EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of neutron capture cross section on 134 Cs through surrogate reaction (d,p γ) at ISS

January 10, 2024

S. Carollo^{1,2}, J. Lerendegui-Marco³, R. Raabe⁴, C. Domingo-Pardo³, F. Recchia^{1,2},
O. Poleshchuk⁴, P. Aguilera^{1,2}, G. Andreetta^{1,5}, F. Angelini^{1,5}, J. Balibrea-Correa³,
M. Balogh⁵, J. Benito^{1,2}, D. Brugnara⁵, P. Butler⁶, G. de Angelis⁵, R. Escudeiro²,
S.J. Freeman^{7,8}, L.P. Gaffney⁶, F. Galtarossa⁵, A. Goasduff⁵, B. Góngora Servín^{5,9},
A. Gottardo⁵, B.P. Kay¹⁰, M. Labiche¹¹, I. Lazarus¹¹, S.M. Lenzi^{1,2}, P.T. MacGregor⁸,
R. Menegazzo², D. Mengoni^{1,2}, D.R. Napoli⁵, R. Nicolas Del Alamo^{1,5}, R. Page⁵,
J. Pellumaj^{5,12}, S. Pigliapoco^{1,2}, E. Pilotto^{1,2}, M. Polettini^{1,2}, K. Rezynkina²,
D.K. Sharp⁷, D. Stramaccioni^{1,5}, J.J. Valiente Dobón⁵, L. Zago^{1,5}

²Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Italy

³Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain

 4KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

⁵Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Italy

⁶University of Liverpool, Liverpool, UK

⁷University of Manchester, Manchester, UK

⁸ISOLDE, CERN, CH-1211 Geneva 23, Switzerland

⁹Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy.

¹⁰Argonne National Laboratory, Lemont, USA

¹¹STFC, Daresbury Laboratory, Daresbury, UK

¹²Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy

Spokesperson: S. Carollo (sara.carollo@phd.unipd.it)

J. Lerendegui-Marco (jorge.lerendegui@ific.uv.es),

R. Raabe (riccardo.raabe@kuleuven.be)

Contact person: P.T. MacGregor (patrick.macgregor@cern.ch)

Abstract: The neutron capture (n,γ) cross sections of ¹³⁴Cs and ¹³⁵Cs are relevant to fix the branching ratio between the two s-only ¹³⁶Ba and ¹³⁴Ba, well characterized from SiC in presolar grains. The ¹³⁵Cs (n,γ) reaction is also of interest for the potential transmutation of this long-lived (T=2·10⁶ y) fission product. A new project has been

launched to measure both ${}^{134,135}Cs(n,\gamma)$ by direct and surrogate methods. In this proposal, we present the method for the indirect measurement through the surrogate reaction $(d,p\gamma)$, and propose to measure the first of the two reactions, ${}^{134}Cs(d,p\gamma)$, using

the Isolde Solenoidal Spectrometer and the SpecMAT scintillation array.

Summary of requested shifts: 25 shifts

1 Introduction

About 50% of the elements heavier than iron are produced by the so-called s-process, where the typical time scale of a neutron capture is longer than the half-life of β -decays of the unstable nuclei involved [1]. Asymptotic Giant Branch stars (AGB), and in particular those with mass lower than 3 M_{\odot} are responsible for the production of the main component of the s-process (i.e. nuclei from Sr to Bi).

In thermally-pulsing asymptotic-giant branch (TP-AGB) stars the main neutron source results from the reaction ${}^{13}C(\alpha,n){}^{16}O$, whereas a weaker and recurrent contribution arises from the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction during the recurrent He-shell flashes. In the interpulse period between He shell flashes, a neutron density of less than $10^7 \text{ cm}{}^{-3}$ is maintained in the ${}^{13}C$ pocket, a thin layer in the He shell, where the ${}^{13}C$ source operates under radiative conditions and at the relatively low temperatures of $k_BT = 8$ keV. When a sufficiently high temperature is reached at the bottom of the He-burning zone, the ${}^{22}Ne$ source is activated during the following He shell flash. Though the total neutron exposure is smaller than contributed by the ${}^{13}C(\alpha,n){}^{16}O$ reaction because the ${}^{22}Ne$ source is limited to a few years, much higher neutron densities of the order of $10^{10} \text{ cm}{}^{-3}$ are reached at higher temperatures of $k_BT=23$ keV during this highly convective instability.

