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We recently argued that neutron stars accreting at rates 2107°M_ yr~! (the “Z”

sources) are covered with massive oceans and conjectured that waves in these oceans
might modulate the outgoing X-ray flux at frequencies comparable to what is observed.
For slowly rotating neutron stars, we showed that the low radial order (n ~ 1 — 2
g-mode oscillations are in the 5-8 Hz range for | = 1, in rough agreement with the
ubiquitous ~ 6 Hz quasi-periodic oscillations (QPO’s) seen in the Z sources. In this
Letter, we extend the thermal g-mode calculations to the case of rapidly rotating stars.
The m = 0 modes are most relevant, since the m # 0 modes will necessarily acquire
a high frequency in the observer’s non-rotating frame. For spin frequencies > w,
we find that the lowest m = 0 g-mode frequency is w = 2'/4(Qwy)!/?, where wq is
the corresponding non-rotating ! = 1 g-mode frequency. In the context of non-radial
thermal g-modes. there are two ways to explain the fact that all six Z sources show ~ 6
Hz QPO’s: (1) the neutron stars are all spinning at frequencies <6 Hz and a low-order
(i.e. only a few radial nodes) g-mode is responsible for the oscillations, or (2) the g-
mode is of higher radial order (n ~ 10 — 50) and is brought to ~ 6 Hz by fast rotation,
thus requiring that all six neutron stars have rotation frequencies within a factor of 2-3

—

of each other.
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1. Introduction

It seems likely that neutron stars accreting at
rates in excess of 107°M_ yr~! (the so-called
“Z” sources) burn the accreting hydrogen and
helium in a way less violent than by Type I X-
ray bursts. Both the observed lack of Type I
X-ray bursts (see van der Klis’s 1995 review)
and the theoretical understanding of the nature
of burning at these high accretion rates (Fushiki
& Lamb 1987, Bildsten 1993, 1995) tell us that
the hydrogen and helium burn to midweight ele-
ments (i.e. C. O, Ne, ...). Fusion of this fuel to
iron-group elements does not occur until densi-
ties 210% cm™3 are reached. leading to the ac-
cumulation of a massive (~ 107%Af_) degener-
ate liquid ocean {Bildsten & Cutler 1995. here-
after BC). Neutron stars accreting at lower rates
burn the accreted hyvdrogen and helium directly
to iron group elements via Type I X-ray bursts
(Lewin. van Paradijs & Taam 1992). The larger
Coulomb force in iron leads to crystallization at
much lower densities and a much smaller ocean
mass.

In our previous paper (BC) we showed that,
for nourotating stars. the ocean’s thermal buoy-
ancy results in g-modes (basically internal grav-
ity waves) with frequencies of a few Hz for /1 =1
aud one or two radial nodes. The similarity
between this frequency and the ~ 6 Hz quasi-
periodic oscillations (QPO’s) seen in the bright
sources (see van der Klis 1995 and references
therein) has motivated much of our work. The
remarkable uniformity of these QPO’s in all six
known Z sources led Hasinger (1987) to conjec-
ture that the frequency was set by a resonant
density wave above the neutron star surface. An-
other model is that these QPO’s involve oscilla-
tions in a coronal accretion flow (extending out
to 100 stellar radii) at rates near the Eddington
limit (Fortner. Lamb & Miller 1989 and Miller &
Park 1995).

Our earlier results were limited to stars rotat-
ing slower than the mode frequency. However,
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one might expect that stars accreting at these
high rates will be rotating more rapidly than a
few Hz. In particular, if the accreting matter al-
ways arrives with the specific angular momentum
of a particle orbiting at the stellar radius R, it
takes ~ 10° yr of accretion at M=~ 10"8]\/!@ yr~!
to reach a spin frequency of ~ 10Hz. Even
though such spin periods have not been detected
in these systems (Vaughan et al. 1994), we feel it
is crucial to understand the influence of rotation
on the mode frequencies.

This Letter is a brief report on how the ther-
mal g-mode frequencies and displacements are
modified by rapid rotation. The equations for
non-radial oscillations in rotating neutron stars
are derived in §2. For the case we are comnsid-
ering. the angular and radial equations separate,
with the radial equations being identical to those
for the non-rotating case. The angular piece is
solved for the connecting eigenvalue in §3. We
discuss the observational implications of our re-
sults in §4.

