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Abstract: The Emergent String Conjecture constrains the possible types of light

towers in infinite-distance limits in quantum gravity moduli spaces. In this paper,

we use these constraints to restrict the geometry of the scalar charge-to-mass vectors

(−∇⃗ logm) of the light towers and the analogous vector (−∇⃗ log ΛQG) of the species

scale. We derive taxonomic rules that these vectors must satisfy in each duality frame.

Under certain assumptions, this allows us to classify the ways in which different duality

frames can fit together globally in the moduli space in terms of a finite list of polytopes.

Many of these polytopes arise in known string theory compactifications, while others

suggest either undiscovered corners of the landscape or new swampland constraints.
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1 Introduction

In the realm of string theory and its low-energy effective field theory (EFT) descriptions,

the values of all continuous parameters are determined by the vacuum expectation

values of scalar fields, referred to as moduli when they are massless. In this context,

perturbative regimes in the EFT correspond to infinite-distance limits in field space.

Such limits have been studied extensively in recent years, and many of their features

are now well understood.

Meanwhile, relatively little is known about the global properties of scalar field

spaces in quantum gravity, largely due to the computational difficulties associated with

strong coupling outside of asymptotic regimes. However, asymptotic properties can

sometimes provide information about global features of moduli spaces. In this paper,

we will show how the microscopic nature of infinite-distance limits dictates how these

different limits fit together in moduli space, and we will show how this constrains

the different possible perturbative descriptions of a given theory, commonly known as

duality frames.

Central to this analysis are scalar charge-to-mass ratios, or “ζ-vectors,” which are

defined locally on moduli spaces. These ζ-vectors encode how masses m(ϕi) of particles

depend on the moduli ϕi, and are defined as

ζ⃗ = −∇⃗ log
m

MPl,d

, (1.1)

where the gradient is taken with respect to the moduli and MPl,d is the Planck mass.

We will refer to ζ-vectors of particle towers as tower vectors. At each point in a

moduli space, one can consider the convex hull1 of these tower vectors for all of the

particle towers. A priori, this convex hull could take any of a wide variety of shapes

and sizes: an effective field theorist could write down a set of particles whose masses

depend on the moduli of the theory in any way they choose, and thereby generate a

convex hull of arbitrary shape. However, as we will see, these convex hulls turn out

to be highly constrained in the asymptotic, perturbative regimes of the theory. In

particular, they are generated by infinite towers of states that emerge in these limits,

and the microscopic nature of these towers fixes the value of ζ⃗.

The existence of these towers of states is dictated by the Distance Conjecture

[7], one of the most well-studied hypotheses of the swampland program [8–15]. The

Distance Conjecture proposes that whenever one travels a large geodesic distance ∆

1This is done in analogy to the Weak Gravity Conjecture [1], as for a scalar χ with mass m(ϕ) one

can expand L ⊇ m(ϕ)2χ2 = (m2
0 + 2m0ϕ∂ϕm(ϕ))χ2 + ..., with µ = ∂ϕm measuring the scalar Yukawa

charge induced by the moduli ϕ, thereby the name ’scalar charge-to-mass ratio’ [2–6].
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in the moduli space, one encounters a tower of light particles with exponentially-light

characteristic masses m ∼ e−α∆, for some positive constant α, as ∆ → ∞. This

conjecture has been examined and verified in many string theory settings (see e.g.[16–

34]), and it is linked to the famous duality web of string/M-theory. For a given infinite-

distance geodesic with unit tangent vector t̂, the exponential decay of the mass of the

tower is given by α = ζ⃗ · t̂.
In this work, we will be interested in understanding how different infinite-distance

limits, and their associated towers, can be combined globally within a given moduli

space. This information is encoded in the aforementioned convex hull of the tower

vectors, since the towers generating the convex hull provide the lightest towers in each

of the infinite-distance limits. It has been observed that in some examples, including

various 9d settings [35–38], the convex hulls of these scalar charge-to-mass ratios for

towers of particles are generated by rotations of polytopes, which we call tower poly-

topes (see Figure 2(a)). Such polytopes dictate how the particle towers depend on the

moduli and give information about the dualities of the theory.

In this paper we show that these tower polytopes are tightly constrained by swamp-

land conjectures about the asymptotic limits of moduli space. Under certain assump-

tions outlined in Section 1.1, we obtain a set of rules governing the tower vectors of the

light towers in a generic infinite-distance limit, which enables us to derive a finite list of

building blocks for the tower polytopes. Each such building block takes the form of a

simplex in the scalar charge-to-mass space spanned by the tower vectors, and each such

simplex is associated with a particular duality frame of the theory. If further properties

of the moduli space are satisfied, we can glue these building blocks together across the

different frames of the theory to find a finite list of tower polytopes. Comparing this

list with polytopes that are known to arise from string theory compactifications, we

reproduce many well-known cases and also obtain some potentially new ones.

The key ingredient for obtaining our taxonomic rules is the Emergent String Con-

jecture [39, 40], a refinement of the Distance Conjecture that specifies the microscopic

nature of the towers of states. In particular, the Emergent String Conjecture holds

that infinite-distance limits in the moduli space of a quantum gravity theory are either

decompactification limits, in which the infinite tower of states is furnished by Kaluza-

Klein modes, or emergent string limits, which feature a unique, emergent, critical,

weakly coupled string with a tower of string oscillation modes. While its underlying

motivation remains mysterious, the conjecture has been verified in many different flat

space string compactifications2 [39, 44–49].

2There is evidence, though, that the conjecture should be modified in the case of non-Einstein

theories with AdS background to allow also for non-critical strings [41–43].
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We will argue that in generic infinite-distance limits, the Emergent String Con-

jecture [40] constrains not only the lengths |ζ⃗| of the vectors generating the tower

polytope, but also the angles between adjacent vectors. We illustrate this in Figures

1(a) and 1(b), where the dots correspond to different towers of states that become

light asymptotically. The length of each vector is fixed, and it depends on whether

the vector corresponds to a KK tower or a tower of string oscillator modes. Similarly,

the angle between two neighboring ζ⃗-vectors is also fixed uniquely by the nature of the

associated towers. These taxonomic rules allow us to build and classify the allowed

tower polytopes, as illustrated in Figure 1(c).

(a) (b) (c)

Figure 1: Sketches of the different taxonomy rules. Figure (a) shows the tower vectors

of a KK tower and a string tower, while Figure (b) represents two different KK towers

decompactifying either n or m extra dimensions. Both the lengths and angles between

the vectors are fixed by the nature of the tower. Figure (c) depicts an example of a

polytope that is consistent with the taxonomy rules. In the three figures the lower

bound of 1√
d−2

for the exponential mass decay rate is depicted in gray.

These convex hulls are a useful tool in studying the Distance Conjecture in multi-

dimensional moduli spaces [50] (see also [35–38]). As explained in [50], the Distance

Conjecture generically translates to the statement that the convex hull of the tower

vectors of the light towers of states in each duality frame should lie outside a ball of

radius αmin, where αmin ∼ O(1) is the minimum value of the exponential rate allowed by

the Distance Conjecture3. We will see that this condition is indeed satisfied whenever

the taxonomic rules derived in this paper hold, yielding αmin = 1√
d−2

, where d is the

3This was denoted in [50] as the Convex Hull Distance Conjecture.
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number of spacetime dimensions, as expected by the Sharpened Distance Conjecture

of [35] (see Figure 1(a)-1(b)). However, as we will discuss, this does not necessarily

guarantee that the decay rate of the lightest tower along any geodesic satisfies α ≥ 1√
d−2

unless additional assumptions are imposed.

(a) Tower polytope example. (b) Species polytope example

Figure 2: Example of a tower polytope and a species polytope. The tower polytope

contains the disk of radius 1√
d−2

, where d is the number of spacetime dimensions. The

species polytope is enclosed by the disk of radius 1√
d−2

and contains the disk of radius
1√

(d−1)(d−2)
. For d = 9 this matches precisely with the polytopes obtained from Type

IIB string theory compactified on a circle.

Our analysis also produces restrictions on the asymptotic behavior of the moduli-

dependent species scale ΛQG, which is the quantum gravity cut-off at which the EFT

breaks down [37, 48, 51–53]. The Emergent String Conjecture implies that in an asymp-

totic regime of moduli space, this species scale can be identified with either a string

scale or a (d + n)-dimensional Planck scale associated with the decompactification of

n dimensions, depending on the duality frame. It is convenient to introduce a species

vector [37] corresponding to the gradient of the logarithm of the species scale in a

given duality frame of the theory,

Z⃗ = −∇⃗ log
ΛQG

MPl,d

. (1.2)
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This species vector parametrizes the variation of the species scale in moduli space,

and it is useful for understanding the infinite-distance limits of the theory. Notably,

the species vector Z⃗ plays a starring role in an intriguing “pattern,” observed first in

[48, 53], namely

ζ⃗ · Z⃗ =
1

d− 2
, (1.3)

where ζ⃗ is the tower vector of the lightest tower in a given infinite-distance limit. As

shown in [48, 53] (see also [54]), this pattern holds in a vast array of string/M-theory

compactifications. In this work, we will see that it also follows from the Emergent

String Conjecture under the assumptions outlined in Section 1.1. As such, it may be

viewed as one of the taxonomic rules governing the geometry of the tower and species

vectors.

In situations where our taxonomic rules can be applied globally across a suitable

flat slice of the moduli space, one can further define a “species polytope” [37], which is

the convex hull of the set of species vectors in each of the infinite-distance limits of the

theory. This species polytope is (up to normalization) the dual of the tower polytope

(see Figure 2(b)). As a result, our taxonomic rules for tower polytopes immediately

lead to taxonomic rules for species polytopes.

The structure of this paper is as follows. In Section 1.1, we present a brief summary

of the rules governing the tower and species polytopes and the assumptions on which

these rules rely. The detailed derivation of these rules is presented in Section 2. In

Section 3, we discuss the scope of our analysis. In Section 4.1, we classify all two-

dimensional slices of tower and species polytopes in dimensions 6-10, assuming that

any decompactification limit gives a theory in at most eleven dimensions and that there

are no strings in 11d. In Section 4.2, we obtain all possible tower and species polytopes

in dimensions 8-10 under the same assumptions, and we compare the results with the

polytopes that are known to arise from certain string theory compactifications. We find

that many of these polytopes appear in maximal and half-maximal supergravity, while

other polytopes do not have known string theory realizations. We conclude in Section 5

with some final remarks, followed by a series of appendices. In Appendix A, we present

a top-down derivation of the polytopes from string theory and detail the behavior of

these polytopes under dimensional reduction. In Appendices B and C, we discuss the

case where the tower are not constant but slide in moduli space. In Appendix C, we

remark on the case of a geodesically-incomplete moduli space.

1.1 Summary of results and assumptions

We now summarize the main results of our paper. Our taxonomy program proceeds in

two steps. First, under one set of assumptions, we derive a set of “taxonomic rules”,
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which locally characterize the possible behavior of the light towers in a given duality

frame. Second, under a more restrictive set of assumptions, we combine the results of

different duality frames to classify the tower and species polytopes, which describe the

global structure of the asymptotic regions of moduli space.

1.1.1 Taxonomic rules

We begin with step one. Our primary assumption is the Emergent String Conjecture,

which implies the following conditions:

1. The lightest tower in a given infinite-distance limit is either a KK tower or a

tower of weakly coupled string oscillator modes.

2. The species scale in a given infinite-distance limit is either a higher-dimensional

Planck scale or a string scale.

Consequently, we define a principal tower to be either (a) a tower of KK modes or

(b) a tower of string oscillator modes. We also impose the Emergent String Conjecture

recursively to the higher dimensional theory that emerges upon decompactification.

This latter assumption is stronger than it looks since it puts non-trivial constraints on

the existence of bound states of the towers in lower dimensions, as explained in Section

3.

To derive our taxonomic rules, we further restrict our attention to regular infinite-

distance limits that satisfy the following assumptions, for simplicity:

3. In a decompactification limit, the endpoint of the decompactifying manifold is

Ricci-flat except in regions of measure zero, such that the warp factor and varying

field profiles dilute away in the limit.

4. The leading (i.e., lightest) principal tower is not degenerate, i.e., there are not

multiple leading principal towers decaying at the same exponential rate.

5. Any decompactification limit corresponds, after decompactification, to an infinite-

distance limit in a higher-dimensional theory which is also regular.

We will argue in Section 3.2.1 that regular infinite-distance limits are generic in the

moduli space, in the sense that we expect irregular limits to occur only in regions of

measure zero. In special limits where the assumption of regularity is violated, the rules

may (but do not necessarily) break down, as we explain in Section 3. Hence, the rules

presented in this paper should be understood as a first step towards a taxonomy of

infinite-distance limits.
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We then consider an infinite-distance limit satisfying Assumptions 1-5 above, where

some number k of principal towers are lighter than the species scale. Each principal

tower is associated with a scalar field, either a volume field in the case of a KK tower

or a dilaton in the case of a string oscillator tower, which span an k-dimensional slice

of moduli space. To each principal tower, we associate a tower vector

ζ⃗ ≡ −∇⃗ log
m

MPl,d

, (1.4)

where MPl,d is the d-dimensional Planck scale. Thus, the k light principal towers give

rise to k tower k-vectors valued in the tangent bundle of this slice of moduli space.

The convex hull of these vectors form the vertices of a (k − 1)-simplex, which we call

the frame simplex. In an infinite-distance limit in this slice of moduli space that

satisfies Assumptions 1-5 above, the geometry of the frame simplex (and in particular,

is vertices, edges, and faces) are constrained to satisfy the following list of taxonomic

rules.

Given any pair of tower vectors ζ⃗a, ζ⃗b, their dot product in the asymptotic limit

satisfies

ζ⃗a · ζ⃗b =
1

d− 2
+

1

na

δab . (1.5)

When considering the same tower (i.e., a = b), (1.5) fixes the lengths of the vertices,

which are constrained to take values within a discrete set [35]:

|ζ⃗KKn|2 =
n+ d− 2

n(d− 2)
, |ζ⃗osc|2 =

1

d− 2
, (1.6)

where d is the spacetime dimension, ζ⃗KKn is associated with the KK modes for a decom-

pactification to d+n dimensions, and ζ⃗osc is associated with a tower of string oscillation

modes (which formally can be recovered from setting n = ∞ in (1.5)).

The rule (1.5) also constrains the angles between the vertices of the frame simplex,

when considering different towers (i.e. a ̸= b). Namely, the angle θn between a string

oscillator vertex and a KKn vertex is given by

cos θn =

√
n

n+ d− 2
, (1.7)

while the angle between a KKm vertex and a KKn vertex is given by

cos θm,n =

√
nm

(n+ d− 2)(m+ d− 2)
. (1.8)
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Examples of these angles are shown in Figure 1(c). Equivalently, the lengths of the

edges are constrained to be

|ζ⃗osc − ζ⃗KKn|2 =
1

n
, |ζ⃗KKm − ζ⃗KKn|2 =

m+ n

mn
, (1.9)

for an edge between (a) a string oscillator vertex and a KKn vertex and (b) a KKm

vertex and a KKn vertex, respectively.

In a regular infinite-distance limit within the frame simplex satisfying Assumptions

1-5, the value of the species scale ΛQG is uniquely determined. Let Z⃗ ≡ −∇⃗ log
ΛQG

MPl,d

denote the species vector as in [37]. Then, the scalar product of the species vector Z⃗QG

and the tower vector ζ⃗a of any of the vertices of the frame simplex satisfy asymptotically

ζ⃗a · Z⃗QG =
1

d− 2
, (1.10)

which is precisely the pattern first observed in [48, 53] relating the variation of the

species scale and the lightest tower of states.

Consequently, the length of the species vector is also fixed:

|Z⃗QG|2 =
1

d− 2
− 1

D − 2
, (1.11)

where the species dimension D is either the spacetime dimension in which the species

scale equals the Planck scale (in a decompactification limit) or D = ∞ (in an emergent

string limit).

For each face F of the frame simplex, spanned by tower-vectors ζ⃗a for KK-modes

decompactifying n1,. . . ,nk dimensions, the quantum gravity scale Z⃗F of this face is

Z⃗F =
1

DF − 2

∑
a

naζ⃗a, (1.12)

where DF = d+
∑

a na is the species dimension, which is the dimension that the theory

decompactifies upon asymptotically traveling in the direction of the center of the face

F . For faces F1 and F2 within the same duality frame, the quantum gravity scales

associated with each face satisfy the dot products

Z⃗F · Z⃗F ′ =
1

d− 2
+

DF∩F ′ −DF −DF ′ + 2

(DF − 2)(DF ′ − 2)
, (1.13)

where DF , DF ′ and DF∩F ′ are are the species dimensions of the frames F , F ′, and

F ∩ F ′.
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1.1.2 Classification of tower and species polytopes

In progressing from step one to step two of the classification program, we make two

further assumptions:

6. There is an asymptotically flat slice Σk
∼=asymp Rk of the moduli space Md, such

that for every asymptotically straight line in Σk there is a infinite-distance limit

(geodesic ray) within Md that asymptotically approaches it.

7. For a generic choice of asymptotically straight line in Σk, a subspace of the plane

generated by the tower vectors of the frame simplex is asymptotically equal to

the tangent space of Σk. Rules (1.5) and (1.10) still apply to the vertices of the

frame simplex and the species vector after projection to this subspace.

These are nontrivial assumptions and are not satisfied in many cases, as we will

see below. When these assumptions do hold, however, then the frame simplices can be

glued together globally to give a full tower polytope, which is necessarily generated by

the towers becoming light at the different infinite-distance limits. When this is possible,

then the pattern of (1.10) implies that the dual polytope P ◦

P ◦ =

{
Z⃗ | Z⃗ · ζ⃗ ≤ 1

d− 2
∀ ζ⃗ ∈ P

}
. (1.14)

is equivalent to the species polytope, generated by the species vectors of the different

duality frames. As a result, the angles between species vectors (which correspond to

vertices of the species polytope) are also constrained.

The formula (1.13) describes dot products between pericenters of various facets of

the species polytope. But, it does not describe dot products between vertices of the

species polytopes. Suppose that two vertices Z⃗α and Z⃗β of the species polytope are

joined by an edge with pericenter Z⃗F . Then the dot products between two vertices of

the species polytope satisfy,

Z⃗α · Z⃗β = 1
d−2

− 1
Dαβ−2

[
1 +

√
(Dα−Dαβ)(Dβ−Dαβ)

(Dα−2)(Dβ−2)

]
, (1.15)

where Dα, Dβ, and Dαβ are the species dimensions associated to Z⃗α, Z⃗β, Z⃗F . This

constrains the angles between adjacent vertices, which are uniquely determined in terms

of the vertex types.

In Section 4 we will use the taxonomic rules (1.5) and (1.10) to build tower and

species polytopes that are consistent with the above assumptions.
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2 Taxonomy rules

Consider the moduli space Md of a d-dimensional quantum gravity theory (QGT),

endowed with a natural Riemannian metric Gij(ϕ) defined by the Planck-normalized

kinetic terms of the moduli:

Skin ⊃ − 1

2κ2
d

∫
Gij(ϕ)dϕ

i ∧ ⋆dϕj. (2.1)

For simplicity, we use vector symbols such as ζ⃗ to denote tangent/cotangent vectors on

this Riemannian space, where we freely (and silently) convert between the two using

the metric Gij. In an abuse of notation, we also use the same vector symbols to denote

tangent/cotangent vectors on naturally defined subspaces of the moduli space that will

arise during the discussion. Whenever we write these vectors in components, we choose

a convenient orthonormal frame Gij = eai e
b
jδab to do so. ∇⃗f will denote the moduli space

gradient, the components of which are partial derivatives (∇⃗f)i =
∂f
∂ϕi in a coordinate

basis, but which involve the inverse vielbein (∇⃗f)a = eia
∂f
∂ϕi in an orthonormal basis.

With these conventions in mind, we rarely need to invoke either the metric Gij or the

vielbein eai explicity.

2.1 The structure of a regular infinite-distance limit

Consider an infinite-distance limit in the moduli space Md of a d-dimensional QGT.

To be precise, by this we mean a semi-infinite path ϕi(s), s ⩾ 0, through Md such that

the shortest route between ϕi(0) and ϕi(s) is along the path itself. This implies that

(1) the path is a geodesic travelling to infinite distance and (2) it does so “as quickly

as possible” (without meandering).4 Such a path is known as a geodesic ray in the

mathematical literature. We declare geodesic rays that asymptotically approach each

other to define equivalent limits so that, e.g., the choice of starting point is not part of

specifying the infinite-distance limit.

According to the Distance Conjecture, one or more particle towers become light

in our chosen infinite-distance limit. In general, this collection of towers may be quite

complicated. To simplify things, we develop a notion of a more tractable, “regular”

infinite-distance limit (definition 1 below). We then classify the possible towers in

regular limits, and use our understanding of these limits to better understand general

infinite-distance limits.

4For example, ifMd is a flat cylinder then helical paths winding around the cylinder are not infinite-

distance limits—even though they are geodesics that go to infinite distance—because the “straight”

paths that do not wind are shorter.
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2.1.1 Deriving the rules: one tower scale

Let m(ϕ) be the mass scale of the lightest tower in an infinite-distance limit. The

moduli dependence the tower scale relative to the d-dimensional Planck scale MPl,d

is characterized by the tower vector ζ⃗ ≡ −∇⃗ log m
MPl,d

. In general, there might be

multiple leading towers becoming light at the same rate, each with different tower

vectors ζ⃗, ζ⃗ ′, . . . . In this case, we say that the leading towers are degenerate. To

avoid this complication, let us assume for the time being that the leading tower is

non-degenerate.

Per the Emergent String Conjecture, this tower is either (1) a KK tower associated

to decompactification to a (D = d+ n)-dimensional theory, or (2) a tower of oscillator

modes of a perturbative fundamental string.

Consider the case where the leading tower is a KK tower, and let us further assume

that the theory decompactifies along an “empty” Ricci-flat manifold Xn. The moduli

of the d-dimensional theory consist of those of the D-dimensional theory together with

the overall volume and shape moduli of the compact manifold Xn and the axions arising

from the p-form gauge fields of the D-dimensional theory reduced along p-cycles of Xn.

