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Abstract:

Faithful energy reconstruction is foundational for precision neutrino experiments like

DUNE, but is hindered by uncertainties in our understanding of neutrino–nucleus interac-

tions. Here, we demonstrate that dense neural networks are very effective in overcoming

these uncertainties by estimating inaccessible kinematic variables based on the observable

part of the final state. We find improvements in the energy resolution by up to a factor of

two compared to conventional reconstruction algorithms, which translates into an improved

physics performance equivalent to a 10–30% increase in the exposure.
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1 INTRODUCTION

Current and upcoming neutrino experiments are embarking on an extensive program of

precision measurements, which may have far-reaching ramifications for our understanding

of the Universe. One of the major goals of accelerator-based long-baseline oscillation ex-

periments like NOνA [1], T2K [2], DUNE [3], and Hyper-Kamiokande [4] is the discovery of

leptonic CP violation, which could be crucial for explaining the puzzling matter–antimatter

asymmetry of the Universe. Together with the upgraded IceCube telescope [5], ORCA [6],

and JUNO [7], these experiments will also be sensitive to the neutrino mass ordering (an

important input to neutrinoless double beta decay experiments aiming to probe the Dirac

or Majorana nature of neutrinos) [8], the octant of the mixing angle θ23, and a host of

other parameters related to neutrino mixing and to the physics of neutrino–nucleus inter-

actions. Common to all these measurements is their reliance on accurate neutrino energy

reconstruction, which is the topic of this work.

Our focus will be on liquid argon time projection chambers (LArTPCs) such as DUNE.

These detectors exhibit exceptional event reconstruction capabilities, opening exciting new

avenues for measurements both within the Standard Model [9–11] and beyond [12–17].

A decade ago, ArgoNeuT demonstrated that LArTPCs are able to reconstruct protons

with an energy threshold of only 21MeV [18]. More recently, MicroBooNE has presented

an impressive set of analyses, including for instance a sensitive measurement of radiative

∆(1232) decays, which are a crucial background to oscillation analyses [19].

Our goal is to demonstrate how the abundance of information contained in a LArTPC

neutrino event can be leveraged to significantly improve the reconstruction of the incoming

neutrino on an event-by-event basis. In fact, intranuclear effects in the neutrino interaction

lead to important nontrivial correlations among the incoming neutrino energy, Eν , and

different kinematic variables characterizing the final state, see Fig. 1. Understanding these

correlations is crucial because not all kinematic variables (especially those related to final-

state neutrons) can be reconstructed. But doing so analytically is extremely challenging.
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Figure 1: Example of a Pearson correlation matrix between several observables in charged-

current neutrino–argon interactions with at least one proton and one neutron in the final

state, for the DUNE neutrino-mode flux and before including detector responses. We

define the proton (p) and neutron (n) systems by adding up their kinetic energies and

three-momenta. We include the total kinetic energy of the proton and systems (Kp, Kn),

the energies of the neutrino and outgoing lepton (Eν , Eℓ), the directions cos θℓ,p,n relative to

the beam axis, and the opening angles cos θℓp,ℓn,pn. Note that neutrons are very challenging

to reconstruct, so information on the neutron system is typically not available in realistic

event records.

The problem thus calls for machine learning techniques, which are well suited for dealing

with correlations in high-dimensional parameter spaces.

We will estimate how such techniques can improve the determination of the neutrino

energy for both beam neutrinos and atmospheric neutrinos. For the latter, we will also

study the reconstruction of the incoming neutrino direction, which translates into the dis-

tance the neutrino has travelled – a key ingredient in any oscillation analysis. It is partic-

ularly important for sub-GeV neutrinos which can give DUNE sensitivity to CP violation

before the beam turns on [9], and which allow for neutrino tomography of the Earth’s

interior [11, 20]. Besides DUNE, our results can also benefit the LArTPCs comprising

Fermilab’s Short Baseline Neutrino Program [21].
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Particle Threshold resolution αp σ(θ)

µ, e, γ 30MeV 5% 2◦

π, K, proton 30MeV 10% 10◦

neutron “0n” invisible – –

neutron “En” 100MeV 40% –

neutron “En+θn” 100MeV 40% 10◦

Table 1: Kinetic energy threshold, momentum resolution (σ(p) = αp

√
p/GeV), and an-

gular resolution for different final-state particles. For neutron reconstruction, we list the

three different scenarios.

