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Abstract

We calculate the tensor describing p-w mixing making use of an extended Nambu —Jona-
Lasinio (NJL) model that we have developed in recent years. We use the definition of the rho
and omega fields that ari,es upon a momentum-space bosonization of the extended NJL model.
A quantity of interest 1s the on-shell ((12 = mi’) matrix element that describes the coupling of the
rho and omega fields, <p|Hsg|w>. That quantity has been determined to be
<. Hgg|w> =-(4520 + 600) MeV 2ina study of the two-pion deca . of the omega meson.
Our calculation of < p|Hgg|w > is sensitive to the difference of the current quark masses,
mg - mg. Our analysis was first made for mg - ms =2.0 MeV. However, our results may be
put into agreement with the data, if we use mg - mg =2.7 £0.3 MeV. The momentum-space
bosonization procedure naturally leads to momentum-dependent coupling constants,
2 qq(qz) and g, qq(qz). The value of these constants increases by about a factor of ‘/2— , when
-ne goes from q2 = m,i (or q2 = m;“) to q2 =0. The values at q2 = mi and q2 = mj' are here
shown to be consistent with known values of the meson decay constants, while the values at
q2 = 0 reproduce the strength of w:e relevant components of the nucleon-nucleon interaction at

small momentum transfer, as was demonstrated in an earlier work.



I. Introduction

In this work we will use a generalized Nambu—Jona-Lasinio (NJL) model [1-3] to
calculate the polarization tensor that describes rho-omega mixing. That quantity has been of
some interest in recent years, since the value of the tensor at q* = mf, was used to estimate one
form of charge symmetry brez<ing (CSB) in the nucleon-nucleon force. However, it was
pointed out by several authors that for the calculation uf the nucleon-nucleon force one needs
the tensor for spacelike qz, that is (12 = 0 [4]. It was found that the relevant matrix element
is small at ¢*> = 0 and, therefore, p-w mixing was seen to be unimportant in the calculation of
CSB. Therefore, the motivation for studying p-w mixing is diminished. However, there are a
number of interesting theoretical issues associated with the calculation of the mixing that have
not been fullv resolved. One problem that arises is the ambiguity associated with the definition
of the rho and omega interpolating fields. For example, Cohen and Miller [5] point out that it
is possible to shift CSB erfects from the mixed p-w propagator to the meson-nucleon vertex
functions. This leads, of course, to significant ambiguities. To a large degree these ambiguities
can be avoided by working at the quark level and calculating the current correlator of isoscalar
and isovector vector currents.  That program has been carried out in Ref. [6] using QCD sum-
rule techniques.

We may also use quark degrees of freedom to perform a cziculation of the current
correlator of isovector and isoscalar currents using the NJL :nodel. It should be clear. however,
that if we use the NJL model, we need a model for confinement. We have extended the NJL

model to include a description of continement [2,3] and will use that model in this work. The

Lagrangian of our model is
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which we present here in order to define the coupling constants, G, and G, which appear in
our discussion. (Work somewhat related to ours has been reported in Ref. [7], where
confinement is implemented in a Euclidean-momentum-space analysis of a global color model.)

The organization of our work is as follows. In Section II we introduce various current
correlators and the associated vector currents. We also relate the omega and rho fields to these
currents. In Section IIT we discuss the momentum-space bosonization of the extended NJL
model and caiculate the fundamental matrix element that parametrizes the on-shell(q2 = mZ; )
o-w mixing. In Section IV we attempt to introduce a greater degree of consistency in our
calculation, relating the p and w decay constants to t1e rho-quark and omega-quark coupling
constants that we have calculated in an earlier work. In Section V we describe a subtracted
current correlation function that vanishes at ¢* = 0. Finally, Section VI contains some turther

discussion and conclusions.



II. Calculation of Current-Current Correlation Functions

We find it useful to start our discussion with the definition made by Maltman [8]. He

defines a mixed ~ropagator for rho and omegu fields in vacuum,

g2 = in“xeiq-x < Tp,®)w,0)> Q.1
- | g, - 22 0(a®) 2.2)
SEVE (G2 -m2+ie)(q>-m> +i ’
q--m, +ie)(q®-m, +1€)

where 0((12) is the function to be determined. At g° = mi, 6(q?) is proportional to the matrix
element <p|Hgg|w> [9]. In this work we will exhibit the relation between 0(m02)) and
< p|Hgg|w> for the choice of omega and rho fields that we will use here. (In some studies
the definition of the fields 1s such that 0(m5 ) may be taken equal i0 <o |Hgg|w> [6].)