Expressed in this basis, the tower vector of the leading tower takes the form:

ζ⃗KKn =
(
ζ⃗
(D)
KKn

; ζ
(vol)
KKn

; ζ⃗
(shape)
KKn

; ζ⃗
(axion)
KKn

)
=
(
0⃗ ;

√
n+d−2
n(d−2)

; ζ⃗
(shape)
KKn

; 0⃗
)
. (2.2)

Here we have temporarily left open the possibility that the KK scale depends on the

shape moduli. This is because Xn may become “long and narrow” in some limits of

moduli space, making some KK modes lighter than the overall-volume KK scale and

others heavier. Thus, if ζ⃗
(shape)
KKn

̸= 0⃗ we would expect multiple towers with different

values of ζ⃗
(shape)
KKn

. However, since by assumption the leading tower is non-degenerate,

we conclude that ζ⃗
(shape)
KKn

= 0⃗,5 i.e.,

ζ⃗KKn =
(
0⃗ ;

√
n+d−2
n(d−2)

; 0⃗ ; 0⃗
)

⇒
∣∣∣ζ⃗KKn

∣∣∣2 = n+ d− 2

n(d− 2)
=

1

d− 2
+

1

n
. (2.3)

Thus, the tower vector of the leading tower has a fixed length, determined by the

spacetime dimension d and the number of dimensions n that decompactify at the tower

scale.

Before proceeding, we revisit the assumption that the theory decompactifies along

an empty, Ricci flat manifold Xn. More generally, the decompactification along Xn may

5For instance, in the case of a torus Xn = T 2, the KK modes indeed depend on the complex

structure modulus τ as well as the overall volume. Then either (1) τ is frozen, e.g., by a discrete

quotient of the form (T 2×Ym)/Zk (k = 3, 4, 6), or else (2) in a regular infinite-distance limit one cycle

of the torus decompactifies before the other, hence there are two separate KK scales and only the S1

KK modes appear in the leading tower. Since S1 has no shape moduli, this agrees with ζ⃗(shape) = 0⃗.
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involve branes, fluxes and moduli gradients with their associated warping and/or Ricci

curvature [55]. In such cases, our conclusions still follow if the warped, Ricci-curved

regions associated to these sources grow parametrically more slowly than the overall

volume of Xn, resulting in an asymptotically empty geometry in the decompactifi-

cation limit.

Note, however, that a new class of “brane moduli” can appear in such asymptot-

ically empty scenarios. These moduli control the positions of warped / Ricci-curved

regions and/or degrees of freedom that are localized in these regions. However, the KK

modes are determined by the bulk geometry of Xn, hence ζ⃗
(brane)
KKn

= 0⃗ and the above

argument is unmodified.

If there are no other light towers beyond the leading KK tower, the species scale

ΛQG(ϕ) is reduced from the d-dimensional Planck scaleMPl,d down to theD-dimensional

Planck scale MPl,D ≪ MPl,d. The moduli dependence of ΛQG(ϕ) is characterized by the

species vector Z⃗ ≡ −∇⃗ log
ΛQG

MPl,d
, equal to

Z⃗PlD = −∇⃗ log
MPl,D

MPl,d

=
(
0⃗ ;
√

n
(n+d−2)(d−2)

; 0⃗ ; 0⃗
)
, (2.4)

in this case. Notice that

|Z⃗PlD |2 =
n

(n+ d− 2)(d− 2)
=

1

d− 2
− 1

D − 2
, ζ⃗KKn · Z⃗PlD =

1

d− 2
, (2.5)

where the latter equality is an example of the tower-species pattern discovered in [48,

53]. We generalize our discussion later to allow for additional light towers between the

KK scale and ΛQG(ϕ).

Now consider the case where the leading tower consists of oscillator modes of a

perturbative fundamental string. The tension Ts(ϕ) of the fundamental string is con-

trolled by a dilaton ϕs, which is a universal part of the string spectrum much like the

graviton. The universal dilaton coupling fixes the tower vector of the oscillator modes

appearing at the string scale ms ∼
√
Ts to be:

ζ⃗osc =
(
ζϕs
osc ; ζ⃗

(other)
osc

)
=
(

1√
d−2

; 0⃗
)

⇒
∣∣∣ζ⃗osc∣∣∣2 = 1

d− 2
. (2.6)

Thus, the tower vector of the leading tower again has a fixed length, this time deter-

mined by the spacetime dimension d alone.

Because the density of oscillator modes grows exponentially, in this case the species

scale is parametrically the same as the string scale, ΛQG ∼ ms, up to corrections that

are subexponential in the moduli. The species vector is therefore:

Z⃗str =
(
Zϕs

str,Z
(other)
str

)
=
(

1√
d−2

0⃗
)
= ζ⃗osc ⇒

∣∣∣Z⃗str

∣∣∣2 = 1

d− 2
, Z⃗str·ζ⃗osc =

1

d− 2
,

(2.7)
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again consistent with the tower-species pattern. Note that formally (2.6), (2.7) are

special cases of (2.3), (2.5) with n → ∞, so that a string oscillator tower is formally

analogous to KK tower for n = ∞ decompactifying dimensions, and likewise for the

associated species scales. We make repeated use of this analogy for notational conve-

nience throughout our paper.

Note that even when the leading tower is degenerate, if one of the degenerate towers

is a tower of string oscillator modes, then the above reasoning can still be applied to the

oscillator tower, and the rules (2.6), (2.7) are still satisfied. For now, we simply ignore

the tower vectors of the remaining, degenerate towers. (Note that these typically have

subexponential density—consisting, e.g., of KK and/or winding modes—and they lie

parametrically at the species scale.)

By contrast, when KK towers degenerate there is no single, dominant tower with

a fixed tower vector. Instead, there will be multiple towers with various values of

ζ⃗(shape) ̸= 0⃗, all parametrically below the species scale. It is useful to keep this case

separate from the simpler, non-degenerate scenario considered above, and we defer

further consideration of it until Section 3.2.2.

2.1.2 Deriving the rules: multiple tower scales

In the case of a decompactification limit, we recover a higher-dimensional QGT para-

metrically above the KK scale. Projecting onto the higher-dimensional moduli space

M(D), the original infinite-distance limit ϕi
(d)(s) lifts to a path ϕI

(D)(s) through M(D).

This path cannot have any shortcuts along it, because if it does then there will be cor-

responding shortcuts along the path ϕi
(d)(s) through the complete moduli space M(d),

contradicting the assumption that we are considering an infinite-distance limit. There-

fore, either (1) ϕI
(D)(s) = ϕI

(D)(0) is a single point in MD, or (2) ϕI
(D)(s) is itself an

infinite-distance limit of M(D).

In the first case, there is (parametrically) only one tower scale, which is covered

by the discussion above. In the second case, we refocus our attention on the infinite-

distance limit ϕI
(D)(s) in the D-dimensional theory. If this limit satisfies the same

assumptions as above, we can reason in a recursive manner. The required assumptions

are encapsulated in the following regularity conditions:

Definition. A regular infinite-distance limit is one with either

1. A leading string oscillator tower, or

2. A leading KK tower, such that
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(a) The tower is non-degenerate (so that there are not several leading towers

decaying at the same rate, i.e., the limit is characterized by a single tower

vector ζ⃗ ≡ −∇⃗ log m
MPl,d

) and

(b) The decompactification manifold is asymptotically empty (Ricci flat with

vanishing background fields, except in regions of measure zero) and

(c) After decompactification, the lift of the infinite-distance limit to the higher

dimensional theory is also regular.

As discussed above, we impose non-degeneracy for KK towers (which occur para-

metrically below the species scale), but not for string oscillator towers (which occur

parametrically at the species scale). The final condition is recursive: after each decom-

pactification, the same regularity conditions are applied in the new description.

Given a regular infinite-distance limit, we obtain a parametric hierarchy of tower

scales up to the species scale by applying the following steps recursively, starting at

a = 1 with the original d1 ≡ d dimensional theory:

1. Let ma be the mass scale of the leading tower in a regular infinite-distance limit

of a da-dimensional theory.

2. If this is a KK tower associated to the decompactification of na dimensions then

we consider the lift of the infinite-distance limit to the da+1 = da+na dimensional

decompactified theory.

(a) If the lift is an infinite-distance limit of the da+1-dimensional theory, then we

return to step 1 for this infinite distance limit in the decompactified theory,

incrementing a → a+ 1.

(b) If the lift is a single point in the moduli space of the da+1-dimensional theory,

then ΛQG is parametrically equal to the Planck scale MPl,da+1 of this theory,

and there are no other towers parametrically below this scale, so we stop

here.6

3. If this is a string oscillator tower, then ΛQG is parametrically equal to ma, so we

stop here.

The end result is a parametric hierarchy of tower mass scales below the species scale,

m1 ≪ m2 ≪ · · · ≪ mk ≲ ΛQG, (2.8)

6There can be light towers between the KK scale and the higher-dimensional Planck scale but with

these assumptions their masses are fixed in Planck units, so they are not parametrically separated

from the Planck scale.
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where k is the rank of the limit in question and the first (k − 1) scales ma are KK

scales with na < ∞ dimensions decompactifying, and the last scale mk is either a KK

scale (in which case mk ≪ ΛQG) or a string scale (in which case mk ≃ ΛQG, up to

subexponential corrections). Associated to these scales, we have a collection of tower

and species vectors:

ζ⃗1 ≡ −∇⃗ log
m1

MPl,d

, . . . , ζ⃗k ≡ −∇⃗ log
mk

MPl,d

, Z⃗QG ≡ −∇⃗ log
ΛQG

MPl,d

. (2.9)

One of the main results of this paper is that the geometry of these vectors is constrained

by the following taxonomy rules :

ζ⃗a · ζ⃗b = 1
d−2

+ 1
na
δab, ζ⃗a · Z⃗QG = 1

d−2
, |Z⃗QG|2 = 1

d−2
− 1

D−2
, (2.10)

where for notational compactness we formally set nk = ∞ when mk is a string scale and

D ≡ d+
∑

a na is the species dimension. Note that these rules once again include the

tower-species pattern of [48, 53]. This is not an extra input, but rather a consequence

of our starting assumptions.

The proof of (2.10) is inductive in the rank of the limit. We have already seen that

it holds for rank k = 1 limits, see (2.3), (2.5), (2.6), (2.7). Now assume that the rules

hold for the rank (k − 1) -limit in the d2 = d + n1 dimensional theory obtained from

decompactifying n1 dimensions at the leading KK scale m1(ϕ). Thus,

ζ⃗(d2)a · ζ⃗(d2)a =
1

d2 − 2
+

1

na

δab, ζ⃗(d2)a · Z⃗(d2)
QG =

1

d2 − 2
, |Z⃗(d2)

QG |2 = 1

d2 − 2
− 1

D − 2
,

(2.11)

for a, b > 1, where ζ⃗(d2), Z⃗(d2)
QG refer to the tower and species vectors in the d2-dimensional

theory andD = d+
∑

a na = d2+
∑

a>1 na is the same before and after compactification.

Since

ζ⃗(d)a = −∇⃗ log
ma

MPl,d

= −∇⃗ log
ma

MPl,d2

− ∇⃗ log
MPl,d2

MPl,d

= ζ⃗(d2)a + Z⃗Pld2
for a > 1,

(2.12)

and likewise Z⃗(d)
QG = Z⃗(d2)

QG + Z⃗Pld2
, using (2.3), (2.4) we find:7

ζ⃗(d)a =


(
0 ;
√

d2−2
n1(d−2)

; 0⃗ ; 0⃗
)
, a = 1,(

ζ⃗
(d2)
a ;

√
n1

(d2−2)(d−2)
; 0⃗ ; 0⃗

)
, a > 1,

7Note that ζ⃗a, a > 1 describes the moduli dependence of the KK scale at which the na dimensions

in question decompactify, not the moduli dependence of the mass of an individual KK mode. The

latter may be more complicated, depending, e.g., on the axions, but this dependence is irrelevant to

our argument.
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Z⃗(d)
QG =

(
Z⃗(d2)

QG ;
√

n1

(d2−2)(d−2)
; 0⃗ ; 0⃗

)
, (2.13)

in the same basis as before. Taking the dot products of these vectors, it is straightfor-

ward to verify (2.10) assuming (2.11), completing the inductive proof.

2.1.3 The frame simplex

To understand the implications of the taxonomy rules (2.10), note that they fix the

Gram matrix (matrix of dot products) of the set of vectors ζ⃗1, . . . ζ⃗k, Z⃗QG. Up to an

overall rotation, a set of vectors is completely determined by its Gram matrix, so the

taxonomy rules completely fix the geometry of the vectors ζ⃗1, . . . ζ⃗k, Z⃗QG. We now

summarize this geometry.

One can show that the (k+1)× (k+1) Gram matrix specified by (2.10) is positive

semi-definite (as required for any Gram matrix), with rank k. Thus, the Gram matrix

has a single null eigenvector, corresponding to a single linear relation between the

vectors ζ⃗1, . . . , ζ⃗k, Z⃗QG: ∑
a

naζ⃗a = (D − 2)Z⃗QG. (2.14)

In other words, the tower vectors are linearly independent, and together they determine

the species vector.

Therefore, the tower vectors ζ⃗1, . . . , ζ⃗k span a k-plane in the moduli tangent space,

which we call the principal plane. This is just the radion-radion-. . . -radion or radion-

...-radion-dilaton plane that arose naturally from the overall volume moduli and/or the

dilaton in our derivation above, but the existence of this plane follows from the rules

(2.10) independent of the derivation. Within the principal plane, the convex hull of

the tower vectors ζ⃗1, . . . , ζ⃗k is a (k − 1)-simplex, which we call the frame simplex,

∆ = {ζ⃗1, . . . , ζ⃗k}.8 The vertices of the frame simplex are the tower vectors, and the

species vector Z⃗QG is orthogonal to the simplex since (ζ⃗a − ζ⃗b) · Z⃗QG = 0 from (2.10)

as noticed in [48]. Some examples of frame simplices are shown in Figure 3.

The pericenter of the frame simplex, where it comes closest the origin, is a point

of special interest. One finds

ζ⃗pc =
1∑
b nb

∑
a

naζ⃗a =
D − 2∑

b nb

Z⃗QG. (2.15)

This is the definition of the effective tower given in [56, 57]. There are two cases to

consider (illustrated in Figure 3):

8The frame simplex has not only a size and shape but also a specified location relative to the origin.

One can think of it as the base of the cone generated by the tower vectors.
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(a) Planckian phase. (b) Stringy phase

Figure 3: The tower vectors {ζ⃗1, ζ⃗2, ζ⃗3} (black arrows), frame simplex (red triangle),

species vector Z⃗QG (blue arrow) and direction vector t̂ (purple arrow, see §2.1.4) for

two examples of regular infinite-distance limits. Both limits are rank 3 (with 3 tower

vectors spanning a 3d principal plane), where (a) is a Planckian phase and (b) is a

stringy phase. The directions over which several towers degenerate are depicted in

dashed lines.

1. When
∑

a na < ∞, i.e., in a Planckian phase where ΛQG ∼ MPl,D is (para-

metrically) a Planck scale in the species dimension D, the pericenter lies in the

interior of the frame simplex, with

|ζ⃗pc| =

√
(
∑

a na + d− 2)

(
∑

a na) (d− 2)
, (2.16)

just like a tower vector for the decompactification of
∑

a na dimensions.

2. When
∑

a na = ∞ (nk = ∞), i.e., in a stringy phase where ΛQG ∼ ms is

(parametrically) a string scale and the species dimension D = ∞, the pericenter

lies on the boundary of the frame simplex,

ζ⃗pc = ζ⃗k ⇒ |ζ⃗pc| =
1√
d− 2

, (2.17)

which is the tower vector for the string oscillator modes.

In either case, |ζ⃗pc| ⩾ 1√
d−2

, suggesting a connection to the Sharpened Distance Con-

jecture [35]. This will be made more precise in Section 2.2.
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2.1.4 The direction of the infinite-distance limit

The above taxonomy rules hold asymptotically once a particular regular infinite-distance

limit is chosen. While it does not appear in the preceeding rules (2.10), the direction

vector t̂i = dϕi

ds
of the infinite-distance limit with respect to the tower vectors is also

constrained. For instance, it must be the case that t̂ · ζ⃗a > 0 for each tower vector since

the corresponding tower becomes light in the infinite-distance limit in question. In fact,

since all the towers in question appear at or below the species scale by assumption, the

stronger constraint t̂ · ζ⃗a ⩾ t̂ · Z⃗QG must hold. To analyze this constraint, assume for

now that t̂ lies entirely within the principal plane. Then:

t̂ =
∑
b

λbζ⃗b, (2.18)

for some constants λa, a = 1, . . . , k. Applying this ansatz to the constraint t̂ · (ζ⃗a −
Z⃗QG) ⩾ 0 and using the taxonomy rules, we obtain:

1

na

λa ⩾ 0. (2.19)

In a Planckian phase, all the towers lie strictly below the top-dimensional Planck scale

and also na < ∞ for all a, hence the λa are all positive, implying that t̂ is a positive

linear combination of the principal tower vectors, i.e., it lies in the interior of cone(∆) =

cone(ζ⃗1, . . . , ζ⃗k).

In a stringy phase, we likewise obtain λa > 0 for all a < k, but the above argument

does not constrain λk since ζ⃗k = Z⃗QG. However, there is another constraint: since the

string theory is weakly coupled by assumption, the string scale must like below the

Planck scale in the top, dk-dimensional theory. The vector Z⃗Pl associated to the latter

scale satisfies the taxonomy rules:

Z⃗Pl · ζ⃗a =
1

d− 2
− 1∑

a<k na + d− 2
δak, |Z⃗Pl|2 =

1

d− 2
− 1∑

a<k na + d− 2
. (2.20)

These rules can be proven inductively as before, starting with Z⃗Pl = 0⃗ in the case k = 1

(since the Planck scale is fixed in Planck units). The requirement that the string is

parametrically weakly coupled is then t̂ · Z⃗QG > t̂ · Z⃗Pl. This works out to:

t̂ · (Z⃗QG − Z⃗Pl) =
1∑

a<k na + d− 2
λk > 0 ⇒ λk > 0, (2.21)

so we conclude that t̂ lies in the interior of cone(∆), as before.
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If t̂ does not lie in the principal plane then the above argument still applies to its

projection t̂∥ onto this plane. Thus, we conclude that

Projected onto the principal plane, the direction

vector t̂i ≡ dϕi

ds
lies in the interior of cone(∆).

(2.22)

This constrains the orientation of the frame simplex with respect to t̂∥, completing the

taxonomy rules. Note that the component of t̂ perpendicular to the principal plane is

not fixed by the rules (in either magnitude or direction).

2.2 Connection with the Sharpened Distance Conjecture

We can now connect our results to the Sharpened Distance Conjecture [35]. The

exponential rate at which each tower becomes light is αa = ζ⃗a · t̂. If t̂ lies within

the principal plane, then since it is inside cone({ζ⃗a}), simple geometric considerations

lead to:

αmax = max({αa}) ⩾ |ζ⃗pc|, (2.23)

where the inequality is saturated when t̂ ∝ ζ⃗pc. Since |ζ⃗pc| ⩾ 1√
d−2

as noted above, this

would imply the Sharpened Distance Conjecture in any regular infinite-distance limit.

However, if t̂ does not lie within the principal plane then we obtain the weaker

constraint:

αmax ⩾
cos θ√
d− 2

, (2.24)

where θ ∈ [0, π/2) is the angle between t̂ and the principal plane. This creates a danger

of violating the Sharpened Distance Conjecture, especially in a stringy phase where

|ζ⃗pc| = 1√
d−2

; then if θ ̸= 0 for t̂ ∝ ζ⃗pc, the Sharpened Distance Conjecture would be

violated.

It is plausible that any infinite-distance limit in the landscape has θ = 0, so that any

limit with θ ̸= 0 resides in the swampland. However, this is difficult to prove rigorously,

as we discuss in greater detail in Section 3.4. If θ ̸= 0 occurs in the landscape, then the

Sharpened Distance Conjecture does not follow from the Emergent String Conjecture,

even in the regular limits we have been considering.9

9Even if θ ̸= 0 occurs in the landscape, the Sharpened Distance Conjecture may still be satisfied,

depending on the details. However, in this case the connection between the Sharpened Distance

Conjecture and the ESC becomes more tenuous, even in the absence of other complications such as

non-asymptotically empty decompactifications.
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2.3 The structure of a duality frame

So far we have focused on a single, fixed infinite-distance limit, imposing regularity

conditions to simplify the physics. We now allow the infinite distance limit to vary

continuously. To be precise, two infinite-distance limits ϕ0, ϕ1 are continuously con-

nected if there is a continuous family of paths ϕi
t(s), t ∈ [0, 1] such that ϕi

t(s) is an

infinite-distance limit for each value of t. As discussed in Section 3.2.1, we expect that

a generic infinite-distance limit is regular, i.e., any irregular limit ϕ0 should sit inside

some continuous family ϕt, t ∈ [0, 1] such that ϕt is regular for t > 0. In other words,

we expect irregular limits to be of measure zero in this continuous family of paths. If

so, the space of continuously connected infinite distance limits in a given theory can be

understood by piecing together continuous families of regular infinite-distance limits.

Thus, we consider what happens as a regular infinite-distance limit is continuously

varied. Each regular limit in the continuous family is characterized by a frame simplex

∆, species vector Z⃗QG, and direction vector t̂ satisfying the taxonomy rules (2.10),

(2.22). However, with the exception of the direction vector, the taxonomy rules are

rigid, not allowing for continuous variations in, e.g., the shape of the frame simplex.

Thus, as the limit varies continuously, the frame simplex and species vector remain

fixed as long as the identification of the set of light towers remains the same,10 with

only the direction vector t̂ continuously varying.