2 NEUTRINO ENERGY AND ANGLE RECONSTRUCTION

To estimate how much we can improve the neutrino energy reconstruction in LArT-

PCs, we proceed as follows. We generate 800,000 νµ–argon charged current events in

NuWro 21.09 [22], with the neutrino energies distributed according to the DUNE νµ flux in

the forward horn current (“neutrino mode”) configuration [3]. We model detector effects by

imposing a kinetic energy threshold for charged particles, and by smearing their angles and

momenta – see Table 1 for details. We do not assume any charge identification capabilities.

For neutrons, we consider three different cases: (i) no reconstruction at all, labeled “0n”;

(ii) reconstruction of the neutron energy with a fractional resolution of 40%/
√

Kn/GeV,

“En”; and (iii) reconstruction of the neutron energy and direction, with a resolution of

10◦ for the latter, “En + θn.” Neutrons propagating in liquid argon leave multiple small

deposits of energy, or blips, in the detector [23], and while such blips have been detected

[24], actual neutron reconstruction has not been firmly demonstrated. The three scenarios

we consider may serve as further motivation to focus effort on this challenging task. To

simulate atmospheric neutrinos, we randomize the incoming neutrino direction.

Before passing events to a neural network, we combine all particles of the same species

above a certain threshold into a single entity, summing over their energies and three-

momenta. This makes our results more robust with respect to modelling uncertainties

in neutrino event generators. For example, GENIE [25] and NuWro [22] exhibit large

discrepancies in the number of predicted low-energy protons in the final state.

We use dense neural network (DNN) classifiers, with the true neutrino energy as the

label for beam neutrinos, and the energy, zenith and azimuth angles for atmospheric neu-

trinos. The DNN consists of an input layer and two dense hidden layers plus one dense

output layer, with 64–16–32–1 nodes, respectively. In Fig. 2, we present the loss function

for training and validation data. For beam neutrinos we define the loss function as the

fractional mean squared error Lenergy = 10 [1− Eν,θ(x)/Eν(x)]
2, where Eν(x) (Eν,θ(x)) de-

notes the true (reconstructed) neutrino energy for input variables x and DNN parameters

θ; while for atmospheric neutrinos we add Langle = 30 arccos2 [v̂θ(x) · v̂(x)], where v̂ (v̂θ(x))

is a unit vector in the true (reconstructed) direction of the incoming neutrino momentum.
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Figure 2: DNN loss functions when trained on beam neutrino events (upper panel) and

atmospheric neutrino events (lower panel) for training (darker) and validation (brighter)

data. These results are for the “0n” (no neutron reconstuction) scenario, but results are

similar for the “En” and “En + θn” cases.

The performance of the DNN for DUNE beam data can be seen in Fig. 3a, where we

present the fractional energy resolution as a function of neutrino energy. We show results

for the three neutron reconstruction scenarios (purple lines) and compare to the anticipated

energy resolutions quoted in DUNE’s Conceptual Design Report (CDR) [26] and Technical

Design Report (TDR) [27]. We also compare to a purely calorimetric method (gray), in

which the neutrino energy is obtained as

Ecal
ν = Eℓ +

mesons∑

i

Ei +

baryons∑

i

Ki, (2.1)

where Ei andKi denote the total and kinetic energy of a particle i, respectively. We observe

that the performance of the calorimetric method using our simplified detector simulation

falls between the CDR and TDR methods. Our main result is the observation that the

DNN improves the neutrino energy resolution, σ(Eν), considerably at all energies. This is

true even when neutrons are completely invisible because the DNN is able to partially infer

the kinematics of final-state neutrons based on correlations with other kinematic variables

alone. If the neutron energy can be reconstructed (“En”), even with only the 40% resolution

assumed here, σ(Eν) improves further by a significant amount. Adding information on the

neutron direction (“En+θn”), however, does not lead to additional improvements. Results

for the reconstruction of antineutrinos are similar. Since our simulation treats the detector

response to muons and electrons similarly, our conclusions for electron neutrino events are

essentially the same as for the muon neutrino events shown here.
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(a) Top: fractional neutrino energy resolution

σ(Eν)/Eν as a function of neutrino energy from DNN-

based analyses with no information on final-state neu-

trons (solid purple), with limited information on the

neutron energy (dashed purple), and with information

on the neutron energy and direction (dotted purple).