It has been pointed out that the widths of the rho and omega mesons must be included,
if we wish to obtain th - correct (12 dependence of 0({12) [10]. Therefore, we use the definition

of b, ((12) of Ref. [10]. That is, Eq. (2.2) is modified to read

; 837
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with
D =, a0l (2.4)



The functions I, and T', are (1Z-dependent with the values I‘w(mj) =¢.4 MeV and
r, (mpz) =151.5 MeV. (The omega width is small, since two-pion decay of the omega violates
G parity.)

As mentioned in the Introduction, some of the recent literature deals with the fact that
the interpolating fields, o #(x) and wu(x), are not fixed, but may be transformed in many ways
without changing the values of the S matrices of the theory [5,8]. Because of that ambiguity,
it is tound that CSB effects may be transferred from propagators to vertex functions and visa
versa. Therefore, it is important to cefine the omega and rho fields in a definite scheme and
relate that definition to the underlying quark degrees of freedom. The most natural choice is to
define these fields via a momentum-space bosonization procedure [11]. In that case, the fields

are proportional to the isoscalar and isovector electromagnetic currents [8],
S = L0790 (2.5)
J# - 6 1 ’Y’Lq ’
and
% _ 1 - 2.6
J, 00 = 540y, 7390 (2.6)
Therefore, instead of working with Eq. (Z.1), we derine
. . q- .V, .S .
107 (q) = i [ d*xe's “(r{;) o)) - @7

We also introduce currents

S —
J, &) = qW)v,9x) 2.8
and
J “V(x) = 407, T39%) - (2.9)
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We then define

%" (q) = i J d“xe"‘f"<T(Juv(x)1f(o))> , (2.10)
where

i Gl ~(pw)
iy @ = 12105,"(q) @.11)

The reason for introducing fIff:’) (¢) is that it lends itself to a more transparent diagrammatic

analysis. For completeness, we also define

Hffy) (q =1 J déxeld ""<T(juv(x)juv(o))> , | (2.12)
= - 8,9 n9@q? (2.13)
and
1 (qg) = i,{ d4xe“/"‘<T(jf(x)jf(o))> , (2.14)
= - 2, 1%%g% . (2.15)
Let us write
) ; B1(q%)
0% (g) = 8,0 3

’ (2.16)
{"2‘ & "—ir“]ﬂ = & —]]
S R U

so that we now need to specify the relation between 03((12) of Eq. (2.5) and 93((12) of Egq.
(2.16). A simple way to do that is to relate the p and w fields to the isoscalar and isovector

currents as in Ref. [8],
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and

W (x) = ﬁ‘;_jg‘(x) : (2.18)

3

Here, g® and g“ are rho and omega decay constants, defined such that the matrix elements of

the currert between the vacuum and the vector meson states are

2
\ m
<0|j‘&lp((1,ex)) = L@ (2.19)
gﬂ
and
m,
<0Ij§§w(q,ex)> = _:e‘;(q) (2.20)
8

Here, €)(q) isapola-ization four vector. (Atthis point, we note the difference between g” andg®
ana the meson-quark coupling constants, such as g, .. and g, t 1t describe omega-quark and
rho-quark coupling, respectively. See Section IV.)

It follows that

» -
6307 = 22 0,47 (2.21)

if we assume that the isoscalar and isovector currents counle predominantly to the low-lying
omega and rho fields. Note that, when we use Eqgs. (2.19) and (2.20), the rho and omega
mesons are on-mass-shell. Therefore, while 85(q*) is well-defined for all g%, the off-mass-shell
behavior of 03(q2) is somewhat arbitrary. If sc desired. it is possible to carry out the entire

analysis for 93(q2) only.



