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Faithful energy reconstruction is foundational for precision neutrino experiments like DUNE, but is
hindered by uncertainties in our understanding of neutrino–nucleus interactions. Here, we demon-
strate that dense neural networks are very effective in overcoming these uncertainties by estimating
inaccessible kinematic variables based on the observable part of the final state. We find improve-
ments in the energy resolution by up to a factor of two compared to conventional reconstruction
algorithms, which translates into an improved physics performance equivalent to a 10–30% increase
in the exposure.

Introduction.—Current and upcoming neutrino ex-
periments are embarking on an extensive program of pre-
cision measurements, which may have far-reaching ram-
ifications for our understanding of the Universe. One of
the major goals of accelerator-based long-baseline oscilla-
tion experiments like NOνA [1], T2K [2], DUNE [3], and
Hyper-Kamiokande [4] is the discovery of leptonic CP vi-
olation, which could be crucial for explaining the puzzling
matter–antimatter asymmetry of the Universe. Together
with the upgraded IceCube telescope [5], ORCA [6], and
JUNO [7], these experiments will also be sensitive to the
neutrino mass ordering (an important input to neutrino-
less double beta decay experiments aiming to probe the
Dirac or Majorana nature of neutrinos) [8], the octant
of the mixing angle θ23, and a host of other parameters
related to neutrino mixing and to the physics of neutrino–
nucleus interactions. Common to all these measurements
is their reliance on accurate neutrino energy reconstruc-
tion, which is the topic of this work.

Our focus will be on liquid argon time projection cham-
bers (LArTPCs) such as DUNE. These detectors exhibit
exceptional event reconstruction capabilities, opening ex-
citing new avenues for measurements both within the
Standard Model [9–11] and beyond [12–17]. A decade
ago, ArgoNeuT demonstrated that LArTPCs are able
to reconstruct protons with an energy threshold of only
21MeV [18]. More recently, MicroBooNE has presented
an impressive set of analyses, including for instance a sen-
sitive measurement of radiative ∆(1232) decays, which
are a crucial background to oscillation analyses [19].

Our goal is to demonstrate how the abundance of in-
formation contained in a LArTPC neutrino event can be
leveraged to significantly improve the reconstruction of
the incoming neutrino on an event-by-event basis. In
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FIG. 1. Example of a Pearson correlation matrix between
several observables in charged-current neutrino–argon inter-
actions with at least one proton and one neutron in the final
state, for the DUNE neutrino-mode flux and before includ-
ing detector responses. We define the proton (p) and neutron
(n) systems by adding up their kinetic energies and three-
momenta. We include the total kinetic energy of the proton
and systems (Kp, Kn), the energies of the neutrino and out-
going lepton (Eν , Eℓ), the directions cos θℓ,p,n relative to the
beam axis, and the opening angles cos θℓp,ℓn,pn. Note that
neutrons are very challenging to reconstruct, so information
on the neutron system is typically not available in realistic
event records.

fact, intranuclear effects in the neutrino interaction lead
to important nontrivial correlations among the incoming
neutrino energy, Eν , and different kinematic variables
characterizing the final state, see Fig. 1. Understand-
ing these correlations is crucial because not all kinematic
variables (especially those related to final-state neutrons)
can be reconstructed. But doing so analytically is ex-
tremely challenging. The problem thus calls for machine
learning techniques, which are well suited for dealing with
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Particle Threshold resolution αp σ(θ)

µ, e, γ 30MeV 5% 2◦

π, K, proton 30MeV 10% 10◦

neutron “0n” invisible – –
neutron “En” 100MeV 40% –

neutron “En+θn” 100MeV 40% 10◦

TABLE I. Kinetic energy threshold, momentum resolution
(σ(p) = αp

√
p/GeV), and angular resolution for different

final-state particles. For neutron reconstruction, we list the
three different scenarios.

correlations in high-dimensional parameter spaces.
We will estimate how such techniques can improve the

determination of the neutrino energy for both beam neu-
trinos and atmospheric neutrinos. For the latter, we will
also study the reconstruction of the incoming neutrino
direction, which translates into the distance the neutrino
has travelled – a key ingredient in any oscillation anal-
ysis. It is particularly important for sub-GeV neutrinos
which can give DUNE sensitivity to CP violation before
the beam turns on [9], and which allow for neutrino to-
mography of the Earth’s interior [11, 20]. Besides DUNE,
our results can also benefit the LArTPCs comprising Fer-
milab’s Short Baseline Neutrino Program [21].

