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Abstract

We enumerate topologically-inequivalent compact Calabi-Yau threefold hypersurfaces. By

computing arithmetic and algebraic invariants and the Gopakumar-Vafa invariants of

curves, we prove that the number of distinct simply connected Calabi-Yau threefold hy-

persurfaces resulting from triangulations of four-dimensional reflexive polytopes is 4, 27,

183, 1,184 and 8,036 at h1,1 = 1, 2, 3, 4, and 5, respectively. We also establish that there

are ten equivalence classes of Wall data of non-simply connected Calabi-Yau threefolds

from the Kreuzer-Skarke list. Finally, we give a provisional count of threefolds obtained

by enumerating non-toric flops at h1,1 = 2.
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1 Introduction

The landscape of four-dimensional effective field theories arising from Calabi-Yau compact-

ifications of critical string theory is immensely rich, in part because of the vast number

of possible compactification geometries. To understand the size of this landscape, one

needs to determine the number of Calabi-Yau threefolds. More precisely, one should count

threefolds1 that give rise to inequivalent effective theories; this entails counting topological

equivalence classes of threefolds.

Despite the importance of this problem, there presently exists no effective strategy for

solving it. Wall’s theorem [1] has provided a framework, by establishing that simply con-

nected Calabi-Yau threefolds with torsion-free homology are completely classified by what

we will call Wall data: the Hodge numbers h1,1 and h2,1, the triple intersection numbers

κijk, and the second Chern class c2. Two simply connected threefolds with equivalent

Wall data are homeomorphic, and in fact even diffeomorphic, and give rise to equivalent

effective theories upon compactification. However, applying Wall’s theorem in practice

remains a difficult computational challenge: given the Wall data for a pair of potentially

equivalent threefolds, checking equivalence requires either finding a basis transformation

Λ ∈ GL(h1,1,Z) that maps the Wall data of the pair into each other, or else proving that

no such transformation exists. Without any further information, the cost of such a search

is exponential in h1,1, and so the task rapidly becomes infeasible.

The purpose of this work is to identify and count equivalence classes of threefolds.

Our strategy is to compute invariants of the Wall data — a collection of arithmetic and

algebraic invariants enumerated in §2 and summarized in Table 2 — and to use these, as

well as the Gopakumar-Vafa (GV) invariants [2, 3] of curves, to simplify the process of

classification.

We will consider two large categories of threefolds. The first consists of hypersurfaces

in toric fourfolds, which we refer to as toric phases. Any fine, regular, star triangulation

(FRST) of a four-dimensional reflexive polytope defines a toric variety in which the generic

anticanonical hypersurface is a smooth Calabi-Yau [4]. The Kreuzer-Skarke database [5]

is a complete list of all reflexive polytopes in four dimensions. Each such polytope admits

a number of FRSTs that grows exponentially with the number of points in the polytope,

and is as large as 10928 in an extreme example [6]. However, it is known that the number

of genuinely inequivalent threefolds that can be constructed in this way is many orders of

1Throughout this paper, threefold (or synonymously, phase) will always mean compact Calabi-Yau

threefold, unless specified otherwise.
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h1,1 # polys # FRSTs # FRST classes # CYs with π1 = 0 # ECs with π1 6= 0

1 5+0 5+0 5+0 4+0 1+0

2 36+0 48+0 36+0 27+0 2+0

3 243+1 525+1 274+1 183+0 3+0

4 1,185+12 5,330+18 1,760+14 1183+1 3+0

5 4,897+93 56,714+336 11,713+134 8,016+20 0+1

Table 1: Main results for counts of topological equivalence classes of Calabi-Yau threefold
hypersurfaces in toric varieties, denoted ‘CYs’ in this table. Numbers of the form M +N
denote contributions of favorable and non-favorable polytopes, respectively. An FRST
class or CY class is defined as non-favorable if it has no favorable representative. Counts
labeled ‘ECs’ are of equivalence classes of Wall data with π1 6= 0.

magnitude smaller than the total number of FRSTs [6]. We aim to determine how much

smaller this number is.

A main result of this work is an exact count of the number of equivalence classes of

Wall data in the case of toric phases with 1 ≤ h1,1 ≤ 5: see Table 1. We additionally

bound the number of equivalence classes of Wall data of toric phases at h1,1 = 6 and 7:

see Table 3.

