
TIF-UNIMI-2023-18, CERN-TH-2023-180

Qibosoq: an open-source framework for quantum circuit RFSoC programming

Rodolfo Carobene,1, 2, 3 Alessandro Candido,4, 5 Javier Serrano,3, 6 Alvaro

Orgaz-Fuertes,3 Andrea Giachero,1, 2, 7 and Stefano Carrazza5, 4, 3

1Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italy.
2INFN - Sezione di Milano Bicocca, I-20126 Milano, Italy.

3Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.
4TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy.

5CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.
6Departament de Telecomunicació i Enginyeria de Sistemes, Universitat Autonoma de Barcelona, ES-08193 Barcelona, Spain

7Bicocca Quantum Technologies (BiQuTe) Centre, I-20126 Milano, Italy.

We present Qibosoq, an open-source server-side software package designed for radio frequency sys-

tem on chip (RFSoC) for executing arbitrary pulse sequences on self-hosted quantum processing units.

Qibosoq bridges the RFSoC firmware provided by Qick, a Quantum Instrumentation Control Kit, with

Qibo, a quantum computing middleware framework. It simplifies the work of experimentalists and de-

velopers by handling the intricate aspects of client-server communication protocols, implementing tests

and validation procedures. The client-side integration is achieved with dedicated drivers implemented

in Qibolab, the specialized software module of Qibo for quantum hardware control. Therefore, this

setup provides a seamless mechanism to deploy circuit-based algorithms on custom self-hosted quan-

tum hardware platforms controlled by RFSoC electronics. We begin by providing an overview of the

software package’s components. We then illustrate control setup examples for superconducting qubits

platforms. Lastly, we share positive outcomes associated with RFSoC performance and circuit-based

algorithms.

CONTENTS

I. Introduction 1

II. Methodology 2

A. The QICK project 2

B. Networking 3

C. Qibosoq layout 4

D. Serialization and communication protocol 5

E. Features and limitations 5

III. Results 6

A. Cross-platform benchmark 6

B. Calibration experiments 8

IV. Outlook 9

Acknowledgments 9

References 9

I. INTRODUCTION

The control of superconducting qubits and other quan-

tum technologies requires instruments and software drivers

for the generation and modulation of arbitrary pulses in the

microwave radio frequency range [1]. With qubits being

extremely delicate systems, reliable and efficient control

electronics are mandatory for the successful operation of

quantum hardware [2].

Nowadays, one of the major challenges of research in-

stitutions is to identify the proper set of instruments with

the desired specifications and performance for quantum

technologies. In the last decade, new proprietary com-

mercial products dedicated to quantum computing have

been released, some examples include Qblox [3], Quan-

tum Machines [4], Zurich Instruments [5] among others.

Despite the interest from manufacturers in commercializ-

ing expensive ready-to-run solutions, experimental labora-

tories still have to face the issue of acquiring instruments

which are in continuous improvement in terms of firmware

and software, therefore customers might participate indi-

rectly as co-developer by providing feedback, testing and

waiting for improvements. This situation is not ideal be-

cause it increases the required manpower and time of a

research team. Therefore, with commercial instruments

that did not yet reach fully stability, there is still an ad-

vantage in looking into lower-level electronics and open

firmwares/softwares for qubit control, in order to provide

more accessible tools to the research community.

Radio Frequency System on Chip [6–9] (RFSoC) FPGA

(Field Programmable Gate Arrays) is a low-cost hardware

alternative which provides flexible development of firmware

and software related to quantum technologies. The re-

search community has already achieved open-firmware for

quantum applications through the Qick (Quantum Instru-

ment Control Kit) project [10], that enables the use of

RFSoCs to generate the sequences of pulses required for

controlling and reading out qubits. Moreover, Qick also

provides a higher-level Python library that eases the exe-

ar
X

iv
:2

31
0.

05
85

1v
2 

 [
qu

an
t-

ph
] 

 1
2 

O
ct

 2
02

3



2

re
m

o
te

 c
lie

n
t

optional softwares

o
n

 b
o

a
rd

s
e

rve
r

FIG. 1. Deployment pipeline from Qibo to the quantum pro-
cessing unit (QPU). Qibosoq can also be used as a standalone
server library, the objects in the dashed area are optional and
only required to connect Qick and Qibosoq with Qibo.

cution of pulses.

In this manuscript, we present for the first time

Qibosoq [11], an open-source software package which un-

locks Qick’s potential to execute quantum algorithms on

self-hosted quantum hardware platforms through Qibo, a

quantum computing framework [12–15] and its hardware

module Qibolab [16]. Qibosoq provides a dedicated appli-

cation programming interface (API) for sending arbitrary

pulses sequences to the Qick firmware. Qibosoq has both

a server component, running on the RFSoC along with

Qick, and a remote client that can be attached to Qibolab

or potentially other higher-level softwares. In Figure 1 we

show a schematic view of the software stack from the

quantum processing unit (QPU) to Qibo. The full pipeline

is required for the execution of quantum circuit algorithms.

The user can also use directly Qibolab for setting up ex-

periments related to pulse generation. The stack is de-

signed in a modular way, therefore Qibosoq can also be

used as a standalone server application which runs on RF-

SoC FPGA boards opening the possibility to interface Qick

with multiple experimental configurations.