The variation δt̂ in the direction vector can be decomposed into components both

(1) parallel and (2) perpendicular to the principal plane. Note that, while we expect

the direction vector t̂ to lie wholly within the principal plane, see Section 3.4, this

does not imply that δt̂ lies within the principal plane. This is possible because the

top-dimensional theory in the chain of decompactifications may have moduli that can

be turned on (such as NSNS moduli in a stringy phase), generating a new tower scale

in the hierarchy, and adding a dimension to the principal plane (increasing the rank

by one). Thus, regular limits with different ranks can be continuously connected.

However, because the moduli space is finite dimensional, there is some maximum size

for the principal plane after which no additional infinite-distance limits remain in the

top-dimensional theory, and the rank cannot increase further upon small variations in

the direction of the limit. In other words, there is a maximum size for the principal

plane for which the identification of the set of light towers remains fixed. Such full

rank limits are (locally) generic in the space of regular limits and are described by the

10In principle, the tower/species vectors can rotate within the principal plane (and the principal

plane can rotate within the full tangent space) while still respecting the taxonomy rules. However,

such a rotation can be removed (up to possible monodromies, if the continuous family of infinite-

distance limits is not simply connected) by a convenient choice of frame on the tangent space.
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same duality frame, since they have the same microscopic identification of the species

scale Z⃗QG.

Starting with a full-rank limit, we can vary t̂ within the principal plane. Since the

moduli space metric is (asymptotically) flat in this plane, geodesics are straight lines,

and we can vary t̂ in an arbitary direction within the plane. This continues until one

of the following failure modes occurs:

1. One of the decompactification limits is no longer asymptotically empty, i.e., the

warped / Ricci-curved regions begin to grow at the same rate as the overall volume

of the manifold.

2. Two or more towers that are parametrically lighter than ΛQG degenerate.

3. t̂ reaches the edge of cone(∆).

The first two of these indicate a breakdown in regularity, which is largely beyond the

scope of the present paper. Nonetheless, when multiple KK towers degenerate it is

sometimes possible to continue past the degenerate locus to reach another continuous

family of regular infinite-distance limits. When this preserves the frame simplex, up

to the natural reordering of the hierarchy of tower scales due to the change in the

direction vector, we say that the degeneration is ignorable. For instance, this occurs

for compactifications on empty, direct product manifolds Xm × Yn when the hierarchy

between the sizes of the two manifolds reverses. (Note that even ignorable degenerations

come with interesting additional physics, as discussed in Section 3.2.2.)

What happens when t̂ reaches the edge of cone(∆)? In this case, one or more

of the tower (corresponding to the tower vectors that do not lie on the edge in ques-

tion) will get heavier than the species scale.11 Then (up to ignorable degenerations)

we obtain another regular infinite-distance limit, but with a lower-dimensional frame

simplex/principal plane. This is precisely the reverse of the process, discussed above,

by which the principal plane can grow in dimension.

2.3.1 The species star

We now suppose that no irregular infinite-distance limits (besides ignorable degenera-

tions) appear as we scan the direction vector t̂ across the interior of the frame simplex

∆. As noted above, all of these limits share the same underlying species-scale physics

and can be thought of as residing in a single duality frame. Approaching a boundary

of ∆, one or more of the tower scales merges with the species scale, reducing the frame

11In the case of a tower of string oscillator modes, this means that the string coupling will go to 1,

i.e., the string scale will disappear into the higher-dimensional Planck scale.
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simplex to one of its faces F ⊂ ∆,12 which is itself a lower-rank simplex generated by

the vectors of the towers that remain parametrically below the species scale. In partic-

ular, F is the face of ∆ in whose interior the boundary point that we are approaching

lies. On this boundary, the species vector changes to

Z⃗F =
1

DF − 2

∑
a∈F

naζ⃗a, (2.25)

where DF = d +
∑

b∈F nb is the corresponding species dimension, which is either the

spacetime dimension in which the corresponding Planck scale occurs or DF = ∞ if the

species scale is a perturbative string scale. Note that Z⃗F = Z⃗QG if F includes a string

oscillator tower, whereas otherwise it is easy to see that Z⃗F is distinct for each distinct

face F ⊆ ∆ of the frame simplex due to the linear independence of the tower vectors.

Because the species vector changes there, one can think of each boundary of the

frame simplex ∆ as representing a new duality frame, or perhaps more accurately,

the onset of a new duality frame. For instance, in the Planckian phase associated to

M-theory on a rectangular two-torus, the boundaries of the frame simplex correspond

to infinite-distance limits in which the nine-dimensional theory decompactifies to M-

theory on a circle of fixed radius. While one might call this the “same” duality frame,

depending on the radius of the circle this might better be thought of as decompacti-

fying to type IIA string theory at fixed string coupling. From either viewpoint, these

boundary limits are Planckian13 with species dimension DF = 10, reduced from species

dimension D = 11 for generic limits in the interior of ∆.

The structure of these duality “onsets” is described by the set of species vectors

Z⃗F corresponding to the faces F ⊆ ∆ of the frame simplex, including as a special case

the original species vector Z⃗QG = Z⃗∆. These vectors are the vertices of a geometric

object, which we will refer to as the species star Σ. We now state the properties of

this object, later sketching the proofs of these statements.

In a Planckian phase, the species star14 consists of k facets meeting at their common

vertex Z⃗QG and ending on the boundaries of cone(∆). In a stringy phase, the species

12In what follows, a p-simplex ∆ is represented as the set of its p+ 1 linearly independent vertices,

hence a q-face F ⊆ ∆ is a subset consisting of q+1 of these vertices, where by convention we exclude

the “(−1)-simplex” F = ∅ from consideration. For convenience, we use the notations ζ⃗a ∈ F and

a ∈ F interchangeably when the meaning is clear from the context.
13This is true even in the type IIA description because the string coupling is fixed in this limit, not

going parametrically to zero.
14In a simplicial complex, the star of a vertex consists of every simplex sharing that vertex. The

faces of the species star are not simplicial, but it admits a natural triangulation with a simplex

{Z⃗F1
, . . . , Z⃗Fp

} for each inclusion sequence F1 ⊂ F2 ⊂ · · · ⊂ Fp of faces of ∆ such that Fp−1 does

not include a string oscillator tower. With this triangulation, the species star is indeed the star of the

vertex Z⃗QG (or, more correctly in a stringy phase, the star of the edge joining Z⃗QG with Z⃗Pl).
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star consists of k − 1 facets meeting along their common edge joining Z⃗QG = ζ⃗osc with

Z⃗Pl =
∑

a<k naζ⃗a
d+

∑
a<k na−2

(see (2.20)). Both cases are illustrated in Figure 4.

(a) Plankian phase. (b) Stringy phase

Figure 4: The species stars (in light blue) for the rank-3 Planckian and stringy phases

whose frame simplices are depicted in Figure 3. The species vectors Z⃗F associated to

the 0, 1, and 2 faces of the frame simplex are depicted in orange, green, and blue,

respectively. Note that in the stringy phase, Z⃗Pl is the green arrow (associated to the

facet of ∆ omitting the string oscillator tower). The dashed lines illustrate the polar

duality between the frame simplex and the species star.

The geometry of the species star is such that its faces intersect the boundaries

of cone(∆) perpendicuarly, hence the pericenter of each face (besides Z⃗QG) is also a

vertex of Σ lying on the boundary of cone(∆). These vertices are the species vectors

Z⃗F , where for a p-face F ⊆ ∆ of the frame simplex not containing a string oscillator

tower, Z⃗F is the pericenter of a (k − p − 1)-face of Σ. (When F contains a string

oscillator tower then Z⃗F = Z⃗QG as noted previously.)

This gives Σ a structure that is combinatorically dual to ∆: each p-face of F of ∆

(not containing a string oscillator tower) corresponds to the (k − p− 1)-face of Σ with

pericenter Z⃗F . Indeed, geometrically this is just a standard (polar) duality in disguise.

In particular, consider the polar set of the frame simplex:

polar(∆) ≡
{
Z⃗
∣∣∣∣ Z⃗ · ζ⃗a ⩽

1

d− 2
, a = 1, . . . , k

}
. (2.26)

This region is bounded by k semi-infinite facets meeting at their common vertex Z⃗QG.
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The species star Σ is precisely the portion of this boundary that lies within cone(∆):

Σ = ∂(polar(∆)) ∩ cone(∆). (2.27)

Note that the reason Σ has only k − 1 facets in a stringy phase is because in this case

one of the facets of ∂(polar(∆)) lies wholly outside cone(∆).

The aforementioned properties of the species star can be proven using the following

taxonomy rules:

Z⃗F · ζ⃗a =
1

d− 2
− 1

DF − 2
δa/∈F , (2.28)

Z⃗F · Z⃗F ′ =
1

d− 2
− DF∪F ′ − 2

(DF − 2)(DF ′ − 2)
, (2.29)

which follow by direct calculation from (2.25) and the taxonomy rules (2.10). Here

F ∪F ′ denotes the face of ∆ whose vertex set is the union of those of F and F ′ (such a

face always exists because ∆ is a simplex) and DF∪F ′ = d+
∑

b∈F∪F ′ nb is the associated

species dimension.

We now sketch a few details of the proof, as they naturally introduce the subject

of recursion, to be discussed in §2.3.2. Define the species star as Σ[∆] ≡ ∂(polar(∆))∩
cone(∆). To show that its vertices are indeed the species vectors {Z⃗F |F ⊆ ∆}, consider
the related object Σ̃[∆] ≡ polar(∆) ∩ cone(∆), a portion of whose boundary is Σ[∆].

One can show by induction on the rank k of ∆ that the vertices of Σ̃[∆] are {⃗0} ∪
{Z⃗F |F ⊆ ∆}, where the base case k = 1 is easy to check and the inductive step

proceeds by noting that each vertex lies on one or more facets, then considering each

of the facets in turn. The facets of Σ̃[∆] are of two types:

1. “Inner” facets, which are facets of cone(∆), intersected with polar(∆), and

2. “Outer” facets, which are facets of polar(∆), intersected with cone(∆).

In the first (inner) case, there is a facet for each vertex ζ⃗a ∈ ∆, defined by the equations:

Z⃗ ∈ cone(∆ā) and Z⃗ · ζ⃗b ⩽
1

d− 2
, ∀b, (2.30)

where ∆ā = ∆ \ {ζ⃗a} is the rank-(k − 1) frame simplex obtained by omitting the

tower vector ζ⃗a. One can check that the condition Z⃗ · ζ⃗a ⩽ 1
d−2

is a consequence of

the other conditions, at which point these equations reduce to the equations defining

Σ̃[∆ā]. Thus, by the inductive assumption, the vertices of this facet are {⃗0}∪{Z⃗F |F ⊆
∆ \ {ζ⃗a}}.
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In the second (outer) case, there is a facet for each vertex ζ⃗a ∈ ∆ that is not a

string oscillator tower,15 now defined by the equations:

Z⃗ ∈ cone(∆) and Z⃗ · ζ⃗a =
1

d− 2
and Z⃗ · ζ⃗b ⩽

1

d− 2
, ∀b ̸= a. (2.31)

Let Z⃗a ≡ na

d+na−2
ζ⃗a = Z⃗{ζ⃗a} be the species vector associated to the vertex ζ⃗a ∈ ∆, with

associated species dimension Da ≡ d + na. Non-trivially, applying (2.28), (2.29) one

can rewrite the conditions (2.31) as

Z⃗ − Z⃗a ∈ cone(∆′
a) and (Z⃗ − Z⃗a) · (ζ⃗b − Z⃗a) ⩽

1

Da − 2
, ∀b ̸= a, (2.32)

where ∆′
a ≡ {ζ⃗b − Z⃗a|b ̸= a} is a particular (k − 2)-simplex and again one of the

original conditions (part of the set Z⃗ ∈ cone(∆)) turns out to be redundant and has

been dropped. Applying (2.28), (2.29) once again, we see that the shifted tower and

species vectors ζ⃗ ′b ≡ ζ⃗b − Z⃗a for b ̸= a and Z⃗ ′
QG ≡ Z⃗QG − Z⃗a satisfy the taxonomy

rules (2.10) associated to the simplex ∆′
a = {ζ⃗ ′b|b ̸= a} in spacetime dimension Da:

ζ⃗ ′b · ζ⃗ ′c =
1

Da − 2
+

1

nb

δbc, ζ⃗ ′b · Z⃗ ′
QG =

1

Da − 2
, |Z⃗ ′

QG|2 =
1

Da − 2
− 1

D − 2
. (2.33)

Moreover, (2.32) is equivalent to

Z⃗ ∈ Σ̃[∆′
a] + Z⃗a. (2.34)

By the inductive assumption, the vertices of Σ̃[∆′
a] are {⃗0}∪{Z⃗ ′

F ′|F ′ ⊆ ∆′
a}. Examining

(2.25), one finds that:

Z⃗ ′
F ′ + Z⃗a = Z⃗F , (2.35)

where F is the face of ∆ with vertices ζ⃗a plus ζ⃗b = ζ⃗ ′b + Z⃗a for each vertex ζ⃗ ′b ∈ F ′.

Likewise, 0⃗ + Z⃗a = Z⃗F where F = {ζ⃗a}. Thus, the vertices of the facet of Σ̃[∆] in

question are {Z⃗F |{ζ⃗a} ⊆ F ⊆ ∆}.
Combining the inner and outer cases, we conclude that the vertices of Σ̃[∆] are

{⃗0} ∪ {Z⃗F |F ⊆ ∆}. Since the species star Σ[∆] ≡ ∂(polar(∆)) ∩ cone(∆) consists of

the outer facets of Σ̃[∆], its vertices are {Z⃗F |F ⊆ ∆} as claimed.

15Although polar(∆) does have a facet associated to a string oscillator tower ζ⃗a = ζ⃗osc, this facet

intersects cone(∆) at a single point. This can be shown by following the same steps as below, resulting

in a frame simplex ∆′
a that is formally in infinite spacetime dimension Da = ∞. As a result, Σ̃[∆′

a]

is simply the intersection between cone(∆) and its polar cone, which is a single point, Σ̃[∆′
a] = {⃗0},

implying that the facet of polar(∆) in question intersects cone(∆) at the single point Z⃗a = Z⃗QG.
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Other properties of the species star follow more immediately from the rules (2.28),

(2.29). For instance, let F be a p-face of Σ not containing a string oscillator tower. As

a special case of (2.29) we obtain:

Z⃗F · Z⃗F ′ =
1

d− 2
− 1

DF − 2
when F ⊆ F ′. (2.36)

Equivalently, Z⃗F · (Z⃗F ′ −Z⃗F) = 0 when F ′ ⊇ F , which implies that the species vectors

Z⃗F ′ with F ′ ⊇ F all lie in the plane with pericenter Z⃗F . Indeed, retracing the above

inductive argument, these are the remaining vertices of a (k−p−1)-face of Σ. Since the

entire face lies in the Z⃗F -pericenter plane, the pericenter of this face is Z⃗F , as claimed.

2.3.2 Partial decompactification and recursion

The modified frame simplex ∆′
a = {ζ⃗b−Z⃗a|b ̸= a} that appeared in the above inductive

arugment has a simple physical interpretation: it is the frame simplex after partial

decompactification, where we send the corresponding KK scale ma to zero in (Da =

d+ na)-dimensional Planck units.

To be precise, choose a direction vector that is nearly parallel to ζ⃗a, t̂ ∝ ζ̂a+ εt̂′ for

t̂′ · ζ̂a = 0. Then the rate at which each tower becomes light in d-dimensional Planck

units is

ζ⃗b · t̂ =
1

|ζ⃗a|

(
1

d− 2
+

1

na

δab

)
+εζ⃗b · t̂′+O(ε2), Z⃗QG · t̂ =

1

(d− 2)|ζ⃗a|
+εZ⃗QG · t̂′+O(ε2).

(2.37)

Thus the towers and the species scale all become light in this limit, but the KK tower

ζ⃗a becomes light more quickly than the others. We now rewrite this in (Da = d+ na)-

dimensional Planck units. Since

ζ⃗ ′b ≡ −∇⃗ mb

MPl,Da

= −∇⃗ mb

MPl,d

+ ∇⃗MPl,Da

MPl,d

= ζ⃗b − Z⃗a, and Z⃗ ′
QG = Z⃗QG − Z⃗a, (2.38)

we find:

ζ⃗ ′b · t̂ =
1

na|ζ⃗a|
δab + εζ⃗b · t̂′ +O(ε2), Z⃗ ′

QG · t̂ = εZ⃗QG · t̂′ +O(ε2). (2.39)

Thus, in (Da = d + na)-dimensional Planck units only the tower ζ⃗a becomes light

quickly, whereas the other towers and the species scale become light much more slowly

when ε ≪ 1 (or not at all, depending on the choice of t̂′).

This allows us to separate scales, partially decompactifying to Da = d + na di-

mensions while keeping track of a further, “slow” infinite-distance limit in the resulting

theory. This “slow” limit will be regular if the full infinite-distance limit we started with
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is regular, with tower vectors ζ⃗ ′b = ζ⃗b − Z⃗a, b ̸= a and species vector Z⃗ ′
QG = Z⃗QG − Z⃗a.

Thus, ∆′
a = {ζ⃗ ′b|b ̸= a} is the resulting tower simplex. Referring to (2.33), we see that

ζ⃗ ′b · ζ⃗ ′c =
1

Da − 2
+

1

nb

δbc, ζ⃗ ′b · Z⃗ ′
QG =

1

Da − 2
, |Z⃗ ′

QG|2 =
1

Da − 2
− 1

D − 2
, (2.40)

so ∆′
a satisfies the taxonomy rules (2.10) in Da spacetime dimensions.16

More generally, one can consider a direction vector that is infinitesimally close

to a point in the interior of a face F ⊂ ∆ of the full frame simplex ∆. As above,

such a limit has both “fast” and “slow” components. The fast component is described

by the frame simplex F with tower vectors ζ⃗a, a ∈ F and species vector Z⃗F , as

measured in d-dimensional Planck units. This limit describes the decompactification to

DF = d+
∑

a∈F na dimensions. Following this decompactification, the slow component

remains, which is described by the frame simplex ∆′
F with tower vectors ζ⃗ ′b = ζ⃗b − Z⃗F ,

b /∈ F and species vector Z⃗ ′
QG = Z⃗QG − Z⃗F as measured in DF -dimensional Planck

units. As in the above special case, one can verify that ∆′
F satisfies the taxonomy rules

(2.10) in DF spacetime dimensions. Indeed, such recursion relations17 are built into

the derivation of the taxonomy rules. We revisit these recursion relations in §2.5.3.

2.4 Connection with the tower-species pattern

The taxonomic rule (1.10) corresponds to the tower species pattern between the light

tower of states and the species scale observed in [53]. Evidence from plethora of string

theory compactifications was provided in [48]. Here, we have re-derived it from bottom-

up under the assumptions18 outlined in Section 2.1. However, it could be that this

pattern applies more generally (for instance, some of the examples in [48] included

irregular limits for which several KK towers degenerate due to non-trivial dependence

on the complex structure moduli of the compactification). Interestingly, this pattern

is not completely independent from the taxonomic rule of the towers as we explain in

the following.

A special case of (2.28) is

Z⃗F · ζ⃗a =
1

d− 2
, when a ∈ F . (2.41)

16One can also check that t̂′ ∈ cone(∆′
a) as a result of t̂ ∈ cone(∆).

17These relations have a physical origin, but correspond to interesting geometric facts. For instance,

∆ can be assembled from its “fast” and “slow” components F and ∆′
F by orienting the two simplices

in orthogonal planes and then translating the origin of plane containing ∆′
F to the point Z⃗F in the

plane containing F .
18The assumptions used in this paper to derive the pattern from bottom-up are analogous to the

bottom-up conditions already given in [48]. The relation between the condition on the existence of

bound states [48] and the Emergent String Conjecture is explained in Section 3.1, while the other two

conditions [48] are analogous to the definition of a regular limit in this paper.

– 27 –



This extends the tower-species pattern [48, 53] to every face of the frame simplex.

Recall (2.25) as well:

Z⃗F =
1

DF − 2

∑
a∈F

naζ⃗a. (2.42)

Physically, this can be understood as dictating how the species scale is controlled by

the relevant tower scales.

Interestingly, (2.41), (2.42) together imply the taxonomy rules (2.10). To see this,

first consider the case where F is a single vertex a. Then,

Z⃗a =
naζ⃗a

d+ na − 2
, Z⃗F · ζ⃗a =

1

d− 2
⇒ |ζ⃗a|2 =

d+ na − 2

na(d− 2)
=

1

d− 2
+

1

na

.

(2.43)

Next, let F be the edge between vertices a and b, in which case:

Z⃗ab =
naζ⃗a + nbζ⃗b

d+ na + nb − 2
, Z⃗ab · ζ⃗a =

1

d− 2
⇒ ζ⃗a · ζ⃗b =

1

d− 2
. (2.44)

Finally, letting F be the entire frame simplex, we find that Z⃗QG = Z⃗F satisfies:

Z⃗QG =
1

D − 2

∑
a

naζ⃗a ⇒ Z⃗QG · ζ⃗a =
1

d− 2
, |Z⃗QG|2 =

1

d− 2
− 1

D − 2
,

(2.45)

which completes the rederivation of the taxonomy rules (2.10).

More intuitively, we can explain the above derivation as follows. The definition of

the species scale in terms of the light towers of states implies that the tower vector ζ⃗b
with b ̸∈ F projects into the individual species Z⃗F when moving along the direction of

a tower in a ∈ F (see dotted black lines in Figure 4). This is because the states from

the tower ζ⃗b must enter the EFT and become lighter than the species scale Z⃗a as we

move away from the facet F , such that its contribution lowers the species scale to yield

Z⃗QG. One therefore gets that ζ⃗a · ζ⃗b = ζ⃗a · Z⃗F = 1
d−2

.

