Author(s)
|
Caudillo, Lucía (Frankfurt U., FIAS ; Frankfurt U.) ; Surdu, Mihnea (PSI, Villigen) ; Lopez, Brandon (Carnegie Mellon U.) ; Wang, Mingyi (Carnegie Mellon U. ; Caltech) ; Thoma, Markus (Frankfurt U., FIAS ; Frankfurt U.) ; Bräkling, Steffen (LLNL, Livermore) ; Buchholz, Angela (Aalto U.) ; Simon, Mario (Frankfurt U., FIAS ; Frankfurt U.) ; Wagner, Andrea C (Frankfurt U., FIAS ; Frankfurt U.) ; Müller, Tatjana (Frankfurt U., FIAS ; Frankfurt U. ; Mainz, Max Planck Inst.) ; Granzin, Manuel (Frankfurt U., FIAS ; Frankfurt U.) ; Heinritzi, Martin (Frankfurt U., FIAS ; Frankfurt U.) ; Amorim, Antonio (CMAF, Lisbon) ; Bell, David M (PSI, Villigen) ; Brasseur, Zoé (Helsinki U.) ; Dada, Lubna (PSI, Villigen) ; Duplissy, Jonathan (Helsinki U. ; Helsinki Inst. of Phys.) ; Finkenzeller, Henning (Colorado U.) ; He, Xu-Cheng (Helsinki U.) ; Lamkaddam, Houssni (PSI, Villigen) ; Mahfouz, Naser G A (Carnegie Mellon U.) ; Makhmutov, Vladimir (Lebedev Inst. ; Moscow, ITEP) ; Manninen, Hanna E (CERN) ; Marie, Guillaume (Frankfurt U., FIAS ; Frankfurt U.) ; Marten, Ruby (PSI, Villigen) ; Mauldin, Roy L (Colorado U. ; Carnegie Mellon U.) ; Mentler, Bernhard (Innsbruck U.) ; Onnela, Antti (CERN) ; Petäjä, Tuukka (Helsinki U.) ; Pfeifer, Joschka (Frankfurt U. ; CERN) ; Philippov, Maxim (Lebedev Inst.) ; Piedehierro, Ana A (Helsinki Inst. of Phys.) ; Rörup, Birte (Helsinki U.) ; Scholz, Wiebke (Innsbruck U.) ; Shen, Jiali (Helsinki U.) ; Stolzenburg, Dominik (Helsinki U.) ; Tauber, Christian (Vienna U., Dept. Math.) ; Tian, Ping (Beijing Normal U.) ; Tomé, António (UBI, Covilha) ; Umo, Nsikanabasi Silas (KIT, Karlsruhe, IKP) ; Wang, Dongyu S (PSI, Villigen) ; Wang, Yonghong (Helsinki U.) ; Weber, Stefan K (Frankfurt U. ; CERN) ; Welti, André (Helsinki Inst. of Phys.) ; Zauner-Wieczorek, Marcel (Frankfurt U., FIAS ; Frankfurt U.) ; Baltensperger, Urs (PSI, Villigen) ; Flagan, Richard C (Caltech) ; Hansel, Armin (Innsbruck U.) ; Kirkby, Jasper (Frankfurt U. ; CERN) ; Kulmala, Markku (Helsinki U. ; Helsinki Inst. of Phys. ; Beijing U. of Chem. Tech.) ; Lehtipalo, Katrianne (Helsinki U. ; Helsinki Inst. of Phys.) ; Worsnop, Douglas R (Helsinki U. ; New England Nucl.) ; Haddad, Imad El (PSI, Villigen) ; Donahue, Neil M (Carnegie Mellon U.) ; Vogel, Alexander L (Frankfurt U., FIAS ; Frankfurt U.) ; Kürten, Andreas (Frankfurt U., FIAS ; Frankfurt U.) ; Curtius, Joachim (Frankfurt U., FIAS ; Frankfurt U.) Visa alla 57 författare |
Abstract
| Currently, the complete chemical characterization of nanoparticles
(< 100 nm) represents an analytical challenge, since these particles
are abundant in number but have negligible mass. Several methods for
particle-phase characterization have been recently developed to better
detect and infer more accurately the sources and fates of sub-100 nm
particles, but a detailed comparison of different approaches is missing.
Here we report on the chemical composition of secondary organic aerosol
(SOA) nanoparticles from experimental studies of α-pinene ozonolysis
at −50, −30, and −10 ∘C and intercompare the results measured by different
techniques. The experiments were performed at the Cosmics Leaving OUtdoor
Droplets (CLOUD) chamber at the European Organization for Nuclear Research
(CERN). The chemical composition was measured simultaneously by four
different techniques: (1) thermal desorption–differential mobility analyzer
(TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass
spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an
I− high-resolution time-of-flight chemical ionization mass spectrometer
(HRToF-CIMS), (3) extractive electrospray Na+ ionization
time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of
filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC)
and heated electrospray ionization (HESI) coupled to an Orbitrap
high-resolution mass spectrometer (HRMS). Intercomparison was performed by
contrasting the observed chemical composition as a function of oxidation
state and carbon number, by estimating the volatility and comparing the
fraction of volatility classes, and by comparing the thermal desorption
behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and
performing positive matrix factorization (PMF) analysis for the thermograms.
We found that the methods generally agree on the most important compounds
that are found in the nanoparticles. However, they do see different parts of
the organic spectrum. We suggest potential explanations for these
differences: thermal decomposition, aging, sampling artifacts, etc. We
applied PMF analysis and found insights of thermal decomposition in the
TD–DMA and the FIGAERO. |