1I1. Bosonization for Omega and Rho Fields

Consider the calculation of TT®*’(g). That may be done in terms of fundumental quark-
wy y

loop integrals of the NJL model. We define tensors [3]

@ = =3 @I (3.1)

and

JE@ = - 3" @da® 3.2)
The caret over the symbols in Egs. (3.1) and (3.2) indicates that we have implemented a model
of confinement. For example, in the absence of confinement, J(w)(qz) and J(p)(qz) would be
obtained in a calculation of the diagram in Fig. la. Figure lb shows the addition of a ladder
of confinement interactions described by a linear potential, V C(r) = krexp[~ ur]. Tae parameter
p is included to soften the momentum-space singuiarities of the Fourier transform of VC(r).
(We have used .. =50 MeV and « = 0.22 GeV? in our calcuiations.) “he ladder
of in.eractions may be su  med to define a vertex function [3,12]. (See the shaded area of Fic.
1b.) Tie equation for the vertex is ‘hown in Fig. lc. The solution of that equation and the
calculation of f(p)(qz) and j(w)(qz) have been discussed at length in our earlier work [2,3].
Mote that, in the absence of isospin s mmetry breaking in the Lagra~gian, j(w)(qz) = j,p)(qz) )

In Fig. 2 we show 7, p)(qz) for botr timelike and space..ke values of q*. The caiculation
is made in the timelike -egion using the methods outlired n Ref. 3]. A cutoff of
Ay =0.702 GeV is used .nd the confineme~ vertex is included with a string tension
k = 0.22 GeV?. The calculation for the sp...cuke region is made in a Euclidean momentum

space with cutoff Az = 1.0 GeV. Confinement is neglected for the spacelike region. We find



J(5)(0) = 0.0944 GeV? for the calculation made in the spacelike region and

j(p)(O) = 0.0860 GeV? for the calculation made in t"e timelike domain. Ideally, the results of

the two calculations should overlap near q2 = 0. In Fig. 2 we have introduced a dotted curve
.at interpolates between tne spacelike and timelike regions.

In the case of the rho meson, we also define a tensor [3]
REQ) = - @K @D (3.3)

where K(‘;;(q) is obtained by evaluating the dia~ram of Fig. 3b. The imaginary part of
13(’;;((1) arises when both pions go on mass shell, since the introduction of vertex functions
associated with the confining potential removes the (unphysical) qq cuts that appear in K(’:); (@-

The calculation of p-» mixing requires a small modification of the calculation already
made to ootain JA(’;;((]) [3]. We had

4

K Telisqr2 + T (q, K)iS(-q/2 + k)A’] (3.4)
@2’

-iJi @) = (- l)ncnfj'
vhere TH(¢. k) is the conrir ng vertex and 4" =7y - ¢q”/q*. Here, ne=2 is the number of
flavors and n_ =3 is the number of coicts. We may define a tensor J te(@) by introducing one
factor of 75 in Eq. (3.4) and removing the factor of 7. More precisely, we can define

. 174
JE @) = W tsq.m) - gt my)| (3.5)
where m, and m, are the constituent masses of the up and down quarks. (Note that

IE@ =T @, i m=my)



Thus, we see that we may use the original calculation made for J (';; (@) and only consider
the variation of that quantity with the constituent quark mass, as in Eq. (3.5). [See Fig. 4.]
Indeec. the p subscripts on the right-hand side of Eq. (3.5) could be changed to w subscripts
with any change in J (‘;Z,)(q), since we are actually using Eq. (3.5) to obtain the difference of an
integral involving the up quark and one involving the down quark.

By studying the gap equation of the NJL model, one finds that m, - m, =m3 —mg,

0 0 . . . )
where m, and m; are the current quark masses that appear in the Lagrangian. It is again useful

to write
JEP (@) = - 8" (@ o@D (3.6)
and, using Eq. (3.5), we see that

2 11+ o) A
J i@ = W ia® m) = Jg@* mp)| (3.7)

Note that J w4 7) is positive for ¢° > 0, since j(p)(qz, m) is a decreasing function of m and
m, > m,. (For exampie, we show j(p)((]z, m) as a function of m in Fig. - for several values
of (]2 .) Note that, since k(p)(q %) is small, we do not concern ourselves with isospin symmetry
violations (m, = m,) in the calculation of R@)(qz).