Thus, the tower-species pattern combined with the definition of the species scale in

terms of the towers, as encoded in (2.25), implies the rest of the taxonomy rules. Note,

however, that this presupposes the ability to explore infinite-distance limits directed

along every boundary of the frame simplex, so this reasoning does not go through if we

cannot reach every boundary due, e.g., to the appearance of irregular infinite-distance

limits (other than ignorable degenerations). Our taxonomy rules, however, apply to

any regular infinite-distance limit regardless of whether irregular limits appear for other

directions within the frame simplex, so in this sense they contain more information than

the pattern.
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2.5 Combining duality frames

We now consider what happens when the direction vector t̂ moves outside of the orig-

inal frame simplex. This corresponds in many examples to the familiar concept of a

duality,19 since this will bring us to consider a new frame simplex associated to a dif-

ferent duality frame where the nature of the species scale may change. In what follows,

we describe how in certain cases these frame simplices can be glued together so that

the moduli space is divided into subregions corresponding to different perturbative de-

scriptions of the theory. At the interface, the different descriptions are related to each

other by duality transformations.

As we have seen, when t̂ reaches a boundary of the frame simplex ∆, the principal

plane reduces in dimension, where the new frame simplex is the face F ⊂ ∆ of the

original frame simplex in whose interior the boundary point in question lies. Physically,

this corresponds to “turning off” the portion of the infinite-distance limit that lies in the

moduli space Mdi of a higher-dimensional theory in the chain of decompactifications,

so that on the boundary of the frame simplex we decompactify to a fixed point in the

moduli space of this higher-dimensional theory.20

To proceed “through” the boundary of the original frame simplex, we simply turn

on a different infinite-distance limit in the moduli space Mdi . Assuming that the

resulting infinite-distance limit is regular (as expected for a generic infinite-distance

limit, see Section 3.2.1), we obtain another frame simplex ∆′ of which F is also a face.

One can then imagine embedding both ∆ and ∆′ in the same principal plane, such that

they are correctly oriented relative to one another to join along F , forming a geometric

simplicial complex. Assuming that F is a facet of both ∆ and ∆′, this rigidly locks the

two simplices together. In this way, we can start to piece duality frames together for

form a larger frame complex that encodes multiple duality frames and the dualities

relating them. This is depicted in Figures 5(b) and 5(a) for two frame simplices,

respectively featuring the same and different asymptotic species scales. Interestingly,

the former corresponds to a T-duality while the latter can be thought of as a generalized

S-duality.

Ideally, one would like to continue this process until every frame simplex is glued to

another frame simplex along each one of its facets, such that the frame complex encodes

19Dualities may also occur when moving through a locus where the infinite-distance limit becomes

irregular, see Section 3.2.2 for further discussion.
20Note that this “switching off” process is indeed continuous in the space of infinite-distance limits

of the lower-dimensional theory. It amounts to reducing the speed at which the limit is taken in

the moduli space of the higher-dimensional theory relative to the speed at which the intervening

dimensions decompactify until this speed reaches 0, at which point the limit goes to a fixed point in

the moduli space of the higher-dimensional theory.
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(a) Two duality frames with the same Z⃗QG. (b) Two duality frames with different Z⃗QG.

Figure 5: A duality between two different duality frames can be represented by “glu-

ing” the frame simplices for these frames together. The two frame simplices can feature

(a) the same species vector or (b) two different species vectors. The former only occurs

in stringy phases and corresponds to a T-duality of the perturbative string in question.

The latter can be thought of as a generalized S-duality; in particular, one of the towers

reaches the Planck scale on the boundary between the two phases, suggesting the onset

of strong coupling on general emergence grounds.

every possible duality, presenting a global picture of the infinite-distance limits, duality

frames, and dualities of a given QGT. Unfortunately, this is not generally possible,

for several reasons. (1) We gave no prescription for how to choose another infinite-

distance limit in Mdi ; there might be multiple options, or no options at all. (2)

Even after specifying a choice of dualities to trace, one can encounter monodromies in

the complex of frame simplices. For instance, if the principal plane is two-dimesional

then locally the frame simplices glue together like the faces of a polygon, but upon

passing 360◦ around the origin, the candidate polygon may not close. Likewise, if the

principal plane is three-dimensional then locally the frame simplices glue together like

the faces of a polyhedron, but upon circling one of the vertices by 360◦, the faces of the

candidate polyhedron may not mesh. Similar issues can occur for a principal plane of

any dimension k > 1.

2.5.1 The tower polytope

To circumvent these complications, we impose some global structure on the moduli

space that will allow us to glue the different frame simplices into a global polytope.

Although this procedure cannot be directly applied to any moduli space, it will serve

as a proof of principle of how the taxonomy rules can be used to constrain how different

infinite-distance limits can globally fit together in the moduli space.
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First, let us assume that the moduli space has an asymptotically flat slice, where

“asymptotically flat” means that the asymptotic boundary is globally isometric to Rk

(i.e., the moduli space curvature on the slice goes asymptotically to zero and any

asymptotically-visible global differences from Rk such as a deficit angle are absent).

We would like to asymptotically identify generic straight lines on this slice with regular

infinite-distance limits whose principal plane is the tangent space to the slice. However,

this may fail for several reasons. (1) Straight lines within the slice may not be geodesic

rays within the entire moduli space, and thus fail to meet our criteria for an infinite-

distance limit (which can lead to a violation of the taxonomy rules). For example,

within the flat slice C0 = (const) in the type IIB moduli space, the path gs → ∞ is not

a geodesic ray when the fixed value of C0 is not rational. (2) Even if generic lines within

our slice are geodesic rays, the principal plane for such a limit may include directions

outside the slice.

It is not necessarily fatal if the principal plane has directions outside our chosen

slice, provided that some “effective” version of it reduces to the tangent space of the

slice. To be precise, consider grouping the k tower vectors, ζ⃗a, a = 1, . . . , k into k0
faces F1, . . . ,Fk0 , such that every vertex belongs to exactly one face. Now consider the

pericenters of these faces:

ζ⃗Fα ≡ 1

nFα

∑
a∈Fα

naζ⃗a, nFα ≡
∑
a∈Fα

na. (2.46)

One finds that:

ζ⃗Fα · ζ⃗Fβ
=

1

d− 2
+

1

nFα

δαβ, ζ⃗Fα · Z⃗QG =
1

d− 2
, (2.47)

which reproduces the taxonomy rules with the “effective” tower vectors ζ⃗Fα . This good

projection of the frame simplex physically corresponds to artificially freezing some of

the moduli, resulting in a lower-dimensional effective principal plane, see Figure 6 for

an illustration, so that we only move along directions perpendicular to the “frozen”

one.

Thus, to succeed in defining a global notion of the principal plane, we require the

following assumptions.

1. There is an asymptotically flat slice Σk
∼=asymp Rk of the moduli space Md.

2. For every asymptotically straight line in Σk there is a infinite-distance limit

(geodesic ray) within Md that asymptotically approaches it.

3. For a generic choice of asymptotically straight line in Σk, the frame simplex of the

associated infinite-distance limit admits a good projection with principal plane

asymptotically equal to the tangent space of Σk.
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Figure 6: A “good” projection of a rank 3 frame simplex down to a rank 2 “effective”

frame simplex. To perform the projection, the tower vectors {ζ⃗1, ζ⃗2, ζ⃗3} are partitioned

into disjoint faces F1 = {ζ⃗1}, F2 = {ζ⃗2, ζ⃗3} and the frame simplex is projected onto

the plane generated by the face pericenters ζ⃗F1 , ζ⃗F2 , which are the tower vectors of the

effective frame simplex. Note that the intersection of the frame simplex with this plane

is equal to its projection onto the plane, which is an equivalent way to define a “good”

projection.

As discussed in [36, 38], there are several good rules of thumb for obtaining such a slice

in a specific QGT. For now let us assume that we have done so.

With the slice Σk in hand, (1) we unambiguously fix which new infinite distance

limit of Mdi to explore when passing through the facets of the frame simplex and (2)

we eliminate the possibility of monodromy, since the principal plane is globally defined,

and returning to the same direction vector t̂ brings us back to the same infinite-distance

limit.21

Thus, after choosing such a slice we can complete our program of gluing frame

simplices together, resulting in a closed frame complex enclosing the origin, the tower

polytope for the slice Σk in the QGT in question, as showed in Figure 7 for two specific

examples. Since the taxonomy rules for the tower vectors are rigid, there is a discrete

set of allowed tower polytopes. With some extra input—such as an upper bound on

the spacetime dimension after decompactification—this set becomes finite, allowing for

a classification program.

21To be precise, this is true up to the impact parameter of the asymptotically straight line. However,

this impact parameter has no effect on the frame simplex in a regular infinite-distance limit.
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(a) Rank-2 tower polytope in d = 7. (b) Rank-3 tower polytope in d = 4.

Figure 7: Examples of tower polytope with different number of moduli and d. For (b)

the triangulation into simplices is shown in dashed blue lines. The depicted polytopes

are realized as a rank 2 and 3 slices of the full polytope resulting from compactifying

M-theory on T 4 and T 7, respectively.

(a) Rank-2 species polytope in d = 7. (b) Rank-3 species polytope in d = 4.

Figure 8: Example of species polytope (dual to the tower polytopes from Figures 7(a)

and 7(b)) with two and three moduli in d = 7 and 4. Also pictured is the triangulation

into simplices for (b). These species polytopes appear as a rank-2 and 3 slices of the

full species polytopes of M-theory on and T 4 and T 7.

Note that while the surface of the tower polytope is triangulated by the frame

complex, the geometric facets, vertices, etc., of the tower polytope are not identical to
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those of the complex. In particular, every tower vector is a geometric vertex of the

tower polytope except for string oscillator towers, which are the pericenters of geomet-

ric facets. Thus, the stringy faces of the tower polytope are in general nonsimplicial

(specifically, they are cross-polytopes) and are triangulated by multiple frame simplices,

whereas the Planckian faces are simplicial.

Let us remark that the above procedure of gluing the different frame simplices to

build the tower polytope does not allow for having two string towers connected to each

other without having a KK vertex in between. This is consistent with the fact that the

Emergent String Conjecture requires a unique string becoming light in the emergent

string limits. We did not need to impose this as an input, but rather it emerged as an

output of the taxonomic rules.

2.5.2 The species polytope

Just as dualities glue frame simplices together into a complex, which form a closed

polytope given a suitable slice Σk ⊆ Md, likewise species stars naturally glue together

into a larger geometric object. In particular, since the pericenter Z⃗F of every face of a

species star lies on its boundary, where it matches the pericenter of faces of adjoining

species stars, the faces of neighboring species stars combine into larger faces that span

multiple duality frames. This is unlike the frame complex, where each geometric facet

represents a distinct duality frame (in a Planckian phase) or at most a collection of

T-dual frames (in a stringy phase).

Given a suitable slice Σk ⊆ Md satisfying the above assumptions and gluing to-

gether the “projected” species stars (constructed in the obvious way from the projected

frame simplices), one obtains the species polytope, the vertices of which are the

species vectors Z⃗QG for each duality frame.22 See Figure 8 for the species polytopes

associated to the examples from Figure 7.

Due to the relationship Z⃗QG · ζ⃗a = 1
d−2

for each frame simplex (the tower-species

pattern [48, 53]), the species polytope is precisely the polar dual of the tower polytope,

where the polar dual of a set P ⊆ Rk is defined as:

P ◦ =

{
Z⃗
∣∣∣∣ ∀ζ⃗ ∈ P, Z⃗ · ζ⃗ ⩽

1

d− 2

}
, (2.48)

with the 1
d−2

normalization chosen in accordance with the tower-species pattern. Thus,

for instance, each KK tower vector (geometric vertex) in the tower polyope is dual to

a facet of the species polytope, and likewise each geometric facet of the tower polytope

is dual to a vertex in the species polytope, etc.

22Note that in the case of stringy phases, multiple duality frames (related by, e.g., T-duality) share

the same species vector Z⃗QG = ζ⃗osc, controlled by the common string scale.
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Just as the geometry of the tower polytope vertices are rigidly fixed by the tax-

onomy rules (2.10), it is interesting to ask whether analogous rules directly fix the

geometry of the vertices of the species polytope. The rule (2.29) applies only within a

single duality frame, so it does not directly address this question. However, consider

two vertices Z⃗α, Z⃗β of the species polytope that are joined by an edge. The pericenter

of the edge is Z⃗F , where F ⊂ ∆α ∩∆β is a common facet of the corresponding frame

simplices ∆α,∆β. We can then compute the dot product between the two vertices

by decomposing each into components parallel and perpendicular to the pericenter-Z⃗F

plane. We find:

Z⃗⊥
α = Z⃗⊥

β = Z⃗F , Z⃗∥
α = Z⃗α − Z⃗F , Z⃗∥

β = Z⃗β − Z⃗F , (2.49)

hence

Z⃗α · Z⃗β = Z⃗⊥
α · Z⃗⊥

β + Z⃗∥
α · Z⃗∥

β = |Z⃗F |2 − |Z⃗∥
α||Z⃗

∥
β|, (2.50)

where we use the fact that Z⃗∥
α is antiparallel to Z⃗∥

β since Z⃗F lies on the line between

them. Thus, using (2.36) we find

Z⃗α · Z⃗β =
1

d− 2
− 1

Dαβ − 2
−

√(
1

Dαβ − 2
− 1

Dα − 2

)(
1

Dαβ − 2
− 1

Dβ − 2

)
, (2.51)

where Dα, Dβ and Dαβ are the species dimensions associated to Z⃗α, Z⃗β and Z⃗F . Sim-

plifying, we find:

Z⃗α · Z⃗β = 1
d−2

− 1
Dαβ−2

[
1 +

√
(Dα−Dαβ)(Dβ−Dαβ)

(Dα−2)(Dβ−2)

]
. (2.52)

This rule applies to any two vertices of the species polytope that are joined by an edge.

More generally, it applies to the pericenters Z⃗α, Z⃗β of any pair of faces of the species

polytope, provided that the pericenter Z⃗αβ of the line between them is the pericenter of

face of the polytope. For example, in the special case where Z⃗β lies in the Z⃗α-pericenter

plane, we have Dαβ = Dα, so that

Z⃗α · Z⃗β = |Z⃗α|2 =
1

d− 2
− 1

Dα − 2
, when Z⃗β lies in the Z⃗α-pericenter plane,

(2.53)

which is a restatement of (2.36).

The rule (2.52) rigidly fixes the geometry of the species polytope in an analogous

fashion to the taxonomy rules (2.10) applied to the tower polytope.
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2.5.3 Recursion of polytopes

Just as with the frame simplex and the species star, the tower and species polytopes

can be built up recursively in the rank. The nature of this recursion is somewhat easier

to explain in the case of the species polytope, which we discuss first.

Consider a facet of the species polytope, with pericenter Z⃗1. Then for any two

species vectors Z⃗α, Z⃗β on this facet, (2.52) implies that

(Z⃗α − Z⃗1) · (Z⃗β − Z⃗1) =
1

D1 − 2
− 1

Dαβ − 2

[
1 +

√
(Dα −Dαβ)(Dβ −Dαβ)

(Dα − 2)(Dβ − 2)

]
, (2.54)

where we use the special case (2.53) to compute Z⃗α · Z⃗1 = Z⃗β · Z⃗1 = |Z⃗1|2. The rule

(2.54) has the same form as (2.52) with d → D1. Thus, each facet of the species polytope

is itself a species polytope in spacetime dimension equal to the species dimension D of

the pericenter of the facet. More generally, this applies to any p-face of the species

polytope, not just to its facets.

The physical interpretation of this is the same as in Section 2.3: the pericenter of

the facet correponds to a KK tower vector ζ⃗1. Taking the limit where this KK tower

becomes exponentially light in D1 = d + n1 dimensional Planck units, we recover a

D1-dimensional theory with an inherited asymptotically flat slice Σk−1, etc., such that

the species polytope of this theory is the facet of the original species polytope that we

began with.

We now study the same limit in the tower polytope. Per the taxonomy rules (2.10)

and (2.41), we have:

ζ⃗(adj)a · ζ⃗1 =
1

d− 2
, Z⃗1 · ζ⃗1 =

1

d− 2
=⇒ (ζ⃗(adj)a − Z⃗1) · ζ⃗1 = 0⃗, (2.55)

for any tower vector ζ⃗
(adj)
a joined to ζ⃗1 by an edge in the frame complex. Recall that

(ζ⃗
(adj)
a − Z⃗1) is equivalent to the tower vector with the mass written in the higher

dimensional Planck units. By comparison (ζ⃗1 − Z⃗1) · ζ⃗1 = 1
n1

> 0, whereas it is not

hard to see that, since the frame complex is convex, for any other tower vector ζ⃗far in

the frame complex, ζ⃗
(far)
a · ζ⃗1 < 1

d−2
and hence (ζ⃗

(far)
a − Z⃗1) · ζ⃗1 < 0. Thus, in the limit

t̂ ∝ ζ⃗1, the KK tower corresponding to ζ⃗1 becomes exponentially light (as expected),

whereas the towers joined to ζ⃗1 by an edge in the frame complex remain at a fixed scale

in D1-dimensional Planck units and all other towers become heavy.

As already shown in (2.33), the tower vectors ζ⃗
(adj)
a −Z⃗1 indeed satisfy the taxonomy

rules in D1 spacetime dimensions. These vectors are precisely the vertices of the link

of the tower vector ζ⃗1 within the frame complex. Thus, the link of each geometric

vertex in the tower polytope is itself a tower polytope, again in spacetime dimension
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D1 = d + n1. Note that in this case it is important that the link is computed in the

frame complex, which includes the string oscillator towers as vertices. Geometrically,

the link can also be thought of as the vertex figure of the vertex in question. Concrete

examples illustrating these recursion relations of polytopes are shown in Section 4.3

(see Figures 17 to 19).

3 Scope of the taxonomy rules

The taxonomic rules derived in the previous section hold under certain assumptions,

as outlined there and in Section 1.1. Some of these assumptions are believed to be

universal features of quantum gravity (for instance, some can be motivated by the

Emergent String Conjecture) while others are assumptions about the geometry of the

moduli space that do not hold universally. As a result, we emphasize that our rules are

not universal: they do not apply at all points in quantum gravity moduli spaces (not

even in all the asymptotic limits). In this section, we investigate these assumptions

in more detail, exploring the conditions under which they are satisfied and explaining

how the taxonomic rules can break down when they are violated.

3.1 Emergent String Conjecture and bound states

The derivation of the taxonomic rules in Section 2 relied on the assumption that the

Emergent String Conjecture (ESC) holds in any effective field theory consistent with a

UV quantum gravity completion (Assumptions 1 and 2 in Section 1.1). Moreover, we

assumed that the ESC can be applied recursively to the higher-dimensional theory that

emerges upon decompactification. In this subsection, we emphasize that this a stronger

condition than merely imposing the ESC in the original lower dimensional theory, and

we highlight the crucial implication of this assumption: the existence of bound states

of neighboring principal towers. Such bound states are necessary to avoid pathologies

that would otherwise violate the taxonomy rules.

For purposes of illustration, consider a 2-dimensional moduli space with a frame

simplex generated by the tower vectors of two KK principal towers, associated with the

decompactification of n dimensions andm dimensions, respectively. Then, following the

arguments of the previous section, a generic infinite-distance limit in this duality frame

should correspond to a decompactification of m + n dimensions, with a species scale

given by the (d +m + n)-dimensional Planck scale. However, if the KK modes of the

two towers do not form bound states, then the the total number of states contributing

to the species scale will be given simply by the sum of the light modes of the two

towers, N ∼ N1 + N2, which is too small. As a result, the species scale will be too

large, resulting in a violation of the pattern, ζ⃗ · Z⃗ ̸= 1
d−2

[48, 57]. In contrast, if the KK
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modes do form bound states that populate a (sub-)lattice of their KK charges, then the

total number of light species is multiplicative, N ∼ N1N2, which leads to the expected

scaling of the species and the orthogonality of the species vector with the convex hull

of the tower vectors, in concordance with our taxonomic rules.

Figure 9: Tower polytope for Type IIB string theory compactified on S1 to d = 9, with

the different KK (in blue) and string oscillator towers depicted, as well as the different

duality frame descriptions. The moduli correspond to the canonically normalized 10d

dilaton and the S1 radius. The sphere of radius 1√
d−2

= 1√
7
is shown in gray and the

Type IIB self-dual line in red. See [36] for more details on the limits of the duality

frames and the expression of the different towers tower vectors.

From this, we conclude that any two principal KK towers that are connected by

an edge of the tower polytope (so that there is one direction along which both decay at

the same rate) must form bound states and, therefore, can be described microscopically

as KK towers from the perspective of the same duality frame. This means that if two

KK vertices of the tower polytope are connected by an edge and their KK modes do

not form bound states (which occurs if they are interpreted as KK towers in different

duality frames, e.g. KK and winding modes), then the interior of this edge must also

contain a string oscillator vertex. This string oscillator vertex separates the two KK

towers into distinct duality frames.
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An example of this occurs in the tower polytope of Type IIB string theory on S1

(see Figure 9), where the edge connecting the KK mode vertex and the F-string winding

mode vertex is separated into two distinct frame simplices by the F-string oscillator

vertex. As a result, the KK and winding modes are never simultaneously lighter than

the species scale. Moreover, in this case the neighboring vertices (i.e. the KK and

string vertices) again form bound states comprising the Kaluza-Klein replicas of the

string modes, since the KK tower can be described as perturbative states from the

string worldsheet perspective. Without such bound states, the taxonomy rules of the

previous section could be violated.

In [48] it was noted that this condition on the formation bound states was essential

for the tower-species pattern to hold. Here we point out that this condition follows

from imposing the ESC recursively in the higher dimensional theory that emerges upon

decompactification, so that all the light towers below the species scale can be described

as perturbative states under the same duality frame.

3.2 Regular vs. irregular infinite-distance limits

In Section 2, we focused on deriving the taxonomy rules for regular infinite-distance

limits (see the definition at the beginning of Section 2.1.2). Unlike the assumption

of the Emergent String Conjecture, however, this regularity assumption is violated in

known examples of infinite-distance limits, and in such cases the taxonomy rules can be

violated. In what follows, we will argue that generic infinite-distance limits are regular,

and we will briefly discuss what happens when a limit becomes irregular, although a

more systematic analysis is left for future work.

