ

αjkΨD, (B.29)

where Γαjk is the totally anti-symmetrized product of three gamma matrices.
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