CERN Accelerating science

Article
Report number arXiv:2212.10573 ; ACFI-T22-10
Title Moduli space reconstruction and Weak Gravity
Author(s) Gendler, Naomi (Cornell U.) ; Heidenreich, Ben (Massachusetts U., Amherst) ; McAllister, Liam (Cornell U.) ; Moritz, Jakob (Cornell U. ; CERN) ; Rudelius, Tom (UC, Berkeley)
Publication 2023-12-19
Imprint 2022-12-20
Number of pages 44
In: JHEP 2312 (2023) 134
DOI 10.1007/JHEP12(2023)134 (publication)
Subject category hep-th ; Particle Physics - Theory
Abstract We present a method to construct the extended Kähler cone of any Calabi-Yau threefold by using Gopakumar-Vafa invariants to identify all geometric phases that are related by flops or Weyl reflections. In this way we obtain the Kähler moduli spaces of all favorable Calabi-Yau threefold hypersurfaces with $h^{1,1} \le 4$, including toric and non-toric phases. In this setting we perform an explicit test of the Weak Gravity Conjecture by using the Gopakumar-Vafa invariants to count BPS states. All of our examples satisfy the tower/sublattice WGC, and in fact they even satisfy the stronger lattice WGC.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2023-2025 The Authors (License: CC-BY-4.0), sponsored by SCOAP³



Corresponding record in: Inspire


 Journalen skapades 2024-02-07, och modifierades senast 2025-06-07


Fulltext:
Publication - Download fulltextPDF
2212.10573 - Download fulltextPDF