The paper’s structure is as follows. In Section II we de-

scribe a detailed overview of the Qibosoq library for version

0.1.0. In Section III we show performance benchmark re-

sults and example results of calibration experiments. Con-

cluding our study, we provide a summary and outline future

development directions in Section IV.

II. METHODOLOGY

In this section, we will provide a brief overview of the

current status of the Qick project. We will then delve into

the specifics of Qibosoq, including its internal layout and

the comprehensive set of supported features.

A. The QICK project

The Qick project was introduced in 2022, providing an

open source qubit controller based on the Zynq Ultra-

Scale+ Xilinx ZCU111 [17] evaluation board, supporting

direct radio frequency (RF) synthesis up to 6 GHz via

the XCZU28DR RFSoC. It consists of a custom FPGA

firmware and a Python library for coding experiments.

The firmware enables the use of the RFSoC’s digital-

to-analog converters (DACs) as arbitrary waveform gener-

ators for RF pulses and facilitates fast and precise acqui-

sitions through the analog-to-digital converters (ADCs).

Additionally, it features a custom timed-processor (tPro-

cessor) that allows users to program sequences of timed

pulses and loops using an assembly-like language.

Since its initial presentation, the Qick firmware has un-

dergone several updates and now supports the evaluation

boards RFSoC4x2 [18] and ZCU216 [19] as well, mounting

respectively the XCZU48DR and XCZU49DR chip. New

firmware versions have been developed with support for

multiplexing, enabling readouts on different qubits coupled

to the same line using the same DAC and ADC. Moreover,

the team is still exploring new functionalities, including res-

onator simulators on the FPGA.

The role of the software side of Qick is to eliminate the

need for writing experiments directly in the tProcessor lan-

guage. Instead, it provides a more user-friendly approach

by allowing users to write experiments in the Python pro-

gramming language It accomplishes this by offering helper

functions and program templates that streamline the cod-

ing experience for users, while still leveraging the capabili-

ties of the tProcessor.

Qick is currently used in different labs around the world,

with application in different technologies such as supercon-

ducting qubit control, entangled photon pair generation,

and SNSPD (Superconducting Nanowire Single-Photon

Detectors) readout. Several experiments have been al-

ready published using the Qick to control superconducting

quantum hardware [16, 20–24].

The introduction of Qick has already proven to be ben-

eficial for researchers in developing custom solutions for

qubit control. However, from a usability perspective, there

are still limitations. For example, to fully utilize the tPro-

cessor’s functionalities, users are required to write low-level

code, even when using the Python API. This entails man-

aging memory, registers, and other low-level aspects, which

can be cumbersome and error-prone for users. Moreover,

Qick operates at a pulse-level abstraction, and while this

makes it a powerful tool for controlling quantum systems

and executing pulse-based experiments, it is not directly

suitable for quantum computing applications that rely on

gate-based circuits.

In this context, Qibosoq plays an important role by lever-



3

aging the existing Qick software and firmware to simplify

the coding of quantum computing experiments in the tPro-

cessor language. It offers a more user-friendly interface, al-

lowing researchers to focus on their experiments, abstract-

ing away the low-level details of the tProcessor. The ex-

periments defined are still just based on pulses, but since

Qibosoq is natively integrated with the Qibo framework,

performing circuit-based experiments become straightfor-

ward through Qibolab. Moreover, Qick becomes also con-

nected with Qibocal [25] that enables simplified and auto-

mated qubit calibration. Lastly, it is possible to use directly

Qibo to execute algorithms, that are first converted into

pulses by Qibolab and then executed on the RFSoC us-

ing Qibosoq. Overall, the connection between Qibosoq

and Qibo extends the capabilities of Qick, enabling users

to work at both the pulse-level with additional tools and

gate-level abstractions.

B. Networking

The boards supported by Qick share a common archi-

tecture, that includes an on-board CPU, beyond the ac-

tual FPGA device. This design makes them independent,

not requiring a further processor to execute applications.

Qick itself is organized to run on this embedded processors,

based on Pynq [26] structure.

However, the typical QPU user will not have direct ac-

cess to the board, writing or loading its software there, but

the access will be granted through a network. For this rea-

son, since Qibosoq is already operating at a higher level

than Qick, it is worth to take into account the networking

part, controlling the communication between the board and

the end user, making it as simple as possible, while flexible

enough to support many different kinds of applications.

The communication layer can happen at different levels,

e.g. it could transfer entire executables and run them on-

board or transmit just minimal set of instructions. This

might be advantageous to allow lower level access to the

user, thus being free to access primitives from the pro-

gramming language and Qick library. But this is not the

typical use case, since most of the QPU operations share

a common layout.

Recognizing the common elements allows us to factorize

them out from the multiple applications into a single library,

reducing duplication and simplifying the applications devel-

opment. Furthermore, restricting the applications’ degrees

of freedom reduces the amount of information that has to

be transferred on the network. These considerations led

the design of Qibosoq and its own internal language for

experiments description.

In this matter, there are other two considerations that

is worth taking into account. One is related to the avail-

able on-board CPUs, the other to a partial current Qick

limitation.

When taking into account where to run the application

bulk, the nature of the application itself has to be exam-

ined. Some applications require to run just QPU experi-

ments and collect their data, for further elaboration later

on. This kind of application is QPU-bound, and it has

very limited requirements in terms of classical processing.