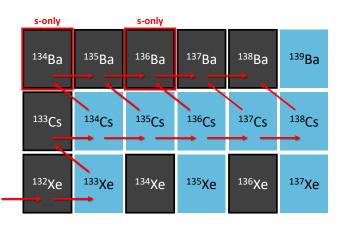


Figure 1: The s-process neutron capture flow through the Xe-Cs-Ba region. The stable isotopes are the ones in black.

In the s-process path, unstable nuclei that are sufficiently long lived such that neutron capture can compete with β decay act as branching points and yield a local isotopic pattern which is very sensitive to the physical conditions of the stellar environment [1]. ¹³⁴Cs and ¹³⁵Cs are both considered branching points of the s-process [1]. Moreover, as pointed out by Palmerini et al. [3], both the ¹³⁴Cs and ¹³⁵Cs branching points may have a temperature dependence, differently from what was assumed previously (Takahashi & Yokoi [4]): this makes them potential s-process thermometers to constrain the thermal conditions during the evolution of thermally-pulsing asymptotic-giant branch (TP-AGB) stars [1,2]. The temperature dependence of ¹³⁴Cs half-life for β decay has been recently calculated by Taioli et al. [5] and is reported in Fig. 2.

The ratio between Ba isotopes is known from SiC crystals from presolar grains of AGB origin that were captured in pristine meteorites [3], giving us information on the isotopic

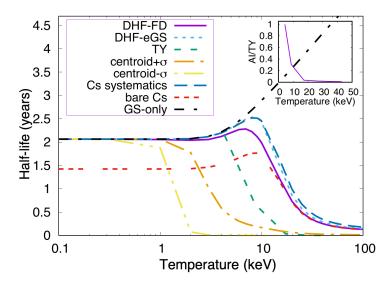


Figure 2: Half-life of ¹³⁴Cs vs. temperature, calculated in [5], using a variety of models.

composition during their formation. Thus, the data obtainable from these crystals together with the measured neutron capture cross sections of both 134 Cs and 135 Cs can constrain the thermal conditions in state-of-the-art AGB models.

Following the aforementioned scientific motivations, a collaborative project has been established to measure both $^{134,135}Cs(n,\gamma)$ cross sections combining direct measurements $(^{135}Cs(n,\gamma))$ at n_TOF-NEAR and surrogate reactions in inverse kinematics $(^{134}Cs(n,\gamma))$. Measuring the $^{134}Cs(n,\gamma)$ cross section using the surrogate reaction method would establish the possibility of performing this kind of experiment at ISOLDE. Furthermore, as a consequence of the short half-life of the nucleus and of the presence of γ radiation in its β decay, this cross section cannot be studied using presently available methods: on one side measurements at a n_TOF type facility are hindered by the γ activity of the sample, on the other side activation methods cannot be used because the activity of 134 Cs will dominate by many order of magnitude over the long lived 135 Cs produced in the activation process. The indirect measurement proposed here is thus the only possibility at present to obtain an experimental estimation of the neutron capture cross section.

2 Surrogate reaction method and reaction proposed

Since it is challenging to determine many astrophysical reaction rates due to the radioactivity of the isotopes involved, indirect approaches are becoming increasingly common. The $(d,p\gamma)$ reaction can be used as surrogate for (n,γ) to obtain the neutron capture cross section: the method for the indirect measurement and the theoretical framework are explained and tested in [11]. This method has also been tested by Ratkiewicz *et al.* in [12], where they were able to correctly reproduce the neutron capture cross section on ⁹⁵Mo, a stable isotope, in direct kinematics. We recently performed an experiment at Argonne National Laboratory to measure the ⁸⁵Kr(d,p γ) reaction. In this experiment we used a ⁸⁵Kr beam and the HELIOS magnetic spectrometer, while the γ -rays were detected using the Apollo scintillator array. In this experiment we were able to detect proton- γ coincidences around the neutron separation energy of ⁸⁶Kr, and observe the γ -rays from the $2_1^+ - 0_1^+$ transition. The analysis is still on-going, but from the preliminary results it is possible to observe the γ transition in the matrix γ -ray energy vs excitation energy (Fig. 3).