Neutrino energy and angle reconstruction.—To
estimate how much we can improve the neutrino en-
ergy reconstruction in LArTPCs, we proceed as follows.
We generate 800,000 νµ–argon charged current events in
NuWro 21.09 [22], with the neutrino energies distributed
according to the DUNE νµ flux in the forward horn cur-
rent (“neutrino mode”) configuration [3]. We model de-
tector effects by imposing a kinetic energy threshold for
charged particles, and by smearing their angles and mo-
menta – see Table I for details. We do not assume any
charge identification capabilities. For neutrons, we con-
sider three different cases: (i) no reconstruction at all,
labeled “0n”; (ii) reconstruction of the neutron energy

with a fractional resolution of 40%/
√
Kn/GeV, “En”;

and (iii) reconstruction of the neutron energy and direc-
tion, with a resolution of 10◦ for the latter, “En + θn.”
Neutrons propagating in liquid argon leave multiple small
deposits of energy, or blips, in the detector [23], and while
such blips have been detected [24], actual neutron recon-
struction has not been firmly demonstrated. The three
scenarios we consider may serve as further motivation to
focus effort on this challenging task. To simulate atmo-
spheric neutrinos, we randomize the incoming neutrino
direction.

Before passing events to a neural network, we combine
all particles of the same species above a certain thresh-
old into a single entity, summing over their energies and
three-momenta. This makes our results more robust with
respect to modelling uncertainties in neutrino event gen-
erators. For example, GENIE [25] and NuWro [22] ex-
hibit large discrepancies in the number of predicted low-
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FIG. 2. DNN loss functions when trained on beam neutrino
events (upper panel) and atmospheric neutrino events (lower
panel) for training (darker) and validation (brighter) data.
These results are for the “0n” (no neutron reconstuction) sce-
nario, but results are similar for the “En” and “En+θn” cases.

energy protons in the final state.
We use dense neural network (DNN) classifiers, with

the true neutrino energy as the label for beam neu-
trinos, and the energy, zenith and azimuth angles for
atmospheric neutrinos. The DNN consists of an in-
put layer and two dense hidden layers plus one dense
output layer, with 64–16–32–1 nodes, respectively. In
Fig. 2, we present the loss function for training and val-
idation data. For beam neutrinos we define the loss
function as the fractional mean squared error Lenergy =

10 [1− Eν,θ(x)/Eν(x)]
2
, where Eν(x) (Eν,θ(x)) denotes

the true (reconstructed) neutrino energy for input vari-
ables x and DNN parameters θ; while for atmospheric
neutrinos we add Langle = 30 arccos2 [v̂θ(x) · v̂(x)], where
v̂ (v̂θ(x)) is a unit vector in the true (reconstructed) di-
rection of the incoming neutrino momentum.
The performance of the DNN for DUNE beam data

can be seen in Fig. 3, where we present the fractional
energy resolution as a function of neutrino energy. We
show results for the three neutron reconstruction scenar-
ios (purple lines) and compare to the anticipated energy
resolutions quoted in DUNE’s Conceptual Design Report
(CDR) [26] and Technical Design Report (TDR) [27]. We
also compare to a purely calorimetric method (gray), in
which the neutrino energy is obtained as