However, more hybrid applications are also possible: a typ-

ical example being a Quantum Machine Learning (QML)

with classical optimization, where the QPU usage is inter-

leaved with classical computation. When coming to hybrid

applications there are two competing factors: latency and

performances. Limiting possible applications to run on the

on-board CPUs it would not scale, i.e. it would not allow

to keep good performances for increasingly larger problems

(as compared to the time required for execution on other

commonly available hardware), becoming soon the main

bottleneck. On the other hand, off-loading the computa-

tion to a separate machine introduces

communication latency during the application execution.

The chosen trade-off in Qibosoq values more the potential

application scaling, giving it the flexibility to support arbi-

trary kinds of hybrid applications, at the expense of time

performances. This takes into account the current limited

performances of the on-board CPUs. For instance, the Xil-

inx [27] boards feature ARM Cortex-A53 processors, which

are considerably slower even than processors found in most

modern laptops. In future, different type of boards might

become available, and they could be developed having in

mind quantum hybrid applications. Or the communication

with an external processors might improve, not relying on

a LAN but making use of local buses, like Peripheral Com-

ponent Interconnect (PCI). Qibosoq approach is easily ex-

tendable to this improved scenarios, in which the same (or

similar) internal language could be maintained, just acting

on the communication layer implementation.

Instead, the second consideration is purely technical:

each experiment in Qick requires a certain common ini-

tialization. Repeating this initialization has two main draw-

backs, since on the one side it requires to pay every time

the performance cost, and on the other it resets the ADCs

and DACs clocks, thereby introducing a random phase be-

tween them, and consequently loosing phase coherence

between experiments. This phase coherence is critical in

quantum computing applications as it allows for qubit cal-

ibration to be maintained between executions, eliminating

the need of a partial recalibrating every run. Because of

this, it is necessary to keep a Qick instance alive between

multiple user connections. This limitation requires to have

at least a minimal server running on board. While Qick

already provides a way of solving this problem, leveraging

the Pyro4 library that is used to send the required objects

through a network, it is still designed as an on-board soft-



4

ware and the integration is not straightforward. Qibosoq

is built as an alternative to this solution to make it easier

to control Qick remotely, while also simplifying its control

and integrating it with Qibo. In this sense, Qibosoq is

just an extension of Qick, offering a higher level interface,

preferable for the end user applications development.

It is relevant to note that, despite having discussed of

user applications until here, a Qibosoq user might also

be a higher level library, dealing with some kind of task

involving QPU execution. Qibolab and Qibocal are two

examples of this layout, and they showcase the flexibility of

Qibosoq, to support arbitrary execution through an RFSoC

controller. In particular, Qibolab also allows the execution

of arbitrary circuits, described in the Qibo language, and

shows how it is possible to deal with the transpilation and

experiment preparation on the Qibosoq client side, making

use of arbitrary classical resources. Instead, Qibocal is a

perfect example of how multiple clients can share the same

server, since its calibration routines are all potentially in-

dependent, and being executed as fully separate programs.

The only requirement to interface with the Qibosoq server

is to describe the final QPU execution using Qibosoq prim-

itives, and finally establish a connection to the server.

C. Qibosoq layout

Qibosoq exposes various tools and abstractions to the

user: the programs, representing Qick programs, and

eventually taking care of the experiment compilation into

the tProcessor language, the components, high-level

structures used in the programs construction, the server

implementation, and client utilities, to manage the com-

munication.

The programs bridge the gap between the high-level

interfaces (components) and the low-level execution on

quantum hardware. Eventually, only two distinct programs

are directly used, but the full hierarchy (presented in Fig-

ure 2) also includes intermediate abstractions. Considering

all layers, the defined programs are:

• the abstract base program, that contains functions

shared among all possible experiments and execu-

tions. It serves as the foundation for all the other

Qibosoq programs;

• the abstract flux program, that collects the addi-

tional elements required for controlling flux-tunable

qubits. In addition to the functionalities defined in

base, it includes support for bias voltages and fast

DC (direct current) pulses;

• the sequences and sweepers programs that contain

the different elements used, respectively, in the exe-

cution of fixed parameters pulse sequences and real-

Base

Flux

Sweepers Sequences

FIG. 2. Hierarchy in the programs submodule

time sweeps. They inherit all the functionalities de-

fined in base and flux, while also being specific imple-

mentations of Qick classes: the AveragerProgram

and the NDAveragerProgram.

With this set of programs it is possible to define a large

variety of experiments. Indeed, the number of drive pulses,

of readouts and flux pulses, is only limited by the on-board

available memory. And various acquisition modes are avail-

able for all the combinations of pulses. Moreover, using

sweepers it is possible to speed up real experiments, tak-

ing the best out of the tProcessor speed.

The components play the crucial role of establishing a

common language for communication, easing the imple-

mentation of a Qibosoq client in Qibolab or by other par-

ties. The main elements defined within the components

submodule include:

• the Config object that contains essential general in-

formation required for executions. This includes the

number of software and hardware repetitions, delay

between repetitions (to ensure qubit relaxation), and

whether to average the results among repetitions or

not;

• the Pulse base object that serves as the foundation

for different implemented pulse shapes. Rectangu-

lar, Gaussian and DRAG [28] pulses are natively sup-

ported, as well as custom waveform shapes defined

by their ”in-phase“ and ”quadrature“ (IQ) [29, 30]

values;

• the Qubit object that holds information about any

necessary bias required for operating it;

• the Sweeper and Parameter objects that are used

to describe real-time on-hardware scans.

