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Abstract

We investigate new polynomial hierarchies of Lax pairs which contains the
polynomial pairs for the system of O(3) chiral fields equations and Landau-
Lifshitz equation introduced recently and give algorithmic construction of
the corresponding hierarchies of soliton equations. We compare the Landau-
Lifshitz equation hierarchy obtained via polynomial bundle with the hierarchy
obtained via elliptic bundle.
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1 Introduction

It is well known that the so called inverse scattering method, see [1] allows one to
apply different and fruitful approaches to the investigation of the class of nonlinear
evolution equations. called soliton equations. Their characteristic property is that
they can be expressed as compatibility condition of two linear operators L and M:

[L.M] =0 (1)

(This representation is called Lax representation and the couple L, M - Lax pair. )
In a recent work [2] we have introduced new Lax pairs, polynomial in the spectral
parameter, for two important physical systems!:

A) Landau-Lifshitz equation [3] (LL)

S, =8xS5,,+3 xRS (2)

Here g(x,t) = (S1(z,t), Sa(z, t), S3(z,t)) is vector field depending on the spatial
variable z and the time ¢, taking its values on the unit sphere S? C R3:

§? =524+ 52482=1, (3)
R is the diagonal matrix

R = diag(ry,ra,13), 1, >0
with nonnegative entries, (Rg)i =rS;; i =1,2,3. The LL equation describes
perturbations propagating in a direction orthogonal to the anisotropy axis in a
ferromagnet and the boundary conditions for it naturally arise from the physical
background. These boundary conditions can be expressed as follows

lim S =(0,0,1). (4)
r—to00
Remark
It should be mentioned that LL equation is related to a number of other systems of
the classical mechanics, see[4].

B) O(3) - chiral fields equations (CF)

Uy + U, + U x RU =0,

LS L (5)
Uy — U, + U x Rd = 0.

Here , @ are two vector fields depending on z, ¢ taking values on the unit sphere 52

and X is the vector product symbol.

!Below we shall obtain the pairs for these systems as a consequence of a general construction
and for this reason we do not present them now.



The system of O(3) chiral fields describes dynamics in antiferromagnets, in liquid
crystals, [5] and has application in the quantum field theory [6].

It is well known that the Lax pairs divide in a classes (hierarchies) and in every
such hierarchy the first operators in the Lax pairs (those containing differentiation
with respect to the spatial variable) coincide. Usually the pairs in the hierarchy have
some natural ordering, for example one can order polynomial pairs by the maximal
degree of the spectral parameter in the second operator of the corresponding Lax pair
(those containing differentiation with respect to time). The first nonlinear equation
in the hierarchy of equations corresponding to the hierarchy of Lax pairs usually
gives the name to the the whole hierarchy of equations and to the hierarchy of Lax
rairs itself. Thus one speaks about the Nonlinear Schrodinger equation hierarchy,
Nonlinear Heisenberg equation hierarchy and so on.

We must stress that the pairs which were known up to now both for the LL
and CF were elliptic in the spectral parameter, [7, 8]. On the contrary, as we have
mentioned ours are polynomial in the spectral parameter.

We shall construct explicitly the polynomial hierarchy of Lax pairs for the O(3)
CFS and for LL case as well as the corresponding hierarchy of soliton equations.
As far as we know the hierarchy for the chiral fields equations was not constructed
explicitely until now. As to the hierarchy related to the Landau-Lifshitz equation,
it will be interesting to compare the hierarchy of equations obtained via polynomial
bundle with the hierarchy obtained via elliptic bundle, see [9, 10, 11, 12].

