EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron-induced fission cross section of $^{236}\rm{U}$ at n_TOF

April 8, 2024

Z. Eleme¹, A. Tsinganis², N. Patronis¹, J. Heyse², P. Schillebeeckx²,

M. Bacak^{3,4}, N. Colonna⁵, M. Diakaki⁶, S. Goula^{1,3}, M. Kokkoris⁶, N. Kyritsis⁶,

V. Michalopoulou⁶, D. Papadimitriou¹, M. Peoviti¹, M.E. Stamati^{1,3}, R. Vlastou⁶

and the n TOF Collaboration

 1 University of Ioannina, Greece

 2 European Commission, Joint Research Centre (JRC), Geel, Belgium

³European Organization for Nuclear Research (CERN), Switzerland

⁴School of Physics and Astronomy, University of Manchester, United Kingdom

5 Istituto Nazionale di Fisica Nucleare, Bari, Italy

 6 National Technical University of Athens, Greece

Spokespersons: Z. Eleme [Zinovia.Eleme@cern.ch] and A. Tsinganis [Andrea.Tsinganis@cern.ch] Technical coordinator: O. Aberle [Oliver.Aberle@cern.ch]

Abstract: We propose to measure the neutron-induced fission cross section of 236 U in EAR-1 and EAR-2 of the n_TOF facility using Micromegas detectors. ²³⁶U ($T_{1/2}$ = 2.342x10⁷ years) is produced by neutron capture in ²³⁵U fuel, therefore the accurate knowledge of neutron-induced reactions for this isotope is of high importance. As a result of its production path, the 236 U nucleus is directly linked to the neutron economy in all types of nuclear reactors which are based on uranium fuel. The aim of this experiment is to produce a single accurate data-set covering the energy range from thermal up to 0.5 GeV neutron energy. Due to the lack of experimental data in the thermal and resonance region, the available evaluated libraries show severe discrepancies of up to two orders of magnitude. In order to provide high-accuracy cross section data for such an extended energy region, the specific characteristics of both n_TOF experimental areas (EAR-1 and EAR-2) will be exploited and high-purity 236 U samples will be used. The EAR-1 measurement will cover the energy region from the fission threshold up to several hundreds of MeV, while in EAR-2, given the higher instantaneous neutron flux, useful data will become available for the first time in a unique data-set spanning from the thermal region and covering the resonances up to a few hundreds of keV.

Requested protons: $9x10^{18}$ ($6x10^{18}$ in EAR-1, $3x10^{18}$ in EAR-2) Experimental Areas: EAR-1 and EAR-2

1 Introduction

1.1 Motivation

High-accuracy cross section data for neutron-induced reactions are needed in a wide energy range for the design, feasibility and sensitivity studies on advanced nuclear systems [\[1,](#page-7-0) [2\]](#page-7-1). The ²³⁶U isotope, with a half-live of 2.342×10^7 years, has the longest half-life compared to any other fission product or actinide produced in nuclear reactors. Due to the fact that its specific activity (2.4 MBq/g) is about 190 times higher than the one of ²³⁸U, it significantly contributes to the radioactivity of reprocessed uranium. In current reactors based on U/Pu fuel, ²³⁶U is produced by neutron capture on ²³⁵U and it considerably affects the neutron balance in the reactor core, as well as the fuel composition. Moreover, 236 U builds up in the equilibrium state in the Th/U fuel cycle. As a consequence, knowledge of its fission cross section is required within 5% accuracy for the development of fast nuclear reactors and accelerator-driven systems (ADS) [\[3\]](#page-7-2).

1.2 Present status of data

For the 236 U(n,f) reaction cross section in the thermal neutron energy region, evaluated libraries, in particular JENDL-5 [\[5\]](#page-7-3), JEFF-3.3 [\[6\]](#page-7-4), ENDF/B-VIII-0 [\[7\]](#page-7-5) and TENDL-2021 [\[8\]](#page-7-6), exhibit major discrepancies with each other of up to two orders of magnitude (Fig. [1\)](#page-2-0). Among these evaluations, only JENDL-5 seems to fairly reproduce the only two measured data points in the thermal region (Wagemans et al. [\[9,](#page-7-7) [10\]](#page-7-8)). Additionally, there are only two data-sets that indicate the existence of the first resonance of ²³⁶U around 5.45 eV. Data from Sarmento et al. [\[11\]](#page-7-9), with the highest resolution in this region, reveal that current evaluations, with the exception of JENDL-5 and TENDL-2021, need revision since they are overestimating the height of the first resonance by almost 150 times. Furthermore, in the region between 30 eV and 1 keV, data that point out resonance structures by Cramer and Bergen [\[12\]](#page-7-10) have been adopted by some evaluations, nonetheless they are not corrected for the 235 U impurities present in the samples as well as for the γ -sensitivity of the detectors. On top of that, these resonance structures are not confirmed by latter measurements of Alekseev et al. [\[13\]](#page-7-11) and Sarmento et al. [\[11\]](#page-7-9) in the same energy region. As a general remark, it seems that for the energy region below the fission threshold the bottleneck for scarce and discrepant data is actually the quality of samples in terms of impurities, mainly 235 U and 233 U, that create an additional strong fission background. In combination with the admittedly low cross section of 236 U, this makes the measurement of its neutron-induced fission cross section challenging.

