EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Clarification to the ISOLDE and Neutron Time-of-Flight Committee

IS702: Probing the doubly magic shell closure at ¹³²Sn by Coulomb excitation of neutron-rich ^{130,134}Sn isotopes

January 10, 2024

P. Reiter¹, Th. Kröll², M. Droste¹, K. Arnswald¹, A. Blazhev¹, H. Hess¹, H. Kleis¹, D. Mücher¹, N. Warr¹, C. Henrich², L. Atar², A.-L. Hartig², H.-B. Rhee²,
M. von Tresckow², C. Sürder², I. Homm², N. Pietralla², M. Scheck³, R. Gernhäuser⁴,
H. De Witte⁵, M. Huyse⁵, P. Van Duppen⁵, P. Thirolf⁶, L. P. Gaffney⁷, A. Jungclaus⁸, K. Wimmer⁹, M. Gorska-Ott⁹, G. Georgiev¹⁰, K. Stoychev¹⁰, J. Cederkäll¹¹,
G. Rainovski¹², D. Kocheva¹², K. Gladnishki¹², D. Bucurescu¹³, N. Mărginean¹³,
R. Mărginean¹³, D. Deleanu¹³, A. Negret¹³, D. Balabanski¹⁴, K. Hadynska-Klek¹⁵, K. Wrzosek-Lipska¹⁵, P. J. Napiorkowski¹⁵, M. Komorowska¹⁵, A. Korgul¹⁵,
V. Bildstein¹⁶, R. Chapman³, T. Grahn^{17,18}, P. T. Greenlees^{17,18}, J. Pakarinen^{17,18},
P. Rahkila^{17,18}, R. Lozeva¹⁹, A. Andreyev²⁰, L. M. Fraile²¹, A. Illana²¹, J. A. Briz²¹,
M. Llanos²¹, J. Benito^{21,25}, J. M. Allmond²², A. Stuchbery²³, F. Browne²⁴, and the MINIBALL and HIE-ISOLDE collaborations

¹Univ. of Cologne, Germany; ²TU Darmstadt, Germany; ³Univ. West of Scotland, Paisley, UK;
 ⁴TU München, Germany; ⁵KU Leuven, Belgium; ⁶LMU München, Germany; ⁷Univ. of Liverpool, UK; ⁸IEM CSIC, Madrid, Spain; ⁹GSI, Darmstadt, Germany; ¹⁰IJCLab, Orsay, France;
 ¹¹Univ. of Lund, Sweden; ¹²Univ. of Sofia, Bulgaria; ¹³IFIN-HH, Bucharest, Romania; ¹⁴ELI-NP, Măgurele, Romania; ¹⁵Heavy Ion Laboratory, Univ. of Warsaw, Poland; ¹⁶Univ. of Guelph, Canada; ¹⁷Univ. of Jyväskylä, Finland; ¹⁸Helsinki Institute of Physics, Finland; ¹⁹IJCLab, Université Paris-Saclay, Orsay, France; ²⁰Univ. of York, UK; ²¹UC Madrid, Spain; ²²Oak Ridge National Laboratory, USA; ²³Australian National University, Canberra, Australia; ²⁴ISOLDE, CERN, Genève, Switzerland; ²⁵INFN, Sez. di Padova, Italy

Spokespersons: P. Reiter [preiter@ikp.uni-koeln.de], Th. Kröll [tkroell@ikp.tu-darmstadt.de] Contact person: F. Browne [frank.browne@cern.ch]

Abstract: By this Letter of Clarification we follow the recommendation made by the INTC during its 72^{nd} meeting on February 8–9, 2023 concerning our addendum to experiment IS702: The proponents were asked to "demonstrate the impact of the ¹³⁰Sn results"

on the physics case in a new proposal for 134 Sn." Although the present addendum includes experimental data from the November 2022 campaign, suggesting that a precise value for the B(E2) will probably be inferred, the INTC regrets that no preliminary value has been provided by the proponents. Accordingly, it is requested that the proponents submit a clarification letter, in which the physics gain from their experiment is clearly explained, in order to convince the INTC of the interest of this additional measurement. The INTC recommended the submission of a letter of clarification.