2 Polynomial hierarchy of Lax Pairs related to
the system of O(3) chiral fields equations.

First of all, in order to make the calculations easier we shall introduce some notations
and shall take into account that most of our matrices lay in the algebra so(4) - the
algebra of 4 x 4 skew-symmetric matrices with complex entries. This algebra is
semisimple, but not a simple one. Actually, so(4) splits into a direct sum of two
algebras, each of them isomorphic to so(3). It can be verified that the splitting
means that every element A of so(4) have unique representation of the following
form

A= {d}; + {7}, (6)
where
0 Uy Uo us
Y . —Uy 0 Us — U9
{i} = —uy —uz 0 U ' (7)
—U3 U9 — U 0
0 v U —Us
. _ —U 0 vz 19
{Thr = T (8)
U3 —Uy Uy 0

(3]



With these notations one has the commutation relations:
Uz}, {7} = —2{Z x 7},
{Zy i AT ) = —2{Z x ¥}, (9)
{z}r A7} ] =0,

which prove that so(4) is a direct sum of two so(3) algebras. There are however
some more interesting properties of the above splitting. If J is the diagonal matrix

—J1— J2 + J3 0 0 0
0 —htJe— 13 0 0
J = , . . , 10
0 0 J1—J2—J3 0 (10)
0 0 0 J1t 2+ 73
we have:

{2} J{G} i — ATt J{E}r = 2 ({€ x Kg}r + {KZ X §}ir),
{2} {7} — {g}1J{z} = —2{K(Z x §)} 1, (11)
{2} J{G i = AT i J{T i = —2{K(Z x D}

where K = diag(J,, j2, j3) and we use the notation (K2); = ji2;.
Let us consider the hierarchy of Lax pairs having the following form:

E%—U, MNE%_VN7 (12)
U\ =L2A0+J),

— 2

13
Vv(A) = 2(AVBy+ AV"!1By + ...+ By)(A + J), (13)
where
A =A{ud}; + {0},
{_‘}1 { }11 (14)
By, = {bp}1 + {Cu}ur-
Remark

One can see that these pairs are natural generalizations of the 4 x 4 pairs we have
obtained in [2]. Strictly speaking from the beginning we obtained the pairs for
LL equation and for the CFS in 6 x 6 form and then making use of the classical
isomorphism between so(3,3) and si(4) casted them into 4 x 4 form. In the present
work we prefer the simpler 4 x 4 form.

Compatibility condition between operators L and My gives the following matrix
equation, which must be satisfied for arbitrary A :

Ui — (Viv)z + [U, V] = 0. (15)

The left hand side of this equation is a polynomial in the spectral parameter A and
therefore all the coefficients of this polynomial must be equal to zero. This gives us
the following relations :

[A, BQ] - 0
(4, Boyi] = 2(Ba)s — (AJB, — BoJA), n=0,1,...,N -1, (16)
24, + AJBy — ByJA - 2(By), = 0.
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In order to obtain the evolution equation corresponding to the Lax pair {L, My}
one must be able to resolve recursively the first N + 1 of these equations and to
insert the result into the last equation. Making use of the particular form of the
matrices A and B,, we readily arrive to the following chain of relations :

IIXZ)():O. TX-‘OZO.

T X bpor = —(bp)y — K(T X &) + 1@ X K(G,) — by x K(7), a7
X oy = —(En)y — K(T % by) + K(@) x & — K(ba) x 7,
n=40,1,.. N—-1

If we are looking for an infinite set of Lax pairs then we have an infinite system of
equations. We shall call this system the O(3) CF chain system. Below, in order to
simplify the solution of the chain system and also for the reason that the conditions
below must hold for the O(3) chiral fields equations we shall assume that

@=1 =1 (18)

Every solution of the O(3) CF chain system allows us to obtain the system of
evolution equations

iy = (bn)e + K (7 x &) — i x K (&) + by x K(5),
7 = (En)e + K (@ x by) — K(@) x &y + K(by) x 7, (19)
N=0,1,2,....

Using the next terms of the hierarchy one can also write down these equations into
the form

G = —i % by,
Uy = —U X Cn41, (20)
N=01,2 ...