Above 500 keV, the situation of the experimental information is much better since there are a lot of measurements that have lead to improvement of the knowledge of the cross section in the high energy region (Fig. [2\)](#page-2-1). Despite that, discrepancies of up to 15% are observed among different data-sets, especially for the region of interest for the fast nuclear reactors between 1 and 10 MeV (better visible in Fig. [3](#page-3-0) where the cross section ratio of 236 U and 235 U of some measurements is shown). Additionally, above 40 MeV (which exceeds the upper limit of most evaluations), only three data-sets that reach higher neutron energies up to a few hundreds of MeV [\[14,](#page-7-12) [15,](#page-7-13) [16\]](#page-7-14) are available. This region is particularly important to constrain theoretical models of the fission process.

Figure 1: Comparison of available experimental fission cross section data retrieved from the EXFOR database and evaluated libraries for neutron energies between thermal and 100 keV. The error bars of the experimental data are omitted in this plot. It is evident that the experimental information for the 236 U(n,f) reaction in the thermal and resonance region is very poor.

Figure 2: Comparison of neutron-induced fission cross section data of ²³⁶U above 100 keV retrieved from the EXFOR database and nuclear data libraries.

1.3 Previous measurement at n_TOF and prospects for the new measurement

A measurement of the ²³⁶U(n,f) cross-section was already performed at n_TOF in 2003 (EAR-1) during Phase I [\[11\]](#page-7-9). In this experiment, the fission yield of the $^{236}U(n,f)$ reaction was affected by the contribution of α -particles from the ²³⁶U decay but most importantly from fission events originated from the 0.05% impurity of ²³⁵U present in the samples. After the subtraction of the 235 U contamination, the analysis revealed resonance structures attributed to 236 U at 5.45 eV and at 1.25 keV (in the form of a triple resonance). Above the fission threshold, the data were

Figure 3: Fission cross section ratio of ²³⁶U to ²³⁵U based on the available experimental data above 100 keV retrieved from the EXFOR database. Discrepancies up to 15% are observed among different data-sets above 2 MeV.

limited only up to 2 MeV.

Accordingly, we propose a new measurement to address the discrepancies in the existing data and to expand the experimental information in the as yet unexplored thermal region, as well as to complement the data in the high energy region above the fission threshold. In order to achieve better data quality in the low energy region and measure the thermal cross section of the ²³⁶U(n,f) reaction, we plan to use high purity ²³⁶U samples with ~ 12 times less ²³⁵U impurity (235) U: 0.0043%). By performing the first part of the measurement in EAR-2, we aim in collecting useful data in the thermal and resonance region, taking advantage of the higher instantaneous neutron flux and the suppressed signal-to-background ratio due to the shorter flight path of 19 m from the lead spallation target. For energies higher than 700 keV in EAR-2 we expect to have limitations in the data analysis, mainly due to pile-up corrections and to the superposition of fission pulses on the γ -flash signal. In EAR-1, high-resolution and high-accuracy n TOF data can be provided for neutron energies starting from threshold (around 300 keV) and up to \sim 500 MeV.

2 Experimental setup

2.1 Samples

We plan to employ the same high-purity 236 U samples used by Wagemans et al. [\[9,](#page-7-7) [10\]](#page-7-8) for the determination of the cross section in the thermal point. These two samples $(^{236}U: 99.9732\%$, ²³⁴U: <0.00001\%, ²³⁵U: 0.0043\%, ²³⁸U: 0.0225\%), the characteristics of which are listed in Table [1,](#page-4-0) were produced by electrodeposition at JRC-Geel (Belgium). In addition, ²³⁵U, ²³⁸U and $10B$ samples will be used as reference for the neutron flux determination. Due to the fact that the 236 U and the reference samples have different diameters, we plan to use aluminium "masks" with a diameter of 40 mm, matching the diameter of the smallest deposit. This step is instrumental in order to perform a relative fission cross section measurement since the same neutron beam interception factor (BIF) for all samples will lead to reduced systematic uncertainties in the analysis.

