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Abstract

The first search for a heavy neutral spin-1 gauge boson (Z′) produced via vector boson
fusion processes is presented. The analysis considers scenarios in which the Z′ boson
has non-universal fermion couplings, favoring higher-generation fermions. This of-
fers a new physics phase space not yet fully explored at the LHC. The analysis is
performed using LHC data at

√
s = 13 TeV, collected from 2016 to 2018, correspond-

ing to an integrated luminosity of 138 fb−1. The data are consistent with the standard
model expectation. Upper limits are set on the product of the Z′ cross section and the
branching fraction for a Z′ boson decaying to ττ or WW. Masses below 2.45 TeV are
excluded, depending on the Z′ coupling to weak bosons.
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The standard model (SM) of particle physics has been a successful theory to explain many
experimental observations. However, it is not an ultimate theory of nature. For example, the
SM fails to explain neutrino masses, matter-antimatter asymmetry, and the particle nature of
dark matter. Furthermore, recent experimental results from precision measurements regarding
the decay ratios of B mesons [1–11] and the measurement of the muon anomalous magnetic
moment [12] show significant deviations from the SM expectation [13]. Various models of
physics beyond the SM (BSM) have been proposed to address these shortcomings. Examples
of such models include minimal U(1)X extensions [14], top-assisted technicolor models [15],
Randall-Sundrum models [16–18], grand unified theories [19], and E(6) models [20]. Such
models predict new heavy neutral gauge bosons, referred to as Z′, that could be observed in
proton-proton (pp) collisions at the CERN LHC.

The existence of Z′ bosons has been extensively probed at the LHC, mainly considering pro-
duction via Drell-Yan processes with sizable Z′ coupling (gq) to light quarks [21–28]. A widely-
used benchmark model in those searches is the sequential SM (SSM), which assumes a Z′ boson
with the same couplings to quarks and leptons as the SM Z boson. Although Z′SSM masses have
been excluded by the ATLAS and CMS Collaborations for masses up to 5 TeV, considering Z′

decays to electron and muon pairs, the bounds on m(Z′) are significantly weaker under differ-
ent assumptions (e.g., non-universal fermion couplings, NUFC) [29, 30]. Furthermore, the lack
of evidence in current searches point to Z′ having different features, e.g., small gq , from what is
traditionally assumed, thus remaining concealed in processes not yet investigated. This anal-
ysis focused on BSM scenarios with a Z′ boson that couples with strength κV to the SM weak
bosons and has NUFC. These models motivate a search for Z′ resonances produced via inter-
actions with SM weak bosons, and where the Z′ decays to a pair of τ leptons. Such a pattern
with NUFCs can explain the current tensions with the SM observed in the muon g− 2 results
and the anomalies in the B meson sector.

This note presents the first search for a Z′ boson considering production through vector boson
fusion (VBF) processes at the LHC, using 138 fb−1 of data collected during 2016-2018 from pp
collisions at

√
s = 13 TeV. In a VBF reaction a quark from each of the colliding protons radiates

an SM electroweak vector boson, and the merger of these produces a Z′ boson. The subsequent
decay of the Z′ boson leads to a pair of τ leptons or of W bosons, which are accompanied by
two jets from the scattered quarks. Four Z′ decay channels are utilized: eµ, µτh, eτh, and τhτh,
where τh refers to a τ lepton that decays hadronically. In the Z′ → τ+τ− mode, the electrons
and muons are produced from the leptonic decays of τ leptons, while they may arise directly
from W → `ν decays in the case of the Z′ →W+W− mode.

The central feature of the CMS detector is its superconducting solenoid magnet with 6 m inner
diameter, which provides magnetic field of 3.8 T. Inside this solenoid magnet, there are three
sub-detectors: a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calor-
imeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) composed of a barrel
and two endcap sections. Outside the solenoid magnet, an iron quartz fiber hadron calorimeter
is placed in the forward region (at pseudorapidity 3 < |η| < 5) of the CMS detector to detect
forward particles. Muon detectors are embedded in the iron flux-return yoke surrounding the
solenoid magnet to measure the momentum of muons. A detailed description of the CMS
detector can be found in [31].