Then it is clear that the constraints @? = 1, ©? = 1 are compatible with the

evolution.
The solution of the first equations in the chain is clear :

bg -= C’l_[, 50 = ﬂ’l—;, (21)
where €, o are arbitrary scalar functions. The corresponding evolution equations are

Uy = €ty + 6,0 + (¢ — p)(d x K(v)), (22)
Uy = iy + pe0 — (€ — p)(0 x K(d)).

However, in order to resolve the next equation of the chain system (or in order to
obtain evolution equations compatible with the constraints) the left hand sides of
this equations must be orthogonal to the vector fields @ and ¢ respectively. This
readily gives that €., must be some parameters that do not depend on z. For
appropriate choice of the parameters €, and j;,7 = 1,2,3 we obtain the O(3) CF.



At each step the situation is similar - the solution of the /N - th equation is
not unique and the freedom can be used to ensure that the next equation in the
hierarchy can be resolved. However some freedom still exists. but it disappears if
we can fix the values of the fields and their x - derivatives at some point (finite or
not). We shall assume that

hmy,_ . @ = Uy = const,
lim, 4. U = Ty = const,
. 8 n . _
hm:r—»j:oo (%) u= Oa (23)

limg 40 (50;) v ="y,

These requirements are by no means indispensable in order to find the hierarchy
of Lax pairs and the corresponding hierarchy of evolution equations. If we choose
another ones we can obtain the corresponding hierarchy just in the same way as it
will be done below.

As we shall need it let us briefly outline the properties of the linear operator
Pg : C? = C? defined by

—

Ps(§)=Sx¢& S=1, (24)

S being some fixed vector. It is readily seen that the linear space C?3 splits into the
following sum of linear subspaces :

C3? = kerPs & imPs. (25)
This subspaces are orthogonal with respect to the scalar product

<{ M =&m + e + &3ms, (26)

and B L
kerPs = CS, imPs ={£: (£ S) =0} (27)

Let us denote by an upper index ”S” the projection of a given vector b onto the
subspace imPs, that is

-

55 =5 — (5,5)S = —(Ps)%. (28)
If one has to solve for I the equation
Sxi=b
then the problem has a solution if and only if the compatibility condition
(7.5 =0 (b=10")

is satisfied. In that case all the solutions of the above equation are given by the

formula
T=-Sxb+uS, (29)

(@3]



———

where p is scalar parameter.

Let us pass now to the solution of the O(3) CF chain system. Here we have two
equations of the same tvpe as considered above. Let us denote by the upper indices
"u” and "¢” the projections on the vector subspaces orthogonal to the vectors 4 and
U respectively. Let us consider the equations

0 X byoy = —(bn)e — K(T x Cy) + @ x K(&) = by x K(7),
T X Coyy = —{Ea)y — K(# x by) + K() x & — K(by) x 0.

It is evident that from this system one can uniquely determine the projections
of the vector fields - b}‘lH and &, and the projections over the subspaces Ciu and
C7 respectively remains indefinite. These projections are given by

(30)

u<bn+l, U> <cn+17 'l-;>

We shall find how these projections can be expressed thorough Eﬁﬂ,ézﬂ. Let us
consider the expression

o . . 0. . o _
5;<bn+1,u> - <5;bn+17u> +< n+1’ )

Suppose now that the n+2 - th equation in the chain system can be resolved. Then
we can write

—

(brst)e = — 8 X byag — K(T X Gapr) + @ X K(Gns1) — bas1 x K(2).
Then evidently
<1I, (5n+1)r> = <u X K(ﬁ) bn+1> + <17 x K(ﬁ)a6n+l> =

= (i x K(0),bi,y) + (7% K (@), &40,

and we have

-

(@ Groida) = [ () + (% K (D) B2) + (0 (), 6)) o (D

Just in the same manner,
I

e = [ (@ + (@ KO F) + (06 K@, 80) do - (32)

=2

Inserting these expressions into the formulae

— — -
o

bn+1 - blrlHl + l_’:<l -,bn+1>s €n+1 = gﬂﬂ + 17(6, En+1> (33)

we get bn.1.Casy expressed through the projections 51,‘1+1,é’,’1+1. In what follows we
shall assume that the projections over the subspaces Cu and Ct are given by the

6



above formulae. Then the last thing that remains to be done is to express b
through b" v We formulate the final answer in the following

Proposztzon 1.
The CF chain system has the following solution :

n+1» n+1

-
— —

by = €. o = pv.