The last two fundamental elements are the client and

the server. The client is composed of a set of tools used to



5

Communication 
Protocol

Client

1. Prepare and serialize 
commands

2. Send commands size

4. Send serialized commands

8. Receive results

Server

3. Receive commands size

5. Receive commands and
de-serialize

6. Execute commands

7. Send the results

FIG. 3. Schematic of the communication protocol.

connect to the server, convert components into a serialized

form, and send them following the Qibosoq communica-

tion protocol. The server implements the on-board server,

continuously listening for connections, and executing re-

ceived instructions by initializing and running the required

programs on the quantum hardware.

More details on the communication protocol will be given

in the next section.

D. Serialization and communication protocol

To run an experiment, users in the client define instruc-

tions using Qibosoq components, describing the experi-

ment to be executed. These instructions are then sent to

the server using the Transmission Control Protocol (TCP)

for communication. TCP was chosen for its reliability [31],

since it ensures data integrity, preventing any loss during

transmission. Additionally, its session-based protocol suits

Qibosoq’s requirements by disallowing multiple concurrent

executions, ensuring smooth and well-controlled communi-

cation between the server and potentially multiple clients.

While the server is composed only of Qibosoq code, the

client can be part of very different frameworks or even be

just a standalone script, as long as it sends to the server

the expected commands in the expected format, Qibosoq

will work properly. Through the client module, Qibosoq

offers some helpers to make following the communication

protocol easier.

The Qibosoq communication protocol is schematically

presented in Figure 3.

The first step in the process is defining the experiment

to be executed, utilizing the Qibosoq components:

operation: Qibosoq supports different execution modes

that can be selected through a specific component.

These modes enable the execution of different type

of experiments:

• fixed-parameters experiments defined as a se-

quence of pulses.

• varying-parameters experiments defined using a

combination of sequence of pulses and sweep-

ers.

• raw acquisition experiments, where the raw sig-

nal (after demodulation) is acquired without in-

tegration.

configuration: a Config object with general experiment

parameters;

sequence: a list of pulses that describe the experiment, in-

cluding control, flux, and readout pulses for perform-

ing measurements. Each pulse contains information

about its shape, frequency, and start time.

qubits: a list of qubit objects.

sweepers: a list of sweepers, only required for real-time pa-

rameter scans on the FPGA logic. The sweepers can

act on multiple parameters simultaneously or update

them sequentially, enabling exploration of all combi-

nations of chosen parameters during the experiment.

This set of instruction provides a comprehensive descrip-

tion of the experiment to be executed and offer a flexibility

that can accommodate various qubit-related experiments.

The first step ends with the serialization, where the in-

structions are first dumped in the JSON format and then

encoded into bytes using UTF-8.

Then, a connection is established between the client and

server. Following the TCP three way handshake, a first

packet containing a 32-bit integer (four bytes) is sent. This

integer represents the byte-size of the instructions to be

transmitted immediately afterward.

Upon receiving and de-serializing the commands, the

server initializes the required program based on the speci-

fied operation parameter. After executing the experiment,

the server sends back the results, comprising acquired “i”

and “q” values, through the same TCP connection to the

client.

Once the client receives all the data, the connection is

closed, and the server returns to waiting for new com-

mands.

Note that, while Qibosoq already provides a client that

takes care of implementing this communication protocol,

it does not strictly require its use, and potentially other

clients could implement the same protocol and interact

with the Qibosoq server part.

E. Features and limitations

Qibosoq abstracts a higher-level interface over the Qick

primitives, and its current main purpose has been to serve



6

Feature Qick Qibolab Qibosoq

Arbitrary pulse sequences

Arbitrary waveforms

Multiplex readout a

Feedback

RTS frequency drive

RTS frequency readout a

RTS amplitude

RTS duration b

RTS start

RTS relative phase

RTS N-Dimensional

Hardware averaging

Singleshot (No Averaging)

Integrated acquisition

Classified acquisition

Raw waveform acquisition

a Special firmware available from Qick under request
b Supported for specific pulse shapes

TABLE I. Main features and limitations of Qick, Qibosoq and
Qibolab compared. The features denoted by “ ” are sup-
ported, “ ” means not supported and “ ” under develop-
ment.

Qibolab, despite not being restricted to it. Therefore,

it is relevant to be aware of the present limitations of

these related libraries when approaching Qibosoq, and how

Qibosoq itself is affected by them.

In Table I a small comparison of the main features sup-

ported by Qick, Qibosoq and Qibolab are presented.

Here, ”RTS” refers to the term ”Real Time Sweeper,”

denoting the ability to conduct parameter scans directly

on FPGA logic. For a comprehensive explanation of the

mentioned features, please consult [16, Section III.B].

This selection of features, commonly used in standard

qubit experiments, are all supported by Qibosoq, with the

notable exception of the feedback feature that is under

development.

Using Qibolab, is also possible to access all of these

features with the sole exception of sweepers on multiple

different parameters with concurrent updates, that is also

currently under development. This limitation, however, is

outweighted by what Qibolab provides, in particular with

the integration in the Qibo framework: a way of deploy-

ing algorithms and programs written in the form of cir-

cuits directly to Qibosoq and to the RFSoC. This is not

supported, natively, neither by Qibosoq and by Qick that

both work only at the pulse level, but it becomes possible

through the Qibolab driver for Qibosoq.