Ecal
ν = Eℓ +

mesons∑

i

Ei +

baryons∑

i

Ki, (1)

where Ei and Ki denote the total and kinetic energy of a
particle i, respectively. We observe that the performance
of the calorimetric method using our simplified detec-
tor simulation falls between the CDR and TDR meth-
ods. Our main result is the observation that the DNN
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FIG. 3. Top: fractional neutrino energy resolution σ(Eν)/Eν

as a function of neutrino energy from DNN-based analyses
with no information on final-state neutrons (solid purple),
with limited information on the neutron energy (dashed pur-
ple), and with information on the neutron energy and di-
rection (dotted purple). For comparison, we also show the
energy resolutions anticipated in the DUNE CDR and TDR
simulations (magenta), and the resolution of a simple calori-
metric method assuming invisible neutrons (gray). Bottom:
reconstruction bias for the DNN compared to the calorimet-
ric method. DNNs significantly outperform conventional ap-
proaches to energy reconstruction. When information on the
energy of final-state neutrons is available, the improvement is
more than a factor of two at high energies.

improves the neutrino energy resolution, σ(Eν), consid-
erably at all energies. This is true even when neutrons
are completely invisible because the DNN is able to par-
tially infer the kinematics of final-state neutrons based on
correlations with other kinematic variables alone. If the
neutron energy can be reconstructed (“En”), even with
only the 40% resolution assumed here, σ(Eν) improves
further by a significant amount. Adding information on
the neutron direction (“En+θn”), however, does not lead
to additional improvements. Results for the reconstruc-
tion of antineutrinos are similar. Since our simulation
treats the detector response to muons and electrons sim-
ilarly, our conclusions for electron neutrino events are es-
sentially the same as for the muon neutrino events shown
here.

Going from beam neutrinos to atmospheric neutrinos,
where not only the neutrino energy but also the arrival
direction need to be reconstructed, we see from Fig. 4
that the DNN again improves σ(Eν), but not the an-
gular resolution, σ(θν). The DNN without information
on neutrons achieves a σ(Eν) closer to the calorimetric
method with such information included, confirming that
the network is able to partially infer the neutron kinemat-
ics based on correlations with other kinematic variables.
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FIG. 4. Fractional neutrino energy resolution, σ(Eν)/Eν

(top), and angular resolution, σ(θν) (bottom) from DNN-
based analyses of atmospheric neutrino events with no infor-
mation on final-state neutrons (solid cyan), and with informa-
tion on neutron energies and directions included (dashed/dot-
dashed cyan). For comparison, we also show the resolutions
achievable with simple calorimetric methods (gray curves).
The dotted black curve in the bottom panel is based on only
the charged lepton kinematics, as in Cherenkov detectors at
low energy.

For σ(θν) (lower panel of Fig. 4), the DNN affords only
a marginal improvement in the angular resolution when
compared to calorimetric methods,1 except at higher en-
ergies. In events with little to no hadronic activity, there
is simply not enough information to improve neutrino re-
construction any further. To achieve better results at low
energies, an interesting direction of future work could be
a DNN-based classifier that separates events into several
samples based on the fidelity of the reconstruction [1, 9].
In addition, beam experiments such as the SBN detectors
and DUNE-PRISM, in which the arrival direction of neu-
trinos is known, could allow for data-driven development
of accurate angular reconstruction methods [9].
Impact on oscillation analyses.—To emphasize the

importance of the improved energy reconstruction af-
forded by our DNN, we have simulated DUNE’s sensitiv-
ity to the 3-flavor oscillation parameters using GLoBES
[27–29]. We compare results obtained with the energy
resolution function derived from our DNN without neu-
tron information, approximated as a Gaussian, to results
based on the detector response from DUNE’s CDR and
TDR [3, 27]. The fit and statistical analysis are per-
formed using a code originally developed in Refs. [30–32].

1 The calorimetric neutrino direction is given by the vector sum of
the three-momenta of all visible outgoing particles.
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FIG. 5. Impact of neural network-improved energy resolution
on the energy spectrum of νµ events in DUNE. Here, S and
B denote signal and background.