B, =@ x (bY), + (@ b)) X il + [K (&

(34)
By = T X (G)s + (T.E)T X T+ K]+ (@8 = (. &) K ()] +
£ x K(d x bt + (7. K(7))é,
n=20,1,2....,
where €, 1 are arbitrary constants and
= [ (B8 @) + (@ x K(9),5) + (7 x K(@),6)) da,
i B (35)
= [ (@5 + (@ x K(0),B) + (7 x K(@),&)) da.
+oc

One can see that the couple of functions (5}‘1+1,E’,§+1) is expressed through the
couple (bz, c?) with the help of some integro - differential operator A (,v), de-
pending on @(z), 7(z). The choice of the subscript "+” or "-" corresponds to the
choice of +00 or —oc for the integration limit in the corresponding expressions.In

other words : B .
bu+1 U

" =A_ (u U ol 36

( o ) + (U, U) ( & ) (36)

We shall not write the explicit formula for AL as it is too complicated and besides it
can be easily derived from the above proposition. The operators that allows recur-
sively to obtain the hierarchies of soliton equations are called recursion operators or
generating operators. It turns out that their existence of is very important. For ex-
ample they plays crucial role in describing the hierarchies of Hamiltonian structures
for the soliton equations. Other important application of the generating operators is
that their spectral decomposition allows to obtain the so called expansions over the
squared (or adjoint) solutions which proved to be very useful tool for the investiga-
tion of the soliton equations, see for example [14], where the case of the generating
operator for the hierarchy of Heisenberg ferromagnet is considered.

It will be superfluous to discuss here the the hierarchies of Hamiltonian structures
for the CF and so we shall leave this kind of questions for a future publication. We
only want to remark that as far as we know the generating operator for the CF
hierarchy has been calculated in [11] but on quite different background - using the
fact that this operator gives the relation between compatible Poisson tensors defined
via elliptic bundle. However in [11] the hierarchies of Lax pairs were not obtained.

At the end of this section let us write the first two systems of the CF hierarchy :



1. N = 0. First equation in the CF hierarchy
Uy = €tl; + (e — p)(d x K(7)), (37)
o= piy = (€ = pu)(T x K(d)).

After the following choice of the parameters
R = 2K and changing @ to —u we obtain the O(3) chiral

e=—-1. u=1,
fields equations svstem (5).

2. N = 1. Second equation in the CF hierarchy

I, = €U X Uz + 2e({d, K(v)) — (o, K(¥p)))U,—
€W (Ty) + e, K(U,))T — pil x K (T x T¢)+
K (7)) — (do, K (7o >)(?(1 x K(v)) - Ei_ u) x K*(d), (38)

— )7 x K*(7).

An interesting special case of this system is obtained for 4 = 0. Then we have
Uy = €U X Uz + 2e((U, K(¥)) — (ty, K(tp)))Ur—

eK (T,) + e(il, K(U;))u+

e((u. K l)) (i, K (o)) (@ x K (7)) — el x K*(if), (39)

tiz) — (0, K (@) = (U0, K (1p)))(V x K(d))+

et x K?(7).