Events are reconstructed from particle candidates (electrons, muons, photons, and hadrons)
identified using the particle-flow (PF) algorithm [32]. The algorithm combines information
from all sub-detectors to classify final-state particles produced in the collision. The resulting
set of particles is used to reconstruct the τh candidates, jets, missing transverse momentum, and



2

the isolation variables described below. The primary vertex (PV) is taken to be the vertex cor-
responding to the hardest scattering in the event, evaluated using tracking information alone,
as described in Section 9.4.1 of Ref. [33]. Electron candidates are reconstructed by matching en-
ergy clusters in the ECAL with tracks in the inner tracker. A dedicated electron identification
is used to distinguish electrons produced in hard scattering processes from charged hadrons
and from electrons produced through photon conversions [34]. Muons are reconstructed using
the tracker and muon chambers and by requiring consistency with low-energy measurements
in the calorimeters. The electron and muon selections impose an isolation requirement to sup-
press both jets erroneously identified as leptons and genuine leptons from hadron decays. The
isolation variable I` is defined as the scalar pT sum, divided by the lepton pT, of charged and
neutral PF candidates within a cone in (η, φ, with φ the azimuthal angle) of radius 0.4 (0.3)
around the muon (electron) direction at the interaction vertex. The sum excludes the lepton
under consideration as well as particles identified as arising from additional pp interactions
within the same or a nearby bunch crossing (”pileup”). The isolation criterion is I` < 0.15 [35].

Jets are clustered using the anti-kT clustering algorithm [36, 37] with a distance parameter of
0.4. Identification criteria are applied to jet candidates to remove anomalous effects from the
calorimeters [38]. For jets with pT > 30 GeV, the identification efficiency is >90% depending on
pseudorapidity. The jet energy scale and resolution are corrected depending on the pT and η of
the jet [39]. Jets originating from the hadronization of b quarks are identified using secondary
vertexing algorithms. The identification efficiency is 40–60% for genuine b jets, depending on
pT, η, and the year of data collection, and the light-flavor quark or gluon misidentification rate
is 0.1–0.9% [40].

Hadronic decays of τ leptons are reconstructed and differentiated from light-flavor quark and
gluon jets using the hadrons-plus-strips algorithm [41] and are identified using a discriminator
based on a neural network that combines variables related to isolation and the τ lepton lifetime
to identify specific classes of τh decay modes [42]. The tight-isolation working point is used to
define the signal region, which results in a τh identification efficiency of 60% for this analysis,
and a 0.05-0.3% probability for a jet to be misidentified as a τh, depending on the pT and η val-
ues of the τh candidate [42]. The loose-isolation working point, which is used for background
estimation studies, has a τh identification efficiency of 80% and a 0.1-1% jet misidentification
probability. To discriminate τh from muons and electrons, a neural network based lepton re-
jection discriminator is used that requires that the lead track of the τh not be associated with a
global muon signature or an electron bremsstrahlung shower [43]. The misidentification rate
for electrons (muons) is 3.60 (0.02)% for a genuine τh identification efficiency of 80%.

The missing transverse momentum ~p miss
T is the negative vector pT sum of all PF candidates. Its

magnitude is pmiss
T . Production of undetected particles such as SM neutrinos is inferred from

the measured pmiss
T [44, 45]. The jet corrections described are propagated as corrections to pmiss

T ,
which improves the agreement in pmiss

T between simulation and data.

Data for this search were collected using single-lepton triggers for final states with electrons or
muons, and a double-τh trigger for the τhτh analysis [46]. The single muon (electron) trigger
requires an isolated muon (electron) with a minimum pT of 24 or 27 GeV (32 or 35 GeV), de-
pending on the year. The double-τh trigger uses isolation criteria and pT(τh) thresholds of 32,
35, or 40 GeV, depending on the year.

Events satisfying the trigger selections must pass additional offline lepton requirements. An
event must contain exactly one pair of leptons having opposite electric charge (OS). The muon
in the eµ (µτh) channel is required to have pT > 30 (35)GeV within |η| < 2.1. The electron in
the eµ (eτh) channel is required to have pT > 10 (55)GeV within |η| < 2.1. The τh candidates
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in the τhτh (µτh & eτh) channel are required to have pT > 70 (20)GeV within |η| < 2.1, where
the trigger is fully efficient.