The proposed study of the isotope ¹³⁴Sn by γ -ray spectroscopy following "safe" Coulomb excitation will be feasible after evaluation and data analysis of the first part of IS702 which is concerned with ¹³⁰Sn. An improved experiment has been performed in October 2023 with the upgraded Miniball spectrometer. It yielded high statistics and high quality results which will allow a precise determination of the $B(E2; 0_{g.s.}^+ \rightarrow 2_1^+)$ value in ¹³⁰Sn. Based on this achievement we ask for approval of the requested beam time to study reduced transition strengths in ¹³⁴Sn.

Requested shifts: [15+3] shifts **Installation:** [MINIBALL + CD (C-REX)]

1 Status of IS702

The first part of experiment IS702 [1], the Coulomb excitation of ¹³⁰Sn, was subject of two beam times. A first attempt was made in November 2022 and preliminary results of this beam time were reported last year to the INTC. The INTC expressed 'regrets that no preliminary value has been provided by the proponents'. The addendum was prepared only few weeks after the experiment was performed. Meanwhile, the analysis of this run advanced with a preliminary GOSIA analysis with a value of $B(E2; 0_{\text{g.s.}}^+ \rightarrow 2_1^+) = 0.056^{(+10)}_{(-14)} \text{ e}^2\text{b}^2$ for ¹³⁰Sn. This is an intriguing result as it compares quite well to the theoretical prediction of $B(E2; 0_{\text{g.s.}}^+ \rightarrow 2_1^+) = 0.055 \text{ e}^2\text{b}^2$ by [2]. The result is well above the previous B(E2) value of $0.023(5) \text{ e}^2\text{b}^2$ given in a conference proceedings article by [3].

However, the beam time in 2022 was the first experiment after long shut down 2 at CERN with the Miniball spectrometer and its new data acquisition system. Data taking was hampered by major difficulties with the new electronics and a reduced period of beam time. Therefore, a new experiment was performed in October 2023. Meanwhile the new digital electronics, data acquisition system and read-out software were revised for all Miniball experiments.

The Coulomb excitation (Coulex) of ¹³⁰Sn employed the upgraded Miniball array which is identical to the configuration proposed in the addendum for Coulex of ¹³⁴Sn. The obtained ¹³⁰Sn beam intensity from HIE-ISOLDE was about $5 \cdot 10^5$ 1/s at an energy of 4.4 MeV/u using $\approx 0.5 \ \mu$ A protons.¹³⁰Sn was extracted from the production target as ¹³⁰Sn³²S⁺ molecular ion which was cracked in the EBIS. The beam was impinging on a 4 mg/cm² thick ²⁰⁶Pb target.

The beam purity was determined from γ spectroscopy after beta decay of beam contribu-

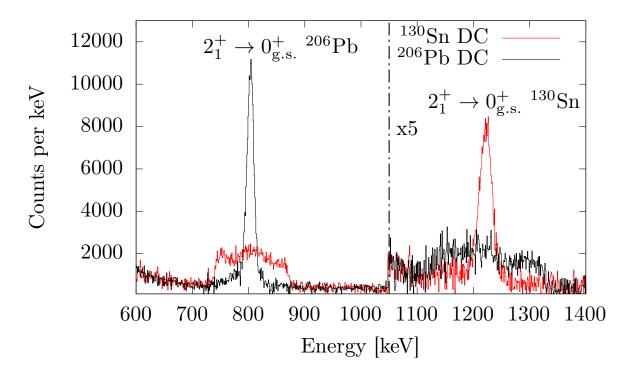


Figure 1: Preliminary γ -ray spectrum detected in coincidence with scattered A = 130and A = 206 nuclei. The left part of the spectrum shows the $2_1^+ \rightarrow 0_{g.s.}^+$ transition in ²⁰⁶Pb after Doppler correction for nuclei with A = 206 (black colour) and A = 130 (red colour)). The right part of the spectrum shows the $2_1^+ \rightarrow 0_{g.s.}^+$ transition in ¹³⁰Sn (red colour) after Doppler correction for nuclei with A = 130 and background subtraction. Y-axis is enlarged by a factor of 5 on the right side for energies above 1050 keV.