Uy = —et x K(4
Another reduction of the general system (38) is obtained if we assume that

€ = p. Then we have

Uy = €U X Ugy + 2e({U, K(T)) — (o, K(Tp)))U,—
€K (0,) + €(t, K (U;))d — el X K(7 x ), (40)
T, = €0 X Upg + 26((& K (@)) — (T, K (to)))Vz—
(Tr))T — €0 x K (i x 1)

The next systems of the hierarchy can also be obtained without much difficulties

but for them there is less hope for any physical applications

3 Polynomial hierarchy of Lax Pairs related to

the Landau-Lifshitz equation
The Landau-Lifshitz equation can be obtained within the general scheme described
above if we impose instead of the constraint > = 1 the constraint v = 0. Unfor-
=1 was essenmal in all our constructions one cannot

tunately, as the condition 2



simply insert ¥ = 0 in the solution for the O(3) CF chain system in order to obtain
the solution for the corresponding chain system for LL equation.

Remark
It is not difficult to check that if instead of the constraints ¥ = 0, 4? = 1 we choose
the constraints @ = 0, 72 = 1 we shall obtain the same hierarchy of Lax pairs. Thus
in all the constructions there exists a symmetry between the two so(3) subalgebras
in so(4).

In order to obtain the LL equation in the same terms as it was introduced we
shall change the notations and in what follows shall put ¥ = S. Then the chain
relations reduce to

5 X by = 0,
‘S_; X —‘n+1 = - 51111 + 3 X {('(671)) (41)
(Cp)e = —K(S x b,) + K(S) x &,
n=01,...,N-1
We shall refer the above system of equations as the LL chain system.
The corresponding hierarchy of evolution equations is then
S, = (bn)e — S x K(év), N=0,1,2,..., (42)
or using the next term in the hierarchy we can write
S,=-S xbyy, N=0,1,2,.... (43)

Thus as it was for the case of the O(3) CF the N - th evolution equation respects
the constraint S = 1 if the (N+1) relation in the chain can be resolved. Therefore
if we can show that there exist solution of the infinite system defined above all the
evolution equations will respect automatically the constraint. To begin with one
must make a choice for the first terms. We shall consider the case

bo=S, G =0 (44)

as it leads directly to the LL equation. The general case bo = f§ , [ being some
scalar function and ¢ being a solution of the equation

-

(€o)e = K(5) x ¢ (45)

seems more complicated, but in fact we must remind that in order to obtain evolution
equation having the form
S, =F(S,S,,...)

the function f and the solution ¢y must depend on z,t only through 5_"(17, t) and its
derivatives. A brief analysis then shows that ¢ = 0 is the only appropriate choice
and the general case can be treated within the same lines.

The hierarchy of equations can be described explicitly if at each step we can
present the solution of the equation

(E)r = =K (S x by) + K(S) X &,. (46)

9



In order to do it we shall need some preparations. Let us introduce the sequence of

diagonal matrices K™ . n =1.2,.. ., satisfving the relations :
KY =K,
K@) x KW(b) = K@(a x b),
(@) x K@(b) = K®(d x b),

n-2 - —
S K@ x KWKE==1p)) 4+ KU(g@) x K*-D(b) = K™(d x b),
=1
n=34 ,
(47)
for arbitrary choice of the vectors &, b.
Lemma
The sequence of diagonal matrices K™
K™ = diag(K}", K3, K3") (48)

1s well defined and the entries Ki(n),i =1,2,3 of K™ are homogeneous polynomials

of degree n with respect to the variables jy, jo, j3.
Proof
Let us calculate the first terms of the sequence. One readily obtains :

1 . (2 L. (3 L. . 4 .. . . .

KV =i, K{P=jjs, K =50%+353), K" =js(2%+ 52+ 52)
1 . (2 .o 3 . . . 4 .o . . .

K§ ) = J2 Ké ) = J173, Ké ) = J2(j3 + 73), Ké ) =132 + 255 + %) (49)
1 . (2 L (3 ., . 4 . . .