For comparison, we also show the energy resolutions

anticipated in the DUNE CDR and TDR simulations

(magenta), and the resolution of a simple calorimet-

ric method assuming invisible neutrons (gray). Bot-

tom: reconstruction bias for the DNN compared to

the calorimetric method. DNNs significantly outper-

form conventional approaches to energy reconstruc-

tion. When information on the energy of final-state

neutrons is available, the improvement is more than a

factor of two at high energies.
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(b) Fractional neutrino energy resolution, σ(Eν)/Eν

(top), and angular resolution, σ(θν) (bottom) from

DNN-based analyses of atmospheric neutrino events

with no information on final-state neutrons (solid

cyan), and with information on neutron energies and

directions included (dashed/dot-dashed cyan). For

comparison, we also show the resolutions achievable

with simple calorimetric methods (gray curves). The

dotted black curve in the bottom panel is based on

only the charged lepton kinematics, as in Cherenkov

detectors at low energy.

Figure 3: Fractional energy resolution for beam (left) and atmospheric (right) νµ’s.

The improvement in energy reconstruction achieved by the DNN over the calorimetric

method is illustrated in Fig. 4, which shows a normalized event distribution for neutrinos

with true energies across six ranges: [500−600, 1000−1100, 2000−2100, 3000−3100, 4000−
4100, 5000− 5100 MeV]. Events were simulated according to the beam flux, yielding event

counts of [490, 1950, 4320, 4390, 1450, 310] per energy range. Figure 4 compares event distri-

butions obtained via the calorimetric method (unfilled histogram) and those reconstructed

by the DNN (filled histogram). The DNN reconstruction shows a marked improvement

in mean reconstructed energy, significantly reducing the bias inherent in the calorimetric

method. Additionally, the neural network produces a narrower distribution, where the long

tails that extend to lower energies visible in the calorimetric approach, are reduced.

Going from beam neutrinos to atmospheric neutrinos, where not only the neutrino

energy but also the arrival direction need to be reconstructed, we see from Fig. 3b that

the DNN again improves σ(Eν), but not the angular resolution, σ(θν). The DNN with-
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Figure 4: Normalized event distribution using DNN energy reconstruction (filled his-

togram) and the calorimetric method (unfilled histogram). Neutrinos with true energies

across six ranges, [500 − 600, 1000 − 1100, 2000 − 2100, 3000 − 3100, 4000 − 4100, 5000 −
5100 MeV], were used. The DNN reconstruction produces a narrower event distribution and

reduces the bias in the mean reconstructed energy compared to the calorimetric method.

out information on neutrons achieves a σ(Eν) closer to the calorimetric method with such

information included, confirming that the network is able to partially infer the neutron

kinematics based on correlations with other kinematic variables. For σ(θν) (lower panel

of Fig. 3b), the DNN affords only a marginal improvement in the angular resolution when

compared to calorimetric methods,1 except at higher energies. In events with a small

hadronic energy fraction, there is simply not enough information to improve neutrino re-

construction any further. To achieve better results at low energies, an interesting direction

of future work could be a DNN-based classifier that separates events into several samples

based on the fidelity of the reconstruction [1, 9]. In addition, beam experiments such as the

SBN detectors and DUNE-PRISM, in which the arrival direction of neutrinos is known,

could allow for data-driven development of accurate angular reconstruction methods [9].

3 IMPACT ON OSCILLATION ANALYSES

To emphasize the importance of the improved energy reconstruction afforded by our DNN,

we have simulated DUNE’s sensitivity to the 3-flavor oscillation parameters using GLoBES

[27–29]. We compare results obtained with the energy resolution function derived from our

DNN without neutron information, approximated as a Gaussian, to results based on the

1The calorimetric neutrino direction is given by the vector sum of the three-momenta of all visible

outgoing particles.
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(b) Impact of neural network-improved energy res-

olution on precision oscillation measurements in
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non-maximal θ23, the improvement in sensitivity due

to the DNN is equivalent to a ∼ 10% increase in ex-

posure.

