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In this work we put forward the inclusion of error mitigation routines in the process of training
Variational Quantum Circuit (VQC) models. In detail, we define a Real Time Quantum Error
Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs. While
state-of-the-art QEM methods cannot address the exponential loss concentration induced by noise
in current devices, we demonstrate that our RTQEM routine can enhance VQCs’ trainability by
reducing the corruption of the loss function. We tested the algorithm by simulating and deploying
the fit of a monodimensional u-Quark Parton Distribution Function (PDF) on a superconducting
single-qubit device, and we further analyzed the scalability of the proposed technique by simulating
a multidimensional fit with up to 8 qubits.

In the era of Noisy Intermediate Scale Quantum
(NISQ) [1, 2] devices, Variational Quantum Algorithms
(VQA) are the Quantum Machine Learning (QML) mod-
els that appear more promising in the near future. They
have several concrete applications already validated, such
as electronic structure modelization in quantum chem-
istry [3–6], for instance. Different VQA ansätze have
been proposed, such as the QAOA [7], but they all share
as foundation a Variational Quantum Circuit (VQC) con-
sisting of several parameterized gates whose parameters
are updated during training.

Hardware errors and large execution times corrupt the
landscape in various ways, such as changing the position
of the minimum or the optimal value of the loss func-
tion, hindering NISQ [1, 2] devices’ applicability in prac-
tice for certain algorithms. Furthermore, VQC models
are known to suffer from the presence of Noise-Induced
Barren Plateaus (NIBPs) [8] in the optimization space,
leading to vanishing gradients. NIBPs are fundamentally
different from the noise-free barren plateaus discussed in
Refs [9–14]. In fact, approaches designed to tackle noise-
free barren plateaus do not seem to effectively address
the issues posed by NIBPs [8].

To overcome these limitations we either have to build
fault-tolerant architectures carrying a usable amount of
logical qubits, or exploit the available NISQ hardware by
mitigating its results from the noise. While the first so-
lution might require significant technical advances, the
second one is often achieved with the help of quantum
error mitigation (QEM) [15]. Exponential loss concen-
tration cannot be resolved with error mitigation [16], but
it is possible to improve trainability by attempting to re-
duce the loss corruption. Therefore, we define here an
algorithm to perform Real-Time Quantum Error Miti-
gation (RTQEM) alongside a VQA-based QML training
process.

In this work, we use the Importance Clifford Sampling
(ISC) method [17], a learning-based quantum error miti-
gation procedure [18]. The core business of the learning-
based QEM techniques is to approximate the noise with a

parametric map which, once learned, can be used to clean
the noisy results [19–23]. Linear maps have the potential
to improve overall trainability by addressing challenges
imposed by loss corruptions while not affecting loss con-
centration itself [16]. The map’s parameters are learned
during the QML training every time the noise changes
above a certain arbitrarily set threshold.
We apply the RTQEM strategy to a series of mono-

dimensional and multi-dimensional regression problems.
Firstly, we train a VQC to tackle a particularly interest-
ing High Energy Physics (HEP) problem: determining
the Parton Distribution Function (PDF) of the u-quark,
one of the proton contents. In a second step, we define
a multi-dimensional target to study the impact of the
RTQEM procedure when the VQA involves an increas-
ing number of qubits.
Data re-uploading [24] is used to encode data into

the model, while we implement a hardware-compatible
Adam [25] optimizer for the training. We calculate gradi-
ents with respect to the variational parameters using the
Parameter Shift Rule [26, 27] (PSR). This optimization
scheme is ideal for studying the performance of RTQEM,
as the PSR formulas require a number of circuits to be
executed which scales linearly with the number of param-
eters. The greater the number of executions, the better
our algorithm must be to enable training of the model.
This setup is then used to perform the full u-quark

PDF fit on two different superconducting quantum de-
vices hosted in the Quantum Research Center (QRC) of
the Technology Innovation Institute (TII).
The whole work has been realized using the Qibo

framework, which offers Qibo [28–31] as high-level
language API to write quantum computing algo-
rithms, Qibolab [32–34] as quantum control tool and
Qibocal [35–37] to perform quantum characterization
and calibration routines.
The outline is as follows. In Section I we summa-

rize the process of quantum computing with the VQC
paradigm, providing also details about the ansatz and
the PSR rule we make use of to train the model. In Sec-
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FIG. 1. The RTQEM pipeline involves training a variational quantum circuit on a noisy quantum device using a gradient
descent method enhanced with error mitigation. Specifically, the ICS algorithm is used to learn a noise map to mitigate both
the gradients and the final predictions. If the noise changes above a certain threshold, the noise map is re-learned.

tion II, we discuss the impact of noise on the training
process and provide an overview of the error mitigation
strategy we employed to counteract these effects. Finally,
we report the results of our experiments both with noisy
simulations and real superconducting qubits deployment
in Section IV.