3.2.1 Generic infinite-distance limits are regular

Let us start by arguing that—provided that the ESC holds—infinite distance limits

should be generically regular. For instance, if there are degenerate towers in some

particular infinite-distance limit, a slight variation in the direction of the limit (as

measured, e.g., within the tangent space of some fixed reference point) will produce

parametric splittings between these towers. While this argument assumes that a con-

tinuous family of infinite-distance limits with a suitably varying direction exists, this

is true in every example we know of involving degenerate towers.

Infinite-distance limits involving decompactifications that are not asymptotically

empty are subtler. Let us temporarily turn the problem around and consider what

happens as the direction of the asymptotic limit is varied for an asymptotically empty

(but not strictly empty) decompactification. As this direction is varied, the exponential

rates controlling both the growth of the overall volume as well as the size of the warped

/ Ricci-curved regions will vary. In special directions, these rates will coincide and the
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warped / Ricci-curved regions will grow at the same rate as the overall volume in the

decompactification limit. The relative size of these regions compared to that of Xn can

still be adjusted by adjusting the limit, but typically this does not change the direction

of the limit (which controls the exponential rates), only its impact parameter. Adjusting

this impact parameter towards one extreme, the strongly warped / Ricci-curved regions

grow to fill all of Xn.

Continuing beyond such a special direction, the warping / Ricci-curvature will

naively blow up, and it is no longer possible to view the theory as decompactify-

ing along Xn. The Emergent String Conjecture then demands that there is a “dual”

description of this limit which is again either a decompactification limit along some

new manifold Yn or an emergent string limit. Either way, we conclude that a non-

asymptotically-empty decompactification can only occur in specific directions in which

various exponential rates coincide, hence varying the direction of the infinite distance

limit should generically produce a regular infinite-distance limit. This agrees with the

examples studied in [36], as explained in Section 3.2.3.

Thus, we expect that regularity is generic amongst infinite-distance limits. If so,

we can understand the collection of all infinite-distance limits by starting with regular

limits and allowing them to vary continuously.

3.2.2 Irregular limits: degenerate towers

We now briefly consider what happens when a regular infinite-distance limit becomes

irregular as the direction vector is varied. This can happen in one of two ways, either

because some of the tower scales parametrically below ΛQG degenerate, or because we

reach a decompactification limit that is not asymptotically empty. Let us first focus on

the first case, which is potentially more benign.

The case of degenerate towers correspond to having several leading towers para-

metrically below ΛQG that decay at the same rate, see Figure 10. If this occurs, these

towers are necessarily KK scales, and their degeneration corresponds to a previously hi-

erarchical decompactification on Xm followed by Yn with vol(Xm) ≫ vol(Yn) morphing

into the decompactification of some manifold Zm+n without hierarchical KK scales. In

some cases, we can take another limit of this manifold where we again obtain a hierar-

chical decompactification, but now on Yn followed by Xm (so that vol(Yn) ≫ vol(Xm)).

When this occurs we can continue through the degenerate locus and reach another reg-

ular infinite-distance limit. Although the sequence of the number of decompactifying

dimensions is now altered (by exchanging n with m), this only affects the taxonomy

rules (2.10) by permuting the tower vectors, so with an apropriate choice of conventions

we can again consider the frame simplex to be the same as before the degeneration,

with only t̂ having changed. This is what we have termed an “ignorable degeneration”
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in Section 2.3. Two important comments are in order. Firstly, it is not necessarily

Figure 10: Example of a direction t̂ over which which several towers (in this case those

associated to ζ⃗1 and ζ⃗2) become degenerate in a way that we can “ignore”. The rank

3 Planckian phase is the same as depicted in Figure 3(a).

the case that Zm+n = Xm × Yn (for instance, there may be a fibration). When this is

not true, the reversed limit discussed above may not exist, so it is not always possible

to continue through a degenerate locus in the manner described above. In that case,

we might only get a portion of the frame simplex, as in the M-theory on K3 example

of Appendix A.4. Secondly, there may be other (previously undetected) hierarchical

limits of Zm+n that open up in the degeneration limit. Thus, the principal plane may

connect to the principal plane of another family of regular infinite-distance limits at

points of degeneration, even if the degeneration is ignorable. A simple example of this

is in the moduli space of 9d maximal SUGRA, where the limit in which M -theory

decompactifies along a T 2 of fixed shape is such a degenerate limit. This limit admits

continuous deformations where the T 2 shape modulus goes off to any of the various

infinite-distance limits of Teichmüller space. (These are of course related by dualities,

but they correspond to different principal planes in the tangent space of moduli space

at this point).

3.2.3 Irregular limits: sliding vertices and warped geometries

The other regularity condition we assumed in our derivation of the the taxonomy rules

in Section 2 was asymptotic emptiness; namely, we assumed that the decompactifi-

cation manifold approaches a Ricci-flat manifold with background fields that vanish
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outside of regions of measure zero. This assumption may be violated, however, in de-

compactification limits that involve a significant amount of warping. If so, the physics

of the decompactification becomes very complicated (even in the simplest examples

[36, 58]). Analyzing such cases systematically is beyond the scope of our paper. How-

ever, in this subsection, we explain one example in which such warping occurs. We

will see that (a) vertices of the frame simplex may vary as a function of the position in

moduli space, resulting in a violation of our taxonomy rules in special, irregular limits

of moduli space, but (b) generic limits of the moduli space are regular and satisfy our

taxonomy rules. As a result, we can still use the polytopes satisfying the taxonomy

rules for regular limits as building blocks to determine the global geometry of the tower

vectors.

With this, let us consider SO(32) heterotic string theory compactified on S1. As

shown in [36], this theory features a collection of principal towers whose tower vectors

vary as a function of position in moduli space, as shown in Figure 11. Within the upper

Type I′ phase (i.e., when ϕ/
√
7 < ρ < −ϕ/

√
7), the vector labeled KK, I′ lies below

the line ζρ = ζϕ/
√
7. Conversely, upon crossing the self-duality line ρ = ϕ/

√
7 into

the lower Type I′ phase (i.e., when 5
32

√
7
ϕ < ρ < ϕ/

√
7), this vector continuously slides

above the line ζρ = ζϕ/
√
7.

As a result of this sliding, the taxonomy rules of Section 2 break down along an

infinite-distance geodesic parallel to the self-duality line (shown in red). For example,

for the infinite-distance limit on the self-duality line with ρ/ϕ = 1/
√
7, ρ → −∞,

the leading tower (labeled KK, I′(warp) in Figure 11) has length |ζ⃗KK, I’(warp)| = 5/
√
28

and has an angle θ = arccos
(
3
4

)
with ζ⃗osc,I, which violates the taxonomy rules for the

tower vectors (2.10)23. Such a violation occurs because the Type I′ decompactification

limit does not lead to a 10-dimensional vacuum, but rather a running solution in which

the string coupling varies, with the string oscillator tower not becoming light when

moving in such direction. This violates the assumption of asymptotic emptiness, as the

effects of warping cannot be neglected in this limit. As a result, our derivation of the

taxonomy rules is no longer valid for the family of infinite-distance limits parallel to

the self-duality line.

Nonetheless, as discussed at length in [36], the effects of warping vanish asymp-

totically far from the self-duality line, and a result the taxonomic rules are restored

in any infinite-distance limit that is not parallel to this line. To be more precise, con-

23Whether the pattern relating the tower and species vectors holds in this case is still an open

question [48]. It could happen that the rule (1.5) for the light towers needs to be modified in this

case while the pattern with the species scale (1.10) still holds if sustained in a deeper quantum gravity

constraint on the density of states.
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Figure 11: Frame simplices in different asymptotic limits of the I′SO(32) regions in

SO(32) heterotic string theory compactified on S1. In Type I′ infinite-distance limits

parallel to the self-duality line (red), the taxonomy rules are violated, as the tower

vector for the Type I′ KKmodes takes values along a segment (green arrows) orthogonal

to this line. Such limits are irregular due to the effects of warping. In all other Type

I′ infinite-distance limits, however, the KK, I′(warp) vector approaches either KK, I′ or

KK, I′(dual). Such limits are regular, as the effects of warping become negligible in the

asymptotic limit, so the frame simplices of these limits satisfy the taxonomy rules. Note

that the heterotic towers (along the thin black segment) remain fixed in any limit.

sider an infinite-distance limit in one of the Type I′ regions of moduli space, ϕ → −∞
with fixed slope 5

32
√
7
< dρ

dϕ
< − 1√

7
. If this limit lies above the self-duality line, i.e.,

if − 1√
7
< dρ

dϕ
< 1√

7
, then the frame simplex is generated by the tower vectors labeled

“osc”, I and KK, I′ in Figure 11. These vectors do satisfy our taxonomic rules in

(2.10). Similarly, below the self-duality line, i.e. for 5
32

√
7
< dρ

dϕ
< 1√

7
, the frame simplex

is generated by the tower vectors labeled “osc”, I(dual) and KK, I′(dual) in Figure 11: this

frame simplex also satisfies the taxonomic rules. Likewise, the rules are satisfied in all

infinite-distance limits in the Type I and heterotic phases.

In other words, whereas the tower vector of the Type I′ KK modes slides continu-
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ously as a function of position in the interior of moduli space, it jumps discontinuously

in the asymptotic regime of moduli space as a function of the angle ϑ = tan−1(dρ/dϕ),

satisfying the taxonomic rules on either side of the self-duality line ρ = ϕ/
√
7.24 The

assumption of asymptotic emptiness is satisfied in these limits because, although there

is nonzero warping of the decompactification manifold, the effects of this warping tend

to zero in the asymptotic limit.

We see, therefore, that the taxonomy rules may be violated when the regularity

assumptions are violated. However, we also see that in the case at hand, generic

infinite-distance limits are regular, so violations occurs only in special directions of

moduli space. We also note that in this example, the tower vector slides along a line

segment orthogonal to the family of irregular geodesics. In Appendix B, we show that

this phenomenon is much more general: tower vector sliding always occurs orthogonal

to the direction of an irregular geodesic in the asymptotic limits of the moduli space.

As a result, for the purposes of computing the scaling coefficient α of the leading tower,

the sliding is irrelevant: the three KK, I′ tower vectors of Figure 11 all yield the same

scaling coefficient α for the family of geodesics parallel to the self-duality line.

Finally, note that the directions t̂ where leading towers become degenerate are fixed

by the geometry of the frame simplex, but this is not the case for directions where

non-asymptotically-empty decompactifications occur. Predicting where the latter can

happen is non-trivial and is beyond the scope of our paper.

3.3 Flat moduli spaces and axions

In Section 2.5.1, we studied the conditions under which frame simplices can be glued

together to form a tower polytope. We found that a sufficient condition for such gluing

is the existence of an asymptotically flat slice of moduli space, such that a frame simplex

of an infinite-distance limit in this slice admits a “good” projection onto the tangent

space of the flat slice. For instance, in 10d Type IIA, heterotic, and Type I string

theories, there is just one modulus, the dilaton. The entire moduli space is flat, and

we may construct a tower polytope for this theory.

In 10d IIB string theory, there are two moduli: the axion and the dilaton. The

moduli space is no longer flat, and the tower/species vectors of the (p, q) string scales

vary with position in moduli space. To avoid this complication, we consider a slice

24This discontinuous behavior in the asymptotic regime is indicative of an order-of-limits issue;

continuous sliding gives way to discontinuous jumping in the same way that a family of continuous

Gaussian functions may approach a discontinuous Dirac delta function in the asymptotic limit. While

the exponential rate of the towers is defined for the infinite-distance points, the masses of the towers

(and the associated scalar charge-to-mass ratio vectors) are local functions of the moduli space, their

asymptotic expression needs not to be continuous in the space of infinite-distance limits.
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of the moduli space, such as C0 = 0. This slice is a (flat) line, parameterized by the

dilaton, and in the weak coupling limit the tower vector for the fundamental string lies

tangent to the geodesic. Thus, our taxonomy rules can be applied globally along this

slice to construct a tower polytope.

In general, in order to find a flat slice satisfying the assumptions of Section 2.5.1, a

good rule of thumb to set all the axions to zero. For instance, compactifying M-theory

on a k-torus T k, axions arise both from the off-diagonal components of the T k metric as

well as from C3 reduced on various three cycles of the torus.25 Setting all these axions

to zero restricts us to a flat slice of moduli space consisting of M-theory compactified

on a rectangular torus without Wilson lines, parameterized by k radion moduli. One

can check that the tower vectors of the KK modes of each of the 1-cycles of the torus

admit a good projection onto the tangent space of this slice, as do the tower vectors for

the other duality frames that appear as we move in this slice of the moduli space. As

a result, our taxonomic rules can be applied throughout this slice of the moduli space.

Typically, the existence of a flat slice of moduli space that satisfies the assumptions

of Section 2.5.1 is related to a discrete symmetry that is preserved along the slice and

broken (partially or completely) away from it. This symmetry forces the tower and

species vectors of each duality frame along the slice to lie tangent to it. For instance,

in the case of M-theory on a rectangular k-torus, there are k Z2 symmetries reflecting

each of the k circles (combined with spacetime parity in the external directions), under

which the metric and C3 axions for the corresponding directions are charged. There is

also an 11d Z2 CP symmetry combining C3 → −C3 with spacetime parity, under which

all of the C3 axions are charged. Only when all of the axions vanish are all of these

discrete symmetries unbroken.

More generally, setting all of the axions to fixed, non-zero values typically also leads

to flat (or, at least, asymptotically flat) slices. However, the tower and species vectors

for the various dual descriptions will not always admit good projections onto the tangent

space. For instance, in the case of M-theory on a torus, setting the metric axions to

fixed, non-zero values generates a globally flat slice, and the frame simplex generated

by the KK modes admits a good projection. In general, however, the tower and species

vectors of the other duality frames in this slice do not admit good projections.26

However, when there is a discrete symmetry enhancement along the chosen axion

slice, then we can once again safely fix the axions to these values. For instance, the

25In d ≤ 5, there are also axions coming from the magnetically dual C6 potential reduced on six

cycles of the torus.
26In fact, when the axions are fixed at irrational values, some of the “asymptotic” directions in such

a slice will turn out to wind endlessly around the moduli space without traveling to infinite distance,

leading to more drastic violations of the assumptions of Section 2.
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C0 = 1/2 slice of type IIB moduli space, fixed by
(
1 −1
0 −1

)
∈ GL(2,Z), is just as suitable

for our taxonomy as the C0 = 0 slice. For the same reason, we can also consider

compactification on non-rectangular tori with suitable discrete isometries, such as T 2

with complex structure τ = e2πi/3.

Let us emphasize, however, that even when there is not an asymptotically flat

slice of the moduli space, our rules can still be applied in a particular asymptotic

region associated to a given set of light principal towers. In such cases, while we

cannot construct the full tower polytope, we can still construct the frame simplex.

This situation can occur, for instance, when compactifying on a manifold with a non-

trivial fibration. In the limit where the base grows large in comparison to the fiber, the

manifold looks locally like a product, and there is an approximately-flat radion-radion

moduli space. However, the opposite limit in which the fiber grows relative to the base

is more non-trivial, and it may even be obstructed.

Our work does not rule out the possibility of constructing and classifying tower

polytopes in the absence of globally asymptotically-flat slices of the moduli space,

though this may require some revision of the rules described above. As a first step

in this direction, in Appendix A.4 we derive the convex hull of the leading principal

towers for M-theory on K3, which corresponds to half of one of the tower polytopes of

Section 4.1.27 Similar phenomena occur in Calabi-Yau threefold compactifications, see

Appendix C and [48] for some examples.

3.4 The direction vector and the principal plane

As mentioned briefly in Section 2.2, the taxonomy rules (2.10), (2.22) do not constrain

the component of the direction vector t̂i = dϕi

ds
perpendicular to the principal plane.

This is not relevant for the derivation of the taxonomy rules, but it is essential if one

wants to bound the rates at which the various towers become light asymptotically.

Having t̂ not lying within the principal plane would result in θ ̸= 0 in (2.24), which

could result in a violation of the Sharpened Distance Conjecture. In this section, we will

explain in greater detail the difficulties involved with proving that t̂ must lie parallel

to the principal plane.

To begin, consider the decompactification along a manifold Xn associated to the

leading KK tower in some regular infinite-distance limit. At large volume, vacua in

the moduli space are semiclassical backgrounds of the D = d + n dimensional theory

with d-dimensional Lorentz invariance, with the metric on moduli space determined

by fluctuations about these backgrounds. Because Xn is asymptotically empty, the

27Since M-theory on K3 is dual to heterotic string theory on T 3, we expect that globally flat slices

of moduli space do exist in this example, but they are not obvious from the M-theory perspective.
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geometric (size and shape) moduli of Xn are independent of the other moduli, as are

the D-dimensional moduli. Thus, ignoring the axion and brane moduli, the moduli

space projects down to a direct product:

Mbase = Rrad ×Mshape ×M(D). (3.1)

For each point in Mbase, there is a moduli space Maxion/brane of axion and brane moduli,

where the size and shape of this space depends on the choice of point in Mbase. (For

instance, the axions inherit an M(D)-dependent metric from the D-dimensional gauge

kinetic terms).28 Thus, in the large volume limit the d-dimensional moduli space M(d)

is a fibration:

Maxion/brane ↪→ M(d) → (Rrad ×Mshape ×M(D)). (3.2)

Note that Maxion/brane refers only to the axions and brane moduli associated to Xn.

Other “axions,” etc., with a different, higher-dimensional origin are included in M(D).

With this, the statement that the direction vector t̂ lies within the principal plane

is tantamount to the condition that its components in the axion/brane directions

Maxion/brane and shape directions Mshape vanish, and its components in the higher-

dimensional moduli space M(D) are either radial directions of a further compactifica-

tion, or else dilatonic directions associated with a fundamental string.

From our regularity assumptions in the previous section, we may safely conclude

that the components of the direction vector in the shape directions t̂shape must vanish,

since nonzero t̂shape would imply a splitting of the Kaluza-Klein scale into multiple

parametrically different scales, violating the assumption of non-degeneracy. However,

it is more difficult to show that the components of t̂ vanish in the Maxion/brane directions

of moduli space, particularly in cases where there is nontrivial mixing between the brane

moduli and axions. Similarly, while an inductive argument could be used in principle

to argue t̂ points only in the radial directions of M(D) for a Planckian phase, the case

of a stringy phase is more challenging. We leave a thorough investigation of this issue

for future work.

4 Applications

In this section, we provide a classification of tower and species polytopes in various

dimensions when the following conditions hold: (1) we have a globally flat slice of

28Note that there is no clean separation between the axion (Wilson lines) and brane moduli spaces.

The branes can source fluxes that alter the Wilson lines as they are moved around, and the Wilson

lines can create monodromies in the brane moduli space.
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moduli space where the tower-vectors are constant functions of the moduli space,29 (2)

quantum gravity theories do not exist in more than eleven dimensions, and that (3)

string theories do not exist in more than ten dimensions. We find that only a finite

list of tower (or species) polytopes are consistent with our taxonomic rules. Many of

the allowed polytopes are realized in maximal supergravity in higher dimensions, and

they satisfy the recursive relations of Section 2.1. However, some of polytopes allowed

by our classification have not yet been observed in the string landscape. This raises

the question of whether additional constraints should be imposed to eliminate these

possibilities, or instead whether these polytopes describe new, undiscovered regions of

the quantum gravity landscape.

4.1 Classification of polygons in diverse dimensions

We begin by considering 2d moduli spaces in various dimensions. These 2d moduli

spaces may viewed as slices of higher-dimensional moduli spaces, and if these higher-

dimensional moduli spaces are flat, then the polygons we find in the 2d moduli spaces

are simultaneously slices and good projections of higher-rank polytopes. This will be

illustrated in examples when we deal with higher-rank polytopes in Section 4.2.

Following our taxonomy rules above, the vertices of the full tower polytope must

come from KK modes, since string-oscillator modes have tower vectors of length 1√
d−2

,

and thus lie in the interior of a facet of the tower polytope (see Figure 1). This convex

hull must be generated by at least three KK tower vectors.

A tower polygon may be specified by a tuple of extended natural numbers

n⃗ = (n1, . . . , nk), (4.1)

where ni > 0 represents the KK modes of ni compact dimensions, ni = ∞ represents

string oscillation modes, and k ≥ 3 is the number of vertices. This ni = ∞ notation

for string oscillation modes follows from the fact that |ζ⃗osc| = limn→∞ |ζ⃗KK, n|, see (1.6).
Moreover, two string oscillator vertices cannot be connected to each other by an edge

in the polytope, so ni and ni+1 cannot both be infinite for any i.

Following (2.10), the angle between consecutive vertices ζ⃗i and ζ⃗i+1 is given by

θi ≡ arccos

√
nini+1

(ni + d− 2)(ni+1 + d− 2)
. (4.2)

With this, for a given n⃗-tuple, we can define the angle summation function Σθ(n⃗) as

Σθ(n⃗) =
n∑

i=1

θi =
k∑

i=1

arccos

√
nini+1

(ni + d− 2)(ni+1 + d− 2)
, (4.3)

29Note that this is not a new assumption but rather a quick summary of Assumptions 1 to 7 from

Section 1.1
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where nk+1 ≡ n1. For n⃗ to give a consistent polygon, the interior angles must sum up

to 2π, so

Σθ(n⃗) = 2π . (4.4)

In the remainder of this subsection, we derive the allowed n⃗-tuples, up to per-

mutation, for d = 9, 8, 7, 6, respectively. As stated above, we assume that we can

decompactify our theory to no more than eleven dimensions, and we assume that any

eleven-dimensional theory has no strings. The former assumption implies that neighbor-

ing KK-vertices with ni = p, ni+1 = q must satisfy p+ q ≤ 11. The latter requirement

prohibits a string vertex from neighboring a vertex with ni = 11−d. These assumptions

are well motivated by the known string landscape, though it may prove interesting to

explore the additional possibilities that arise when these assumptions are relaxed.