tions. A nearly pure beam of ¹³⁰Sn was delivered by the HIE-ISOLDE accelerator. Only a small beam contribution of $\leq 5\%$ has to be attributed to ¹³⁰Sb as possible isobaric impurity. The ¹³⁰Sn beam itself consisted of a major fraction of the 0⁺ ground state. A second part of about 25% is caused by a known 7⁻ isomer ($T_{1/2} = 1.7 \text{ min}$) in ¹³⁰Sn.

A preliminary Doppler-corrected γ -ray spectrum is shown in Fig. 1 yielding a high statistics of 40.000 counts in the $2^+_1 \rightarrow 0^+_{g.s.}$ transition of ¹³⁰Sn. Data was taken for 105 hours of beam time. A count rate of 380 counts/hour was recorded, which is in excellent agreement with the estimated value in the proposal for experiment IS702 (we estimated 370 counts/hour for the ¹³⁰Sn experiment).

It should be noted that the beam current of ¹³⁰Sn was high and was finally limited by the count rate of the HPGe detectors of Miniball. For this purpose the proton beam current coming from the PS booster was reduced by a factor of four from 2 to $\approx 0.5 \mu A$. In case of the much reduced ¹³⁴Sn beam intensity we will not apply this reduction.

ISOLDE yield measurements for Sn isotopes ^{130,132}Sn in September and October 2023 obtained remarkable high ion beam intensities comparable to highest yields from past experiments. In October 2023, we obtained for ¹³⁰Sn a beam secondary beam intensity of $\approx 5 \cdot 10^5$ 1/s at the Miniball target using $\approx 0.5 \ \mu$ A of protons, which is double the value we used in the original proposal and addendum. With a proton current of $\approx 2 \ \mu$ A and the HIE-ISOLDE efficiency which was achieved for the ¹³⁰Sn beam time, the following beam current is expected at the Miniball spectrometer: $\approx 2 \cdot 10^4 \text{ 1/s}$ for ¹³⁴Sn. Slow extraction from the EBIS with pulse lengths of at least 1 ms is still desirable for this experiment to reduce the instantaneous particle rate.

Taking into account the integrated cross sections for Coulex of ¹³⁴Sn (see the addendum for details) the given values for future spectroscopy are well justified for our proposed measurement. The calculated particle- γ -ray yields for Coulomb excitation of ¹³⁴Sn are as follows: $I(2_1^+ \rightarrow 0_{g.s.}^+) = 30$ counts/hour and $I(4_1^+ \rightarrow 2_1^+) = 0.6$ counts/hour. These rates will result in 3600 counts for the crucial $2_1^+ \rightarrow 0_{g.s.}^+$ transition in ¹³⁴Sn. The estimate for the $4_1^+ \rightarrow 2_1^+$ transition will yield 68 counts. The numbers are based on 15 shifts of ¹³⁴Sn beam on target.

In summary, the latest results from Coulex of ¹³⁰Sn with Miniball at HIE-ISOLDE demonstrate unambiguously the feasibility of the addendum to experiment IS702. Based on identical set-up, experimental method and analysis procedure as used by us for ^{130,132}Sn we are confident that Coulomb excitation of the first excited 2⁺ and possibly 4⁺ state in ¹³⁴Sn can be performed successfully as proposed in our Addendum for IS702. The requested 15 shifts will allow to determine the $B(E2; 0_{gs}^+ \rightarrow 2_1^+)$ value also in this case with much reduced statistical errors with respect to results from [4]. The impact of the diagonal matrix elements (not discussed in [4]) will be included in our analysis. The measurement of the $B(E2, 0_{gs}^+ \rightarrow 2_1^+)$ values in both neighbours of the doubly-magic ¹³²Sn will be crucial for understanding the nuclear structure of Sn isotopes around the N = 82shell closure and an experimental benchmark for theory.