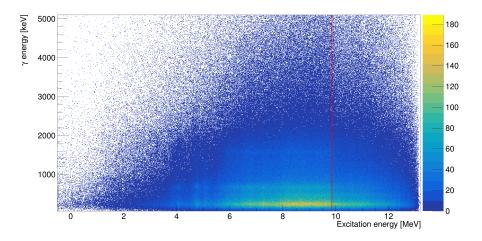


Figure 3: Preliminary result from the 85 Kr(d,p γ) experiment. In the upper panel: γ -ray energy vs excitation energy, the red line indicates the neutron separation energy in 86 Kr.

Therefore, we propose to perform a $(d,p\gamma)$ reactions using Isolde Solenoidal Spectrometer (ISS), with a ¹³⁴Cs beam with 7 MeV/u energy and a CD₂ target. The protons emitted will be detected with the Si array in ISS, while for γ -rays it is possible to use the CeBr₃ scintillator array from SpecMAT. The expected beam intensity at the ISS of ¹³⁴Cs is 10^7 pps, the same used for the ⁸⁵Kr(d,p γ) experiment. The neutron separation energy of ¹³⁵Cs is 8.76 MeV and the Q-value of the reaction is 6.54 MeV; therefore, it is possible to populate states around S_n with the silicon array placed backward, at a distance of 50 mm from the target, with a magnetic field of 2 T, as shown from the kinematics simulation in Fig. 4.

To estimate the statistics and the beam time needed, we calculated the expected cross section using the Distorted Wave Born Approximation (DWBA) with the finite-range code PTOLEMY [13]. The cross sections were integrated on the angular range accepted by the silicon array for the specific reaction: in the case of $^{134}Cs(d,p\gamma)$, the angular coverage is $0^{\circ} - 50^{\circ}$ in the center of mass frame; however, since the protons emitted between 0° and 10° are the one with energy lower than 1.5 MeV and thus are not used in the analysis because they mainly contribute to noise, the cross section has been integrated in the range $10^{\circ} - 50^{\circ}$. The ground state of ^{134}Cs has $J^{\pi} = 4^{+}$, so transfers with $\ell = 0$ or $\ell = 2$ can both populate a $9/2^{+}$ state. The cross section for populating a fictional $9/2^{+}$ state at 8.5 MeV excitation energy with a 7 MeV/u beam was found to be 2.23 mb and 10.97 mb, for $\ell = 0$ and $\ell = 2$ transfer, respectively. In total, the cross section is 13.2 mb. This result were compared to the one found for the case of the ⁸⁵Kr, in which $\ell = 0$ and $\ell = 2$ transfers to a fictional 4^{+} state at 9.5 MeV were considered, finding 0.62 mb and 3.40 mb, for a total of 4.02 mb, in an angular range of $10^{\circ} - 45^{\circ}$ (found in the same way that in the

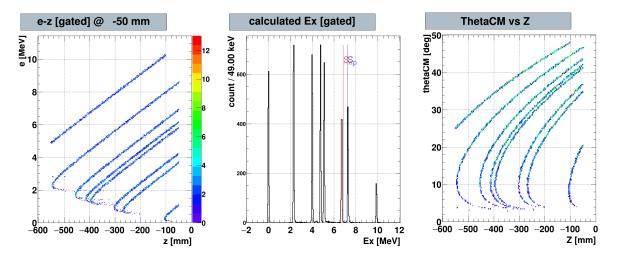


Figure 4: Kinematic simulation of the ${}^{134}Cs(d,p\gamma)$ reaction with the silicon array at 50 mm distance from the target, backward. On the left, proton energy vs z position. In the center, excitation energy of the product, ${}^{135}Cs$. On the right: angle of emission of the proton in the center of mass vs z position.