K =js. KD =i, KV =552 +52). K§Y = j152(5% + 32 + 253)

The statement of the Lemma being true for n = 1,2, 3, 4 one can try to prove the

Lemma by induction. Suppose that the sequence K™ has the needed properties for

n=1,2,...; N > 4. Then we shall prove that there exists unique diagonal matrix
KW+ such that

N-1

> KW@ x KOKC(B) + KY(@) x KM (B) = KV (@ x b)

1=1

for arbitrary choice of the vectors a, b. Let us calculate the first component of the
left hand side of this vector equality. We get :

N-1 N-1
(Z K{l)Kél)[\’éN-l) + }\rél)[\féj\«')) agbg _ (Z Kil)Kél)KéN_l) + Krgl)KéN)> a3b2.
i=1

1=1

In order to write this expression into the form

KiNﬂ)(sza - asbz)

10



with some coefhicient KfNH) which does not depend on a;, b;;7 = 1,2, 3 it is necessary
and sufficient to have

N-1
W = Z Ariz)([‘,él)h,éﬂ\«'—l) _ Kél)}(éf\'—z)) + Ké”K;N) _ K:gl)KéN) =0

=1

We remind that by inductive assumption for all 2 < s < N — 1 we have

s—1
K’§s+l) _ Kél)Kés) + K:gl) ZKiz)Kés—z)’

1=1

s—-1
A,§s+1) _ Kél)Kés) n Kél) ZKﬁl)Kés—.l)'
1=1
and also four other relations which can be obtained from the above ones with cyclic
permutation of the indices. They correspond to the other two components of the
vector relations from the Lemma. Then we can write

N-2
W= K" <K§”K§N‘” +Y K§”K§N“'”K§”> ~

=1

N-2
K:gl) (K(IKN 1) +ZK(I K(N - I)K )

=1

Vz: (K(’ KWVl g (v K“))

N-3
K:gl) < K;l)(ngN 1) K(l KN - 1)> K(l KN 2)(K(2) Kfl)Kél))—

=1

N
K(l) (Z K(l) K(I\ l) K{I)K?(’N—l—l))> _ Kél)KiN—z)(Kg) _ Kil)K;gl))

From the explicit formulae for K(? it follows that the terms which are not under
the summation are zero. As to the rest of the expression W it vanishes due to the
the relations

N—-I-2
K—éNfl) _ Kil)KéN_l_U — Z Kél)ng)KéN—l—]—l),

i=1

AréNAl) __Kil) (N=1-1) Z K—(l J)KéN_l—j—l).

Absolutely the same procedure can be apphed for the other two components. The
statement that the entries of K™ are homogeneous polynomials of degree n readily
follows from the proof.

11



Proposition 2.

Suppose I;m, Copom =0.1... .. n — 1> 0 are solutions of the chain system :
g() - g Eo = O
g X 5771« = _(gm r + 5—: x K Em :

(FTTL)I - _[\’(g X Em) + l\’(g) X Em

Then

Proof
We shall prove this proposition by induction. For n =1 we have

—

S % by = (bo)s = (S)a-

As S? = 1, the vector §I is orthogonal to S and one gets 51 =S x §I + a§, where
« is scalar parameter.Then it is readily seen that ¢, = K(S) solves the equation

—

(@) = —K(S x b)) + K(S) x &

We shall assume now that the proposition is true for all n = 1,2,..., N — 1 and
shall prove it for n = N. In order to do it let us calculate

(@) = Y _(=1)7 ' K@ ((by—g)a)-
Taking into account that b, are solutions of the chain system we get

N
= = ST DTIKD(S xby-g) + Y ()T KOS x KW (En ),

g=1 g=1

where we have used that ¢, = 0. Inserting into this equation the expressions for
Cn_q We obtain

N -1 N-gq
Z( 1)q—lh<q)(5 x A(U(Z( 1)r‘1K(r)(bN—q—r)))
q=1 r=1



Then

(4W(MW$xKW@y+EIK@@memwm)+

q+r=N
KOS x by_1) — KD(S) x KW (by_1).