In total we ask 18 (15+3) shifts for 134 Sn.

References

- [1] P. Reiter, Th. Kröll et al., CERN-INTC-2021-039 / INTC-P-608.
- [2] T. Togashi et al., Phys. Rev. Lett. 121, 062501 (2018).
- [3] D. C. Radford *et al.*, Nucl. Phys. A 752, 264c (2005).
- [4] R. L. Varner *et al.*, Eur. Phys. J. A 25, s01, 391 (2005).

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises:

Part of the	Availability	Design and manufacturing	
(fixed ISOLDE installation:	\boxtimes Existing	\boxtimes To be used without any modification	
MINIBALL + only CD, or			
MINIBALL + C-REX)			
	\boxtimes Existing	\boxtimes To be used without any modification	
$[^{134}Sn \text{ experiment}/ \text{ equipment}]$		\Box To be modified	
	\Box New	\Box Standard equipment supplied by a manufacture	
		\Box CERN/collaboration responsible for the design	
		and/or manufacturing	

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed [MINIBALL + only CD, MINIBALL + T-REX] installation.

Additional hazards:

Hazards	[Part 1 of experiment/ equipment]	[Part 2 of experiment/ equipment]	[Part 3 of experiment/ equipment]		
Thermodynamic and fluidic					
Pressure	[pressure][Bar], [vol- ume][l]				
Vacuum					
Temperature	[temperature] [K]				
Heat transfer					
Thermal properties of					
materials					
Cryogenic fluid	[fluid], [pressure][Bar], [volume][l]				
Electrical and electro	Electrical and electromagnetic				
Electricity	[voltage] [V], [cur- rent][A]				
Static electricity					
Magnetic field	[magnetic field] [T]				
Batteries					
Capacitors					
Ionizing radiation					
Target material [mate-					
rial]					

Beam particle type (e,	134 Sn		
p, ions, etc)	511		
Beam intensity at	10^4 ions/s		
MINIBALL at	10 10115/5		
Beam energy	4.4 MeV/u		
Cooling liquids	[liquid]		
Gases	[gas]		
Calibration sources:			
• Open source			
• Sealed source	\boxtimes [ISO standard]		
• Isotope standard	⁶⁰ Co, ¹⁵² Eu		
sources			
• Activity (sources are			
available)			
Use of activated mate-			
rial:			
• Description			
• Dose rate on contact	[dose][mSV]		
and in 10 cm distance			
• Isotope			
• Activity			
Non-ionizing radiatio	n	L	
Laser			
UV light			
Microwaves (300MHz-			
30 GHz)			
Radiofrequency (1-300			
MHz)			
Chemical			·
Toxic	[chemical agent], [quan-		
	tity]		
Harmful	[chem. agent], [quant.]		
CMR (carcinogens,	[chem. agent], [quant.]		
mutagens and sub-			
stances toxic to repro-			
duction)			
Corrosive	[chem. agent], [quant.]		
Irritant	[chem. agent], [quant.]		
Flammable	[chem. agent], [quant.]		
Oxidizing	[chem. agent], [quant.]		
Explosiveness	[chem. agent], [quant.]		
Asphyxiant	[chem. agent], [quant.]		
Dangerous for the envi-	[chem. agent], [quant.]		
ronment			
Mechanical			

Physical impact or me-	[location]				
chanical energy (mov-					
ing parts)					
Mechanical properties	[location]				
(Sharp, rough, slip-					
pery)					
Vibration	[location]				
Vehicles and Means of	[location]				
Transport					
Noise					
Frequency	[frequency],[Hz]				
Intensity					
Physical	Physical				
Confined spaces	[location]				
High workplaces	[location]				
Access to high work-	[location]				
places					
Obstructions in pas-	[location]				
sageways					
Manual handling	[location]				
Poor ergonomics	[location]				

Hazard identification:

none