The results of our analysis–namely, the full list of 2d polygons Π(d,·) allowed by

our rules and assumptions in dimensions 9, 8, 7, and 6–are depicted in Table 1. The

associated species polygons Π◦
(d,·) are analogously depicted in Table 2. We now present

a derivation of the results shown in these tables, beginning in dimension 9.
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9d

Our approach to classifying the allowed tower polygons begins by finding the maximum

number of vertices allowed for an n⃗-tuple. This is achieved by noting that the angles

between the respective vertices cannot sum to greater than 2π. For each dimension

d, there exists a critical number of vertices kmax such that all n-tuples with length

k > kmax have Σθ(n⃗) > 2π. This leaves a finite list of polygons to check. We exhaust

this list, and thus produce all the tower polygons allowed by our taxonomy.

For nine-dimensional theories, there cannot be an n⃗-tuple with six or more vertices.

To see this, note that the six-component n⃗-tuple with the shortest angle summation

function Σθ is30 (2,∞, 2,∞, 2,∞), but

Σθ(2,∞, 2,∞, 2,∞) ≈ 1.03124× 2π > 2π, (4.5)

Since the angle summation function for n⃗-tuples of seven or more components are

strictly larger than this one, we conclude that the n⃗-tuple must have five or fewer

vertices.

This leaves a finite list of possible n⃗-tuples to check, and there is only one n⃗-tuple

(up to cyclic permutation) allowed, given by

n⃗ = (1, 1,∞, 1,∞) , (4.6)

corresponding to P(9) = Π(9,I) in Table 1, which is precisely the example depicted in

Figure 2(a) from Type IIB string theory on a circle (or M-theory on a 2-torus)! As

described in Section 3.2.3 and depicted in Figure 11, this is also the convex hull of

SO(32) heterotic string theory compactified on S1 for asymptotic limits far away from

the self-dual line.

The polygon P(9) = Π(9,I) describes multiple different decompactification limits,

which lead to different theories. The limits that correspond to motion in the direction

of any of the KK-vertices describe decompactification to type IIA or IIB string theories,

whose polytopes are depicted in Figures 12(a) and 12(b). The decompactification in the

direction of the shortest facet corresponds to T 2 decompactification to 11d M-theory.

As explained in Section 2.1, the shape of the tower polygon uniquely fixes the shape

of the species polygon P ◦, which controls the asymptotic behavior of the species scale.

The species polygon associated to the 9d tower polytope is given by P◦
(9) = Π◦

(9,I) in

Table 2.

30Recall that ni = ∞ corresponds to a string oscillator vertex. Recall also that no more than two

dimensions may be decompactified in any limit, since we assume that eleven is the maximum number

of dimensions after decompactification.
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8d

We next consider the allowed tower polygons for an 8d theory. First, n⃗-tuples for

this theory cannot have more than six components. To see this, note that the seven-

component n⃗-tuple with the shortest angle summation function Σθ is given by (3,∞, 3,

∞, 3,∞, 3), but

Σθ(3,∞, 3,∞, 3,∞, 3) ≈ 1.10817× 2π > 2π. (4.7)

This leaves a finite list of possible n⃗-tuples to check. Ultimately, we find only two

options for n⃗-tuples up to cyclic permutation, which are given by

n⃗ ∈ {(2,∞, 2,∞, 2,∞), (1, 1, 2,∞, 2)} . (4.8)

These correspond respectively to polygons Π(8,I) and Π(8,II) in Table 1. Both of these

polygons are realized as a planar slice of the tower polytope of maximal SUGRA in

8d, as depicted in Figure 25, and indeed they correspond to the two inequivalent fixed

planes of the symmetry group G8 = S3 × S2. The associated species polytopes Π◦
(8,I)

and Π◦
(8,II) appear in Table 2.

7d

In 7d, there are no n⃗-tuples allowed with more than seven components. The eight-

component n⃗-tuple with the shortest angle summation function Σθ is (4,∞, 4,∞, 4,∞,

4,∞), but

Σθ(4,∞, 4,∞, 4,∞, 4,∞) ≈ 1.07088× 2π > 2π. (4.9)

This means that the n⃗-tuple must have at most seven components, which leaves a finite

list of possible n⃗-tuples to investigate. In the end, there are only two possible n⃗-tuples

up to cyclic permutation, which are given by

n⃗ ∈ {(1, 3,∞, 3,∞, 3), (1, 2, 2, 1,∞)} . (4.10)

These correspond respectively to Π(7,I) and Π(7,II) in Table 1. The associated species

polytopes can be found in Table 2.

As discussed in more depth in Appendix A.3, Π(7,I) and Π(7,II) can be recovered from

the 4d polytope associated with M-theory on T 4 (introduced in Section 4.2, see Figure

20(a)), representing the 2-dimensional loci that are invariant under the S5 symmetry

group. Furthermore, Π(7,II) also appears in a two-dimensional slice of the moduli space

of M-theory on K3, as shown in Appendix A.4.

– 53 –



6d

We finally turn our attention to tower polygons in d = 6 dimensions. In this case, by

an analogous argument to the ones above, n⃗-tuples can have at most eight components.

This leaves a finite list of possible n⃗-tuples to check.

This time, we find eleven options of n⃗-tuples, up to cyclic permutation. These are

given by

n⃗ ∈ {(1,∞, 1, 4,∞, 4), (2, 3, 1, 1, 3), (4,∞, 4,∞, 4,∞, 4,∞), (2,∞, 2, 2,∞, 2),

(2, 2,∞, 2,∞, 2), (4,∞, 1, 4,∞, 4,∞), (4,∞, 4,∞, 2, 2,∞), (1,∞, 4, 1, 4,∞),

(4,∞, 1, 4,∞, 1)(2,∞, 1, 4,∞, 2), (4, 1,∞, 4,∞, 1)}. (4.11)

These options correspond respectively to polygons Π(6,I) through Π(6,XI) in Table 1. Of

these possibilities, only the first four (polygons Π(6,I) through Π(6,IV)) can be recovered

from slices of the polytope describing M-theory on T 5 with all axions set to zero.

The list of polygons in 6d features several novelties that were not observed in the

higher-dimensional cases above. To begin, whereas all of the 7d-9d polygons feature

string oscillator vertices, in 6d it is possible to have consistent n⃗-tuples with no string

oscillator vertices (namely, polygon Π(6,II)).

Furthermore, whereas any string oscillator vertex in 7d-9d lies on an edge con-

necting KK modes of the same number of decompactifying dimensions, in 6d six of

the possibilities (namely, Π(6,VI) to Π(6,XI)) allow string oscillator vertices to be located

along edges spanned by KK vertices of different n. None of these six polygons are real-

ized as slices in the M-theory compactifications studied in this work or other polygons

found in the literature. On the other hand, our current rules do not exclude them.

It may be possible to rule out these polygons, perhaps using sigma-model/worldsheet

CFT methods. We leave a more thorough investigation of this possibility to future

work.

This leaves Π(6,V) as the most mysterious possibility remaining. It does not appear

as a slice of the polytope for M-theory on T 5 with axions turned off, but it also does

not feature two KK vertices with different n separated by a string oscillator vertex.

One possible reason for excluding this polytope is the fact that it does not reduce

nicely to a 3-dimensional polytope in 5d, but rather to one in 4d that only allows for

decompactification of an even number of dimensions, as we explain further in Section

4.4. A more optimistic scenario is that Π(6,V) may arise in a more exotic context,

such that the classification results here do not apply to the resulting 5d theory after

dimensional reduction. More work is needed to determine which of these possibilities

is the correct one.
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Lower dimensions

While we do not classify the possible polytopes in d < 6 in this work, we note in

passing the following interesting fact: our rules for angles of the polytope (4.2) are

invariant under a uniform rescaling (n, d − 2) → (λn, λ(d − 2)) for each vertex. This

means that, up to an overall rescaling of the polytope by a factor of
√
2, the polytopes

in d dimensions whose KK vertices are all labeled by even n will reappear in d−2
2

+ 2

dimensions, with n replaced by n/2. For example, since every KK vertex of Π(8,I) is

labeled by an even number n, this polytope will reoccur in 5d, rescaled by an overall

factor of
√
2. Since every vertex of Π(6,III), Π(6,IV), Π(6,V) and Π(6,VII) is labeled by

an even number n, these polytopes will reoccur in 4d, rescaled by a factor of
√
2.

Furthermore, since every KK vertex of Π(6,III) has n = 4, we can rescale (n, d − 2) by

yet another factor of λ = 1/2, concluding that the same polytope will also appear in

3d, rescaled by an overall factor of 2.

Of course, not all polygons in d < 6 dimensions descend from polygons in higher

dimensions in this fashion. We defer further study of these lower-dimensional cases to

future work.

4.2 Classification of maximal tower and species polytopes

If eleven is the maximum number of dimensions allowed after decompactification, then

a theory in d dimensions can have at most 11 − d radion moduli. This means that

the tower and species polytopes associated with the slice of moduli space parametrized

by these radion moduli can be at most (11 − d)-dimensional. We will thus use the

term maximal to describe rank-(11 − d) polytopes that obey our taxonomy rules in

(11− d)-dimensional, flat, geodesically complete slices in d spacetime dimensions.

In this section, we once again assume that eleven is the maximum number of di-

mensions, there are no strings in the eleven-dimensional theory, and the frame simplices

from the various limits of the moduli space can be combined globally into a single tower

polytope, where our taxonomy rules apply. We then fully classify the allowed tower

and species polytopes of rank 11− d for dimensions d ∈ {10, 9, 8}, and we show exam-

ples satisfying the taxonomy rules for d = 7 and 6. In dimension 10, our classification

reproduces the Type IIA and Type IIB polytopes, as well as a polytope not yet known

to exist in the string landscape. In dimensions 8 and 9, our classification reproduces

all of the tower and species polytopes for the radion moduli of M-theory on orthogonal

tori.

The radion-tower vectors from M-theory on orthogonal tori are computed in Ap-

pendix A. In this section, we perform the computation in dimensions 10 through 6.
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10d

We begin in ten dimensions. Here, we have only a one dimensional moduli space, and

the tower polytope is merely a line segment, with edges corresponding to either KK

modes or string oscillator modes. There are three possible tower polytopes shown in

Figure 12:

P(10) =


P(10,A) =

{
− 1√

d−2
,
√

d−1
d−2

}
, one emergent string and one

decompactification limit,

P(10,B) =
{
± 1√

d−2

}
, two emergent string limits,

P(10,C) =
{
±
√

d−1
d−2

}
, two decompactification limits.

(4.12)

The case where there is one emergent string limit and one decompactification limit,

P(10,A), occurs in Type IIA string theory. There, the emergent string limit is the weak-

coupling limit of the theory, and the decompactification limit in the decompactification

into M-theory.

(a) P(10,A): IIA

(b) P(10,B): IIB, I, heterotic.

(c) P(10,C): No known example.

Figure 12: Allowed configurations of scalar charge-to-mass ratio vectors ζ⃗ for leading

towers in d = 10. In gray the radius 1√
d−2

= 1√
8
1-ball is depicted.

Our classification also fixes the species polytope as the dual of the tower polytope.
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These are given respectively by

P◦
(10) =


P◦

(10,A) =

{
− 1√

d−2
, 1√

(d−1)(d−2)

}
, one emergent string and one

decompactification limit,

P◦
(10,B) =

{
± 1√

d−2

}
, two emergent string limits,

P◦
(10,C) =

{
± 1√

(d−1)(d−2)

}
, two decompactification limits.

(4.13)

These three species polytopes are depicted in Figure 13.

(a) P◦
(10,A): IIA

(b) P◦
(10,B): IIB, I, heterotic.

(c) P◦
(10,C): No known example.

Figure 13: Different allowed configurations for scalar charge-to-mass ratio vectors Z⃗
for the species scales in d = 10. In gray the 1√

d−2
= 1√

8
1-disk is depicted.

The case of two emergent string limits, P(10,B) occurs in Type IIB string theory

(where the two strings are the fundamental strings and D1-branes), and also in Type I

and heterotic string theories. In these cases, the slice of moduli space considered here

is parametrized by the dilaton.

The remaining case, P(10,C), features two decompactification limits. No theory

with this polytope is known in the landscape.31 As will be shown in Section 4.4, this

polytope can be recovered from the decompactification of the polygon Π(6,XI) in d = 6

from Table 1, which itself also has no identified occurrence in the string landscape.

31Of course, it would be extremely exciting if such a theory does exist, but we leave this possibility

to future research.
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9d

In 9d, the relevant slice of moduli space is now two-dimensional. Thus, our above

classification of tower polygons in 9d has already described this case. As depicted in

Figure 14, the tower polytope is now generated by the following tower vectors,

P(9) =

{(
0,

√
8

7

)
,

(
± 1√

2
,− 3√

14

)}
(4.14)

This tower polytope describes the radion-radion components of M-theory on an orthog-

onal 2-torus, or Type II string theory on a circle. From an M-theory perspective, the

three KK vertices correspond to 1
2
BPS states, with the top vertex from M2 branes

wrapped on T 2 and the other two from KK modes of either 1-cycle of the 2-torus.

Figure 14: Maximal tower polytope for 9d theories. Red and blue points respectively

correspond to string oscillators and KK towers associated with decompactifying 1 di-

mension. The edge colored in green, with its closest point highlighted, is associated to

decompactification of 2 dimensions.

Unlike in the 10d case, both the tower and species polytopes are unique. The latter

is given by

P◦
(9) =

{(
0,

1√
56

)
,

(
±1

4
,− 3

4
√
7

)}
, (4.15)
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as previously depicted in Figure 2 (also P ◦
(9) in Table 2). This agrees with previous

results in the literature, [37].

8d

In 8d, the only 3-dimensional tower polytope allowed is generated by six vertices:

P(8) =

{(
0,± 1√

2
,

√
2

3

)
,

(
± 1√

2
,±′ 1√

2
,− 1√

6

)}
, (4.16)

where the ± signs are uncorrelated. This is depicted in Figure 15, and it matches

previous results in the literature [35, 48].

Figure 15: Maximal tower polytope of the 8d theory, P(8). The string and ζ⃗KK1

towers are depicted in red and blue blue . The edges and facets associated to

decompactification of two and three internal dimensions are depicted in green and

yellow , with their closest point to the origin highlighted. The ball of radius 1√
d−2

=
1√
6
is presented in gray and the triangulation of the polytope into frame simplices is

depicted with blue lines.

The species polytope is also generated by six vertices:

P◦
(8) =

{(
0,± 1√

14
,

√
2

21

)
,

(
± 1√

14
,±′ 1√

14
,− 1√

42

)}
, (4.17)
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where again the ± signs are uncorrelated. This is depicted in Figure 15, and also agree

with previous results [37].

Figure 16: Maximal species polytope for 8d theories. Points associated to the string

scale , while 9, 10 and 11 dimensional Planck mass appear in blue , green and

yellow , respectively. The sphere of radius 1√
(d−1)(d−2)

= 1√
42

is depicted in red and

the triangulation of the species polytope in blue lines.

4.3 Illustration of recursion relations

In this subsection, we show how the tower and species polytopes of higher-dimensional

theories are encoded in the tower and species polytopes of lower-dimensional theories.

We begin with the maximal tower polytope P(9) for the 9d theory. This is depicted

in Figure 17. Consider first the two tower vectors that are adjacent to the ζ⃗KK1 in

the bottom right of the figure; these are labeled by ζ⃗KK1 (lower left) and ζ⃗osc (right).

As shown in that figure, the components of these two adjacent tower vectors that

are perpendicular to ζ⃗KK1 form the tower polytope P10,A. Alternatively, consider the

two tower vectors that are adjacent to the ζ⃗KK1 at the top of the triangle; these are

each labeled by ζ⃗osc. The components of these two adjacent tower vectors that are

perpendicular to ζ⃗KK1 at the top of the triangle form the tower polytope P10,B.
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Figure 17: Shaded in black, the P(10,A) (lower) and P(10,B) (upper) tower polytopes

are obtained from P(9) after decompactifying along the two inequivalent ζ⃗KK1 vertices.

The disk of radius 1√
(d−2)

= 1√
7
is depicted in gray.

Let us next consider the tower polytope P(8), depicted in Figure 18. Consider any

of the KK vertices ζ⃗KK1 . Consider the tower vectors that are adjacent to this vertex.

The components of these adjacent tower vectors that are perpendicular to ζ⃗KK1 form

the triangular tower polytope P(9) of the 9d theory.

Note that, because the 9d polytope can be recovered by the 8d polytope, and the

10d polytopes P(10,A) and P(10,B) can be recovered from the 9d polytope, these can also

be obtained from the 8d polytopes (see Figures 17 and 19).

One can check that analogous procedures can be carried on also for P(7) and P(6),

as depicted in Figures 20(a) and 20(b) (see Appendix A.2 for the generating vertices

of P(7) and P(6)).

We can also apply this approach to study the recursive relations to species poly-

topes. For instance, in Figure 18(b), the faces of the maximal species polytope in the

8d theory is the species polytope of the 9d theory.
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(a) P(9) embedded in P(8) (b) P◦
(9) embedded in P◦

(8)

Figure 18: In (a) the P(9) tower polytope is obtained from P(8) after decompactifying

along any ζ⃗KK1 vertex, as all of them are equivalent. The sphere of radius 1√
(d−2)

= 1√
6

is depicted in gray, while the 1√
d−2+1

= 1√
7
circle in the 9-dimensional theory is in a

darker shade. Analogously, in (b) the species polytope P◦
(9), associated to the species

scale, is recovered as a facet from P◦
(8), perpendicular to the direction we are moving.

4.4 Mysterious polytopes and dimensional reduction

Many of the polytopes we have encountered in the above subsections have known

realizations in the string landscape, but others do not. It remains an open problem

whether these new possibilities are part of some uncharted region of the landscape, or

if instead they violate some presently unknown swampland constraint.

For instance, our classification allows for a 10d theory with a moduli space of

R featuring two decompactification limits, which is not currently known to exist in

the string landscape. Additionally, in our classification in 6d, we found several more

polytopes that do not occur in maximal supergravity compactifications on tori (see

those labeled in red Tables 1 and 2). In most of these examples, namely Π(6,VI) to Π(6,XI),

there exist KK vectors on either side of string oscillator vectors that are no symmetric

(i.e., they come from decompactifications of different numbers of dimensions). It is

possible that some worldsheet argument forbids asymmetric arrangement of KK vertices
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(a) P(10,A) embedded in P(8) (b) P(10,B) embedded in P(8)

Figure 19: P(10,A) and P(10,B) tower polytopes (depicted in thick black lines) obtained

from P(8) after homogeneous decompactification of two dimensions, in a direction given

by the pericenter of the edge (thick green line) spanned by two ζ⃗KK1 vectors. Not all

these edges/limits are equivalent, and the two different possibilities, depicted in (a)

and (b), result in the aforementioned 10d polytopes. Note that (1) these polytopes

are given by the intersection of the 9d polytopes P(9) (in blue) that would be obtained

from decompactifying o¡in one of the two ζ⃗KK1 directions and (2) lay at the height of

the resulting species scale, given by Z⃗Pl10 (in green).

around oscillator ones, and thus all these polytopes belong in the swampland, but this

remains an open problem for future work.

Even if one could develop an argument against such an asymmetric arrangement,

however, this would not address every indeterminate example in Table 1. In particular,

the polytope Π(6,V) is allowed by our taxonomic rules and features symmetric towers

on each side of every string oscillator vector, yet it is not realized as a slice of the tower

polytope of M-theory on T 5.

In what follows, we consider what happens to this example under dimensional re-

duction. We will see that the theory cannot be viewed as the decompactification of

a five-dimensional theory that satisfies our assumptions (including the assumption of

symmetry about string oscillator vectors), but it can be viewed as the decompactifica-

tion of a four-dimensional theory that satisfies our assumptions.

We begin by embedding the tower polytope Π(6,V) in R3 at a plane located at a
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(a) P(8) embedded in P(7) (b) P(7) embedded in P(6)

Figure 20: An illustration depicting the ζ⃗KK1 vectors (highlighted in green) corre-

sponding to the higher dimensional polytope resulting from decompactifying in a given

ζ⃗KK1 direction (highlighted in red) for P(7) (a) and P(6) (b). Notice that the tower sub-

polytope generated by these vertices corresponds to P(8) and P(7), respectively. The

resulting tower polytope is located on a plane perpendicular to the red vector ζ⃗KK1 at

a distance of Z⃗Pld+1
from the origin.

distance of 1
2
√
3
from the origin (i.e., the length of Z⃗Pl6 , which gives the species scale

in that limit). Along this plane, the circle of radius 1√
6−2

appears as a section of the

2-sphere of radius 1√
5−2

. From this, one can apply the taxonomy rules to obtain the KK

vector ζ⃗KK1 corresponding to the decompactification limit of the 5d theory to 6d that

would result in the 2d slice of interest, as depicted in Figure 21(a). Assuming a reflection

symmetry about each string oscillator, there are two additional points ζ⃗KK1 obtained

from reflecting the ζ⃗KK1 vertex towards which we are decompactifying. If one tries to

add an extra ζ⃗KK1 vertex by reflecting the vertex associated with the decompactification

across the ζ⃗KK2 vertex between the two ζ⃗osc, its norm would be larger than the required

length |ζ⃗KK1 | =
√

5−1
5−2

, so this possibility is excluded. As depicted in Figure 21(b),

two facets of the prospective tower polytope are thus determined. As can be seen in

Figure 21(c), the next natural step would be to attempt to join these additional ζ⃗KK1

vectors through an edge. However, this edge would not have the proper length, as can

be seen by noting that the midpoint of the edge (marked in that figure) has a length of
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√
5+3−2
3(5−2)

= |ζ⃗KK3|, which is inconsistent with the construction. This marked point could

represent the closest point of a face generated by three ζ⃗KK1 vectors, but this would

require an additional ζ⃗KK1 vertex, as shown in Figure 21(d). However, fulfilling (2.15)

implies that the norm of this vertex is too large. Having exhausted all the possibilities,

we conclude that one cannot obtain Π(6,V) from a three-dimensional tower polytope in

d = 5 that satisfies our taxonomy rules.

(a) (b) (c) (d)

Figure 21: Tentative steps in trying to consistently compactify the polygon Π(6,V)

from Table 1 (in dashed gray lines) from d = 6 to 5 dimensions. The depicted sphere

has radius 1√
5−2

, while the black circumference has radius 1√
6−2

. The string towers are

depicted in , whilst KK towers associated to decompactification of one, two, three

and four dimensions are in colors , , and , respectively.