From the definition of the matrices K@ it follows that the above expression is equal
to

(—1)NKWN(S x by) = 0.
Thus ¢n is a solution of the equation
(@) = —K (S x by) + K(S) x &

and the Proposition is proved.
Now we know how to solve recursively the second part of the equations in the
chain system. The first part of these equations runs as follows :

S x Enﬂ = —(En)r + S x K(c,).

We have considered similar equations dealing with the CF chain system. As
it was outlined in the previous section in order to solve for b,y the compatibility
condition

((bn)x, S) =0 (52)

13



must be satisfied and to ensure it we must use the freedom in the determination of
the solution for the previous equation. Let us consider the following decomposition
of En, n>1 B B o

by = b + S(b,.S). (53)
As before when one solves the chain relations one recovers uniquely EZ and all the
nonuniqueness appears in the determination of (5”, §> Theyv are recovered from gf
if in addition one can fix the values of the field S and its z-derivatives at some point.
Then the calculations are exactly the same as in the case of CF chain system and
we shall omit them. Before presenting the final result however there is one point
we want to discuss. As already mentioned in order to obtain unique solution on the
each step one must fix the values of the vector field S and its x-derivatives at some
point of R? (finite or not). We shall assume that the function S has the following
property

lim; 400 S = §0 = const,

lim; 400 (Z) S =0, (54)

Usually, for the LL equation the condition

lim S =(0.0,1)
I—tx

is imposed. We consider the above condition in order to obtain more symmetrical
expressions with respect to a cyclic permutation of the indices 1, 2, 3.

Remark
The above requirements seem quite natural for the Landau-Lifshitz equation, but, of
course , if one is looking only for the hierarchy of equations they are not absolutely
necessary.

Thus we arrive to the following solution of the LL chain system

b, =S x ﬂ(bs) +(SxS,) /(Eg,s“I)dx +(K(G))°. (55)
+oo

The problem is solved, but in order to put it into more convenient form let us
introduce the operator :

AL(N(r) =S x a%)?(l-) +(§x8S,) /(X(I),i)dx. (56)

{(I) being vector field. Then we can formulate our results in the following
Proposition 3.

14



The LL chain system has the following solution

bo=S, &=0
by=SxS, @ =K(S)
buvt = b3, + S [ (b, So)de
L > (57)

The operator A is the so called recursion or generating operator for the Heisen-
berg ferromagnet equation hierarchy of soliton equations. It was calculated for the
first time in [13], see also [14], using the gauge equivalence between Heisenberg Fer-
romagnet equation and Nonlinear Schrédinger equation [16]. There are at least two
other possibilities to arrive to this operator - geometrical, see for example [15}, or
solving the corresponding chain system for the Heisenberg Ferromagnet equation hi-
erarchy, see [10]. The Heisenberg Ferromagnet (HF) equation is called the following
system :

§t = g X gxr- (58)

Here S(z,t) = (Si(z.t),Sa(z, 1), S3(z, 1)) is vector field depending on the spatial
variable z and the time ¢, taking its values on the unit sphere S2 C R3. The
boundary conditions for this equation are similar to those for the LL equation :

lim S = (0,0,1). (59)
r—toc
Formally the HF equation is obtained from the LL equation if r;, = 0. Therefore
it is natural to expect that when certain parameters (in our case j;) tend to zero
one can obtain from the recursion scheme in LL case the recursion scheme of HF.
As it is seen from the above proposition this is indeed the case in our approach.
Surprisingly, for the elliptic bundle when the parameters r; tend to zero one obtains
not A, but A% see [9]. However, as we shall see below the hierarchies of equations
obtained via elliptic and via polynomial bundle seem to be equivalent in a sense to
be described below.
Finally, let us write the first evolution equations from the hierarchy corresponding
to the chain system solution that was given in Proposition 3. These equations as
mentioned are written into the form

Sy =-Sxbyy, N=0,1,2,.... (60)
We have the following equations :
1. N = 0. The first equation in the hierarchy as it often happens is linear.