2. Non-Radial Oscillations in the Pres-
ence of Rotation

We consider a neutron star uniformly rotat-
ing (see Fujimoto (1993) for a discussion of the
angular momentum transport that brings about
uniform rotation) at frequency Q <« (GAM/R?)'/?
where M and R are the neutron star mass and
radius. This allows us to neglect the “centrifugal
term” in the equation of motion and treat the
unperturbed star as spherical. Since the non-
rotating g-mode frequencies are far below the
breakup frequency of =~ 1kHz, this approxima-
tion still leaves a large range of spin frequencies
to explore. The g-modes are confined to the thin
(h € R) ocean on the neutron star surface and
do not penetrate into the neutron star’s crust
(BC). In addition, the small mass of the ocean al-
lows us to neglect the perturbations to the grav-
itational potential.

We work in the rotating frame, where the fluid
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is initially at rest, and denote the Lagrangian
fluid displacement as £. The momentum balance
equation is then
iw%—f———%—gr—%wﬂx{ (1)

where the last term is the “Coriolis force”, g =
GM/R? is the constant downward acceleration
of gravity. and w is the mode frequency in the
rotating frame. We let ¢ denote the Eulerian
variation in some quantity @, so that the La-
grangian variation is AQ = 6Q + E GQ We use
spherical coordinates, mth Q parallel to the axis
where 6 = 0. so that 5 = &7+ 509 + 500 Since
the perturbation equations are linear, and the
background is time-independent and spherically
svmietric, we decompose solutions into the form
8Q(r.0)emet<t  Frequencies in the observer's
inertial frame are then «; =« — m§.

Given the above assumptions. the perturbed
momentum balance equations are

(‘
pult, = +g<‘p— 2iQepé,sin 8. (2a)
1 9ép A
—plly = —— =t " .(2
p"Eo T o5 T 210wpé cos b (2b)
o imép
Pete = Rsiné

— 2iQupi{fycosf + £ sin ),

(2¢)

where we have replaced 1/r with 1/R as the
ocean is very thin (h « R). The oscillations
are adiabatic at p 2 10° g cm™3 so that the La-
grangian density and pressure variations are re-

lated by Ap/p = T'1Ap/p, where Ty = (dlnp/dlnp)eq

is the adiabatic index. We use this relation to
eliminate ép in equation (2a), thus obtaining

. dép  ép
plu? = N2E, = v + = e —2iQwpbessin @, (3)
where h = p/pg is the local scale height. and

N? = — Ay is the local Brunt-Vaisdld frequency.

where A = dlogp/dr — dlogp/dr(1/T) is the
convective discriminant.

Equation (3) exhibits a competition between
the radial Coriolis force (coming from the trans-
verse motion) and the buoyancy force (x pN2¢,).
We estimate the importance of this new term
by using the slow rotation solutions as our first
guess, in which case £4/€, ~ R/h and N? > w?
(BC), as the thermal buoyancy in the deep ocean
gives N ~ 1 -5 kHz (BC). We can thus ne-
glect the Coriolis term in equation (3) when
|N%| > RQw/h (which limits the spin frequen-
cies to <200 Hz; see end of §3) so this equation
becomes

dép  bp

2 ]\?2 .= et
Pl & = 5 T,

(4)
In addition, £, < & for the low [ oscillations, so
that we omit the term « £, in equation (2c).

These two approximations (referred to as the
“traditional approximation” in the geophysical
literature) dramatically simplify the solution of
the perturbation equations as the radial and
angular parts completely separate (i.e. @ =
Q,(r)Qg(8)). To show this, we first combine
equations (2c) and (2b) to find &, and &g in terms
of ép and £,. We then substitute these into the
continuity equation to obtain

_0{, 1 <6p {r)_ gh Ly [61)] (5)
ar Ti\p k) w?R? T

where L, is the following angular operator that
depends on the spin parameter ¢ = 2Q/w,

i) 1-u® 0
Ly = 5= \1T—=335;
ou \1-q*u?opu
m? _gm(14¢*4°)
(1-u?)(1-¢%u?)  (1-g??)*”’
(6)
with 4 = cosd. We thus have two equations [(4)
and (5)] to solve for 6p/p and & . The result-

ing equations are separable: we first solve eigen-
value equation L,(ép/p) = —Aép/p. and then




solve the purely radial equations (4)and (5), with
the right hand side of equation (5) replaced by
—ghA/(w?R?). These radial equations are identi-
cal to those for a nonrotating star, in which case
A s just {(I + 1). In some sense, one can view
A1/2 as the effective transverse wavenumber (i.e.
k2 = A/ R?).