Isotope	Areal density $(\mu$ g/cm ²)	Diameter (mm)	Activity (kBq)	Effective activity (kBq)	Effective mass (mg)
236 _{II}	210	50	9.9	6.3	2.64
236 J J	39	40	4.0	4.0	1.66

Table 1: Main characteristics of the ²³⁶U samples. Effective quantities refer to the unmasked part of the target (i.e. to a 40 mm diameter).

2.2 Micromegas detectors

For neutron measurements it is of particular importance to minimise the amount of material present in the beam in order to reduce the background related to scattered neutrons as well as to avoid the perturbation of the neutron flux. For this reason, the microbulk design [\[17,](#page-7-15) [18\]](#page-7-16) was developed based on the Micromegas principle (Fig. [4\)](#page-4-1). This design has already been utilised at n TOF for neutron-induced fission cross section measurements of ^{242}Pu [\[19\]](#page-7-17), ^{240}Pu [\[20\]](#page-7-18), 237 Np [\[21\]](#page-7-19), 241 Am [\[22\]](#page-7-20), 230 Th [\[23\]](#page-7-21) and, most recently, 243 Am [\[24\]](#page-7-22).

Figure 4: An illustration of the basic principle of operation of a Micromegas detector. An ionising particle emitted from a sample ionises the gas. The ionisation electrons drift towards the micromesh and are multiplied inside the high-field amplification region before being collected on the anode. Indicative values are given for the electrical field and dimensions of the two regions.

An aluminium chamber will be used to house the sample-detector modules. Within the chamber a continuous flow of a properly chosen gas mixture will be maintained, held at atmospheric pressure. More precisely, in EAR-1 it is planned to use an $Ar:CF_4:isoC_4H_{10}$ (88:10:2) mixture which exhibits excellent timing characteristics due to its relatively high electron drift velocity, whereas in EAR-2, in order to minimise the elastic interactions with the hydrogen inside the drift region of the detector, it is proposed to use an $Ar:CF_4$ (90:10) mixture.

2.3 Electronics and data acquisition

A setup based on existing electronics from previous fission measurements, consisting of custommade pre-amplifiers (INFN-Bari), will be used for fast signal shaping. Incremental improvements have been made over the past few years in the design of the pre-amplifiers, resulting in a significant reduction of post γ -flash baseline oscillations and in the enhancement of the signalto-noise ratio. The output of the pre-amplifiers will be directed to the standard n TOF Data Acquisition System based on flash-ADCs.

3 Beam request

By using the large collimator in both experimental areas, i.e. 6 cm diameter in EAR-2 and 8 cm diameter in EAR-1, we can profit from increased neutron flux. The upper and lower limit for the total reaction rate for EAR-2, employing different evaluations (JENDL-5, JEFF-3.3, ENDF/B-VIII-0) and assuming $3x10^{18}$ protons is shown in Fig. [5.](#page-6-0) In EAR-2 we can acquire experimental data in the neutron energy range from thermal up to 700 keV. Moreover, by adopting a coarser energy binning (e.g 10 bpd) in the thermal region we can further reduce the statistical uncertainty in this regime which was previously unexplored. At the same time, at around 5.45 eV we can provide a better mapping of the first resonance of 236 U which dominates the fission cross section below the threshold. It has to be mentioned that even if our measurement confirms the JENDL-5 evaluation limiting the precision of the measurement in the thermal part, the contribution of the first resonance of ²³⁶U at 5.45 eV will account almost 90% of the total fission yield up to 100 keV and 99% up to 1 keV. Furthermore, by assuming $6x10^{18}$ protons for EAR-1 (Fig. [6\)](#page-6-1), we can provide experimental fission cross section data from the threshold around 300 keV up to hundreds of MeV with a statistical uncertainty below 2% even at 100 bpd. In all the above mentioned reaction rate calculations, the n_TOF-Phase IV neutron flux was considered for both experimental areas.