At this point we may proceed witi a diagrammatic analysis. For example, in Fig. 5a we
show f@w)(qz), where the cross-hatching reminds us that this diagram is nonzero due to the
isospin violation. The calculation of the current correlator requires that we sum the additional
diagrams shown in Fig. 5b, where we have included only a single factor of f(pw)(qz) in each

diagram, since that quantity is quite small. In evaluating these diagrams it is useful to note that

- 11 -



g 8 (@) = §* . (3.8)

The result for the correlator may be improve : upon by including factors of k(p)(qZ) and

K(w)(qz). We find that the diagrammatic analysis leads to the relation

53((12)

-2 - 2] |

1 - 2 1
= - ‘](pw)(q ) - 5 N >
- G[J@? * Rey@?)]

I- Gp{j(p)(qz) - k(p)(q 2)]

We have noted that j(pw)(qz) is positive for (12 > 0, so that 93(q2) is negative in that region.
In order to extract an expression for 93((]2) from Eq. (3.9), it is useful to use a
momentum-space bosonization procedure with the aim of exhibiting the complex zeroes of the
denominators on the right-hand side of Eq. (3.9) [11]. As a first step, we separate Ii'(p)(qz) and
K(w)(qz) into real and imaginary parts. We have seen in a recent work [12] that the following

representation is useful for q> >0,

Jy@® +Re Ky (q?) = 1y - , (3.10)

where r, r,, and /i, are parameters. We will provide a similar representation for the isoscalar

channel, but we will drop Re k(w)(q 2), since it is very small. Thus, we put

Jw@ = vy - (3.11)

For example, in the absence of k(w)(qz), we find

- 12 -




_ — (3.12)
1_Gw‘](w)((12) qz—mj Gw
with
2 _2 Va
m, =m, = —— (3.13)
Gw -V,
and
2 g -q*
agdd) = — (3.14)
GJ -V

[See Table 1.] The expressions for mp2 and g pz p (q %) are analogous to those in Eqs. (3.13) and
(3.14), with G, v, and v, replaced by G, r| and r,. Note that 7715 > q2 in this
representation. |

The momentum-dependent coupling constant, g j aq\d 2, appears naturally in this analysis.
For nuclear structure studies the relevant value of the coupling constant is gi aq (0), since such
studies are performed for relatively small, spacelike values of q2 (The representation given in
Eqgs. (3.10) and (3.11) may also be used for small spacelike values of ¢*. For timelike values,
we have the restriction (12 < mi or (12 < ﬁz;'.)

In the case of the rho, we keep Re Kw)(q %) and Im K@)(q %) and find, upon use of Eq.

(3.10), that

- i3 -



1
1 -G, {[J @ + ReR(,(@H] + iIm Ry ( 2}
p \Y ] 0\ o\q

2 -1 (3.15)
. 8,449 G,
IR At [ W
gt -m; —i —* ImK,(q%)
G, -
2 -1
= 84g'1) G, (3.16)

2 T
q my = i—

] 2
We may obtain an expression for T p(qz) by comparing Egs. (3.16) and (3.15), if we neglect
Fi(qz). Alternatively we may use Eq. (3.15), which provides more accurate representation of

the result of our analysis.

Finally, we have, upon use of Eq. (3.9),

B(a?) = LY a2 j(pw)(qz) 2 7_) (3.17)
3(q ) - ‘SD({({((] )—'G_G—gwqq(q ’
o Yw
and
2 g¥g? 2 o j(pw)((lz) 2 9
0q?) = - S8 g2 )l @ (3.18)
12mwm; Gpr

To carry out the calculation, we need the following parameters [12}:
G,=7.12 GeV2, r =0.0304 GeV?, r,=0.0068 GeV*, m} =] =1.476 GeV?,
G, =7.86 GeV2, v, =0.0284 GeV?, and v, =0.0850 GeV*.

We also use the empirical values, g = 15.2 and g* =5.3 [13], while Ref. [6] has g% =3g” and

(2°)* /47 =2.4.

- 14 -



Considering the on-shell value, (12 =mj, we find j(pw)(mf) =4.03 X 10™* GeV?, if
my =262 MeV and m, =260 MeV. (See Fig. 6.) Using the various parameters given above,
we then calculate 93 (mi) =-0.493 x 10~ GeV® and, from Eq. (3.18), we find
95(m2) = (18.47 GeV™) §(m2) = -9106 MeV2. Note that, if my - mJ =3.0 MeV, we have
65(m2) = - 13,660 MeV?2.