This is not the case for the first four 2d slices in d = 6, Π(6,I)-Π(6,IV), which preserve

our assumptions under dimensional reduction on a circle and thus can be obtained from

decompactification of higher rank and lower d polytopes. For each 6d case, there is a

5d case following our assumptions that decompactifies into that 6d case. For example,

one possibility for the polygon Π(6,I) is depicted in Figure 22.

This does not necessarily imply that Π(6,V) cannot be observed in a consistent

theory of quantum gravity. Indeed, as illustrated in Figure 23, one can find a 4d theory

that follows our assumptions and decompactifies to this 6d theory. Note that, for the

example depicted in Figure 23, all the decompactification limits in this latter polytope

lead to an even number of dimensions–6, 8 or 10. One can check that, depending on
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Figure 22: Consistent 3d convex hull in d = 5 from which the d = 6 polygon Π(6,I)

depicted in Table 1 (in dashed gray lines) can be recovered from decompactifying one

dimension. The depicted sphere has radius 1√
5−2

, while the black circumference has ra-

dius 1√
6−2

. The string towers are depicted in red , while KK towers and edges/facets

(in these cases with the points closest to the origin highlighted) associated to decom-

pactification of one, two, three, four, five and six dimensions appear in blue , green

, yellow , orange , pink and brown , respectively.

which of the two inequivalent ζ⃗KK2 vertices we decompactify, either Π(6,IV) or Π(6,V) are

recovered in d = 6.

Another, maybe simpler possibility, is that perhaps there is nothing fundamentally

wrong with having ζ⃗KK vertices decompactifying a different number of dimensions at

opposite sides of ζ⃗osc. The argument above relied in assuming only symmetric vertices,

so it is possible that relaxing this allows for reduction to d = 5. For the sake of brevity

we will not engage in the construction of such rank 3 polytope.

As a final comment, we note that a similar story applies to the mysterious 1-

dimensional polytope P(10,C), which involves two decompactification limits from 10d

to 11d and no emergent string limits (see Figure 12(c)). Figure 24 shows how this

polytope can be recovered by decompactifying four internal dimensions in the d = 6

polygon Π(6,XI) from Table 1. While this does not by itself shed light on the existence

of the exotic, undiscovered polytopes P(10,C) or Π(6,XI), it does at least suggest that the

two are related. It would be very interesting if these examples are ultimately realized

in some undiscovered corner of the string landscape.
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Figure 23: Consistent 3d convex hull in d = 4 from which the d = 6 polygon Π(6,V)

depicted in Table 1 (in dashed gray lines) can be recovered from decompactifying two

dimensions. The depicted sphere has radius 1√
4−2

, while the black circumference has ra-

dius 1√
6−2

. The string towers are depicted in red , whilst KK towers and edges/facets

(for these the closest point to the origin is highlighted) associated to decompactification

of two, four and six dimensions appear in green , orange and brown , respec-

tively. Note that in this slice of the moduli space there would not be decompacitification

limits to an odd number of dimensions.

Figure 24: Recovery of the tower and species polytopes P(10,C) and P◦
(10,C) of the 10d

theory from decompactification of a 4d theory with tower and species polygons Π(6,XI)

(in solid lines) and Π◦
(6,XI) (dashed), see Tables 1 and 2. These are located at the same

height as the species scale Z⃗Pl10 .
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5 Conclusions

Using the Emergent String Conjecture, we have developed constraints on the behavior

of the species scale and the towers of light states in generic infinite-distance limits of

moduli space. These constraints are encoded in a set of taxonomic rules for the scalar

products of tower vectors, which describe the couplings of light towers of particles to

the moduli of the theory. From this, we have reproduced several well-known constraints

on the light towers and the species scale.

Under certain additional assumptions, we have applied these rules globally to pro-

duce a finite list of tower polytopes satisfying our taxonomic rules. This list includes

many polytopes known to exist in the quantum gravity landscape, as well as some poly-

topes that have not yet been discovered in the quantum gravity landscape. We have also

seen that the resulting tower and species polytopes satisfy recursive relations, whereby

polytopes of higher-dimensional theories can be used to construct polytopes of lower-

dimensional theories by KK reduction. Additionally, polytopes of lower-dimensional

theories can be used to recover polytopes of higher-dimensional theories after decom-

pactification.

Our work provides a new avenue to uncover the structure of dualities of the moduli

space by defining the frame simplex generated by the light towers of states in each

duality frame and exploring the ways to glue them together across different duality

frames. These frame simplices can therefore be viewed as geometric building blocks

for the tower polytope, and they provide a first crucial step towards a taxonomy of

infinite-distance limits of the moduli space.

However, our work is based on certain assumptions, which must be either justified

or relaxed in order to attain a complete classification. First of all, we have focused

on regular limits, as defined in Section 2.1.2. Although we have argued that irregular

limits are of measure zero in the space of infinite-distance limits, the rules for gluing

individual frame simplices can change when crossing an irregular limit. It would be

interesting to explore these cases in more detail.

Secondly, the particular classification of polytopes in Section 4 applies to asymptot-

ically flat slices of moduli spaces. It would be interesting to investigate to what extent

a classification of tower polytopes is possible in spaces that are not asymptotically flat.

In particular, it would be interesting to study the effects of axions, which typically lead

to curvature of the moduli space.32

Moreover, our classification of polytopes in Section 4 deals with polytopes of rank

1, 2, and 11− d. It would be natural to extend this classification to polytopes of more

32Natural objects of study for non-flat moduli spaces are geodesics and towers of scalar charge-to-

mass ratios that align with these geodesics (see [38, 59]).
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general rank. It would be also interesting to relax some of the assumptions that went

into these classifications, such as the limit on the maximal number of dimensions of

spacetime or the assumption that decompactification limits necessarily lead to higher-

dimensional vacua.

On the other hand, it may be possible to justify further assumptions, leading to

tighter constraints on our classification of tower polytopes. For instance, in Section 4.1,

our classification of 2d polytopes uncovered examples with KK-mode vertices associated

with the decompactification of different numbers of dimensions on either side of a string

oscillator vertex. It would be worthwhile to either find an argument that rules out these

polytopes or else find an example in string theory in which these polytopes arise.

The present work has focused on towers of light particles. Using dimensional re-

duction and the duality web, however, these light particles are often related to branes.

As a result, the constraints on particles discussed here also lead to constraints on the

scalar charge-to-tension ratio vectors (−∇⃗ log T ) for extended objects [1, 28, 30, 59–61].

These constraints will be further explored in a forthcoming work [62, 63].

We saw in Section 2.2 that the Sharpened Distance Conjecture only follows from

our taxonomic rules if we further assume that the tangent vector of the infinite-distance

geodesic lies in the subspace of the tangent space generated by the light tower vectors

(referred to as the principal plane above). We further saw in Section 3.4 that this

assumption is difficult to prove in full generality. It would be worthwhile to either

prove this assumption or else find an example in which it is violated.

Our work has relied crucially on the Emergent String Conjecture. At present, the

evidence for this conjecture comes primarily from known examples in string/M-theory.

A bottom-up argument for the Emergent String Conjecture would be most desirable,

and it would significantly strengthen the foundation on which our work rests.

Our understanding of infinite-distance limits in quantum gravity has grown im-

mensely since the pioneering work of Ooguri and Vafa [7]. One of main insights of the

present work33 is that continuous families of infinite-distance limits can be sorted into a

discrete set of duality frames that share a common perturbative limit, and this process

in turn produces additional constraints on the individual limits and how they can fit

together in the moduli space. These constraints are very powerful, yet they still leave

some room for new theories outside the known landscape. Time will tell whether this

gap can be narrowed further, or if yet undiscovered theories may inhabit the uncharted

territory between landscape and swampland.

33See also [64, 65].
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A M-theory on tori and K3

In this appendix, we calculate the radion components of tower vectors for non-sliding

theories on orthogonal tori. We consider the tower vectors of KK modes and also

wrapped branes. Many of these calculations have not been performed elsewhere in the

literature. The resulting polytopes can be compared with our taxonomy. We discuss

symmetries of the polytopes, and we also consider a slice of the polytope from M-theory

on K3.

A.1 Moduli, tensions, and masses

A.1.1 Diagonal tori moduli

Let us compactify a D-dimensional theory on a diagonal n-torus with the following

ansatz,

ds2D = |gij|−
1

d−2ds2d + gijdθ
idθj, gij = δij exp(−2ρi). (A.1)

With this, the D-dimensional Einstein-Hilbert action,

SD =
1

2κ2
D

∫
dDx

√
−gRD, (A.2)
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reduces to

Sd =
1

2κ2
d

∫
ddx

√
−g

(
R−

∑
i

(∇ρi)2 − 1

d− 2

∑
ij

∇ρi∇ρj

)
. (A.3)

From this, we can read off the metric and inverse metric for the radions ρi,

Gij = δij +
1

d− 2
1i1j. (A.4)

The inverse metric is given by

Gij = δij − 1

D − 2
1i1j, (A.5)

since this satisfies

GijG
jk =

(
δij +

1

d− 2
1i1j

)(
δjk − 1

D − 2
1j1k

)
= δki . (A.6)

Here 1i refers to the vector where each entry is 1.

A.1.2 Brane tensions and KK mode masses

Consider a (P − 1) brane in the D-dimensional theory with tension T
(D)
P . In toroidally

reducing to the d-dimensional theory, this brane can wrap multiple cycles of the tori.

Suppose this brane wraps the ith cycle ki times, where ki is either 0 or 1. Then the

tension of the resulting (p− 1)-brane in the d-dimensional theory is

T (d)
p ∼ exp

{(
p

d− 2
1i − ki

)
ρi
}
T

(D)
P , (A.7)

where P = p+ k = p+
∑

i ki.

For example, when n = 1 and k = 0, Gρρ = 1 + 1
d−2

= d−1
d−2

T (d)
p ∼ exp

{
p

d− 2
ρ

}
T

(D)
P = exp

{
− p√

(d− 1)(d− 2)
ρ̂

}
T

(D)
P , (A.8)

where ρ̂ is canonically normalized. Another example is when n = 1 and k = 1, in which

case

T (d)
p ∼ exp

{
p− d+ 2

d− 2
ρ

}
T

(D)
P = exp

{
− −d+ p+ 2√

(d− 1)(d− 2)
ρ̂

}
T

(D)
P . (A.9)

Meanwhile, KK modes have mass in d-dimensional Planck units

m2 = |gij|−
1

d−2 gijninj =
∑
i

exp

(
2ρi +

2

d− 2

∑
j

ρj

)
(ni)2. (A.10)
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A.1.3 Canonically normalized moduli

Currently, the radions ρi have a complicated metric:

Gijρ
iρj = ρ2 +

1

d− 2
(ρ · 1)(ρ · 1) (A.11)

(where dots refer to product with respect to δij)

The metric on moduli space for the ρi is not the identity matrix, and thus the

moduli ρi are not canonically normalized. To canonically normalize, we define the new

moduli Ri in terms of the radions ρi:

Ri ≡ −ρi − 1

d− 2±
√

(d− 2)(D − 2)
(ρ · 1)1i (A.12)

With these new radions Ri, the moduli space’s metric is the identity matrix,

Sd =
1

κ2
d

∫
ddx

√
−g
(
R− δij(∇Ri) · (∇Rj)

)
. (A.13)

There is a ± in the relation between Ri and ρi. Let us choose the + choice (the −
choice also works just as fine, but the details are different). Thus,

Ri ≡ −ρi − 1

d− 2 +
√

(d− 2)(D − 2)
(ρ · 1)1i. (A.14)

We can express ρi in terms of Ri,

ρi = −

(
Ri +

R · 1
n

(
−1 +

√
d− 2

D − 2

)
1i

)
. (A.15)

So, we can express the tension in terms of these canonically-normalized diagonalized

radions Ri,

T (d)
p ∼ exp

{
−Ri

[(
k

D − d

(
1−

√
d− 2

D − 2

)
+

p√
(d− 2)(D − 2)

)
1i − ki

]}
T

(D)
P .

(A.16)

Also, KK modes have masses in d-dimensional Planck units of

m2 =
∑
i

exp

(
− 2

(
Ri +

R · 1
n

(
−1 +

√
d− 2

D − 2

)
1i

)

− 2

d− 2

∑
j

(
Rj +

R · 1
n

(
−1 +

√
d− 2

D − 2

)
1j

)]
(ni)2. (A.17)
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A.2 Polytopes from M-theory on T 1 through T 5

We are interested in computing the tower polytopes from M-theory on a k torus. Sup-

pose that k ≤ 5, so that the only relevant towers are KK modes, fully-wrapped branes,

and string oscillators. Dealing with k ≥ 6 requires an analysis with KK-monopoles,

and we postpone that case to future work.

The only way to get particles in these theories is from KK modes, wrapped branes,

and string oscillators. However, with the exception of 10d, the string oscillators are

unimportant in obtaining the full tower polytopes. Thus, for d ≤ 9 we need to consider

only fully wrapped branes and KK modes.

The KK modes have a general formula, and all of these can be classified by consider-

ing all of the different ways in which they can vibrate through the compact dimensions.

Meanwhile, for a (p − 1)-brane to produce a non-oscillation particle, we must have it

wrap p− 1 of the 1-cycles.

In general, there are finitely many different ways for (p−1)-branes to wrap p−1 of

the 1-cycles on the k-torus, and there can be many different cycles of the torus for the

KK modes to have momentum in. The algorithm we take is to collect all of the different

(p− 1)-branes can wrap p− 1 of the cycles on the k-torus, and all of the different KK

modes with momentum in precisely one, to k, different cycles of the torus. This way,

we find a sufficient collection of tower vectors that generate the tower polytope P(d).

In this section we use the above algorithm to collect the tower vectors for the

maximal supergravity tower polytopes P(d) with d ∈ {10, 9, 8, 7, 6}.
For dimension 10, 9, and 8, we state all of the tower vectors for P(d). For dimensions

7 and 6, we write only the tower vectors for decompactifications of 1-dimension, as all

of the tower vectors follow from these, and there are too many to write in this paper.

10d

As explained in section 4.2, there are two possibilities for the 10d maximal SUGRA

tower polytope. The 10d IIA tower polytope has a string oscillator and single KK

mode, ζ⃗osc = − 1√
8
and ζ⃗KK1 = 3√

8
. The IIB tower polytope has two oscillator modes,

ζ⃗osc = ± 1√
8
.

9d

The tower polytope P(9) is spanned by three ζ⃗KK1 vectors,(
0,

√
8

7

)
,

(
1√
2
,− 3√

14

)
,

(
− 1√

2
,− 3√

14

)
.
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There are also two string oscillators towers, ζ⃗osc =
(
± 1

2
√
2
, 1
2
√
14

)
, and a KK vector

corresponding to decompactification to 11d dimensions, ζ⃗KK1 =
(
0,− 3√

14

)
. See Figure

14.

8d

In d = 8, P(8) is generated by six ζ⃗KK1 vectors,(
0, 1√

2
,
√

2
3

)
,

(
0,− 1√

2
,
√

2
3

)
,

(
1√
2
, 1√

2
,− 1√

6

)
,(

1√
2
,− 1√

2
,− 1√

6

)
,
(
− 1√

2
, 1√

2
,− 1√

6

)
,
(
− 1√

2
,− 1√

2
,− 1√

6

)
,

This tower polytope also contains nine ζ⃗KK2 vectors,(
0, 0,

√
2
3

)
,
(

1√
2
, 0,− 1√

6

)
,
(
− 1√

2
, 0,− 1√

6

)
,
(

1
2
√
2
, 1√

2
, 1
2
√
6

)
,
(

1
2
√
2
,− 1√

2
, 1
2
√
6

)
,(

− 1
2
√
2
, 1√

2
, 1
2
√
6

)
,
(
− 1

2
√
2
,− 1√

2
, 1
2
√
6

)
,
(
0, 1√

2
,− 1√

6

)
,
(
0,− 1√

2
,− 1√

6

)
,

two ζ⃗KK3 , (
0,

1√
2
, 0

)
,

(
0,− 1√

2
, 0

)
,

as well as three string oscillator modes ζ⃗osc(
0, 0,− 1√

6

)
,

(
1

2
√
2
, 0,

1

2
√
6

)
,

(
− 1

2
√
2
, 0,

1

2
√
6

)
,

see Figure 15.

7d

Here P(7) is generated by ten ζ⃗KK1 :(
0, 2

√
10−5
15

, 2
√
10−5
15

, 2
√
10+10
15

)
,

(
0, 2

√
10−5
15

,
√
10+10
15

, 2
√
10−5
15

)
,(

0, 2
√
10+10
15

, 2
√
10−5
15

, 2
√
10−5
15

)
,

(
3

2
√
2
, 1
2
√
10
, 1
2
√
10
, 1
2
√
10

)
,(

− 1√
2
, 1
3
− 1

3
√
10
, 1
3
− 1

3
√
10
,−2

3
− 1

3
√
10

)
,
(
− 1√

2
, 1
3
− 1

3
√
10
,−2

3
− 1

3
√
10
, 1
3
− 1

3
√
10

)
,(

− 1√
2
,−2

3
− 1

3
√
10
, 1
3
− 1

3
√
10
, 1
3
− 1

3
√
10

)
,
(

1
2
√
2
, 2
3
− 7

6
√
10
,−1

3
− 7

6
√
10
,−1

3
− 7

6
√
10

)
,(

1
2
√
2
,−1

3
− 7

6
√
10
, 2
3
− 7

6
√
10
,−1

3
− 7

6
√
10

)
,
(

1
2
√
2
,−1

3
− 7

6
√
10
,−1

3
− 7

6
√
10
, 2
3
− 7

6
√
10

)
,

From these, we have thirty ζ⃗KK2 ’s, thirty ζ⃗KK3 ’s, five ζ⃗KK4 ’s, and five string oscillators

ζ⃗osc vectors. For this case, as well as the 6d case, we do not state the 2d and higher
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KK modes, as well as string oscillator modes, because there are many of them and

they also follow from the positions of the 1d KK modes. Because a four-dimensional

polytope cannot be properly embedded in R2 or even in R3, in Figure 20(a) we depict

the adjacency relations of the ζ⃗KK1 vertices, with the other ζ⃗KK,n and ζ⃗osc being obtained

as described in §2.1. It can also be shown that the ball of radius 1√
d−2

= 1√
5
is contained

inside P(7).

6d

P(6) is generated by sixteen ζ⃗KK1 ’s:(
0,

√
2−1
4

,
√
2−1
4

,
√
2−1
4

,
√
2+3
4

)
,

(
0,

√
2−1
4

,
√
2−1
4

,
√
2+3
4

,
√
2−1
4

)
,(

0,
√
2−1
4

,
√
2+3
4

,
√
2−1
4

,
√
2−1
4

)
,

(
0,

√
2+3
4

,
√
2−1
4

,
√
2−1
4

,
√
2−1
4

)
,(

3
2
√
2
, 1
4
√
2
, 1
4
√
2
, 1
4
√
2
, 1
4
√
2

)
,

(
− 1√

2
, 1
4
, 1
4
, 1
4
,−3

4

)
,(

− 1√
2
, 1
4
, 1
4
,−3

4
, 1
4

)
,

(
− 1√

2
, 1
4
,−3

4
, 1
4
, 1
4

)
,(

− 1√
2
,−3

4
, 1
4
, 1
4
, 1
4

)
,
(
− 1

2
√
2
,− 3

4
√
2
,− 3

4
√
2
,− 3

4
√
2
,− 3

4
√
2

)
,(

1
2
√
2
, 4−

√
2

8
, 4−

√
2

8
,−4+

√
2

8
,−4+

√
2

8

)
,
(

1
2
√
2
, 4−

√
2

8
,−4+

√
2

8
, 4−

√
2

8
,−4+

√
2

8

)
,(

1
2
√
2
,−4+

√
2

8
, 4−

√
2

8
, 4−

√
2

8
,−4+

√
2

8

)
,
(

1
2
√
2
,−4+

√
2

8
, 4−

√
2

8
,−4+

√
2

8
, 4−

√
2

8

)
,(

1
2
√
2
,−4+

√
2

8
,−4+

√
2

8
, 4−

√
2

8
, 4−

√
2

8

)
,
(

1
2
√
2
, 4−

√
2

8
,−4+

√
2

8
,−4+

√
2

8
, 4−

√
2

8

)
,

There are also 80 ζ⃗KK2 ’s, 160 ζ⃗KK3 ’s, 107 ζ⃗KK4 ’s, 16 ζ⃗KK5 ’s, and 10 string oscillators ζ⃗osc.

For this case we do not sate the 2d and higher KK modes, as well as string oscillator

modes, because there are many of them and they also follow from the positions of the

1d KK modes.

The edges between these ζ⃗KK1 vertices are depicted in Figure 20(b). The radius
1√
d−2

= 1
2
ball fits inside P(6).

A.3 Symmetries

The different maximal supergravity P(d) tower polytopes described in section 4.2 are

invariant under the action of specific finite symmetry groups Gd. As it will be shown in

this appendix, these symmetries are associated with U-duality groups of lower dimen-

sional gauged supergravity obtained from toroidal compactifications of M-theory.

Consider for this some general EFT in d dimensions such that its k-dimensional

moduli space M is parameterized by some moduli {φi}ki=1. Its U-duality group G

maps these moduli into each other. Some of these transformations act only on the non-

compact directions ofM (parameterized by radions), while others do so on the compact
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ones (axions). In analogy with the maximal torus defined for compact Lie groups, for

our non-compact G we consider T
(r)
G ≃ Rn as the subgroup of diagonal matrices, acting

only on the radions, by rescaling them. In general this will not affect the structure of

the infinite-distance limits, so the polytopes obtained by using taxonomy rules should

not be affected by these transformations.