Experimentally, the distinctive signature of events resulting from VBF processes is the pres-
ence of two energetic jets with a large η separation (∆η), located in opposite hemispheres of
the CMS detector (ηj1ηj2 < 0). Therefore, in addition to the criteria of a lepton pair target-
ing the Z′ → τ+τ− and Z′ → W+W− decay chains, we require two well-identified jets with
pT > 30 GeV and |η| < 5, with reconstructed dijet mass (mjj) above 500 GeV and |∆η(jj)| > 4.2,
that fulfill the ηj1ηj2 < 0 requirement. We refer to these requirements as the VBF selections.
All selected particle candidates must be well separated from each other by a requirement
∆R ≡

√
(∆η2 + ∆φ2) > 0.4. To reduce background contamination from SM processes con-

taining t quarks, events must contain no jet with pT > 30 GeV and |η| < 2.4 identified as a
b quark jet. The associated neutrinos from the τ lepton and W boson decays generate siz-
able pmiss

T . We require pmiss
T > 30 GeV to suppress the contribution from quantum chromo-

dynamic processes (QCD multijet events). We use the reconstructed mass between the two
lepton candidates and ~p miss

T , m(`1, `2, pmiss
T ), as the main observable to search for the presence

of signal among background events. The reconstructed mass is defined as m(`1, `2, pmiss
T ) =√

(E`1
+ E`2

+ pmiss
T )2 − (~p`1

+ ~p`2
+ ~p miss

T )2. The m(`1, `2, pmiss
T ) in signal events probes the Z′

mass scale, and is expected to be larger on average than for the backgrounds. The strategy is to
search for a broad enhancement in the large m(`1, `2, pmiss

T ) part of the spectrum.

The dominant SM background processes contributing to the search are W and Z boson pro-
duction in association with jets (W+ jets and Z+ jets), t quark pairs, and QCD multijet. The
W+ jets and Z+ jets events contain genuine lepton candidates, energetic jets, and pmiss

T from
neutrinos. Background from t quark pairs (tt) events is characterized by two b quark jets in
addition to genuine leptons. QCD multijet events arise from jets misidentified as leptons.

Simulated samples for Z+ jets, W+ jets, and single-t-quark events are produced with the MAD-
GRAPH5 aMC@NLO 2.6.0 program [47] at leading order (LO) in QCD. Events from tt plus jets
are generated with POWHEG 2.0 [48] at next-to-leading order (NLO) accuracy [48]. The LO
PYTHIA generator [49] is used to model diboson (VV) processes. The signal samples are gen-
erated using MADGRAPH5 aMC@NLO at LO accuracy, considering the production of a Z′ and
two associated jets (pp → Z′ jj), with the QCD vertex suppressed to isolate events from pure
electroweak processes. At the MADGRAPH5 aMC@NLO parton level, jets have pT > 20 GeV
and |η| < 5.0. Furthermore, the jet pair must be separated in η-φ space, |∆η(j1, j2)| > 4.2,
and have mjj > 500 GeV, to suppress pp → VZ′ → jjZ′ from hadronically decaying W or Z
bosons. We use the simplified model in Ref. [50], where the Z′ masses and couplings to the SM
particles are free parameters. The Z′ coupling to first and second generation fermions is de-
fined as g`gZff , where gZff is the SM Z boson coupling, and g` is a ”modifier” for the coupling.
The coupling to third-generation fermions is similarly defined with gh as the modifier for the
SM Z boson coupling to third-generation fermions. Finally, the Z′ coupling to the SM weak
vector bosons is defined as gZ′VV = κV gZVV , where gZVV is the SM Z boson coupling to the
SM weak vector bosons and κV is a modifier for that coupling. Four sets of signal models are
utilized: (i) Z′ → τ+τ− decays with g` = 0, henceforth referred to as simplified phenomeno-
logical model 1 (SPM1); (ii) Z′ → τ+τ− decays with g` = 1 (SPM2); (iii) Z′ → WW decays
with g` = 0 (SPM3); and (iv) Z′ → WW decays with g` = 1 (SPM4). The g` = 0 cases are a
proxy for NUFC scenarios, where the couplings of the Z′ to light fermions are suppressed. The
g` = 1 case allows for non-negligible couplings to light fermions. For all sets of signal models
described above, five κV values are considered: κV = 0.1, 0.25, 0.50, 0.75, 1.0.
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The MADGRAPH5 aMC@NLO and POWHEG generators used to simulate signal and back-
ground processes are interfaced with PYTHIA 8.212 (and 8.230) using the CUETP8M1 (and CP5
tunes) [51, 52] for parton shower and fragmentation in the 2016 (and 2017-2018) simulated
samples, respectively. The NNPDF3.0 LO and NLO [53] parton distribution functions (PDFs)
are used in the event generation. The simulated background yields are normalized to the in-
tegrated luminosity using next-to-NLO (NNLO) or NLO cross sections in QCD, while signal
production cross sections are calculated at LO accuracy. The response of the CMS detector in
these Monte Carlo (MC) samples is simulated using dedicated software based on the GEANT4
toolkit [54]. Pileup is incorporated by simulating additional interactions that are both in time
and out of time with the collision.