It is of interest to ask for the relation between 03(m02, ) and < p|Hgg|w>. In the third
reference listed in Ref. [9], <p |Hgp|w > was defined in terms of the ratio of the width for

two-pion decay of the omega to the width of the rho:

2
Pyoar _ | <plHgglo> (3.19)
I‘p mpl‘p

From this relation, it was found that < p | Hgp | @ > = - (4520 £ 600) MeVZ, a value quoted in

the recent literature.

Now, we note that, from Egs. (3.15) and the analog of Eq. (3.14) for the rho meson, we

have
r, = S g 620
0 T )\ )
In a similar fashion, we find
2 2
8paqm . 2
Tporg ° ﬂq——ﬁ’l Im K, (n,) (3.21)

m,

A ) . - . . . .
Further, we see that Im K, (m;) contains Im K, (mi) as a fa.tor in a p-w mixing calculation

of the width of the omega. We find

=15 -



2

2 2 2 2
Fw—-Zw - gpqq(mw)‘](pw)(mw) gwqq(mw)
T m, I‘p

l My ] (3.22)
m

where we have used the fact that a consideration of the relevant phase space gives

2
80qq(Mp)

Im k(p) (mj)/ImI?(p) (ms) = (mj/mpz). In writing Eq. (3.22), we have neglected direct
w->7" + 7 decay and taken the decay to proceed via w-p mixing, as noted above.

We see upon using Eq. (3.19), that

pA
8ugq(My,) (3.23)

2 2. % 2
< P IHSB I w> = - gpqq(mw)‘](pw)(mw) 5
804qM,)

where we have replaced (mw/mp)”2 = 1.0l by 1. The last factor in Eq. (3.23) is equal to
1.056, while gpqq(mj) =2.81. We recall that j(pw) (¢-) is proportional to mg - mf‘). If we put
mg —mg =2.69, we have f(pw)(nzi) =5.42x107% Gev? and, therefore
<p|Hsp|w> =-4520 MeV2.

Returning to Eq. (3.18), we see that, with our treatment of the p and w fields,

2 2
298°  SuwggMu)8pqqm,)

o)
g.(m7) =
30y G,G,

2.2
12mp m,

where we have used G,=7.12 GeV 2, G,=1.86 GeV 2, gP =53, g¥=152,
gwqq(mi) =2.95 and gpqq(mpz) =2.81. (See Table 1.) Our result for 6, (mj) is based upon
the use of Eq. (3.19) to define < p|Hsg|w >, as in the third reference of Ref. [9]. It is in

that reference that the value < p|Hggz|w > = - (4520 £ 600) MeV? is extracted from the data.
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In this section we have used the empirical values for g# and g“. In the next section we

present our result for the case in which we calculate g# and g in our extended NJL model.

- 17 -



IV. Relation of Meson Decay Constants and the Bosonization Scheme

In the simplest bosonization scheme [11], the source of the rho and the omega fields are

vector currents introduced previously,
(g2 - mDWHE) = = 8,0 0@ ¥4 1)
and
(q° —m;“)p“(x) = = 2,y dM Y39 (4.2)

It is then useful to introduce the currents of Eqs. (2.5) and (2.6), so that Eqs. (4.1) and (4.2)

become

(g% - mD) ) = - 68,40 Jt@) 4.3)
and

(g% - m)) () = = 28,40 000) . (4.4)

Since the decay constants are calculated for on-mass-shell mesons, we have

g% = 68, ,(m)) (4.5)
2
¢® = 2,,,mD) 4.6)

where we expect that g# = 3g“. Equations (4.5) and (4.6) are mean-field results for a theory
without confinement. We will not make use of Eqgs. (4.5) and (4.6) but will use the values of
g and g* that are obtained by studying the structure of the isovector and isoscalar current

correlation functions using our extended NJL model [3]. We find that

- 18 -



3m2
g° = o , 4.7

2. ¢ % 2 by 2
80qq (M) L (p(m,) + Re Ky (m))]