¹³⁵Cs case). In that case, the experimental counts of proton- γ coincidences in a 500 keV range around 9.5 MeV excitation energy were $1.4 \cdot 10^4$ (Fig. 5), for 6 days of beam time. For estimating the expected experimental counts for the ¹³⁴Cs(d,p γ) reaction, the ratio of the cross sections and the ratio of the efficiencies of the arrays for γ detection has to be taken into account, while the efficiencies of the silicon arrays are considered to be similar. The γ -detection efficiency of Apollo is around 20%, while the efficiency of the SpecMAT array obtained from simulations [14] varies from 3% to 1.5% in an energy range between 0.5 MeV and 1.5 MeV; thus we considered a reduction of a factor of 10 in the expected statistics. The comparison between the geometry of Apollo and the one of SpecMAT is shown in Fig. 6. The expected counts in 6 days of beam time in a range of excitation energy of [8.25 MeV, 8.75 MeV] are $4.6 \cdot 10^3$.

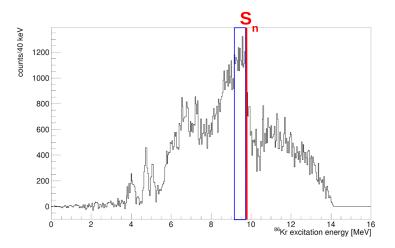


Figure 5: Excitation energy spectrum of ⁸⁶Kr after subtraction of the carbon background.

Figure 6: Comparison between the geometry of the SpecMAT array (on the left, from [14]) and Apollo (center and right).

Similarly to the measurement of the 85 Kr(d,p γ), the heavy recoils cannot be separated in angle from the unreacted beam and thus it is not possible to use a recoil detector. For this reason, the only way to remove the contribution from the carbon in the CD₂ target is to take some runs with a carbon target and later subtract it. This will require 2 additional days of beamtime.

Because 134 Cs is long-lived it is possible to perform the experiment during the winter physics campaign. Moreover, considering the existence in 134 Cs of a 8⁻ isomer with a lifetime of 4.2 hours, the running in the winter campaign will simplify the measurement as the isomer will be fully decayed to the ground state.

In summary, we ask for a total of 8 days of beam time, of which 6 days will be used for measuring on the CD_2 target and 2 days for the carbon target. One additional shift is considered for the preparation, for a total of **25 shifts**.

References

- [1] F. Käppeler et al., Review of Modern Physics, vol. 83, Issue 1, pp. 157-194 (2011).
- [2] N. Patronis et al., Phys. Rev. C 69, 025803 (2004).
- [3] S. Palmerini et al., Astrophys. J. 2021, 921, 7.
- [4] K. Takahashi et al., Atomic Data and Nuclear Data Tables, Vol. 36, p.375 (1987).
- [5] S. Taioli et al., Astrophys. J. 2022, 933, 158.
- [6] INTERNATIONAL ATOMIC ENERGY AGENCY, Implications of Partitioning and Transmutation in Radioactive Waste Management, Technical Reports Series No. 435, IAEA, Vienna (2004).
- [7] S. Chiba, T. Wakabayashi, Y. Tachi et al., Sci. Rep. 7, 13961 (2017).
- [8] Y. Shibahara, S. Nakamura, A. Uehara et al., J Radioanal Nucl Chem 325, 155–165 (2020).
- [9] S. Jaag, F. Käppeler, and P. Koehler, Nucl. Phys. A621, 247c (1997).
- [10] https://isoyields2.web.cern.ch/InTargetProductionChart.aspx
- [11] J. E. Escher et al., Phys. Rev. Lett. 121, 052501 (2018).
- [12] A. Ratkiewicz et al., Phys. Rev. Lett. 122, 052502 (2019).
- [13] M. H. Macfarlane and S. C. Pieper, ANL-76-11 Rev. 1, ANL Report (1978) and http://www.phy.anl.gov/theory/ptolemy/.
- [14] O. Poleshchuk, private communication.