We have solved (in BC) the radial equations
for g-modes in a degenerate (i.e. pR2107 g cm™3)
ocean of liquid ions with mass Am, at tempera-
ture T, where the restoring force is thermal buoy-
ancy, so we can simply write down the eigenvalue
and eigenfunctions. The g-mode frequencies are

AT 12\'/?
= 7.9 Z =
Us 23 He (2 105 K A)

« (10 km) ( 1 )1/2
R 1+ 0.47n? )
(7)

where n is the number of radial nodes in &,. This
exhibits the familiar g-mode property of having
the frequency decrease as n increases. and it goes
to f x 1/n for large n. We now solve for the
eigenvalues A of the angular operator L. which.
using equation (7), will immediately give us the
mode frequencies.

3. Numerical Solution of The Angular
Equation

The angular eigenvalue equation
L,H)=-AH (8)

is known as Laplace’s tidal equation, and its so-
lutions are called Hough functions. The standard
method (see Chapman & Lindzen 1970) of solv-
ing Laplace's tidal equation has been to expand
H in spherical harmonics (i.e. Y, for a fixed m).
This vields recursion relations for the expansion
coefficients. which are truncated at some large
but finite /. We have found it simpler to find
the eigenfunctions and eigenvalues of this ODE
by direct numerical integration: the only “trick”
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is to take appropriate care at the singular points
(p==41and u==21/q).

The equation is symmetric under g — —pu. so
we restrict attention to the range 0 < 4 <1 and
look for solutions with definite parity: the “odd”
(“even”) solutions have H(0) = 0 (H'(0) = 0).
For all ¢ # 1, the tidal equation has a regular
singular point at 4 = 1 (see Bender & Orszag
1978). If we substitute a Frobenius series H(u) =
% g an(p = 1)"+e into the tidal equation, ex-
pand the equation in powers of (u — 1) about
4 = 1, and equate coefficients, we find that the
regular (non-singular) solution has a = |m|/2.
The equation becomes more tractable numeri-
cally if we factor out this behavior. With the
substitution

Hu)= (1 - p@®)ImV2yp), (9)

the tidal equation becomes

(1~ wHy" ()
2¢2u(1 — p?) "
n (W-zu(lﬂmi))y(u)

+ (M1 =) = (jmf + m?)
2|m|g?u? + gm(1 + ¢*1?)
1-— q2ﬂ2

) y{u) =0,

(10)
where y(u) is analytic at pu = 1.

For ¢ > 1, there is an additional regular sin-
gular point at u = 1/q. Careful analysis via
Frobenius series shows that the two linearly in-
dependent solutions of (10) are analytic at 1/g,
and thus can be represented by a Taylor series.
We find the appropriate behavior of y near the
singularity by writing ¥y = yo + 117 + ¥222/2 +
y323/6 + .... where z = (u — 1/g), substituting
into the tidal equation (10), and collecting terms
of same order in z. The first two orders, O{z~1)
and O(z%), yield the same condition:

q(im| + mq)

vt &

yo =0, (11)
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while O(z!). upon using (11), reduces to

(mg = ¢ = 3(jm| + 1))

Y3 - g 1_q2 Y2
3 (|m,[+mq)(l+2n22—mq—q2+3|m|)
(1-g?)?
4M1 - ¢%)
e = 0.
(1-q?%)?

(12)

Subsequent orders yield recursion relations for
Yn. for m > 4, in terms of y,_1. yn_2, etc. From
this. we see that yy and ys can be considered “un-
constrained” or “free” data, which completely de-
termine yy. y3. y4. etc. Thus. to integrate away
from 1 = 1/¢ towards either 1 or 0, we start at
p=1/gx e with y(1/gt €) = yo + y1€ + %yys?
and y'(1/gx€) = y; L yze. where y; is determined
from yy by (11). The “shape” of the solution is
set by the ratio y3/yo: yo just determines the
overall scale.