Some more limitations come directly from the hard-

ware. Qibosoq is compatible with all the boards sup-

ported by Qick, namely the RFSoC4x2, the ZCU216 and

the ZCU111. In Table II, the three RFSoCs are presented

along with some details.

ZCU111 RFSoC4x2 ZCU216

Physical DACs 8 2 16

Qick activated DACsa 7 2 7

DAC sampling rate [GSPS] 6.554 9.85 9.85

Physical ADCs 8 4 16

Qick activated ADCsa 2 2 2

ADC sampling rate [GSPS] 4.096 5 2.5

a These numbers are related to the standard available firmware,

they can vary with other firmwares.

TABLE II. Outline of the RFSoCs supported by Qibosoq and
their characteristics.

Note that, to control flux-tunable qubits, the companion

boards included in the standard Xilinx kits are not sufficient,

since they usually include also baluns on the single-ended

outputs/inputs connected to the DACs and ADCs that

filter the DC currents required for controlling the qubits.

This problem can be solved by using the available differ-

ential outputs along with some differential amplifiers (as

Texas Instruments THS3217 [32]) to convert the signal

from double to single-ended or with the use of custom

companion boards [8, 10].

III. RESULTS

All the experiments presented in this section were per-

formed using Qibocal, the runcards required to reproduce

them are available at [33].

A. Cross-platform benchmark

We tested Qibosoq using the Qibolab API, benchmark-

ing its speed on different RFSoCs and against commercial

instruments (Quantum Machines, QBlox and Zurich In-

struments). The tested boards were the three Xilinx boards

supported by Qick, better detailed in Table II. For better

significance, in the plots only the results of Quantum Ma-

chines are shown to represent commercial instruments, as

QM was the fastest among the three in the majority of

cases [16].

The results are presented in Figure 4. The black bar in

this plot provides the ideal time required for each routine,

which is calculated as

ideal = nshots
∑
i

(Tsequence,i + Trelaxation) (1)

where Tsequence,i is the duration of the whole pulse sequence

in the i-th point of the sweep, Trelaxation the time we wait for

the qubit to relax to its ground state between experiments,

nshots the number of shots in each experiment and the sum

runs over all points in the sweep. The ideal time denotes



7

101 102

Experiment duration [s]

Resonator spectroscopy
(100 points)

Qubit spectroscopy
(300 points)

Rabi amplitude
(75 points)

Ramsey detuned
(30 points)

T1 experiment
(40 points)

T2 experiment
(32 points)

Single shot classification

Standard RB

Ideal
Quantum Machines
RFSoC4x2
ZCU216
ZCU111

1 10 100
Experiment duration
(ratio with ideal time)

FIG. 4. Execution time of various qubit calibration routines on different electronics. On the left side we show the absolute times in
seconds for each experiment. The black bar, that represents the ideal time, shows the minimum time theoretically required for each
experiment. On the right side we show the ratio between actual execution time and ideal time, the difference from ideal and real
time comes from software delays and communication latency.

how long the qubit is really used during an experiment and

provides the baseline for our benchmark.

The experiments were repeated for 4096 shots. Between

shots, we waited a certain amount of time: 5µs for spec-

troscopies, 300µs for the others. A complete description

of the experiments performed is given in [16, Appendix B].

Note also that the code required to reproduce these exper-

iments is available at [33].

Considering only the RFSoCs, we can see that the

RFSoC4x2 is always faster than the ZCU111 and the

ZCU216. On the other hand, comparing it also with Quan-

tum Machines, we can see that the Qibosoq-controlled

devices are faster in six out of the eight performed experi-

ments.

The key to explain the difference in speed between

the Qibosoq-controlled boards and the commercial instru-

ments can be found in the Ramsey detuned experiment

timings. This routine involves sweeping the relative phase

and the start time of a pulse, a feature not supported by

Qibolab. Therefore, the experiment is performed via the

execution of various pulse sequences that get generated

once at a time from the client. This translates itself in

a high number of communications between the client and

the device. In this regard, it is possible to note that the

RFSoCs present a much smaller overhead in the communi-

cation in respect to commercial instruments, partially be-

ing explained with being composed of a single device and

not with multiple synchronized modules. The communica-

tion overhead, including also any time required by the in-

strument to set up, approximately corresponds to the first

point of the plot presented in Figure 5, where the sequence

execution time is negligible with respect to the overhead

itself.

The only experiment where the RFSoCs are visibly

slower than the commercial systems is the resonator spec-

troscopy experiment that can be conducted with a real-

time sweeper, on hardware, for all the other considered

devices, while it’s currently not supported by Qibosoq and

by the standard Qick firmware as shown in Table I

On the other hand, also the Qubit spectroscopy experi-

ment, performed with a single real-time sweeper, is slower

for the RFSoCs than for Quantum Machines. It is difficult

to completely explain why this is the case, by looking only

at Figure 4. More clear, in this regard, is Figure 5.