In Fig. 5 we show how the improved energy resolu-
tion of a DNN-based analysis affects neutrino spectra in
DUNE. Using the νµ event sample for illustration, the
plot shows in particular that oscillations become signifi-
cantly more pronounced. Translating this improvement
into sensitivities to oscillation parameters leads to the
main results of this sensitivity study, shown in Figs. 6
and 7. We see that precision measurements of the atmo-
spheric oscillation parameters, searches for deviations of
θ23 from the maximal value of π/4, and the hunt for lep-
tonic CP violation all stand to benefit significantly from
DNN-based reconstruction. The improvement on the CP
phase sensitivity is roughly equivalent to a ∼ 10% in-
crease in exposure – that is, almost half a far detector
module –, and further improvements are present for the
atmospheric angle, θ23, and mass splitting, ∆m2

31.

We have also studied the sensitivity to the neutrino
mass ordering, but have found that it benefits less from
the improved energy resolution because even without
such improvement, DUNE will be able to determine the
mass ordering at 5σ with just 100 ktMWyears of expo-
sure [33].

Dependence on neutrino–nucleus cross section
modeling.—An important caveat to the results pre-
sented above is that the DNN has been trained on Monte
Carlo events, and it is known that current modeling of
neutrino–nucleus interactions exhibits considerable dis-
crepancies when compared to experimental data [34–38].
Although short-baseline detectors can be used to tune
event generators, these tunes are somewhat ad hoc and
what works for one experimental analysis may not be
appropriate for another [39].

To obtain a qualitative understanding of the impact
that uncertainties associated with neutrino–nucleus in-
teractions have on the performance of our DNN, we have
applied our network trained on NuWro 21.09 events to
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FIG. 6. Impact of neural network-improved energy resolu-
tion on precision oscillation measurements in DUNE. For the
sensitivity to CP violation and to non-maximal θ23, the im-
provement in sensitivity due to the DNN is equivalent to a
∼ 10% increase in exposure.
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FIG. 7. Impact of neural network-improved energy resolution
on precision measurements of ∆m2

31, θ23, δCP , and θ13 in
DUNE.

mock data generated with GENIE 3.4.0. In the upper
panel of Fig. 8, which should be compared to Fig. 3, we
present the DNN’s resulting energy resolution (dark blue)
and compare it our previous results. We see that the
network underperforms at low energies, while retaining
much of its power above about 1.5GeV. Most likely this
is due to differences on how these generators approach
intranuclear cascades and low energy outgoing nucleons.

More importantly, the lower panel of Fig. 8 reveals a
bias in the neutrino energies reconstructed by the DNN
trained with the “wrong” neutrino–nucleus interaction
model. The bias is of order 10% across most of the energy
spectrum and, interestingly, is worse when the network
is aware of neutron kinematics. Importantly, though, the
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FIG. 8. Top: fractional neutrino energy resolution, σ(Eν)/Eν

from a DNN trained on NuWro events, but applied to GENIE
events (blue). We compare to the resolutions quoted in the
DUNE CDR and TDR (cyan), and to the performance of the
calorimetric method. Bottom: Energy reconstruction bias for
the DNN trained on the “wrong” neutrino–nucleus interac-
tion model, and for the calorimetric method. Mismodeling of
neutrino–nucleus interactions can be a significant limitation
to neural network-based and calorimetric reconstruction algo-
rithms alike, leading to biased results.

calorimetric method exhibits a similar bias when neutron
kinematics are not available. In this case, in fact, the
DNN still outperforms calorimetry by a large margin up
to energies of several GeV. Only when neutrons can be
reconstructed, the calorimetric method appears robust.
We conclude that mismodeling of neutrino–nucleus inter-
actions remains a potential problem for both traditional
and DNN-based neutrino energy reconstruction methods.
This reaffirms the urgency of improving our understand-
ing of the physics of neutrino–nucleus interactions.
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