The strategy for the estimation of the background contributions in the signal region (SR) de-
pends on the channel. Where possible, we derive the background with τh candidates arising
from misidentification of other objects (“misID τh”), using data-driven techniques. These make
use of τh candidates (“antiISO τh”) that satisfy the loose-, but fail the tight-isolation τh identifi-
cation. The estimation of backgrounds with genuine leptons makes use of simulation combined
with data-to-simulation correction factors derived from dedicated control regions (CRs). Small
background contributions in the SRs are taken directly from simulation.

For the eτh and µτh channels, the main contributing background is from events with jets
misidentified as τh candidates, mainly coming from processes such as W+ jets and tt with
one leptonic W decay. This background contribution is estimated from data using CRs ob-
tained with no VBF selections and containing an antiISO τh. Events in this CR are reweighted
with two factors: (i) a VBF efficiency factor; and (ii) a transfer factor, referred to as the misID
ratio defined as the ratio of events with nominal τh candidates to events with an antiISO τh. The
misID ratios are derived as a function of pT(τh) and η(τh) in a Z(→ µµ) + τh CR, where the
τh is a misidentified jet. The VBF efficiency is calculated from data, using a W(→µν)+ jets CR
with transverse mass mT(~pµ ,~p miss

T ) near the Jacobian mW peak. The measurements between
data and simulation agree within statistical uncertainties. Any residual m(`1, `2, pmiss

T ) shape
biases in the misID τh background prediction are accounted for using correction factors, as a
function of ∆φ(~p` ,~p miss

T ), derived from the MC samples.

The dominant genuine-τh background contribution in the eτh and µτh SRs arises from tt fully-
leptonic events. This background is estimated using data-to-simulation efficiency scale factors
(SFs), implemented to account for differences between the data and the modeling of the se-
lection efficiencies in simulation. The SFs are measured in dedicated CRs requiring the same
lepton pair criteria as for the SR, but, in addition, selecting events with one b jet candidate.
Events are divided into two categories: (1) passing nominal VBF selections; and (2) failing the
VBF criteria. The CR composed of events failing the VBF criteria serves to calibrate the mod-
eling of the non-VBF selections in simulation. The CR with events satisfying the VBF criteria
allows us to measure the SFs associated with the modeling of the VBF efficiency.

For the τhτh channel, the main contribution comes from Z+ jets processes with genuine τh
candidates, and is estimated from simulation using SFs obtained from dedicated CRs. The CRs
are obtained using the same selection criteria for the lepton pair as in the SR, but requiring
the reconstructed mass m(τhτh) of the two τh candidates to be between 50 and 100 GeV, the
peak range for Z → τhτh. Events passing these requirements are used to measure one SF
to determine the data-to-MC agreement associated with the modeling of τh candidates, while
events additionally satisfying the VBF criteria are used to obtain a second SF to measure the
level of agreement between data and simulation associated with the VBF dijet efficiency. The
contribution of QCD multijet events in these Z(→τhτh)+ jets CRs is estimated from data using
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Figure 1: Observed m(`1, `2, pmiss
T ) for the data, and the post-fit backgrounds (stacked his-

tograms), in the signal region for µτh (upper left), τhτh (upper right), eτh (lower left), and
eµ (lower right) channels. The lower panels show ratios of the data to the pre-fit background
prediction and post-fit background yield as red open squares and blue points, respectively.
The gray band in the lower panels indicates the systematic component of the post-fit uncer-
tainty. The dashed lines correspond to the signal expectation, for Z′ masses of 1 TeV (black)
and 2.5 TeV (magenta) decaying to τ+τ−, normalized to 199.4 fb and 0.7504 fb respectively.
The dashed brown line corresponds to Z′ mass of 1.25 TeV decaying to W+W−, normalized to
61.14 fb.