In this figure, the results of a benchmark on the scal-

ing capability of sweepers (increasing the number of points



8

10 2

10 1

100

101

102
Du

ra
tio

n 
[s

]
Readout frequency

100 101 102 103

Number of values swept

100
101
102

Re
la

tiv
e 

 d
ur

at
io

n 10 2

10 1

100

101

Du
ra

tio
n 

[s
]

Drive frequency

100 101 102 103

Number of values swept

100
101
102

Re
la

tiv
e 

 d
ur

at
io

n 10 2

10 1

100

101

Du
ra

tio
n 

[s
]

Pulse amplitude

Ideal
Q. M.
RFSoC4x2
ZCU216
ZCU111

100 101 102 103

Number of values swept

100
101
102

Re
la

tiv
e 

 d
ur

at
io

n

10 2

10 1

100

101

Du
ra

tio
n 

[s
]

Pulse length

100 101 102

Number of values swept

100

102

Re
la

tiv
e 

 d
ur

at
io

n 10 2

10 1

100
Du

ra
tio

n 
[s

]

Pulse start

100 101 102

Number of values swept

100
101
102

Re
la

tiv
e 

 d
ur

at
io

n

10 1

100

101

102

Du
ra

tio
n 

[s
]

Circuits

100 101 102

Number of iterations

100
101
102

Re
la

tiv
e 

 d
ur

at
io

n

FIG. 5. The top plots illustrate the scaling of execution time with respect to the number of points in a sweep, while the bottom plots
depict the ratio between actual execution times on various instruments and the minimum ideal time. “Q.M.” stands for Quantum
Machines. The corresponding values were obtained using the same Qibocal interface. The ideal time corresponds to how long the
qubit is really used during the experiment, the difference from ideal and real time comes from software delays and communication
latency.

swept) and of circuits (increasing the number of circuits

executed) are presented. For the readout and drive fre-

quency, the experiment-template of resonator and qubit

spectroscopy was used, while for pulse amplitude and

length a Rabi-like experiment was performed. For the pulse

start, a standard T1 experiment was used and for the cir-

cuits a standard RB. The focus of this plot is, however,

the parameter swept (or the number of circuits executed)

and not the experiments themselves.

We can clearly see which sweepers are not implemented

with real-time sweepers (on the readout frequency and

on the pulse length), not considering the “Circuits” plot

that cannot logically being implemented with sweepers. By

looking at the “Drive frequency” plot we can get an idea

of the reason why the Qubit spectroscopy experiment ap-

peared “slow”. Initially, where the effective duration of the

experiment is given almost completely by the overhead, the

RFSoCs perform much better than the commercial sys-

tems. Increasing the number of swept values, however,

decreases the difference of duration between instruments,

with the commercial ones that even becomes slightly better

than the RFSoCs for many-points scans.

B. Calibration experiments

Alongside the presented speed benchmarks, we con-

ducted tests of Qibosoq on quantum hardware, connecting

the available boards to various single qubits, without flux

dependency, manufactured by TII (Technology Innovation

Institute) and a flux-tunable multi-qubit chip, by Quant-

Ware [34].

While performing a comprehensive quality benchmark is

challenging due to the numerous variables in calibration,

the RFSoC-based system demonstrated competitiveness

with commercial instruments. There is also evidence that

the direct RF synthesis [35], which avoids sidebands pro-

duced by IQ mixer up-conversion, generally yields higher

quality factors and signal-to-noise ratios.

Examples of the obtained results are shown in Figure 6.

The initial two plots feature the Xilinx RFSoC4x2 con-

nected to a single qubit within a 3D cavity. Achieving an

assignment fidelity of 0.95 and gate fidelities in agreement

with theoretical limitations [36] from the observed T1 and

T2 values, that in turn align with design parameters.

The third plot involves a multi-flux-tunable-qubit setup



9

0 20000 40000 60000 80000
Waiting time [ns]

0.4

0.6

0.8

1.0

1.2

1.4

1.6
M

SR
 [a

.u
.]

Coherence experiments

T1=19 s
T2=11 s

5.741 5.746 5.75 5.755 5.76 5.765
Qubit frequency [GHz]

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Bi
as

 le
ve

l [
V]

Flux dependance

FIG. 6. Examples of calibration experiments. In the first experiment, the relaxation and dephasing time of a single qubit are computed.
The second plot present a classification experiment from which an assignment fidelity of 0.95 was computed. In the last experiment,
the dependency of the 0-1 transition frequency to an applied bias was analyzed.

controlled by the Xilinx ZCU216 RFSoC. This experiment

example aimed to investigate the correlation between the

0-1 transition frequency and a bias current.

IV. OUTLOOK

In this paper we have presented Qibosoq, an open-

source server-side software for RFSoC control electronics

through Qick. This setup simplifies operation of self-host

quantum hardware platforms through Qibo, a full-stack

quantum computing middleware framework.

We have outlined the present state of the project’s struc-

ture, emphasizing the significant features integrated into

release 0.1.0. The software is at the stage of allowing

applications related to performance benchmarks through

arbitrary pulse control and physics experiments based on

the quantum circuit representation respectively with the

APIs of Qibolab and Qibo.

In the future releases of Qibosoq, we plan to extend

its capabilities to support multi-qubit configurations con-

trolled by synchronized RFSoC boards and test the frame-

work on novel quantum technologies such as trapped ions,

neutral atoms and photonics among others. On top of the

challenges related to physics and experimental setup, we

believe that Qibosoq accelerates development in the field

of control electronics, with particular emphasis on train-

ing of researchers by providing a full open-source base for

FPGA-based control electronics.

The Qibosoq module and all results can be reproduced

using the code at:

https://github.com/qiboteam/qibosoq.