For ¢ < 1 we shoot from y = 1 — ¢ (relating
y'(1)to y(1) by demanding that (1—u?)y" (1) =0
as ;1 — 1 in equation (10)) and vary the eigen-
value A to find the odd aund even modes. For
g > 1. we: (1) pick a matching point j g, in the
interval 1/¢ < pma < 1. (2) choose trial values
for y2/yo and A. and (3) shoot towards 1 = pima
from both yt = 1— € and p = 1/¢g + €. The func-
tion y can alwavs be made continuous at p,, by
scaling yo. It remains to match y’ at fi., while
satisfving either y(0) = 0 or y’(0) = 0 (for odd
or even solutions, respectively). Thus there are
two conditions to satisfv, with two free variables.
Ushomirsky & Bildsten (1995) contains a com-
plete discussion of the solutions of this equation
for all modes (including the r-modes). Here, we
briefly summarize the properties of the relevant
g-modes.

As i1s evident from the transverse momen-
tum equations [(2b)and (2¢)]. the Coriolis force
strengthens as one moves towards the pole. For
¢ > 1. this introduces a critical angle y = 1/q.

3 L I T 1 l T T 1 l T T 7T [ T T
q=4
2 _
a, 1 .
\ d
Q. i
ST —]
__1 — B _:
— :l_‘l’l ] 1 11 ! J I ] | Lol ) I 1 1 l—‘

0O 02 04 06 0.8
p=cosf

—

Fig. 1.— Angular eigenfunctions of equation (8) for

= 2Q/w = 4. The solid lines show the first two odd
eigenfunctions (with A = 16.54 and 394.5) and the first
even eigenfunction (A = 142.5) for m = 0. The dashed
line with large amplitude at the pole is the m = —1 even
parity mode with A = 1.135. The other three dashed lines
are analogs of the m = 0 modes in the angular coordinate.
In particular, we plot the two lowest m = —1 odd parity
eigenfunctions (A = 25.93 and A = 405.1) and the lowest
m = 1 even parity solution (A =135.9).

Poleward of this angle, the Coriolis force domi-
nates, while equatorward of this angle, the pres-
sure term dominates. This confines the prop-
agating g-modes to the equatorial region. Fig-
ure 1 shows some eigenfunctions with A > 0 for
g = 4; note they evanesce above the critical an-
gle 1 = 1/g (marked by the vertical arrow). The
solid lines show the first three m = 0 modes,
while the dashed lines show eigenfunctions for
m = %1.

The discussion of the A > 0 eigenfunctions
is simplified for very fast rotation (¢ > 1). In
this limit, almost all of the motion is confined
to a thin band about the equator of dimension
L ~2R/q ( i.e. most of the motion is in the lat-
itudes ~1/¢ < p < 1/g). The eigenvalues then
arise from “fitting” the required number of oscil-
lations into this angular band. giving the scaling
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Fig. 2.— The thermal g-mode frequencies for n = 1 in

the rotating frame for a pure carbon ocean at T = 10* K.
The m = 0 modes are shown by the heavy solid line and
have the same frequency in the observer’s frame. The
m < 0 modes are shown by the dashed lines. The m = -1
and m = —2 even parity modes go to a Jow and constant
frequency in the rotating frame for arbitrarily high spins.
The positive m modes are sliown by the dotted curves.
The lower solid curve is the m = 0. I, = 1 mode for
n = 42, which gives 6 Hz at a 100 Hz spin frequency.