—

§g - Sx. (61)
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2. N = 1. Second equation of the hierarchy.
§,:(51)I—§><(7’1 :§x§m—§xlx’2(§). (62)
If we choose j? = —r,:1 = 1.2.3 we obtain the Landau-Lifshitz equation.
3. N = 2. Third equation of the hierarchy.
by = S x (S x Spp) = §x (S x K2S) = (=S, + K*(5))°.

b? = <~§II + KZ(S'))S + §/<_§11 + K2(§)7§r>dI =

—

(_Szz'f'}{z(g)) §(<K2(§)7§>_<K2(§0)7§0>)—

—

S + K%S)+ S

/\l\)lo—*

(Surs§) = SUKS),S) - (K¥(S0).50) ) =

[aN]

~Suw ot KS) - 5 (355 +
The corresponding evolution equation is
S = (b): = § x K(@) = (bo): — § x K(K(b) + K#(5)).
But, KK'® = j,j,j313 and therefore for the equation we have
Sy = (b)) — S x K*§ x S,).

We get
=-S..—SxK¥SxS,)+K*S,)-

(82 52 + HUK(S), §) = (K¥(S0), 5o)) ) — (63)
S ( (S, Sou) + (K(8), 52))
which after a brief calculation can be put into the final form

gt = S::zx 3S<S:c»Szx>

o~

N
wlw

33 g d S 2 2 2(8y & (64)
38, (<5,,sx> + (K(S),8) - 2rK? — MK (so),so>) .
If we accept that S, = (0,0,1) we get
§t = _gzxr - 3§<§I1 §II>_
(65)

[N

15, ({50 Sy + (K2(3),§) - 122 + 22 +359))

The above equation differs from the next equation in the LL hierarchy found
via the elliptic pairs, see for example [9]. Using our notations this equation
can be written as follows :

Si = Sera +35(50. S + 38, (50, 8y + (K2(S), 5) - ]3) . (66)

This equation was obtained by Date, Jimbo, Kashivara and Miwa, [17].
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4 Discussion

As far as we know the set of polvnomial Lax pairs for the CF hierarchy was not
presented until now. Almost the same is true for the corresponding hierarchy of
equations. because from the results of [11] it is very difficult to obtain the cor-
responding hierarchy of soliton equations. Therefore there is little possibility to
compare our result with other ones. For the LL case however the corresponding
hierarchy of soliton equations obtained via elliptic bundle exists, [9]. Let us briefly
describe the situation about the LL hierarchies obtained via elliptic and via poly-
nomial bundle. The first nonlinear evolution equation in both hierarchies coincide,
it is the LL equation. The second nonlinear equations however are different. Nev-
ertheless one can say that up to the third equation both hierarchies are equivalent.
Indeed, the equations in the hierarchies have the form

t — "n(gv Sza- )a
_‘t = Y_:n(s;v §Ia )7 (67)
n:]-s?a ’

the right hand sides of them being vector fields on the infinite dimensional manifold
of ”potentials”, i. e the set of functions 5’(:1:) The hierarchies would be equivalent
not only if )—(‘n = Y’n, n = 1,2,..., but also in the case when every )_(‘n is finite
linear combination with constant coefficients of the fields Y,. For example if we
denote by Y, the fields obtained via polynomial bundle then the field corresponding
to the equation of Date, Jimbo, Kashivara and Miwa can be written as

~Yi + (2 + )i (68)

We believe that both hierarchies are equivalent in the sense mentioned above but of
course the question about the equivalence of both hierarchies remains open.

We also leave for the future the questions about the Hamiltonian structures
of the equations in LL and CF hierarchies and about the commutativity of the
corresponding flows. These results will be published elsewhere.
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