ACKNOWLEDGMENTS

This project is supported by TII’s Quantum Research

Center. The authors thank the Qick team for helpful dis-

cussion, comments on this manuscript and support. S.C.

thanks CERN TH hospitality during the elaboration of this

manuscript. A.G. acknowledges support by the Horizon

2020 Marie Sk lodowska-Curie actions (H2020-MSCA-IF

GA No.101027746).

[1] D. Riste, S. Fallek, B. Donovan, and T. A. Ohki, IEEE

Microwave Magazine 21, 60 (2020).

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,

C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010).

[3] Qblox, https://www.qblox.com/.

[4] QuantumMachines, https://www.quantum-machines.

co/.

[5] ZurichInstruments, https://www.zhinst.com/others/

en/quantum-computing-systems/qccs.

[6] A. Javaid, T. Ahmed, and S. Ali, in 2022 19th International

Bhurban Conference on Applied Sciences and Technology

(IBCAST) (IEEE, 2022).

[7] R. Gebauer, N. Karcher, and O. Sander, in 2021 Inter-

national Conference on Field-Programmable Technology

(ICFPT) (IEEE, 2021).

[8] M. O. Tholén, R. Borgani, G. R. D. Carlo, A. Bengtsson,

C. Krǐzan, M. Kudra, G. Tancredi, J. Bylander, P. Delsing,

S. Gasparinetti, and D. B. Haviland, Review of Scientific

Instruments 93, 104711 (2022).

[9] U. Singhal, S. Kalipatnapu, P. K. Gautam, S. Majumder,

V. V. L. Pabbisetty, S. Jandhyala, V. Singh, and C. S.

Thakur, IEEE Transactions on Instrumentation and Mea-

surement 72, 1 (2023).

[10] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton,

C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Can-

https://github.com/qiboteam/qibosoq
https://doi.org/10.1109/mmm.2020.2993477
https://doi.org/10.1109/mmm.2020.2993477
https://doi.org/10.1038/nature08812
https://www.qblox.com/
https://www.quantum-machines.co/
https://www.quantum-machines.co/
https://www.zhinst.com/others/en/quantum-computing-systems/qccs
https://www.zhinst.com/others/en/quantum-computing-systems/qccs
https://doi.org/10.1109/ibcast54850.2022.9990470
https://doi.org/10.1109/ibcast54850.2022.9990470
https://doi.org/10.1109/ibcast54850.2022.9990470
https://doi.org/10.1109/icfpt52863.2021.9609909
https://doi.org/10.1109/icfpt52863.2021.9609909
https://doi.org/10.1109/icfpt52863.2021.9609909
https://doi.org/10.1063/5.0101398
https://doi.org/10.1063/5.0101398
https://doi.org/10.1109/tim.2023.3305656
https://doi.org/10.1109/tim.2023.3305656


10

celo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi,

A. Agrawal, H. Zhang, C. Ding, and D. I. Schuster, Review

of Scientific Instruments 93, 10.1063/5.0076249 (2022).

[11] R. Carobene, A. Candido, J. Serrano, S. Carrazza,

and Edoardo-Pedicillo, qiboteam/qibosoq: Qibosoq 0.0.4

(2023).

[12] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,

A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez, J. I.

Latorre, and S. Carrazza, Quantum Science and Technol-

ogy 7, 015018 (2021).

[13] S. Efthymiou, M. Lazzarin, A. Pasquale, and S. Carrazza,

Quantum 6, 814 (2022).

[14] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale,

Journal of Physics: Conference Series 2438, 012148

(2023).

[15] S. Efthymiou, S. Carrazza, R. Mello, Edoardo-Pedicillo,

A. Pasquale, C. Bravo-Prieto, A. Sopena, M. Rob-

biati, AdrianPerezSalinas, shangtai, S. Ramos, D. Garćıa-

Mart́ın, M. Lazzarin, BrunoLiegiBastonLiegi, N. Zattarin,

Simone-Bordoni, vodovozovaliza, L. Zilli, Paul, A. Can-

dido, A. Mak, J. Serrano, atomicprinter, and J. M. Cruz-

Martinez, qiboteam/qibo: Qibo 0.1.12 (2023).

[16] S. Efthymiou, A. Orgaz-Fuertes, R. Carobene, J. Cereijo,

A. Pasquale, S. Ramos-Calderer, S. Bordoni, D. Fuentes-

Ruiz, A. Candido, E. Pedicillo, M. Robbiati, Y. P. Tan,

J. Wilkens, I. Roth, J. I. Latorre, and S. Carrazza, Qibolab:

an open-source hybrid quantum operating system (2023).

[17] Xilinx-(AMD), Zcu111 specifications, https://www.

xilinx.com/products/boards-and-kits/zcu111.html

(2022).

[18] Xilinx-(AMD), Rfsoc 4x2 specifications, https:

//www.xilinx.com/support/university/xup-boards/

RFSoC4x2.html (2022).

[19] Xilinx-(AMD), Zcu216 specifications, https://www.

xilinx.com/products/boards-and-kits/zcu216.html

(2022).

[20] J. Bryon, D. Weiss, X. You, S. Sussman, X. Croot,

Z. Huang, J. Koch, and A. A. Houck, Physical Review

Applied 19, 10.1103/physrevapplied.19.034031 (2023).

[21] J. G. C. Martinez, C. S. Chiu, B. M. Smitham, and A. A.

Houck, Flat-band localization and interaction-induced de-

localization of photons (2023).

[22] S. Xie, L. Stefanazzi, C. Wang, C. Pena, R. Valivarthi,

L. Narvaez, G. Cancelo, K. Kapoor, B. Korzh, M. Shaw,

P. Spentzouris, and M. Spiropulu, Entangled photon pair

source demonstrator using the quantum instrumentation

control kit system (2023).

[23] A. Anferov, K.-H. Lee, F. Zhao, J. Simon, and D. I. Schus-

ter, Improved coherence in optically-defined niobium tri-

layer junction qubits (2023).

[24] I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A.

Grigorev, D. O. Moskalev, A. A. Pishchimova, N. S.

Smirnov, E. V. Zikiy, I. A. Rodionov, and I. S. Besedin,

npj Quantum Information 8, 10.1038/s41534-022-00644-

x (2022).

[25] A. Pasquale, Edoardo-Pedicillo, DavidSarlle, S. Efthymiou,

S. Carrazza, aorgazf, A. Sopena, maxhant, A. Candido,

M. Robbiati, vodovozovaliza, S. Ramos, and wilkensJ, qi-

boteam/qibocal: Qibocal 0.0.2 (2023).

[26] Xilinx-(AMD), Pynq: Python productivity for zynq (2018).

[27] Xilinx-(AMD), Xilinx, https://www.xilinx.com (2022).

[28] J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wil-

helm, Physical Review A 83, 10.1103/physreva.83.012308

(2011).

[29] L. E. Franks, Signal Theory, Prentice-Hall electrical engi-

neering series (Prentice Hall, Old Tappan, NJ, 1969).

[30] P. S. V. Naidu, Modern Digital Signal Processing (Alpha

Science International, 2003).

[31] Z. Kanmai, in 2020 International Conference on Intelligent

Computing and Human-Computer Interaction (ICHCI)

(IEEE, 2020).

[32] T. Instruments, Ths3217 specifications, https://www.ti.

com/lit/ds/symlink/ths3217.pdf (2016).

[33] The Qibo Team, Qibosoq paper runcards, https:

//github.com/qiboteam/qibosoq/tree/main/extras/

qibosoq˙paper˙runcards (2023).

[34] QuantWare, https://www.quantware.eu/.

[35] W. D. Kalfus, D. F. Lee, G. J. Ribeill, S. D. Fallek, A. Wag-

ner, B. Donovan, D. Riste, and T. A. Ohki, IEEE Trans-

actions on Quantum Engineering 1, 1 (2020).

[36] T. Abad, J. Fernández-Pendás, A. F. Kockum, and G. Jo-

hansson, Physical Review Letters 129, 10.1103/phys-

revlett.129.150504 (2022).

https://doi.org/10.1063/5.0076249
https://doi.org/10.5281/zenodo.8223402
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.22331/q-2022-09-22-814
https://doi.org/10.1088/1742-6596/2438/1/012148
https://doi.org/10.1088/1742-6596/2438/1/012148
https://doi.org/10.5281/zenodo.7736837
https://doi.org/10.48550/ARXIV.2308.06313
https://doi.org/10.48550/ARXIV.2308.06313
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/support/university/xup-boards/RFSoC4x2.html
https://www.xilinx.com/support/university/xup-boards/RFSoC4x2.html
https://www.xilinx.com/support/university/xup-boards/RFSoC4x2.html
https://www.xilinx.com/products/boards-and-kits/zcu216.html
https://www.xilinx.com/products/boards-and-kits/zcu216.html
https://doi.org/10.1103/physrevapplied.19.034031
https://doi.org/10.48550/ARXIV.2303.02170
https://doi.org/10.48550/ARXIV.2303.02170
https://doi.org/10.48550/ARXIV.2304.01190
https://doi.org/10.48550/ARXIV.2304.01190
https://doi.org/10.48550/ARXIV.2304.01190
https://doi.org/10.48550/ARXIV.2306.05883
https://doi.org/10.48550/ARXIV.2306.05883
https://doi.org/10.1038/s41534-022-00644-x
https://doi.org/10.1038/s41534-022-00644-x
https://doi.org/10.5281/zenodo.7957542
https://doi.org/10.5281/zenodo.7957542
https://github.com/xilinx/pynq
https://www.xilinx.com
https://doi.org/10.1103/physreva.83.012308
https://doi.org/10.1109/ichci51889.2020.00033
https://doi.org/10.1109/ichci51889.2020.00033
https://www.ti.com/lit/ds/symlink/ths3217.pdf
https://www.ti.com/lit/ds/symlink/ths3217.pdf
https://github.com/qiboteam/qibosoq/tree/main/extras/qibosoq_paper_runcards
https://github.com/qiboteam/qibosoq/tree/main/extras/qibosoq_paper_runcards
https://github.com/qiboteam/qibosoq/tree/main/extras/qibosoq_paper_runcards
https://www.quantware.eu/
https://doi.org/10.1109/tqe.2020.3042895
https://doi.org/10.1109/tqe.2020.3042895
https://doi.org/10.1103/physrevlett.129.150504
https://doi.org/10.1103/physrevlett.129.150504

	Qibosoq: an open-source framework for quantum circuit RFSoC programming
	Abstract
	Contents
	Introduction
	Methodology
	The QICK project
	Networking
	Qibosoq layout
	Serialization and communication protocol
	Features and limitations

	Results
	Cross-platform benchmark
	Calibration experiments

	Outlook
	Acknowledgments
	References