2
_ O™ Gg , (4.8)
80445 )
and
9 2
gw = :nw 2 s (4.9)
gw qq (m(;) J(w)(mw)
2
_ M Ge (4.10)
8uqq (M)

Using g,,,(m.) =2.81, (m>)=2.95 (see Table 1), G,=7.86 GeV2, and

Swqq
JA(p)(mpz) + Rek(p) (mpz) =0.140 GeV?, we find g° = 4.52 and g% =14.7. These numbers may
be compared to the empirical values, g =35.3 and g% = 15.2, used in the previous section. (It
is interesting to note that the calculations reported in Ref. [14] gave g° =7.0 and g* =24.0,
which are larger than the empirical values quoted above. It is possible that our treatment of
confinement in our extended NJL model leads to improved values for these decay constants
relative to those given in Ref. [14]. Note that in Ref. [14] the notation for the decay constants
differs from that used here.) If we use the calculated values of g? and g Egs. (4.7) - (4.10)],
the value of 6, (mj) is reduced from -13,659 MeV?2 to -11,268 MeVZ2. We note that to obtain

values of 05 (q2) for spacelike ¢, it is best to return to Eq. (3.9) and to calculate the various

functions that appear on the right-hand side. To obtain J (g 2y and J(w)(qz), we may use the

- 19 -



expressions given in the Appendix.

One often defines a rho decay constant called f, [3]. The relation to g* is

£ = —7" : (4.11)
g

If we use our calculated value of g” = 14.7, we find f, =0.157 GeV, which is quite close to
the empirical value jj, = 0.152 GeV. (The calculations of isovector current correlators reported
in Ref. [3] used rather different values of m, and G, than those used in the present work. In
Ref. [3] we found fp =0.166 GeV.)

We may note that the values we have found in Ref. [12], gwqq(O) =3.86 and
g, qq(O) =3.66, lead to the following consequences, when we consider the one boson-exchange
(OBE) model of the nucleon-nucleon interaction [15]. For omega exchange, g, qq(O) =3.86
leads to ngNMvr =20.2, while the phenomenological value is giNN/47r =20.0 [15]. In the
model of Ref. [12], the vector and tensor parts of the rho-nucleon interaction are related by
58, = 3.0, instead of the phenomenological value of f /g, = 6.1. (The f, of this paragraph
should not be confused with f, of Eq. (4.11).) However, with gpqq(O) =3.66, we found
S = 20.6, while jpo BE 215 [15]. The fact that we fit the meson decay constants, defined for
q2 = mf and q2 = mi, and the strength of the potential in the w and p channels, calculated at

q2 =0, lends some support to our model of momentum-dependent coupling constants. (See

Table 1.)
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V. Subtractions for the Correlator

One can argue that, if I1®® (%), ¥ (g% and N“(g?) are unequal to zero for

q2 = (), one would generate a mass for the photon. Actually, the condition e« (0) =0 arises

on more general grounds [8,16]. To implement that constraint, we define a subtracted tensor

—ow), « A 03(q?) 65 (0)
I, (@ = 8, T3 6.
. 2 . 2 m m
2 iT, 2 ir, b w
- o ]|
53((]2)

1l

8,,(Q)

R ]

9 ir, | ir, 12| 650
63(q°) = 05(¢7) - Lz_ [mp—%] } [(ﬁ_ [’”w'—;rf] ] 32( )2 O (53)

mp m,

so that

Note that 53 (0) =0, as desired. We remark that, if we evaluate 53 ((12) at q2 =(m, - iI‘w/2)2,

we find
05 (m2) = 6;30n2) . (5.4)

Therefore, our results for 6, (m:: ) pertain to 53 (m) as well. (See Fig. 8.)
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V1. Discussion