A x ¢?. If we denote I, as the number of zero
crossings between —1/¢ and 1/¢. we find that the
m = 0 eigenvalues asymptote to A = (21, — 1)?¢?
when ¢ > 1. Hence the lowest mode is [, = 1
(odd) which gives A = ¢° for ¢ > 1. For non-
zero m there is an additional possibility, which
is that the angular eigenfunction is nearly con-
stant and has no zero crossings. In this case, the
eigenvalues stay low and approach m? as ¢ — oo.
This eigenfunction is shown in the lowest dashed
line on Figure 1. The mode frequencies are the
two dashed curves in Figure 2 that asymptote to
constant values at high spin frequencies.
Equation (7) lets us write the mode frequency
in the rotating frame simply as w? = wZO(A/1(1+
1}). where wyg is the g-mode frequency for the
corresponding /'th mode in the non-rotating star.
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In the limit of ¢ > 1, this gives

27172
w? = 20w g {%——%} , (13)

which approaches w = 2(Qw;)'/? in the WKB
limit of / = I, > 1, in agreement with Papaloizou
& Pringle’s (1978) WKB result. Figure 2 shows
the frequencies in the rotating framefor then = 1
thermal g-mode in a 10® K pure Carbon ocean.
The heavy solid lines show the |, = 1,2, m =0
modes, which have the same frequencies in the
observer’s frame. The dashed (dotted) lines show
the modes for negative {positive) m, which split
away from the m = 0 mode as the spin increases,
even in the rotating frame. The frequency in the
observer’s frame is w; = w — mf.

We now use our solutions to check our ear-
lier approximation of neglecting the Coriolis term
(relative to pN ¢, ) in the radial momentum equa-
tion. For the /,, = 1 thermal g-mode, we find that
the Coriolis term is negligible when ¢ < nR/2h,
which translates into Q/27x < N/87 = 200 Hz,
regardless of n.

4. Discussion

We have shown that rapid rotation plays an
important role in setting the g-mode frequen-
cies. Our results are best explained in the ro-
tating frame, where we found the simple scal-
ing law of equation (13) for the mode frequencies
in the limit of rapid rotation. This scaling was
earlier found by Papaloizou & Pringle (1978) in
the WKB limit (i.e. {,n > 1) and we have ex-
tended it to the low values of [ which are obser-
vationally relevant. For rapid rotation (2 > w)
the m = 0, [, = 1 mode frequency (same in ei-
ther the observer’s frame or the rotating frame)
is w = 21/4(Quwp)"/?, where wp is the | = 1 g-
mode frequency for no rotation. Hence, even at
very high spin frequencies, the m = 0 modes can
be observed at frequencies considerably less than
the spin frequency. The high spin frequency, low
n thermal g-modes coincide with the 15-50 Hz
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QPO’s seen from three of the Z sources. How-
ever. the observed frequency changes are more
rapid than could be accommodated by heating
or cooling in the ocean, making it seem unlikely
that the 15-50 Hz QPO’s arise from thermal g-
modes.

If we wish to explain the observed ~ 6 Hz
QPO as an m = 0 non-radial g-mode supported
by thermal buoyancy, we have two choices: (1) ei-
ther all six known Z sources rotate at <6 Hz and
the observed g-mode is n ~ 1. or (2) the mode
responsible for the 6 Hz oscillations is of much
higher radial order and rapid rotation brings the
observed frequency to 6 Hz. To keep the frequen-
cies within the observed range (5—8 Hz) requires
spin frequencies within a factor of & 2 -3 of each
other. For example. for a neutron star rotat-
ing at 100 Hz. the non-rotating mode frequency
would need to be 0.25 Hz to give an observed fre-
quency of 6 Hz. This must be a thermal mode
of high radial order. roughly n ~ 10 — 50 de-
peuding on the exact temperature and elemental
composition. The lower solid line in Figure 2 ex-
Libits such a mode. The mode structure would
be “dense” in this rapid rotation limit. as the ob-
served frequencies scale like n~1/2, These modes
have all of their amplitudes at the equator. which
might lelp in modulating the accretion rate from
the disk and hence the X-ravs.

The wayv the mode frequencies vary with [ or
I, (for m = 0) for rotating stars is almost the
same as in the non-rotating case. In the limit of
no rotation, the ratios are w | : wh, : Wiy =
1: 3 : 6. while the limit of rapid rotation gives
these ratios as 1 : 3 : 5. We emphasize again
that observing frequencies with these ratios is an
important test of our hypothesis. Since w; =
w — mf, the m # 0 modes are shifted to high
frequencies by the rotation. Measuring a few of
these modes would measure the spin frequency.
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