3 Details for the Technical Advisory Committee

3.1 General information

Describe the setup which will be used for the measurement. If necessary, copy the list for each setup used.

- \boxtimes Permanent ISOLDE setup: $I\!SS$
 - \Box To be used without any modification
 - \boxtimes To be modified: The SpecMAT scintillator array is needed
- \Box Travelling setup
 - \square Existing setup, used previously at ISOLDE
 - \square Existing setup, not yet used at ISOLDE
 - $\Box~$ New setup

3.2 Beam production

• Requested beams:

Isotope	Production yield in focal	Minimum required rate	$t_{1/2}$
	point of the separator $(/\mu C)$	at experiment (pps)	
^{134}Cs	$7.66 \cdot 10^9$	10^7 pps	2.0648 y

- Full reference of yield information: yield database and, for the rate at the experiment, private communication by Alberto Rodriguez Rodriguez (15th November 2023)
- Target ion source combination: Surface ion source with Th carbide target or La Molten target. Also surface ion source with U carbide target was used for other Cs isotopes with similar mass.
- RILIS? No
 - \Box Special requirements:
- Additional features?
 - \Box Neutron converter:
 - \Box Other:
- Expected contaminants: Expected beam purity of 99% (private communication by Alberto Rodriguez Rodriguez)
- Acceptable level of contaminants: less than 5%
- Can the experiment accept molecular beams? No
- Are there any potential synergies (same element/isotope) with other proposals and LOIs that you are aware of? Yes, with IS721.

3.3 HIE-ISOLDE

- HIE ISOLDE Energy: 7 MeV/u;
 - $\boxtimes\,$ Precise energy determination required
 - \square Requires stable beam from REX-EBIS for calibration/setup?
- REX-EBIS timing
 - \boxtimes Slow extraction
 - \Box Other timing requests

3.4 Shift breakdown

Summary of requested shifts:

With protons	Requested shifts
Optimization of experimental setup using isotope ¹³⁴ Cs	1
Data taking, isotope 134 Cs	24

3.5 Health, Safety and Environmental aspects

3.5.1 Radiation Protection

- If radioactive sources are required:
 - Purpose: calibration
 - Isotopic composition:
 - * ¹⁴⁸Gd, ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm (unsealed)
 - * ⁶⁰Co, ¹³⁷Cs, ²²Na (sealed)
 - Activity: from 1 kBq to 10 kBq
 - Sealed/unsealed: both
- Describe the hazards generated by the experiment:

Domain	Hazards/Hazardous Activities		Description
	Pressure		[pressure] [bar], [volume][l]
	Vacuum		
Mechanical Safety	Machine tools		
	Mechanical energy (moving parts)		
	Hot/Cold surfaces		
Cryogenic Safety	Cryogenic fluid		[fluid] [m3]
Electrical Safety	Electrical equipment and installations		[voltage] [V], [current] [A]
Electrical Safety	High Voltage equipment		[voltage] [V]
	CMR (carcinogens, mutagens and toxic		[fluid], [quantity]
	to reproduction)		[nund], [quantity]
	Toxic/Irritant		[fluid], [quantity]
Chemical Safety	Corrosive		[fluid], [quantity]
	Oxidizing		[fluid], [quantity]
	Flammable/Potentially explosive		[fluid], [quantity]
	atmospheres		
	Dangerous for the environment		[fluid], [quantity]
Non-ionizing	Laser		[laser], [class]
radiation Safety	UV light		
Taulation Safety	Magnetic field	\boxtimes	2 T
	Excessive noise		
Workplace	Working outside normal working hours		
Workplace	Working at height (climbing platforms,		
	etc.)		
	Outdoor activities		
	Ignition sources		
Fire Safety	Combustible Materials		
	Hot Work (e.g. welding, grinding)		
Other hazards			