In this work we have shown how the NJL model, extended to include a description of
confinement [2,3], may be used to calculate the mixed-current correlator, which is nonzero due
to explicit isospin symmetry breaking in the Lagrangian of the model. (In previous works, we
have shown how our methods may be used to calculate correlators of the scalar-isoscalar current,
Jo) = q(x)g(x) [2] and the correlator of the vector-isovector current [3].) In the present study,
we obtain the experimental value of <p|Hgp|w> =-(4520 £ 600) MeV?, if

mg—mg =2.69 MeV. Taking the errors for <p|Hgp|w> into account, we suggest that

mg—mg =2.7+0.3 MeV. From Ref. [17] we have mB =5+ 2 MeV and mg =9+ 3 MeV.
These values are consistent with mfvg =5.5 MeV, m, =6.85 MeV, and m, =4.15 MeV. For
that choice, mg —ml? =2.70 MeV, which was the value given above. However, values of
mg - mg anywhere in the range of 1 to 5 MeV are also consistent with the uncertainties in the
values of mg and mg. (We remark that mg‘_g =5.5 MeV yields the correct pion mass, when

Ag=1.0 GeV [18].) Clearly, more information concerning the value of mg - mg would be

quite useful in evaluating the success of our calculation.
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Appendix

In this appendix we discuss the calculation of J) (qz) =J ) (qz) for spacelike qz, or

small timelike qz. We neglect confinement in this discussion and start with

4 -
J(l;;’((]) = i”c”fTrJ dp4 LU (p+q/22+m) v (P 4/22+m) (Al)
(2m) (pz) ~m? (pz) -m?
2 2
Here, m is the constituent quark mass and 4* was defined after Eq. (3.4). We find
252 2 _q° 2
s
JE@) = ingnggh(q) | L2 2 ! NG
(0) cf (27r)4 ’ 2
s -] -5 -]
2 2
= - 3M I, 0 (A3)

In Eq. (A2), p* =p* - (p - q)q*/q°.
The result for J(p)(qz) may be expressed in terms of two integrals that were defined in

Ref. [14],

(A4)

Ii(m) = 8ncij

and

3
Lm, g% = 4nci.r d’p !

g Lo

Anc ytic expressions for /,(m) and I,(m, q?%) are given in Ref. [14] in terms of a Euclidean

(A5)

momentum-space cutoff Ap. We have
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2
A

Lmy = < | AL-m2m |1+ 220 |, (A6)
272 m?

n(: j’ ldx ; +1n 2)’ , (A7)
47- 70 Ag+y Ag+y

where y(x, qz) = (12(x2 -X) + m?%. After some algebra, we obtain

and

12(ma (12> =

2 4 -~ 2
Note that
70 = Z10m)- tm2 Lm0 (A9)
(p) - § 1 3 2 ’ ) .
with m = 0.260 GeV and Ap=1.0 GeV, we have [I;(m)=0.123 GeV? and

m2L,(m,0) = -0.0093 GeV?.  From these values, we find J, (0) =0.0944 GeV? in
correspondence to the (12 = 0 value for the curve shown in Fig. 2 that was calculated for
spacelike (]3.

We may make contact with the result given in Ref. [14] if we perform a subtraction, so
that J (p)(O) =0. (We must also change the sign, if we are to compare to Jwv(q 2) of Ref. [14].

That reference has the opposite sign to ours for the coupling constants in the Lagrangian.) Thus

U@ - 7O = [%mz - %qz] Lm, g% - %mzlz(m, 0 , (A10)

which agrees with the function Jyy(q 2) of Ref. [14],
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Jn(a®) = Z[@m? + gD hm, g% - 2m*Lm, 0)] (A1)

W o

We have seen in our work that the subtraction should properly be made for the current

correlator, rather than for the leading perturbative approximation to the correlator, J(p)(qz) or

Jw)(q 2) .
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Values of gpqq(qz) and gwqq(qz) are presented. Here
2 S 2 -1 2 .2 -1

8rd@D) =0, =qHI(G, -r) and  go @) =0n;-q)I(G, -vy,

with G,=7.12GeV?2, G, =7.86GeV2, 1} =m,=1476 GeV?,

r, =0.0304 GeV2, and v, =0.0284 GeV? [12]. Note that g, (m_) =2.80 and

gwqq(mj) =2.95.
q%( GeV?) 84407 8uqg@?)
0.0 3.66 3.86
0.1 3.54 3.73
0.2 3.41 3.59
0.3 2727 3.45
0.4 3.13 3.30
0.5 2.98 3.14
0.6 2.82 2.98
0.7 2.66 2.80
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Fig. 1.

Fig. 2.

Fig. 3.