I. METHODOLOGY

A. A snapshot of Quantum Machine Learning

In the following we are going to consider Supervised
Machine Learning problems for simplicity, but what pre-
sented here can be easily extended to other Machine
Learning (ML) paradigms in the quantum computation
context. Quantum Machine Learning (QML) arises when
using Quantum Computing (QC) tools to tackle ML
problems [26, 38, 39].

In the classical scenario, given an n-dimensional in-
put variable x, a parametric model is requested to es-
timate a target variable y, which is related to x =
(x1, . . . , xn) through some hidden law y = g(x). The
model estimations yest are then compared with some
measured ground truth data ymeas by evaluating a loss
function J(yest, ymeas), which quantifies the capability of
the model to provide an estimate of the underlying law g.
We consider the output variable y as mono-dimensional
for simplicity, but in general it can be multi-dimensional.
The variational parameters θ of the model are then op-
timized to minimize (or maximize) the loss function J ,
leading, in turn, to better predictions yest.
In Quantum Machine Learning, we translate this

paradigm to the language of quantum computing. In par-
ticular, parametric quantum gates, such as rotations, are
used to build Variational Quantum Circuits (VQC) [40],
which can be used as parametric models in the machine

learning process. Once a parametric circuit U(θ) is de-
fined, it can be applied to a prepared initial state |ψ0⟩ of
a quantum system to obtain the final state |ψf ⟩, which
is used to evaluate the expected value of an arbitrary
chosen observable O,

f(θ)O = ⟨ψ0| U†(θ)OU(θ)|ψ0⟩ . (1)

Various methods exist to embed input data into a QML
process [41–43]; in this work, we employ the re-uploading
strategy [24]. The estimates of y can be obtained by cal-
culating expected values of the form (1). Finally, the
circuit’s parameters are optimized to minimize (or maxi-
mize) a loss function J , pushing f as close as possible to
the unknown law g.

B. A variational circuit with data-reuploading

The data-reuploading [24] method is built by defining
a parameterized layer made of fundamental uploading
gates which accepts the input data x to be uploaded.
Then, the re-uploading of the variable is achieved by
building a circuit composed of a sequence of uploading
layers. Inspired by [44], we build our ansatz by defining
the following fundamental uploading gate,

L(xj |θl,j) = Rz(θ3 xj + θ4)Ry(θ1 κ(xj) + θ2) , (2)

where xj is the j-th component of the input data and
with θl,j we denote the four-parameters vector compos-
ing the gate which uploads xj at the ansatz layer l. The
information xj is uploaded twice in each L, first in the
Rz and second in the Ry through an activation function
κ(xj). To embed the n components of x into the ansatz,
we build a n-qubit circuit U based on the Hardware Effi-
cient Ansatz, where the single-qubit gates are the funda-
mental uploading gates, and entanglement is generated
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|0⟩ L(x1|θ1,1) L(x1|θl,1)

|0⟩ L(x2|θ1,2) L(x2|θl,2)
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|0⟩ L(xn|θ1,n) L(xn|θl,n)

FIG. 2. Circuit ansatz to reupload the data x with n qubits and l layers.

with CNOT gates, as shown in Fig. 2. We calculate f (1)
as the expected value of the Pauli observable σ⊗n

z on the

final state U
(
|0⟩⊗n

)
.

C. Gradient descent on hardware

Gradient-based optimizers [25, 45–47] are commonly
employed in machine learning problems, particularly
when using Neural Networks [48] (NNs) as models. In the
QML context, VQCs are utilized to construct Quantum
Neural Networks [49], which serve as quantum analogs
of classical NNs. Consequently, we are naturally led to
believe that methods based on gradient calculation could
be effective.

1. The parameter shift rule

In order to perform a gradient descent on a NISQ de-
vice we need a method that is robust to noise and ex-
ecutable on hardware. This cannot be done as in the
classical case following a back-propagation [45] of the in-
formation through the network. We would need to know
the f values during the propagation, but accessing this
information would collapse the quantum state. More-
over, standard finite-differences methods are not appli-
cable due to the shot noise when executing the circuit
a finite number of times. An alternative method is the
so called Parameter Shift Rule [27, 50–53] (PSR), which
enables the evaluation of quantum gradients directly on
the hardware [27]. Given f as introduced in (1) and con-
sidering a single parameter µ ∈ θ affecting a single gate
whose hermitian generator has at most two eigenvalues,
the PSR allows for the calculation

∂µf = r
(
f(µ+)− f(µ−)

)
, (3)

where ±r are the generator eigenvalues, µ± = µ± s and
s = −π/4r. In other words, the derivative is calculated
by executing twice the same circuit U(θ) in which the
parameter µ is shifted backward and forward of s. A
remarkable case of the PSR involves rotation gates, for
which we have r = 1/2 and s = π/2 [26].

2. Evaluating gradients of a re-uploading model

In order to perform a gradient-based optimization, we
first need to calculate the gradient of a loss function J
with respect to the variational parameters of the model.
Then, the derivatives are used to perform an optimization
step in the parameters’ space by following the steepest
direction of the gradient,

θt+1 = θt − η∇J(θi) , (4)

where η is the learning rate of the gradient descent al-
gorithm. Since our QML model is a circuit in which the
variational parameters are rotation angles, such deriva-
tives can be estimated by the PSR (3). However, even
in the simplest case, this kind of procedure can be com-
putationally expensive, since for each parameter we need
two evaluations of f , as illustrated in (3). Given a VQC
with p variational parameters, a training set size ofNdata,
and a budget of Nshots for each function evaluation, the
total computational cost amounts to 2pNshotsNdata cir-
cuit executions. This high number of evaluation is useful
for testing the effectiveness of error mitigation routines,
which can be applied to every function evaluation of the
algorithm. We followed the same optimization strategy
described in [54, 55], defining a Mean-Squared Error loss
function,

Jmse(x
i|θ) = 1

Ndata

Ndata∑
i

[
f(xi,θ)− g(xi)

]2
, (5)

where the superscript denotes the i-th variable x of the
dataset. Note that this differs from the subscripts used
so far to denote the components of the variable x.
Our total execution time is dominated by the effect of

circuit switching and network latency costs rather than
shot cost. Therefore, we prefer to reduce the number
of iterations at the expense of increasing the number of
shots per iteration. In this context, the Adam [25] opti-
mizer stands out due to its robustness when dealing with
complex parameters landscapes.

II. NOISE ON QUANTUM HARDWARE

Recognizing the impact of noise on the optimization
landscape is crucial in practical quantum computing im-
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plementations. In the presence of a general class of local
noise models, for many important ansätzes such as Hard-
ware Efficient Ansatz (HEA), the gradient decreases ex-
ponentially with the depth of the circuit d. Typically, d
scales polynomially with the number of qubits n, causing
the gradient to decrease exponentially in n. This phe-
nomenon is referred to as a Noise-Induced Barren Plateau
(NIBP) [56]. NIBPs can be seen as a consequence of the
loss function converging around the value associated with
the maximally mixed state. Furthermore, noise can cor-
rupt the loss landscape in various ways such as changing
the position of the minimum.

In order to quantify these effects, we consider a noise
model composed of local Pauli channels acting on qubit
j before and after each layer of our ansatz,

Pj(σ) = qjσ (6)

where −1 < qx, qy, qz < 1 and σ denotes the local
Pauli operators {σx, σy, σz}. The overall channel is P =⊗N

j Pj . We also include symmetric readout noise M
made of single-qubit bit-flip channels with bit-flip prob-
ability (1− qM )/2. This results in the noisy expectation
value,

fnoisy = Tr
[
σ⊗n
z (M◦P ◦ Ll ◦ · · · ◦ L1 ◦ P) (|ψ0⟩ ⟨ψ0|)

]
.

(7)
The NIBP translates into a concentration of the expec-
tation value around 0 [56],

|fnoisy| < 2qnMq
2l+2

(
1− 1

2n

)
. (8)

Certain loss functions exhibit noise resilience, i.e. their
minimum remains in the same position under the influ-
ence of certain noise models, even though its value may
change. Contrarily, our loss function (5) is not noise resis-
tant. We aim to explore the extent to which it is possible
to mitigate the noise and enhance the training process of
VQCs with non-resistant loss functions.

A. Error Mitigation

Recent research [57–62] has focused on developing
methods to define unbiased estimators of the ideal ex-
pected values leveraging the knowledge about the noise
that we can extract from the hardware. However, these
estimators are also affected by exponential loss concen-
tration, implying that NIBPs cannot be resolved with-
out requiring exponential resources through error miti-
gation [16].

In the regime where loss concentration is not severe,
it is also not straightforward for error mitigation to im-
prove the resolvability of the noisy loss landscape, thus
alleviating exponential concentration.

The variance of the error-mitigated estimators is typi-
cally higher than that of the mean estimator [63], setting

Target

Learn noise map

Training set 

Noise parameters 

FIG. 3. Importance Clifford Sampling is a learning based
error mitigation algorithm that uses a set of Clifford circuits
to learn a noise map to mitigate the expected value of a given
observable.

up a trade-off between the improvement due to bias re-
duction and the worsening caused by increased variance.
While most methods have a negative impact on resolv-
ability, linear ansatz methods [17, 19–23] show poten-
tial due to their neutral impact under global depolarizing
noise [16]. Among all of them, Importance Clifford Sam-
pling [17] stands out for its ability to handle single qubit
dependent noise, its scalability, and its resource cost.

1. Importance Clifford Sampling (ICS)

Suppose we want to estimate the expected value of an
observable O for the state ρ prepared by a quantum cir-
cuit C0. In a realistic situation we are going to obtain a
noisy expected value ⟨O⟩0noisy different from the true one

⟨O⟩0. The idea behind Importance Clifford Sampling
(ICS) is to generate a set of m training Clifford circuits

S =
{
Ci
}m

i=1
with the same circuit frame as the original

one C0. The classical computation of noiseless expected
values of Clifford circuits is efficient [64, 65]. This en-

ables us to compute the ideal expected values
{
⟨O⟩i

}m

i=1
through simulation, as well as the noisy expected values{
⟨O⟩inoisy

}m

i=1
when evaluating them on hardware.

When O is a Pauli string, the noise-free expected val-
ues will concentrate on −1, 0, 1 [64]. Furthermore, as dis-
cussed in [17], not all the Clifford circuits are error sensi-
tive. In particular, we only need circuits whose expected
values on Pauli’s are ±1. We refer to these circuits as
non-zero circuits for simplicity. Unfortunately, sampling
non-zero circuits is exponentially rare when the number
of qubits increases, thus a strategy has to be defined to
efficiently build a suitable training set. We follow the
ICS algorithm [17], in which non-zero circuits are built
by adding a layer of Pauli gates to zero circuits. These
gates can be merged with the ones following so that the
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depth does not increase.
The generated set is then used to train a model to

learn a mapping between ⟨O⟩noisy and ⟨O⟩. The struc-
ture of the model ℓ can be inspired by considering the
action of a global depolarizing channel with depolarizing
parameter λ,

⟨O⟩noisy = (1− λ)⟨O⟩+ λ

d
Tr(O) , (9)

where d = 2n denotes the dimension of the Hilbert space
and 0 < λ < 4n/(4n − 1). Focusing on Pauli strings
and allowing λ to take any value, we arrive at the phe-
nomenological error model,

⟨O⟩inoisy = (1− λiC)⟨O⟩i , (10)

from which we can calculate λiC for each circuit in the
training set. This set of depolarizing parameters, char-
acterized by the mean value λ0 = ⟨λC⟩S and standard
deviation σ, allows to define an effective depolarizing pa-
rameter for mitigating the initial circuit,

λeff = λ0 −
σ2

1− λ0
. (11)

This translates into the noise map,

ℓ
(
⟨O⟩|λeff

)
=

(1− λ0)

(1− λ0)2 + σ2
⟨O⟩noisy . (12)

The average depolarizing rate λ0 scales proportionally
with the number of gates, while the standard deviation
σ is proportional to its square root [17]. This implies that
the model performs better as the circuit depth increases.

The noise map (12) effectively handles symmetric
readout noise, but fails with asymmetric noise. For
these situations, we employ Bayesian Iterative Unfolding
(BIU) [66] to mitigate measurement errors in advance.

A schematic representation of the described algorithm
is reported in Fig. 3.

III. THE RTQEM ALGORITHM

We implement an Adam optimization mitigating both
gradients and predictions following the procedure pre-
sented in Sec. II A 1.

In a real quantum computer, small fluctuations of the
conditions over time, such as temperature, may result in
a change of the shape of the noise sufficient to deteriorate
results. Therefore, we compute a metric

D(z, ℓ(z)) = |z − ℓ(z)| (13)

at each optimization iteration, which quantifies the dis-
tance between a target noiseless expected value z and the
mitigated estimation ℓ(z). These expected values are cal-
culated over a single non-zero test circuit to maximize the
bias. If an arbitrary set threshold value εℓ is exceeded,
the noise map is relearned from scratch. A schematic
representation of the proposed procedure is reported in
Alg. 1.

Algorithm 1: RTQEM

Set Nupdate, Nepoch, k = 0 ;
Initialize VQC parameters θk, noise map ℓ ;
Define target noiseless expectation value z ;
Define metric D(z, ℓ(z)) to check ℓ reliability;

for k < Nepochs do
if D(z, ℓ(z)) > εℓ then

learn ℓk;
ℓ← ℓk;

end
compute ℓ(yest);

calculate J
[
ℓ(yest),ymeas

]
;

for p ∈ θk do
compute ℓ(∂pJ) via PSR;

end
θk+1 ← Adam(θk);

end

IV. VALIDATION

We propose two different experiments to test the
RTQEM algorithm introduced above. Firstly, in
Sec. IVA, we simulate the training of a VQC on both
a single and a multi-qubit noisy device. Whereas, in
Sec. IVB, the same procedure is deployed on a supercon-
ducting single-qubit chip. The programs to reproduce
such simulations can be found at [67].

A. Simulation

In this section, we benchmark different levels of error
mitigation by conducting both noisy and noiseless clas-
sical simulations with Nshots = 10000 shots as outlined
in Tab. I. The VQC shown in Fig. 2 is used as ansatz
and the noise is described by the noise model presented
in Section II. We first consider a static-noise scenario in
Section IVA1, while in Section IVA2 we let the noise
vary over time.

Training Noise RTQEM QEM at the end
Noiseless
Noisy
fQEM

RTQEM

TABLE I. Summary of the tested simulation configurations.

1. Static-noise scenario

The following simulations are performed using a static
local Pauli noise model where we set the following noise
parameters qx = 0.007, qy = 0.003, qz = 0.002 and qM =
0.005.
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We first consider a one-dimensional target, namely, the
u-quark Parton Distribution Function (PDF) for a fixed
energy scale Q0 with varying momentum fraction x sam-
pled from the interval [0, 1]. A logarithmic sampling is
used to improve the resolution of the x ∼ (0, 0.1) range
where the shape of the function is more rugged. The cor-
responding PDF values are provided by the NNPDF4.0
grid [68]. We address this first target by constructing
a four-layer single-qubit circuit, following the ansatz de-
picted in Fig. 2. The results, shown in Fig. 4, illustrate
that the RTQEM approach enables the training to con-
verge to the correct solution.

To avoid the u-quark PDF comfortably resting below
the bound (7) and thereby disguising the effect of the
NIBP, we opted to expand it to cover the range [0, 1]. One
might wonder whether a similar, but opposite, trick could
be employed in case that the bound intercepts the target
function. Therefore, compressing the function to make it
lie below the bound and avoid any sort of limitations on
the predictions. While this is a perfectly viable method
in theory, it is essentially pointless in practice. The com-
pression of the function, indeed, will also increase the
precision needed to resolve it, which translates in a larger
number of shots required by each prediction [16].

The noisy simulation is clearly limited by loss con-
centration (7), which caps the predictions at around
y ≃ 0.85. This limit is also noticeable in Fig. 4, where
the loss value cannot decrease below the threshold with
unmitigated training. Attempting to correct the predic-
tions post-training (f-QEM) allows access to the region
above the bound, but does not enhance the fit. This is
expected, as the noise shifts the position of the minima of
the loss function making it impossible to retrieve the true
minimum with a final rescaling pass alone. However, by
gradually cleaning up the loss function landscape during
the training, the correct minimum is recovered, and the
fit converges to the target function.

To better understand how the algorithm scales with
the number of qubits we study the problem of fitting a
multi-dimensional function. In particular, we consider

fndim(x;β) =

Ndim∑
i=1

[
cos (βixi)

i + (−1)i−1βixi
]
, (14)

where both data x and parameters β have dimension
Ndim and the index i runs over the problem dimensions.
In particular, the model parameters β are defined as
equidistant point in the range [0.5, 2.5], and they are
kept fixed during the optimization. The target fndim is
rescaled in order to occupy the range [0, 1]. We consider
Ndata values for each xi ∈ x homogeneously distributed
in the range [0, 1]. The ansatz is the Ndim-qubit circuit
of Fig. 2 with three layers.

As the dimensionality of the problem increases, and
consequently, the number of qubits, the noise-induced
bound is lower, hindering the description of the function
in a region of its domain. By applying the RTQEM al-
gorithm, we manage to achieve lower values of the loss
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FIG. 4. Estimates of u-quark PDF associated to Ndata = 50
momentum fraction values sampled logarithmically in [0, 1].
The NNPDF4.0 measures (black line) are compared with re-
sults obtained through noiseless simulation (green line), noisy
simulation (blue line), noisy simulation with mitigation ap-
plied to the final predictions (yellow line) and real-time mit-
igated noisy simulation (red line). The effective depolariz-
ing parameter λeff is 0.09 ± 0.01. The final predictions are
computed averaging on Nruns = 100 predictions calculated
for each of the Ndata points. The confidence intervals are
obtained using one standard deviation from the mean. The
bottom plot shows the loss function history for each training
scenario.

function, thereby improving the quality of the fit (see
Fig. 5). These results are confirmed by computing the
Mean Squared Error (MSE) metric,

MSE =
1

Ndata

Ndata∑
j=1

(ȳjest − yjmeas)
2 , (15)

where ȳjest is the average estimate of f(xj) over Nruns.
The MSE associated to each fit is shown in Tab. II.
Regarding the gradients, it is important to note that

there are no significant differences between the raw gra-
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FIG. 5. Predictions for the multidimensional function fndim with Ndim = 4, 6, 8 from left to right. The exact predictions
(black line) are compared with results obtained through noiseless simulation (green line), noisy simulation (blue line), noisy
simulation with mitigation applied to the final predictions (yellow line) and real-time mitigated noisy simulation (red line). The
effective depolarizing parameters λeff are 0.22± 0.02 (Ndim = 4), 0.31± 0.03 (Ndim = 6) and 0.41± 0.02 (Ndim = 8). The final
predictions are computed averaging on Nruns = 20 predictions calculated for each of the Ndata = 30 points. The confidence
intervals are obtained using one standard deviation from the mean. The bottom plot shows the loss function history for each
training scenario.

Target MSEnoiseless MSEnoisy MSEfqem MSErtqem

u PDF 0.008 0.018 0.023 0.008
cos 4d 0.003 0.043 0.140 0.003
cos 6d 0.002 0.083 0.214 0.002
cos 8d 0.001 0.118 0.360 0.004

TABLE II. Mean squared error distances between the target
functions and the VQC fitting model trained under the dif-
ferent conditions of Tab. I.

dients and the exact gradients (see Appendix A). This
means that we are in a regime where the loss concentra-
tion is not severe, and there is still room for error mitiga-
tion to improve trainability by mitigating other unwanted
effects in the landscape due to the noise.

2. Evolving-noise scenario

To study the performance of the method with noise
evolution, we consider a random change in the Pauli pa-
rameters of the noise model in each epoch. In particular,
the initial parameters vector q0 = (q0x, q

0
y, q

0
z) is moved

in its three-dimensional space following a procedure sim-
ilar to a Random Walk (RW) on a lattice. Namely, each
component qj is evolved from epoch k to epoch k + 1 as

q
(k+1)
j = qkj + rδ, (16)

where r ∼ {−1,+1} and the step length is sampled from
a normal distribution δ ∼ N (0, σδ). We refer to an evo-

lution performing N steps governed by σδ as RWN
σδ
. The

readout noise parameter is kept fixed at the value of
qM = 0.005. In this evolving scenario, when the met-
ric (13) exceeds a certain threshold εℓ, the mitigation
parameter λeff (11) is updated.

To evaluate the effect of relearning the noise on the
training process, we track the evolution of the loss func-
tion of the u-quark PDF for various values of εℓ, as shown
in Fig. 6. We aim for a reduction in the loss function to
correspond to a closer approximation to the noise-free
parameters. Therefore, we recalculate the loss function
values at each iteration using the noisy training param-
eters, but in a noiseless simulation. As the threshold de-
creases, the noise map is updated more frequently. It is
expected that a lower threshold will enhance the training
until it reaches a certain minimum value, characterized
by the standard deviation of λeff. Interestingly, even a
few updates to the noise map can lead to significantly
lower values for the loss function. For instance, the dif-
ference between the minimum values of the loss function
when updating the noise map 8 times as opposed to 93
times during a training of 100 epochs is O

(
10−3

)
. This

suggests that a minor additional classical computational
cost can significantly improve the training.
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FIG. 6. Four RTQEM training simulations sharing the
same initial conditions. The initial local Pauli parameters
q0 = (0.005, 0.005, 0.005) are evolved under a RW100

0.002. The
readout noise parameter has been kept fixed to qM = 0.005,
four layers are used with Ndata = 30 and η = 0.05. For
each training simulation a different noise threshold value was
used: εℓ = {0, 0.05, 0.1, 0.2}. As a result, λeff is re-learned
u = {93, 18, 8, 0} times, respectively. We show the loss func-
tion values computed using the training parameters at each
iteration but deployed in a noiseless scenario.

B. Training on hardware

We set up our full-stack gradient descent training on
a superconducting device hosted by the Quantum Re-
search Center (QRC) in the Technology Innovation In-
stitute (TII). The high-level algorithm is implemented
with Qibo [28–31] and then translated into pulses and
executed on the hardware through the Qibolab [32, 33]
framework (see Appendix B). The qubit calibration and
characterization have been performed using Qibocal [35,
36]. In particular, we use one qubit of Soprano, a five-
qubit chip constructed by QuantWare [69] and controlled
using Qblox [70] instruments (see Appendix C). We refer
to this device as qw5q.
The u-quark PDF for a fixed energy scale Q0 is tar-

geted using a four layer single-qubit circuit built following
the ansatz presented above. We take Ndata = 15 values
of the momentum fraction x sampled from the interval
[0, 1].

An estimate to the bound imposed by the noise is pro-
vided by the assignment fidelity of the used qubits, which
are collected in dedicated runcards describing the current
status of the QRC devices [71]. As with the simulation,
we adjust the function to span the range [0, 1].

Param Nepochs Nshots Ntrain Nparams η NumPy seed
Value 50 500 15 16 0.1 1234

TABLE III. Hyper parameters of the gradient descent on qw5q

10−4 10−3 10−2 10−1 100

x

−0.2
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0.2

0.4

0.6

0.8

1.0

u
f

(x
)

No mitigation on qw5q

RTQEM on qw5q

NNPDF4.0 measurements

Qubit’s fidelity f = 0.906

0 10 20 30 40 50

Epochs

10−2

10−1

L
os

s

No mitigation on qw5q

RTQEM on qw5q

FIG. 7. Above, estimates of Ntarget = 30 values of the u-
quark PDF obtained by training the best qubit of the qw5q

chip. The target values (black dashed line) are compared with
our predictions after an unmitigated training (blue line) and
a training with RTQEM (red line). The estimations are com-
puted averaging over Nruns = 10 predictions for each x with
the trained θbest. The same prediction sets allow to calculate
the standard deviations of the estimates, which are then used
to draw the confidence intervals. Below, loss function history
as function of the optimization epochs. The effective depo-
larizing parameter is λeff = 0.07± 0.03.

We perform a gradient descent on the better calibrated
qubit of qw5q using the parameters collected in Tab. III.
The training has been performed for both the unmiti-
gated and the RTQEM approaches. After training, we
repeat Nruns = 10 times the predictions for each one of
Ntarget = 30 target values of x sampled logarithmically
from [0, 1]. The final estimate to the average prediction
and its corresponding standard deviation are computed
out of the Nruns repetitions.

The RTQEM process leads to better compatibility
overall and, in particular, is able to overcome the bound
set by the noise represented as a black horizontal line,
as shown in Fig. 7. Indeed, the mitigated fit leads to
a smaller MSE compared to the unmitigated one, as re-
ported in Tab. IV. This proves that the RTQEM proce-
dure gives access to regions which are naturally forbidden



9

10−4 10−3 10−2 10−1 100

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
u
f

(x
)
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Train on iqm5q, exec. on qw5q
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FIG. 8. Estimates of Ntarget = 30 values of the u-quark PDF
obtained by training the better calibrated qubits of qw5q and
iqm5q, respectively with assignment fidelities fqw5q = 0.906
and fiqm5q = 0.967. The target values (black dashed line) are
compared with our RTQEM predictions obtained by training
for Nepochs = 100 on both qw5q (red line) and iqm5q (yellow
line). We also show the predictions computed deploying in
exact simulation mode the best parameters obtained through
RTQEM training on qw5q (green line). The final average and
standard deviation of the predictions are computed out of
Nruns = 20 repetition for each x using the parameters θbest

learned during training. In particular, the 1σ confidence in-
tervals are shown in the plot. The effective depolarizing pa-
rameter is λeff = 0.08± 0.02.

to the raw training.
As a second test, we push forward the RTQEM training

by performing a longer optimization. We use the same
hyper-parameters of Tab. III but set Nepochs = 100, with
the aim of finding more reliable parameters. We repeat
the optimization twice, adopting the same initial con-
ditions but changing the device. We use the aforemen-
tioned qw5q and a different five-qubit chip constructed
by IQM [72] and controlled using Zurich [73] Instruments
(see Appendix C). We refer to this device as iqm5q.

Training Predictions Config. Nepochs MSE
qw5q qw5q Noisy 50 0.0055
qw5q qw5q RTQEM 50 0.0042
qw5q qw5q RTQEM 100 0.0013
iqm5q qw5q RTQEM 100 0.0037
qw5q sim RTQEM 100 0.0016

TABLE IV. MSE values for the models trained on the hard-
ware. The column “Training” indicates the device where the
training took place, whereas the column “Predictions” speci-
fies the device where the model is deployed for testing.

If the parameters obtained through RTQEM procedure
are noise independent, we expect them to be generally
valid. Namely, the optimal parameters obtained for one

device, should lead to a valid fit when deployed to a dif-
ferent one. This is illustrated in Fig. 8, where we report
the results obtained by training individually on qw5q and
on iqm5q with the same initial conditions, and then de-
ploying the two sets of obtained parameters solely on
qw5q. The plotted estimates are computed by averaging
on Nruns = 20 repeated predictions.
Finally, to further verify that the obtained parame-

ters are indeed noise-independent, we deploy the model
obtained by training on qw5q via RTQEM on an exact
simulator (green line in Fig. 8).
We calculate the MSE value for each described ex-

periment following 15. All the results are collected in
Tab. IV, and confirm that the RTQEM training leads to
noise-indipendent modelization.

V. CONCLUSION

In this paper, we introduced a new Real-Time Quan-
tum Error Mitigation (RTQEM) routine designed to en-
hance the training process of Variational Quantum Algo-
rithms. We employed the Importance Clifford Sampling
method at each learning step to mitigate noise in both
the gradients of the loss function and the predictions.
The RTQEM algorithm effectively reduces loss corrup-
tion without exacerbating loss concentration, thereby
guiding the optimizer towards lower local minima of the
loss function. We evaluated the RTQEM procedure using
superconducting qubits and found that it improved the
fit’s consistency by surpassing the limitations imposed by
the hardware’s noise.
Our results demonstrate that the proposed algorithm

effectively trains Variational Quantum Circuit (VQC)
models in noisy environments. Specifically, if the sys-
tem’s noise remains constant or changes slowly, the noise
map requires only a few updates during training, keep-
ing the computational cost on par with the unmitigated
training process.
Notably, by mitigating noise during training, we can

derive parameters that closely approximate those of a
noise-free environment. This adaptability allows us to
deploy these parameters on a different device, even if it
is subject to different noise. This capability paves the
way for the potential integration of federated learning
with quantum processors.
The extension of this approach to other QML pipelines

that use expected values as predictors, as well as to other
QEM methods, presents an intriguing avenue for future
research. For instance, it can be applied to VQC models
for supervised, unsupervised, and reinforcement learning
scenarios in noisy environments.
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Appendix A: Gradients evolution

During the VQC training, the noisy gradients are of the same magnitude as the exact ones, indicating that we are
in a regime where exponential concentration is not severe, as shown in Fig. 9.
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FIG. 9. Average gradients as function of the optimization epochs. A noiseless simulation (green lines) is compared with
unmitigated noisy simulation (blue lines) and RTQEM (red lines) for Ndim = 4, 6, 8 from the left to the right plots.

Appendix B: Native gates

The native gates of the QRC superconducting quantum processors are RX(±π/2), RZ(θ), and CZ gates [71]. They
constitute a universal quantum gate set. These gates are compiled into microwave pulses following a specific set of
rules [32]. For a circuit to be executable on hardware, it needs to be decomposed into these native gates. For instance,
a general single-qubit unitary beaks into a sequence of five native gates,

U(θ, ϕ, λ) = RZ(ϕ)RX(−π/2)RZ(θ)RX(π/2)RZ(λ) . (A1)

Appendix C: Qubits’ parameters

Relevant parameters of the qubits utilized in this study are presented in Tab. V, including:

1. the qubit transition frequency f01 = ωq/2π from |0⟩ to |1⟩;
2. the bare resonator frequency fres = ωres/2π;
3. the readout frequency fread (coupled resonator frequency);
4. the energy relaxation time T1;
5. the dephasing time T2;
6. the time τg required to execute a single RX gate;

In the same table we also show the assignment fidelity f = 1−[P (1|0)−P (0|1)]/2, where P (i|j) is a misclassification
metric, counting the states prepared as |j⟩ but measured as |i⟩. This value is primarily due to the calibration status
of the devices, rather than construction limitations.

Qubit f01(GHz) fres(GHz) fread(GHz) T1(µs) T2(µs) τg(ns) f
qubit 4, iqm5q 4.0978 5.5047 5.5150 9.891 3.700 40 0.967
qubit 3, qw5q 6.7599 7.8000 7.8028 2.776 1.139 40 0.906

TABLE V. Parameters of the iqm5q and qw5q qubits employed in this study.
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