In general T
(r)
G is not a normal subgroup of G, so one cannot simply quotient out

these transformations, for this operation is generically ill-defined. In order to properly

quotientG by T
(r)
G , we must introduce the normalizer NGT

(r)
G = {g ∈ G : gT

(r)
G = T

(r)
G g},

i.e., the largest subgroup of G such that T
(r)
G is a normal subgroup. The Weyl group of

G is then defined as W (G) := NGT
(r)
G /T

(r)
G ,34 and now corresponds with the symmetries

of the tower polytope, Gd ≃ W (G), as exchanging vertices is equivalent to mapping

asymptotic directions among themselves. The Weyl group is finite (there are only

finitely many distinct ways of exchanging vertices of a tower polytope) and a subgroup

of GL(Rn), where n = k − a is the number of unbounded moduli/radions.

While Gd ≃ W (G) is not the full U-duality group (it lacks information about the

symmetries of compact scalars and rescaling of the radions), it greatly constrains G,

as W (G) is the group generated by the reflections over hyperplanes perpendicular to

the roots of the Lie algebra g of G. In the case of toroidal compactifications of M-

theory to d = 11− n dimensions the moduli space is given by the homogeneous space

En(n)/Kn, where En(n) are the split real forms of the compact exceptional Lie groups

En, and Kn is the maximal compact subgroup of En(n). This way En(n) acts a global

symmetry on the moduli. For the UV completion of maximal supergravity by string

theory compactifications, this symmetry is broken to a discrete subgroup En(n)(Z),
though the Weyl group stays the same [66]. This way, the symmetry group of the

maximal supergravity tower polytopes P(d) can be computed, as in Table 3.

To obtain the symmetry group directly from P(d), we use the fact that Gd ≤
GL(R, n) (with n = 11− d for toroidal compactifications), and each element g ∈ Gd is

determined by its action on n linearly independent vertices out of the Nd different ζ⃗KK1

vertices that generate P(d). There are Nd!
n!

possibilities, represented by Mg ∈ GL(R, n)
matrices, which can be used to check if the tower polytope is left invariant, and thus

g ∈ Gd. This determines Gd, as the matricesMg give a representation of its elements. By

this method one recovers the Weyl groups from Table 3, at least for d ∈ {10, 9, 8, 7, 6}.
One can see whether an n-dimensional tower polytope with n < 11 − d built

using the d-dimensional taxonomy rules is embedded in P(d) as part of an n-hyperplane

containing the origin. One way to obtain such a polytope is by studying the invariant

loci of P(d) under the different elements of G(d). Here, we will consider tower polytopes

34Analogously as for the compact case, the Weyl group is unique up to isomorphism.
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Figure 25: Tower polytope P(8) and the action on it by the group G8 = S3 × S2 =

⟨y, a : y2 = a3 = e, yay = a−1⟩ × ⟨x : x2 = e⟩. The fixed loci correspond to those in-

variant under x (Π(8,I) in Table 1) and y (Π(8,II)).

of rank n ≥ 2.

• We begin with d = 8, with P(8) being 3-dimensional and G8 = S3 × S2 having

|S3×S2| = 3! ·2! = 12 elements. As depicted in Figure 25, there are two classes of

2-dimensional fixed loci, respectively being the fixed points of the order 2 elements

of S2 and S3. These are the polygons depicted as Π(8,I) and Π(8,II) in Table 1,

precisely the two only rank 2 polytopes given by taxonomy in d = 8.

• For d = 7, the four-dimensional polytope P(7) is spanned by ten ζ⃗KK1 , and G7 = S5

has 5! = 120 elements. In this case we obtain two possible rank 2 polytopes as

fixed loci, precisely the unique two polygons Π(7,I) and Π(7,II) depicted in Table

1, as well as a single three-dimensional polytope, depicted in Figure 26.

• For d = 6, the five-dimensional polytope P(6) (with ζ⃗KK1 depicted in Figure 20(b))

has symmetry group G6 = W (Spin(5, 5)), of order 1920. When obtaining the fixed

loci, those of dimension 2 correspond to the 2-polygons Π(6,I), Π(6,II), Π(6,III) and

Π(6,IV) from Table 1.35 There are no pairs of ζ⃗osc and ζ⃗KK4 vectors with an arccos 1
3

35Note that Π(6,V) from Table 1 does not appear as an invariant locus of P(6), though seemingly
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d En(n) Kn Gd ≃ W (En(n)) |Gd| Nd

10A R+ 1 1 1 1∗

10B SL(2,R) SO(2) Z2 2 2

9 SL(2,R)×SO(1, 1) SO(2) S2 ≃ Z2 2 3

8 SL(3,R)×SL(2,R) SO(3)× SO(2) S3 × S2 12 6

7 SL(5,R) SO(5) S5 120 10

6 Spin(5, 5) (Spin(5)×Spin(5))/Z2 SG(5) 1 920 16

5 E6(6) USp(8)/Z2 W (E6(6)) 51840 27

4 E7(7) SU(8)/Z2 W (E7(7)) 2903040 56

Table 3: Global symmetry groups En(n) of the d-dimensional supergravities and asso-

ciated maximal compact subgroups and Weyl groups, for 10 ≥ d ≥ 4 (for completeness

we also depict d = 5 and 4, even if their associated P(d) have not been computed).

Notice the two possibilities for d = 10, corresponding to Type IIA and Type IIB 10d

supergravities. Following [66], W (SL(n)) ≃ Sn and W (Spin(n, n)) ≃ SG(n), the group

of even permutations σ of {−n, ...,−1, 1, ..., n} such that σ(−x) = −σ(x). The order

of these groups and the number Nd of ζ⃗KK1 vertices generating P(d) is also given. Note

that N10A = 1 as P(10A) is generated by a ζ⃗KK1 and a ζ⃗osc vertices.

angle between them (preventing the Π(6,VIII), Π(6,X) and Π(6,XI)), no pairs of ζ⃗KK4

and ζ⃗KK5 vectors separated a distance
√

37
20

(polygons Π(6,VI), Π(6,IX) and Π(6,XI))

and no pairs of ζ⃗KK2 and ζ⃗KK4 vectors separated a distance 1
2
+ 1√

2
(Π(6,VII) and

Π(6,X)). As for the 3-dimensional fixed loci, three of them are found, depicted in

Figure 28. Finally, a single type of fixed locus of dimension 4, depicted in Figure

29, is recovered.

On principle one could consider the possibility that the Π(d,·) polygons in question do

not belong to an invariant plane, but still can be embedded on P(d). A careful study

(computing the distances between the different vertices and trying to connect them

with the lengths in Π(d,·)) shows that this is not the case, i.e. all the Π(d,·) polygons

embedded in P(d) appear in fixed planes.

From the recursive behavior of P(d) when decompactifying, the following relation is

recovered. As shown earlier in this appendix and in [35], for d < 9 all Nd different ζ⃗KK1

vertices generating P(d) are KK modes of one dimension reduction, allowing recovery

of P(d+1). As these tower polytopes have symmetry groups Gd and Gd+1, from the

it is allowed by the rules. However, as shown in Section 4.4, the polygon is consistent, simply not

appearing for toroidal compactifications of maximal SUGRA, but rather some other (unidentified)

compactification without cycles of odd dimensionality.
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Figure 26: Unique three-dimensional polytope obtained by applying the taxonomy

rules for d = 7. The string, ζ⃗KK1 and ζ⃗KK2 towers are depicted in red , blue and

green . Edges and facets associated to decompactifications of two, three and four

dimensions appear in green , yellow and orange , with their closest point to

origin highlighted. Note the sphere with radius 1√
d−2

= 1√
5
is contained inside it.

orbit-stabilizer group it is straightforward that

|Gd| = Nd|Gd+1| for d ≤ 8 , (A.18)

as noted in Table 3.

A.4 M-theory on K3

Our rules not only apply to toroidal compactifications of M-theory, but also to more

involved internal manifolds, such as a K3-surface. In this subsection, we consider

a particular 2d slice of M-theory compactified on a K3 surface to produce a seven-

dimensional theory with 32 supercharges. We show that this example is captured by

our polygon classification for 7d theories with 11d as the maximum decompactification

dimension.36

For simplicity we consider attractive K3s (i.e. with maximal rank 20 = h1,1(K3) for

the Picard group Pic(K3) = H1,1(K3) ∩ H2(K3,Z)), such that the complex structure

is completely fixed [67], and the 7d action and the masses depend on only the Kähler

36For an in-depth discussion of the physics behind this example, see [39, 48, 53].
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Figure 27: Species polytope in d = 7 dual to that pictured in Figure 26. The Z-

vectors associated to the string scale are depicted in red , while those to the 8,

9, 10 and 11-dimensional Planck mass appear in blue , green , yellow and

orange , respectively. The sphere with radius 1√
(d−2)(d−1)

= 1√
30

is depicted. The

facets recovered from rank 2 species polytopes for (D = 7 + n)-dimensional theories

are outlined in blue (n = 1, corresponding to Π◦
(8,I) and Π◦

(8,II) in Table 2) and green

(n = 2, P ◦
(9) = Π◦

(9,I)). The facets not outlined are congruent to those that are. The n

associated to each facet must be subtracted from each vertex to recover the appropriate

one in the D-dimensional theory.

moduli {ta}20a=1. The relevant part of the 7d action is

S7d ⊃ 1

2κ2
7

∫
d7x

√
−g

[
R− 9

20
(∂ logVK3)

2 − Gab∂t̃
a · ∂t̃b

]
, (A.19)

where VK3 =
1
2
ηabt

atb is the K3 volume in Planck units, ηab = ωa ·ωb are the intersection

numbers in a basis {ωa} of H1,1(K3,Z), such that the Kähler form is expressed as

J = taωa, and {t̃a = ta/V1/2
K3 }20a=1 are rescaled moduli with 1

2
ηabt̃

at̃b ≡ 1. The (classically

exact) moduli space is given by MK3 = O(3, 19;Z)\O(3, 19;R)/O(19)×R+. The coset

piece, parameterized by {t̃a}20a=1, admits the natural metric

Gab =

∫
K3

ωa ∧ ⋆ωb = t̃at̃b − ηab , (A.20)

while the R+ is parameterized by the global volume, with metric GVK3VK3
= 9

20V2
K3
. As

shown in [39] the attractive K3 admits an elliptic fibration C0 over a P1-base, such

that the associated 2-form ω0 has intersection η00 = ω0 · ω0 = 0. One can then work

in the (flat) 2d-slice of MK3 spanned by the canonically normalized moduli {V̂K3 =
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(a) (b) (c)

Figure 28: Representation of the three rank 3 tower polytopes in d = 6 obtained as

slices of the maximal P(6) tower polytope. The string, ζ⃗KK1 , ζ⃗KK2 and ζ⃗KK3 towers are

depicted in red , blue , green and yellow . Edges and facets associated to

decompactifications of two, three, four and five dimensions appear in green , yellow

, orange and pink , with their closest point to origin highlighted. In gray the

sphere with radius 1√
d−2

= 1
2
is depicted. Note that the cube depicted in Figure 28(a)

is nothing but that from Figure 7(b) under the rescaling described before Section 4.2.

3
2
√
5
logVK3 ∈ R, ˆ̃t0 = log t̃0 > 0}.37 There are five possible leading towers becoming

light in the different infinite-distance limits (see Section 4.2 from [48] and references

therein for more details):

• In the large volume limit, VK3 → ∞, with the Kähler saxions fixed, we decom-

pactify to 11d M-theory, with

mKK, K3

MPl,7

∼ V−9/20
K3 =⇒ ζ⃗K3 =

(
3

2
√
5
, 0

)
. (A.21)

• In the small volume limit, VK3 → 0, an emergent, heterotic-like, string appears

as a result of M5-branes wrapped over the whole K3 surface becoming light, with

mM5

MPl,7

∼ V3/10
K3 =⇒ ζ⃗osc =

(
− 1√

5
, 0

)
. (A.22)

37Do not confuse the canonically normalized modulus ˆ̃t0 with the unit tangent vector t̂ given some

trajectory.
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Figure 29: An illustration of the unique four-dimensional tower polytope in d = 6

obtained as a slice of the maximal tower polytope P(6) of M-theory compactified on

T 5 (note that other rank 4 tower polytopes following the taxonomy rules could exist,

associated to non-toroidal compactifications). For simplicity, the only depicted towers

are those corresponding to vertices generating the polytope, associated to decompact-

ifications of either one or two dimensions, respectively in blue or green .

• Associated to the P1-base, in the t̃0 → ∞ limit we have that its volume grows

asymptotically, resulting in a KK tower

mP1

MPl,7

∼ (t̃0)−1/2V9/20
K3 =⇒ ζ⃗P1 =

(
3

2
√
5
,
1

2

)
, (A.23)

which decompactifies to 9d Type IIA string theory.

• Additionally there exits 1
2
-BPS states obtained from wrapped M2-branes on the

genus-one fibre C0 shrinking in that limit, with

mM2

MPl,7

∼ (t̃0)−1V3/10
K3 =⇒ ζ⃗M2 =

(
− 1√

5
, 1

)
, (A.24)

amounting to decompactification to an 8d theory given by F-theory on K3.

• There is an extra tower charged both under the P1 KK and the M2 winding

modes, equivalent to decompactifying three internal dimensions to 10d Type IIB

string theory,

mKK3

MPl,7

∼ V−1/5
K3 (t̃0)−2/3 =⇒ ζ⃗KK3 =

(
2

3
√
5
,
2

3

)
. (A.25)
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The species scales for each of the different limits can be computed as the Planck masses

of the theories we are decompactifying to, or the string scale in the case of the wrapped

M5 limit. In Figure 30 the different vectors are plotted, both for the towers and species

scales. The resulting convex hull corresponds to half of the polygon Π(7,II) represented

in Table 1, divided by the symmetry axis given by ζ⃗KK4 and ζ⃗osc. Even if the asymptotic

region of the moduli space (in our flat frame) subtends only an angle of π (rather than

2π), one can still apply the taxonomy rules to fill the regions between the above limiting

vectors, which are known to be there beforehand from the V̂K3 → ±∞ limits.

Figure 30: Scalar charge-to-mass ratio vectors for the different towers (outer polygon)

and cut-offs (inner polygon), for M-theory compactified on K3, in the moduli space slice

spanned by the canonically normalized V̂K3 ∈ R and ˆ̃t0 > 0, [48, 53]. Note that they

correspond to half of the polygon Π(7,II) depicted in Table 1 and its dual polygon (Π◦
(7,II)

in Table 2). The different theories resulting from each limit are also depicted.

This example demonstrates that our taxonomy rules apply to examples beyond

toroidal compactifications, but also to more complicated ones–even cases in which the

moduli spaces are not geodesically complete (for more on this see Appendix C). On

principle, one can try to find a 3-dimensional flat slice on MK3, obtaining additional

towers, in a such a way that part the tower polytope depicted in Figure 26 is recovered.
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B Orthogonality of sliding

In this section, we discuss orthogonality of sliding for flat moduli spaces.

Consider first a flat 2d moduli space with coordinates {x, y}, and let m = m(x, y)

be the characteristic mass of an infinite tower as a function of the moduli. Defining

f(x, y) = − logm(x, y), we have

ζ⃗ = ∇⃗f. (B.1)

Geodesics are straight lines in the plane, with all of them going to infinite-distance

limits. Let us assume that asymptotically far out along any geodesic, ζ⃗ goes to a

constant, finite vector. This implies, for instance, that if the geodesic points in the

t̂ = (t̂x, t̂y) = (1, 0) direction (with any fixed value of y), then we must have

∂xζx → 0 and ∂xζy → 0 as x → ∞, fixed y. (B.2)

But then, since ζx = ∂xf , ζy = ∂yf , and assuming partial derivatives commute, this

implies that

∂yζx → 0 as x → ∞, fixed y. (B.3)

That means that, although the asymptotic values of ζ⃗ can change as we move to a

different, parallel geodesic, the change can only occur in a direction that is perpendicu-

lar to the original geodesic. The generalization to an n-dimensional flat moduli spaces

involves replacing y with a vector y⃗ ∈ Rn−1.

The above covers the case where the impact parameter of the geodesic is varied

while its direction is held fixed (i.e., we take different geodesics going to the same

infinite-distance point). Suppose, instead, that we vary the direction of the geodesic,

and let the new and old geodesics intersect at some point, which we take to be the

origin. Then it is convenient to write f = f(r, θ) in polar coordinates. Now we have

ζr̂ =
∂f

∂r
, ζθ̂ =

1

r

∂f

∂θ
. (B.4)

Thus, in order for ζ⃗ to approach a θ-dependent constant as r → ∞ at fixed θ, we must

have

f(r, θ) = rf1(θ) + · · · , (B.5)

up to terms that grow more slowly that O(r). Now we compute

ζ⃗ = f1(θ)r̂ + f ′
1(θ)θ̂. (B.6)
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Using ∂θr̂ = θ̂ and ∂θθ̂ = −r̂, we find:

∂θζ⃗ = f ′
1(θ)r̂ + f1(θ)θ̂ + f ′′

1 (θ)θ̂ − f ′
1(θ)r̂ = [f1(θ) + f ′′

1 (θ)]θ̂, (B.7)

so indeed the change in ζ⃗ is always perpendicular to the direction of the geodesic r⃗.

In fact, this 2d analysis implies the sliding behaves in the same way in the higher-

dimensional case. One could replace 2d polar coordinates with higher-dimensional

spherical angular coordinates. A detailed analysis of a higher-dimensional spherical

example reduces to a generalization of the 2d one.

C Geodesically-incomplete examples

In this appendix, we discuss the applicability of our taxonomy rules in general geodesi-

cally incomplete moduli spaces, where not every direction leads to an infinite-distance

singularity. Another example of our taxonomy rules in such spaces can be found in

Appendix A.4.

As a broad class of geodesically incomplete moduli spaces, consider compactifica-

tions on Calabi-Yau threefolds X,38 with the Kähler form J = sa[Da] expanded in

an integral basis [Da] Poincaré-dual to a set of divisors Da. In terms of the triple

intersection numbers κabc = Da · Db · Dc, the volume of X in string units is given by

VX = 1
6
κabcs

asbsc, and the saxionic components of the moduli space metric are given

by

Gab = −1

2
∂a∂b log VX , (C.1)

The Kähler cone K(X) ⊆ Rn
>0 is the set over which J takes values, parameterized by

{sa}h1,1=n
a=1 . In general the inclusion is strict, as these saxions measure the volume of the

effective curves generating the dual Mori cone Eff1(X), whose relationship with Di is

nontrivial. From the definition of K(X), it follows that the (saxionic) moduli space39

might be asymptotically flat40 but is never geodesically complete. One can compute

that, for flat K(X), the subtended angle is given by

ΩK(X) =
4

n
lim
r→∞

r−n

∫
K(X)∩B(s0,r)

√
Gds1...dsn , (C.2)

38See [47, 68, 69] for more details on these concepts in Kähler geometry and the associated cones.
39This is at least true parameterizing this patch, there could be flops to other Kähler cones.
40While it is easy to check that, up to α′ and instanton corrections, which can be safely ignored in

the asymptotic regime, the saxionic moduli space is Riemann flat for n = 2, this is not generally the

case for n > 2, see [70] for more on the asymptotic curvature of CY moduli spaces.
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X P(1,1,1,6,9)[18] P(1,1,1,2,6)[12]

VX
3
2
(s1)3 + 3

2
(s1)2s2 + 1

2
s2(s2)2 4

3
(s1)3 + 2(s1)2s2

ΩK(X)
1
2
θ1,1 = arccot

√
2 θ1 = arctan

√
2

Limiting points ζ⃗KK1 , ζ⃗KK2 ζ⃗KK1 , ζ⃗osc

Table 4: Volume of the different CY3 manifolds from Section 5 from [48], as well as

subtended angles of the two-saxion Kähler cones and limiting towers.

where B(s0, r) = {s : ∥s, s0∥ ≤ r} and s0 is some arbitrary fixed point. In general

ΩK(X) <
2πn/2

Γ(n
2
)
, but as we will argue now, we expect these angles to be quantized by the

taxonomy rules.

As described in [24], K(X) can be divided in several growth sectors Ri1...in = {si1 ≳
... ≳ sin} as we move to infinite-distance limits. Each growth sector is associated to a

specific singularity type41, with an associated fibration structure in X and dominant

leading tower becoming light. As limiting interfaces of the Kähler cone will correspond

to the “deepest” regions of some growth sectors, the scalar charge-to-mass ratio vectors

of the leading towers in these limits are expected to point along these these directions.

This way, even if the moduli space is not geodesically complete (so that the polytope

following the taxonomy rules closes), it still needs to “fill up” the solid angle ΩK(X)

enclosed by these tower vectors.

The nuance here comes when realizing that these tower vectors can correspond to

points that in the “complete” vectors appear in edges/facets/etc closest points to the

origin, such as ζ⃗pc ≡ ζ⃗KK2 along an edge spanned by ζ⃗KK1 vertices, see (2.15).

To illustrate this, we refer to the two 2-moduli d = 4 examples appearing in Section

5 from [48], corresponding to Type IIA string theory on P(1,1,1,6,9)[18] and P(1,1,1,2,6)[12].

There is no sliding for any of these tower vectors (although there is for some of the

subleading towers). This allows us to compute the subtended angles, either using (4.2),

or directly from (C.2), as in both cases the explicit flat coordinates are known [48] and

the integral can be computed. The different results appear in Table 4.

The procedure could, in principle, be generalized for n > 2 and performing flops

to adjacent Kähler cones, but will not be further developed in this paper, and will be

left for a future work [71].

41This is determined by the behavior of the triple intersection numbers κabc [24] or a geometrical

analysis [40].
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[58] R. Álvarez-Garćıa, S.-J. Lee and T. Weigand, Non-minimal Elliptic Threefolds at

Infinite Distance II: Asymptotic Physics, 2312.11611.

[59] M. Etheredge and B. Heidenreich, Geodesic Gradient Flows in Moduli Space,

2311.18693.

[60] A. Herraez, A Note on Membrane Interactions and the Scalar potential, JHEP 10

(2020) 009, [2006.01160].
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[66] T. Bröcker and T. tom Dieck, Representations of compact lie groups, 1985.

[67] G. W. Moore, Attractors and arithmetic, hep-th/9807056.

[68] J. Xiao, Positivity in Kähler geometry. PhD thesis, Université de Fudan (Shanghai,
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