4 Summary

In conclusion, we propose the measurement of the neutron-induced fission cross section of 236 U for an extended neutron energy region, from thermal energies up to ~ 0.5 GeV. The use of highpurity ²³⁶U samples provided by JRC-Geel will allow for the collection of data with notably reduced ²³⁵U impurities, compared to other TOF data-sets. The realisation of the experiment in EAR-2 will profit from an improved signal-to-background ratio, while the data collected from the EAR-1 measurement will allow for the extension of the cross section data in the high energy region. With this proposed measurement, the previous n_TOF data will be significantly extended in neutron energy. Discrepancies among previous measurements and evaluations will be addressed and a cross section measurement with a unified single data-set that covers 10 orders of magnitude in neutron energy from thermal up to ~ 0.5 GeV will be produced.

Summary of requested protons: $9x10^{18}$ protons on target $(6x10^{18} \text{ protons for EAR-1 and } 3x10^{18} \text{ protons for EAR-2})$ All tests and electronics optimisation needs are included in this request.

Figure 5: Reaction rate and statistical uncertainty estimates in EAR-2 from the thermal region up to 700 keV for 100 bpd (top panels) and 10 bpd (bottom panels) considering $3x10^{18}$ protons. Due to the considerable discrepancies among different evaluations both scenarios of data handling will be considered.

Figure 6: Reaction rate and statistical uncertainty estimates in EAR-1 from the reaction threshold up to 30 MeV, which is the highest energy limit of the evaluations.

References

- [1] A. Stanculescu, Annals of Nuclear Energy 62, 607-612 (2013)
- [2] Generation-IV International Forum, <www.gen-4.org/>
- [3] INDC International Nuclear Data Committee[,Summary Report of the Consultants'](https://www-nds.iaea.org/publications/indc/indc-nds-0408/) [Meeting on Assessment of Nuclear Data Needs for Thorium and other Advanced Cycles,](https://www-nds.iaea.org/publications/indc/indc-nds-0408/) [INDC\(NDS\)-408](https://www-nds.iaea.org/publications/indc/indc-nds-0408/) (IAEA, Vienna, 1999).
- [4] U. Abbondanno et al., [CERN-INTC-2001-025](http://cds.cern.ch/record/514756/files/intc-p-145.pdf)
- [5] O. Iwamoto et al., Journal of Nuclear Science and Technology 60(1), 1-60 (2023)
- [6] A. J. M. Plompen et al., Eur. Phys. J. A, 56 7, 181 (2020)
- [7] D. A. Brown et al., Nuclear Data Sheets, 148, 1-142 (2018)
- [8] A. J. Koning et al., Nuclear Data Sheets 155, 1-55 (2019)
- [9] C. Wagemans et al., Nucl. Sci. Eng. 136, 415 (2000)
- [10] C. Wagemans et al., Nucl. Sci. Eng. 160, 200 (2008)
- [11] R. Sarmento et al., Phys. Rev. C 84, 044618 (2011)
- [12] J. Cramer and D. Bergen, Fission Cross Sections from Pommard, LA-4420 (Los Alamos Scientific Laboratory, 1970), p. 74.
- [13] A. Alekseev et al., Phys. At. Nucl. 71, 1351 (2008)
- [14] F. Tovessonet al., Nucl. Sci. Eng. 178, 57 (2014)
- [15] Z. Ren et al., Eur. Phys. J. A 59, 5 (2023)
- [16] A. S. Vorobyev et al., Phys. Rev. C 108, 014621 (2023)
- [17] S. Andriamonje et al., J. Instrum. 5(02), P02001 (2010)
- [18] S. Andriamonje et al., J. Kor. Phys. Soc. 59(23), a1597 (2011)
- [19] M. Calviani et al., [CERN-INTC-2010-042](https://cds.cern.ch/record/1266869/files/INTC-P-280.pdf)
- [20] A. Tsinganis et al., [CERN-INTC-2014-051](https://cds.cern.ch/record/1706708/files/INTC-P-418.pdf)
- [21] L. Audouin et al., [CERN-INTC-2015-007](https://cds.cern.ch/record/1981292/files/INTC-P-431.pdf)
- [22] A. Tsinganis et al., [CERN-INTC-2017-008](https://cds.cern.ch/record/2241236/files/INTC-P-492.pdf)
- [23] R. Vlastou et al., [CERN-INTC-2017-009](https://cds.cern.ch/record/2241241/files/INTC-P-493.pdf)
- [24] N. Patronis et al., [CERN-INTC-2020-048](https://cds.cern.ch/record/2730930/files/INTC-P-566.pdf)

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

Please describe here below the main parts of your experimental set-up:

HAZARDS GENERATED BY THE EXPERIMENT Additional hazard from flexible or transported equipment to the CERN site:

