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Abstract. The outcome of percolation models and other approaches shows that the
fragmentation of nuclei is possibly characterized by a phase transition whose effects
are smoothed by the finite size of the systems. We review and discuss different
methods aimed to extract critical exponents related to physical observables which

get singular at the critical point in the corresponding infinite system.
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1. Introduction

The success of percolation models [1-3] and recent phase space descriptions of
fragmenting nuclei [4] raises the question of the existence of a phase transition which
may govern the onset of the fragmentation regime induced by means of energetic
nucleon-nucleus or nucleus-nucleus collisions. Whatever the type of phase transition
which may be at work, its effects are of course smoothed by the small size of nuclei.
Hence finite size effects may be strong and make it a priori difficult to extract
associated critical exponents from the knowledge of physical observables related to

fragment size distributions [1].

Here we present attempts to work out the critical exponents for percolation
models characterized by a bond probability p. In practice, the methods may also be
applied in the framework of other approaches like the phase space descriptions of
ref. [4]. The paper is divided into two parts. We present and discuss first methods
which from our experience are not reliable or even do not work. We do this in order
to show the pitfalls and difficulties related to these methods. In a second step we
present a reliable and successful method which allows to extract critical exponents

characterizing the infinite case even if the considered systems are very small.

2. Unsuccessful methods

We tried to work out the value of the exponents § and v [1] which characterize
the behaviour of Amax(p) = A — my(p) a (p — pc)? and ma(p) @ | p—pc |77 in the
infinite system close to the critical bond probability p. [7]. Here m; and m2 are the
expressions of the first and second moment of the fragment size distribution [1], A
is the total number of particles and Apax the average size of the largest fragment

in events with probability p.

2a. Method proposed by Elliott et al. [5]

In order to get v from the knowledge of the second moment m2(p) one chooses
intervals of p on the left and right hand side of the maximum of m2(p) which
corresponds to p in the infinite system. These intervals are chosen following the
prescriptions of ref. [5] and correspond to values of p not too close to p. where
the curvature of m, for finite systems is no longer in agreement whith the singular
behaviour of this quantity in the infinite system. By matching the right and left
contributions one gets p. and the slopes of In m; as a function of In | p — pc | allow

in principle to fix 7.



We worked out p. and 7 for systems of different sizes corresponding to cubes
of size A in 3-dimensional space. Typical results for different p-interval sizes Ap, =
| p— pc |¢ on the left and Ap, =| p — p. |» on the right side of the maximum p. are
shown in Table 1. For large systems (4 = 63%) we obtained p. ~ 0.25 — 0.26 and
v ~ 1.85 — 2.0. In the case of small systems (A = 62 {.i.) the dependence of p. and
v on the choice of the intervals gets strong and we were unable to reproduce the
results of ref. [5], the values of v are systematically larger than those found there
(y ~ 1.75).

In order to analyze experimental results, p should be replaced by the fragment
multiplicity m [1]. Such an analysis has been performed recently. Incidentally it
should be realised that there exists no one-to-one correspondence between p and m
and second, the relationship between p and some average m is non linear, particu-
larly in the vicinity of p ~ p.. Hence ma(m) ~| m —m, ["; for m ~ m., maximum
of my and, in principle, ¥ # 7. We tried to work out m, and 5. For 4 = 63°
me ~ 0.2634 and ¥ ~ 2.15. Depending on the choice of the left and right hand side
intervals in m, one observes changes in m. and sizable variations in ¥ which can go
down to 1.98. For A = 62 ¥ lies between 1.5 and 1.8 depending on the choice of the

intervals.

2b. The slope method

We used also the correlation between In Ayax(p) and In ma/m; where Anax(p)
has been defined above [1]. The graph shows two branches with an extremum and
the slope of the lower branch is given by A = 1 + 8/y. We tried to extract /v
for systems of different sizes 4 = 63%,6%,5% and 43. We obtained respectively
A =1.115,1.39,1.44 and 1.53. For 4 = 63% X is smaller then the slope expected for
the infinite system, 1.25. In a second step we have extracted 3 from the behaviour
of Amax(p) in the vicinity of p., see above. The same procedure allows to get E
corresponding to Agax(m) a | m —m, Iﬁ It comes out that 8(8) depends very
sensitively on the exact location of the maximum p.(m.). For example, 0.38 <
B < 0.45if 0.25 < p. < 0.254 and A4 = 63°. The problem gets worse when A
is small since p.(m.) is more and more difficult to locate because of the shallow
and smooth behaviour of moments m;. We find for instance 0.256 < 5 < 0.469
when 0.208 < m. < 0.277 for A = 63. The results combined with the strong size
dependence of A makes it quite impossible to extract reliable values of vy (%). For
A = 6% we find 0.656 < ¥ < 1.228.



2c. Padé approzimants

We worked out a third method in order to determine 7. Starting from
In my a—~In | p—p. | one can formally develop the log expression for p ~ p.. This
leads to an infinite diverging series. Following an idea developped in ref. [7], one
can construct the [n, m] Padé approximants to this series, the ratio of polynomials
of order n and m in the numerator and the denominator. We first checked that
all approximants with n,m > 2 reproduce very well In m; for p ~ p.. In a second

step we worked out, by means of MAPLE the algebralc expressions of the Padé
approximants [n,m] ln my(p Z b (C, pe,Y) p'/ Z ¢i(C,pe,7) p* corresponding

to mo(p) ~C | p—pc |77. We then used numemcal values of my(p) obtained from
percolation simulations in order to determine C,p, and + from a set of 102 — 103
values of p by means of a least square fit procedure. In practice we used essentially
the [2,2] approximant. Higher approximants give similar results. If we keep C,p.
and v a priori unconstrained we find, for decreasing intervals of values of p on the
left side of p.,0.15 < p < 0.25 to 0.24 < p < 0.25 and 4 = 633, values of p,
which are too small and decreasing (from 0.2265 to 0.2218) and also decreasing
values of 4 (from 1.19 to 1.02). If one constrains arbitrarily ¥ to lie in a fixed
interval, say (1.5 — 2.5), p. in [0.2,0.4] one finds, for 4 = 63° p. ~ 0.23 — 0.24 and
v ~ 1.5 —1.6. In all cases y? tests lie between 1 and 10 and decrease with the
size of the intervals Ap. We applied this method also to small systems, A = 63.
For an unconstrained choice of parameters and decreasing intervals p. decreases
from unreasonable values (0.4 — 0.5) for p in [0.1 — 0.225] to p. ~ 0.226 for p in
[0.235 — 0.24] and ~ decreases at the same time from 2.8 to 1.3. Typical results are
shown in Table 2. These inconsistent results show that this third method is not
working either. Other attempts to fix v [8] failed in similar ways. Hence it seemed
to us that an essential ingredient was missing in the procedures which were used up

to now. An improved method which solves the problem is developped below.

3. Introduction of corrections and reliable approach to the determination

of critical exponents

In the former section we tried to fix critical exponents from finite size systems
using the expressions of physical observables which correspond to the description
of the corresponding infinite system. In fact, doing this, we neglected the fact
that we deal with finite systems and should take care of this fact on the physical
observables. We tried to introduce these effects by postulating that [7] the fragment
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size distribution n;(p) can be well reproduced for p ~ p. by an expression of the

form

ni(p) =177 f((p — pc)1”) (1)

where 7 is the power law index at p = p., o a further parameter and f a smooth

function which verifies f (0) = 1. Using this expression one can write moments

Amax

mi(p) = z i* ni(p)

=1

Amax
=2 T~ p)i%) (2
=1
In the sequel we shall use this expression in order to fix exponents v and 3 for

systems of all sizes.

3a. The method

We start from (1) and fix ppax as the maximum of ma(p) which is obtained
from numerical calculations. From the expression of n;(pmax) we read off the value
of 7, in the interval I of : where n; follows an exact power law (recall that finite
size effects distort this power law behaviour for large values of 7). The exponent
7 could also be obtained from the plot of ln m3/m; vs. In my/m,, see ref. [1].
We then construct f;, from the same interval I of values of : and varying o over a
given interval of values around o =~ 0.5 in such a way that the corresponding f!s
coincide, i.e. f; behaves like a universal function of z = (p — Pmax)2” for i in I. A
more rigorous procedure would consist in fixing ¢ by means of a least square fit.
We noticed that in every case we considered the fit procedure is not very sensitive
to o, see below. Once we know the “universal” function f(z;) = ni(p)/ni(Pmax ),

z; = (P — Pmax )%’ We construct the moments from the analytical expressions

A-1

mk(p) = Z *TTf (=) (3)

1=1

From the graph of m(p) as a function of p we read p. as the maximum of mg(p).
This quantity differs from the numerically determined ppnax above. It is smaller than
the former quantity, getting closer to the p. which corresponds to the location of the
singularity of mk(p) (k > 2) in the infinite system. Finally we use the m;'s given by
(3) in order to determine v (for k¥ = 2) and 3 (for k = 1; Amax = A—mi(p), m1(p) ~
C (p — pc)?). This is done by means of the method developped by Elliott et al. [5],
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i.e. by choosing intervals of p on the left or (and) right side of p. and fixing vy
(resp. B) from the slope of In mo(p) (resp. In Amax) represented as a function of
In | p—pe |- It comes out that this procedure leads to consistently and well defined
values of v and A for systems of any size. Contrary to the case presented in section
2a, the results are largely insensitive to the choice of the intervals, as long as p does
not enter the region close to p. which corresponds to a change of curvature of m(p)

due to the finite size of the system.

3b. Application of the method to the determination of v and 3

Here we present results which are obtained by implementing the method des-
cribed above. We considered systems of different sizes. For all of them we obtained
exponents which are reliable and close to the known values for the infinite system.
Here we discuss the extreme case L = 43, As we saw in section 2, the smaller the
system the more it gets difficult to extract the exponents. Following the method
of sect. 3a we read pmax from the numerically determined ma(p),0.303 < Pmax <
0.3135. We did not work out o from an explicit fit of f (zi) but chose it to lie in the
interval 0.50 < o < 0.55. Such a procedure could of course easily be implemented
and it would fix o to a definite value. Here we left o as an open parameter in
order to test the sensitivity of f(z:) to variations of this parameter. As already
mentioned, it comes out that f (z) is not very sensitive to o. In a further step we
fixed 7 as the slope of In n;(p) vs. Ini in the interval of mass where this function is

linear. This is the case for clusters of intermediate size. We find 7 >~ 2.05, somewhat

lower than the value expected for the infinite system.

From the knowledge of o and T we determined the “yniversal” function f(z;)
shown in Fig. 1. This function is easily fitted by a gaussian in the neighbourhood
of its maximum. Then we constructed the analytical expression of ma(p) from (2)
which is represented in Fig. 2. The actual maximum lies at 0.286 < p. < 0.290,
somewhat lower than pmax. Finally the prescription of Elliott et al. [5] is used in
the interval of values of i where In my(p) is a linear function of | p — p |, see Fig.
3. We obtained perfect straight lines with no fluctuations, on the left as well as on
the right side of p.. The slope of this curve gives v and comes out to be the same
on both sides of p.. We found v = 1.74 for o = 0.55 and v = 1.796 for o = 0.52.
Furthermore these results are of course insensitive to the choice of the intervals
| p — pc |, as long as these intervals are chosen in the region of the straight line
behaviour shown in Fig. 3, 0.16 < p < 0.20. Finally Fig. 4 shows the behaviour
of In Amax(p) vs. In(p — pc) where p lies on the right hand side of p.. Here too
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we obtain a perfect straight line with no ﬂuctﬁations for 0.39 < p < 0.47. For the
example shown one obtains 3 ~ 0.438. It varies, for 0.303 < pmax < 0.3135 and

0.52 < o < 0.55 between 3 = 0.385 and 3 = 0.455. The precision with which v and
B are determined is of the order of +0.05 for the case L = 43,

The same type of calculations has been repeated for systems of size L = 63. The
conclusions are the same if one uses the same procedure as above. Typical values
of 7 lie between 1.7 and 1.8 and s around 0.4. Results are stable with respect to
the choice of intervals in which In m, behaves linearly without any fluctuation, like

it is seen for L = 43 in Figs. 3 and 4.

3c. Ezponents related to multiplicities

We have also used the method of section 3b in order to determine the exponents
5 and 8 which define In ma(m) aln |m — m. I_; and In Apax(m) aln|m —m, |E
at the critical multiplicity m. from finite systems. It is interesting to work out
these exponents since they can in principle be obtained from the experiment (6].
We constructed and obtained the “universal” function f((m —me) z';) in the same
way as above, see Fig. 4. From the knowledge of f we constructed ma(m) and
my(m) in order to get ¥ and 3. Typical results for L = 63 give & = 0.45 5 ~[ 1.95
and 8 = 0.36. Hence ¥ and 3 are somewhat different from v and 3 calculated with
p which is not surprising in view of the non linear relations between p and m, see

above.

4. Conclusions

We presented and discussed several methods which allow in principle to extract
critical exponents from observables related to finite systems in the framework of
bond percolation. These exponents are interesting quantities which may be useful
in order to characterize the criticality of nuclear fragmentation processes. From
our experience this is not an easy task because nuclei are small systems. Several

methods presented in section 2 are unreliable and lead to inconclusive results.

In section 3 we worked out a method which takes account of finite size effects in
the vicinity of the critical point corresponding to the infinite system into account. It
involves not only the exponents v and § related to the second moment mq and Apax
but also the exponent 7 and the coefficient ¢. This method can be further improved
as far as the determination of the coefficients o and 7 are concerned. Numerical tests

show that our procedure is able to give reliable exponents even if one works with
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systems as small as 4°. It works in the framework of bond percolation models, as
well if one works with the bond probability p as with the experimentally observable

fragment multiplicity m.

It is now tempting to use this method in order to investigate the outcome
of the phase space approach to fragmentation worked out in ref. [4]. Since the
behaviour of my and Anax are very close if not identical to those obtained with
bond percolation models we expect that the exponents will come out to be very
close to those obtained in the percolation framework. Last but not least, the present
procedure can be applied to the analysis of experimental fragment size distributions
like those analyzed in ref. [6] and hopefully those from future experiments in order to
fix the precise nature of a possibly existing phase transition in nuclear fragmentation

at high energy.
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Table 1 : Behaviour of p. and v as a function of the system size and the choice
of intervals in p (see text). The lower and upper boundary of Ap; and
Ap- respectively are given in columns 2 and 3. The quantities x7 and x?2
which give an appreciation of the quality of the fit correspond to intervals
on the left and right hand side of p. respectively.

L Ape Ap, Pe v | xi | x}

63 0.01 — 0.04 0.01 - 0.09 0.255 | 1.97 ) 12.8
63 | 0.015-0.03 0.015—-0.06 | 0.254 | 1.93 1.6 1.5
63 | 0.015—-0.05 | 0.015-0.035 { 0.254 | 1.865 | 4.2 1.3

6 | 0.068—0.135 | 0.068 —0.127 | 0.346 | 1.935 | 1.82 | 1.06
6 | 0.078 —0.145 | 0.078 —0.137 | 0.344 | 2.025 | 1.52 | 1.03
6 | 0.058-0.125 | 0.058 —0.117 | 0.352 | 1.825 | 2.95 | 1.07

Table 2 : Determination of C,p. and v as a function of the system size and the
choice of intervals in p (see text). Ap is the size of the interval in p. X2
gives an appreciation of the quality of the fits.

L Ap C Pe v x?
63 | 0.08 | 0.51 x 10° | 0.2256 | 1.16 | 2713/898
: { 63 | 0.05 | 0.75 x 10° | 0.2218 | 1.017 | 105/98
63 | 0.04 | 0.19x10° | 0232 | 1.5 | 2970/398
P 63 | 0.02 | 0.187 x 10° | 0.241 | 1.6 | 303/198
6 | 0.08 39 0.4835 | 2.31 36/38
) 6 | 0.04 56.44 0.4 1.6 15/18

a) unconstrained calculations (see text)

b) constrained calculations (see text)

c) unconstrained calculations (see text)



Figure caption

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4 :

Fig. 5:

The “universal” function f (z;) obtained from n;(p) for values of ¢ in which
In n;(p) shows a straight line behaviour as a function of In i (fragments
of intermediate size). The full line corresponds to a gaussian fit of f (z;).

The system size is L = 4. See text.

Representation of the analytical expression of ma(p) given by (2) for L =
43. The exponent 7 = 2.05, the parameter 0 = 0.52 and f (2;) have been
determined as explained in the text. The arrow shows the location of
pe = 0.285.

In my(p) as a function of In | p. — p | for L = 43. The slope gives —7. See

explanations in the text.

In Amax(p) as a function of In(p — p.), p > pe for L = 4%. The slope gives

B. See explanations in the text.

The “universal” function f (z;) obtained from n;(m) with the same proce-

dure as in Fig. 1. Here the system size is L = 63.
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