CRs obtained with τh pairs having the same electric charge (LS). The transfer factor between LS
and OS events is calculated using events with antiISO τh and m(τhτh) > 100 GeV. Correction
factors of 0.96± 0.2, 0.95± 0.16, and 1.17± 0.16 for Z(→τhτh)+ jets are measured in this CR for
the 2016, 2017, and 2018 data sets, respectively. The uncertainties are purely statistical. These
correction factors are used to scale the Z(→τ+τ−)+ jets prediction in the SR.

The contribution of QCD multijet events in the τhτh SR is determined using data. An enriched
CR with QCD multijet events is obtained by the requirement of an LS τh pair. This CR is used
to obtain the expected yield of QCD multijet events in the SR. The expected QCD SR yield is
estimated using as a transfer factor the ratio of OS to LS τh pairs, using two different CRs.
These CRs are obtained by selecting events that fail the VBF and pmiss

T criteria and have either
an OS or an LS antiISO τh pair. The smaller W+ jets background contribution in the τhτh SR is
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determined by correcting the prediction from simulation with VBF and non-VBF efficiency SFs
derived from high-purity W(→µν)+ jets control samples.

In the eµ channel, the main contribution comes from the tt background, with fully leptonic t
quark decays. A data-driven estimation of the tt background is performed using the classic
ABCD method, in which region A is the SR, and regions B, C, and D are defined by selections
similar to those if the SR, but with one or two modifications to insure that all four regions
are orthogonal. CRB is defined with events containing exactly one b jet candidate, CRC with
events containing one b jet candidate and failing the VBF criteria, and CRD with the same b jet
veto as the SR but failing the VBF criteria. The tt yield NA in the SR for each m(e, µ, pmiss

T ) bin is
obtained as NA = (NB/NC)ND, where NB and NC are the data yields in those respective CRs,
and ND is given by the yield in CRD minus an estimate from simulation of the contribution
of non-tt processes. Closure tests for this methodology are performed using simulation, and
additional tests are carried out using data CRs with two b jet candidates.

Various effects impact the predicted shape and normalization of the reconstructed m(`1, `2, pmiss
T )

background distribution. The major source of systematic uncertainty comes from the difference
in the misID τh ratios between light quark and gluon jets. This uncertainty is determined by the
deviation of the misID ratios obtained in a Z(→ µµ) + τh sample, where the τh is a misiden-
tified jet, from those in a sample of W(→ µν) + τh events with a like-sign µτh pair. This un-
certainty depends on pT(τh) and varies from 4 to 20%. Uncertainties of 1–21%, depending on
the process, in the background predictions arise from the statistical uncertainties of the data in
the CRs used for measuring SFs. Another source of systematic uncertainty is the closure of the
background estimation methods, where closure refers to tests made (on data and simulation)
to check that the background determination techniques reproduce the expected background
distributions in both rate and shape within the statistical uncertainties. The background esti-
mation uncertainty from the closure tests is <20% for all processes.

The signal and background yields estimated from simulation are affected by similar sources
of systematic uncertainty, with small differences between the 2016, 2017, and 2018 data sets.
The integrated luminosities for the 2016, 2017, and 2018 data-taking years have 1.2–2.5% in-
dividual uncertainties [55–57], while the overall uncertainty for the 2016–2018 period is 1.6%.
Uncertainties due to the identification of µ and e are <1% for all background and signal pro-
cesses [34, 58, 59]. The uncertainty from the τh identification and isolation requirements is
6–9%, depending on the year. The uncertainty on the τh energy scale amounts to 2%. For the
electrons misidentified as τh candidates, the uncertainties are 1–6.5% depending on the pT(τh).
The jet energy scale uncertainties (2–5% depending on η and pmiss

T ) result in an uncertainty of
1–3% depending on m(`1, `2, pmiss

T ). The uncertainty in event acceptance from the PDF set used
in simulation is determined according to the PDF4LHC recommendations [60] by comparing
the outputs from CTEQ6.6L, MSTW08, and NNPDF10 PDF sets [61–63] to those of the default
PDF set. This results in at most a 6% uncertainty for the signal processes, and for the back-
ground processes that are derived entirely from simulation. The uncertainty in the b tagging
efficiency results in 2–9% uncertainty on the predicted yields, depending on the process. The
trigger uncertainty is 3% for background and signal. During the 2016 and 2017 data-taking,
a gradual shift in the timing of the inputs of the ECAL L1 trigger in the region at |η| > 2.0
caused a specific trigger inefficiency. For events containing an electron (a jet) with pT larger
than ≈50 GeV (≈100 GeV), in the region 2.5 < |η| < 3.0 the efficiency loss is ≈10–20%, de-
pending on pT, η, and time. Correction factors were computed from data and applied to the
acceptance evaluated by simulation.