Figure 5: Effect of neural network on νµ appearance spectrum (left) and oscillation pa-

rameter sensitivities (right).

detector response from DUNE’s CDR and TDR [3, 27]. The fit and statistical analysis are

performed using a code originally developed in Refs. [30–32].

In Fig. 5a we show how the improved energy resolution of a DNN-based analysis affects

neutrino spectra in DUNE. Using the νµ event sample for illustration, the plot shows in

particular that oscillations become significantly more pronounced.

Translating this improvement into sensitivities to oscillation parameters leads to the

main results of this sensitivity study, shown in Figs. 5b and 6. We see that precision

measurements of the atmospheric oscillation parameters – including searches for deviations

of θ23 from maximal mixing, with comparison to θ23 = 40◦ and 50◦, and the hunt for

leptonic CP violation, particularly for cases where δCP = −π/2 and − π/4 - all stand to

benefit significantly from DNN-based reconstruction. The improvement on the CP phase

sensitivity for δCP = −π/2 is roughly equivalent to a ∼ 10% increase in exposure – that

is, almost half a far detector module –, and further improvements are present for the

atmospheric angle, θ23, and the accuracy of the mass splitting, ∆m2
31.

We have also studied the sensitivity to the neutrino mass ordering, but have found that

it benefits less from the improved energy resolution because even without such improve-

ment, DUNE will be able to determine the mass ordering at 5σ with just 100 ktMWyears

of exposure [33].
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Figure 6: Impact of neural network-improved energy resolution on precision measurements

of ∆m2
31, θ23, δCP , and θ13 in DUNE.

4 DEPENDENCE ON NEUTRINO–NUCLEUS CROSS SECTION

MODELING

An important caveat to the results presented above is that the DNN has been trained on

Monte Carlo events, and it is known that current modeling of neutrino–nucleus interactions

exhibits considerable discrepancies when compared to experimental data [34–38]. Although

short-baseline detectors can be used to tune event generators, these tunes are somewhat ad

hoc and what works for one experimental analysis may not be appropriate for another [39].

To obtain a qualitative understanding of the impact that uncertainties associated with

neutrino–nucleus interactions have on the performance of our DNN, we have applied our

network trained on NuWro 21.09 events to mock data generated with GENIE 3.4.0. In the

upper panel of Fig. 7, which should be compared to Fig. 3a, we present the DNN’s resulting

energy resolution (dark blue) and compare it our previous results. We see that the network

underperforms at low energies, while retaining much of its power above about 1.5GeV.

Most likely this is due to differences on how these generators approach intranuclear cascades

and low energy outgoing nucleons.

More importantly, the lower panel of Fig. 7 reveals a bias in the neutrino energies

reconstructed by the DNN trained with the “wrong” neutrino–nucleus interaction model.

The bias is of order 10% across most of the energy spectrum and, interestingly, is worse

when the network is aware of neutron kinematics. Importantly, though, the calorimetric

method exhibits a similar bias when neutron kinematics are not available. In this case, in

fact, the DNN still outperforms calorimetry by a large margin up to energies of several GeV.

Only when neutrons can be reconstructed, the calorimetric method appears robust. We
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Figure 7: Top: fractional neutrino energy resolution, σ(Eν)/Eν from a DNN trained on

NuWro events, but applied to GENIE events (blue). We compare to the resolutions quoted

in the DUNE CDR and TDR (cyan), and to the performance of the calorimetric method.

Bottom: Energy reconstruction bias for the DNN trained on the “wrong” neutrino–nucleus

interaction model, and for the calorimetric method. Mismodeling of neutrino–nucleus in-

teractions can be a significant limitation to neural network-based and calorimetric recon-

struction algorithms alike, leading to biased results.

conclude that mismodeling of neutrino–nucleus interactions remains a potential problem for

both traditional and DNN-based neutrino energy reconstruction methods. This reaffirms

the urgency of improving our understanding of the physics of neutrino–nucleus interactions.
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