Figure Captions

a) The basic quark-loop integral for the NJL model is used to define the
tensor J(‘;;'(q) = —(Q“"J(p)(qz). More precisely, the evaluation of the
diagram using Feynman rules yields - iJ(*;;'(q).

b) A summation of a ladder of confinement interactions (a linear potential)
serves to define a confining vertex, shown as a shaded area. The diagram
on the left serves to define j(’;;’(q) = —g”"f(p)(qz).

C) The equation whose solution yields the confining vertex. (Solutions of
this equation are described in detail in Ref. [3].) Note that
j(p)(qz) =j(w)(q2), if my=m,.

Values of j(p)(q %) are shown for spacelike and timelike values of qz. The

calculation in the timelike region is done in Minkowski space with a cutoff on all

three-momenta of Ay =0.702 GeV [3]. The spacelike values are calculated in

Euclidean momentum space with a cutoff Ag=1.0 GeV. Confinement is

included in the calculation made for q2 > ( and we find j(p)(O) =0.0860 GeVZ.

The Euclidean-space calculation made for q* < 0 yields J(»(©0) = 0.0944 GeV?2.

The dotted curve is used to interpolate between the two calculations. Note that

j(p)(q 2) =J (w)(qz), if my;=m,. The quark mass in these calculations is

m, = 262 MeV.

a) The diagram shown is wused to define the tensor
K(’;;(q) =~ H(q) K(p)(qz). Here the wavy lines represent pions. (In

analogy to the comment made in the caption to Fig. 1, we note that the
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evaluation of such diagrams using Feynman rules yields - i K(’;;'(q).)
b) Introduction of the confining vertex of Fig. 1c serves to define the tensor
Ry @ = —g“”k@)(qz). Note that k(p)(q% > k(w)(qz), since the two-
pion decay of the omega violates G-parity.
Fig. 4. Values of j(w)(qz) are presented for several values of q2 and for a range of
values of the constituent quark mass.
a) q> = 0.0 GeV?
b) q* = 0.10 GeV?

c) (12 = (.20 G¢V2

N

d) q> = 0.60 GeV?

Here x =0.22 GeV? and A5 =0.702 GeV. Note that Ji,;(q%) =J (¢, if

m,=m,. Further, j(w)(qz) decreases when the constituent mass is increased.

Therefore, j(w)(qz, m,) —j(w)(qz, md)] >0, since m; > m,.

Fig. 5. a) The diagrammatic element that serves to deﬁnej(’;';)(q) = —g”"j(pw)(qz)
is shown. 7.e shaded triangular area represents the confining vertex of
Fig. lc. The small open circles denote the coupling constants, G, or G,
of the NJL model. (See Eq. (1.1.)

b) The calculation of the mixed correlation function
ﬁ*(;yw)(q) S dald (1) ﬁ( pa)(d 2) is shown. Each diagram contains a single
factor of f(pw)(qz) and a varying number of factors of j(p)(qz) and
](w)(qz), with the j( p)(qz) factors to the left of f(pw)(qz) and thef(w)(qz)

factors to the right of j(pw)(q %) in the diagram.
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Fig. 6.

Fig. 8.

Values of f(pw)(qz) are shown. Here m,=262 MeV, m, =260 MeV,
x=0.22 GeV? and A, =0.702 GeV. Note that « is the string tension and A,
is the cutoff on the magnitude of all three-momenta in a Minkowski-space
calculation of the quark-loop integrals. At the origin, we have
Jp©) = 0.628 X 107 GeV2. Note that J,(q?) =0 for g% =-0.45 GeV™.
Values for spacelike q? were obtained using the formalism presented in the
Appendix. (Values for mg - mg =2.69 MeV are obtained by muitiplying the
values in the figure by 2.69/2.)

Values of —63(q2) are shown as a solid line. [See Eq. (3.18).] Here
mg - mS =2.0 MeV. (Values for mg - mg =2.69 MeV may be obtained by
multiplying the values in the figure by 2.69/2.)

Values of —53 (qz) are shown as a dashed line. [See Eq. (5.3). Here, the
meson widths appearing in Eq. (5.3) were neglected.] We recall that

03(mj) =53 (ms). Here mg - mg =2.0 MeV. (See the caption of Fig. 7.)
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