Figure 1 shows the m(`1, `2, pmiss
T ) distribution for events in the SRs for all channels. The bin-
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ning was chosen to optimize for discovery potential. The observed mass spectra shown in
Fig. 1 are consistent with the SM predictions. We therefore set 95% confidence level (CL) upper
limits on the product of the VBF Z′ cross section and the branching fraction for the decay of
the Z′ boson to τ+τ− or W+W−. The limits are estimated following the modified frequentist
construction CLs using the CMS statistical analysis tool COMBINE [64–67]. Maximum likeli-
hood fits are performed using the observed distributions to construct a combined profile like-
lihood ratio test statistic in bins of m(`1, `2, pmiss

T ). Systematic uncertainties are implemented
as nuisance parameters, which are profiled and modeled with gamma or log-normal priors for
normalization parameters and Gaussian priors for shape uncertainties.

Figure 2 shows exclusion bounds for the four signal models described above, as a function
of m(Z′) and the Z′ → τ+τ− and Z′ → W+W− branching fractions, assuming different κV
values.
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Figure 2: Combined 95% CL upper limits on m(Z′) as a function of Z′ branching fraction to
τ+τ− for the g` = 0 scenario (upper left), τ+τ− for the g` = 1 scenario (upper right), W+W−

for the g` = 0 scenario (lower left), and W+W− for the g` = 1 scenario (lower right). The red,
green and blue curves correspond to κV equal to 0.1, 0.5 and 1 respectively.

Due to the high branching fraction to hadronic decays, the τhτh channel contributes the most
to the Z′ → τ+τ− exclusion limits. There is no significant difference in impact between the
semi-leptonic τ pair decay channels. The situation inverts for the Z′ → W+W− with the eµ
channel contributing the most to this type of exclusion. For SPM1, the data exclude Z′ bosons
with masses below 1 (2.45) TeV for a Z′ → τ+τ− branching fraction of 50%, assuming κV = 0.1
(1.0). For SPM2, the bounds on m(Z′) increase by about 5% due to an increase in the pp → Z′ jj
cross section (from pure electroweak non-VBF processes) when g` = 1. For SPM3 and SPM4,
we exclude Z′ with masses below about 1.6 TeV for a 50% Z′ → W+W− branching fraction,
assuming κV = 1.0.

In summary, a search for a heavy neutral spin-1 gauge boson (Z′) produced via vector boson
fusion processes has been performed for the first time using data collected by the CMS exper-
iment, corresponding to an integrated luminosity of 138 fb−1. This is the first ever search for
Z′ produced through vector boson fusion performed at the LHC. The search considers non-
universal couplings (NUC) of Z′ bosons to fermions, including scenarios with dominant cou-
plings to third-generation fermions. Theoretical models aiming to explain B−meson anoma-
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lies in the RD∗ ratios [68–73] often include associated production of Z′ and W′ bosons with
NUC [74, 75]. Therefore, this search serves as an indirect probe to bound the available phase
space for these models. Two decay channels, Z′ → τ+τ− and Z′ → W+W−, are considered,
motivated by recent anomalies in the precision measurements of B meson decays. The invari-
ant mass of the dilepton plus missing transverse momentum is used to search for the presence
of signal as a broad enhancement above the background expectation. The data do not reveal
evidence for new physics. In Z′ models with non-universal fermion couplings, in particular
models with Z′ bosons that exhibit enhanced couplings to third-generation fermions, the pres-
ence of Z′ bosons decaying to a tau lepton (W boson) pair is excluded for Z′ masses up to 2.45
TeV (1.5 TeV), depending on the Z′ coupling to SM weak bosons, resulting in the most stringent
limits on these models to date.
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