To turn a count of equivalence classes of Wall data to a count of topological equivalence

classes of threefolds, one needs to be able to apply Wall’s theorem, which assumes that the

threefold is simply connected. We find that there are ten equivalence classes of Wall data

of non-simply connected threefolds arising from the Kreuzer-Skarke list. Setting these

ten classes aside and considering only the simply connected threefolds that remain, we

apply Wall’s theorem to prove that the number of topological equivalence classes of simply

connected toric phases is 4 at h1,1 = 1, 27 at h1,1 = 2, 183 at h1,1 = 3, 1184 at h1,1 = 4,

and 8036 at h1,1 = 5. These counts are definite, and should be thought of as a theorem:

no assumptions are made in their calculation.

Our results for toric phases are summarized in Table 1. For each value of h1,1, we list

the number of polytopes, the number of FRSTs, and the number of FRST classes, defined

as sets of FRSTs that agree up to polytope automorphism when restricted to two-faces. We

then give the numbers of equivalence classes of Calabi-Yau threefold hypersurfaces in toric

varieties. The counts are given as M +N , with M the number of favorable classes and N

the number of non-favorable classes; we call a class favorable if at least one representative
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of the class arises from a triangulation of a favorable polytope.2

The second category of threefolds that we consider are those that can be constructed

by performing flops from a toric threefold. As we will show, some such flops result in

threefolds that are not topologically equivalent to a hypersurface in a toric variety. We

call such threefolds non-toric phases.

We construct non-toric phases following the algorithm presented in [7], which makes

use of the topological data and GV invariants of some chosen toric phase. Because we

compute GV invariants only up to a finite cutoff, it is not certain that we will succeed in

identifying all non-toric phases. We therefore obtain provisional counts of the number of

non-toric phases; in particular, we find six non-toric phases at h1,1 = 2. In contrast to

our counts of toric phases, this number does not represent a theorem; we will review the

assumptions underlying its computation in §4.

Having constructed a provisionally complete set of threefolds, both toric and non-toric,

we turn to our goal of partitioning this set into topological equivalence classes. We begin by

splitting the set of threefolds at fixed Hodge numbers into subsets of potentially equivalent

phases, for which certain invariants computed from the Wall data agree. The invariants

we use are enumerated in Table 2. We then use GV invariants to guess the form of basis

transformation matrices between members of each set of potentially equivalent phases.3 In

this way, we are able to compute upper and lower bounds on the number of phases and,

when these bounds coincide, we find the exact number of phases.

This paper is organized as follows. In §2, we review Wall’s theorem and define the

topological invariants used in our analysis. In §3 and §4 we present our results for toric

and non-toric phases, respectively. We conclude in §5.

Note added: After this paper was completed we received [11], which likewise counts

diffeomorphism classes of Calabi-Yau threefolds. Although our approaches are similar in

spirit, we employ different invariants; we include both favorable and non-favorable poly-

topes; we study threefolds obtained via non-toric flops; and we sub-classify according to

π1. Moreover, although [11] claims to restrict to simply connected threefolds, not all cases

considered in [11] are simply connected (cf. [12]). Finally, some of the results of [11] are

2A polytope ∆◦ is called favorable if every two-face of ∆◦ that has interior points is dual to a one-face
of the dual polytope ∆ having no interior points. Computing the topological data of a threefold resulting
from a triangulation of a polytope is comparatively simple when ∆◦ is favorable.

3In the related context of complete intersection Calabi-Yau threefolds (CICYs), progress has been made

in e.g. [8–10] by brute-force computation. These analyses proceeded by searching in a box in Z(h1,1)2 for the
basis transformations demanded by Wall’s theorem, and, while they were able to find some equivalences,
they were unable to compute the exact number of phases.
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compatible with our findings, while others are not. Exact results are obtained in [11] for

three cases: for favorable polytopes at h1,1 = 1, 2, and 3 they find 5, 29, and 186 equivalence

classes, and — provided we combine our counts with π1 = 0 and π1 6= 0, see Table 1 — we

confirm these counts. For favorable polytopes at h1,1 = 4, [11] quotes an upper bound of

1185 equivalence classes, but we find an exact count of 1186. For favorable polytopes at

h1,1 = 5, [11] finds a range, and we find an exact count compatible with this range, while

at h1,1 = 6, [11] finds a lower bound 54,939, which is incompatible with our upper bound

54,141. It would be worthwhile to resolve these discrepancies.4

2 Topological invariants of Calabi-Yau threefolds

The main goal of this work is to classify topologically equivalent threefolds at small h1,1.

The foundational tool is Wall’s theorem [1]:

Theorem (Wall). The homotopy type of a compact, simply connected Calabi-Yau threefold

with torsion-free homology is completely determined by its Hodge numbers, triple intersec-

tion numbers, and second Chern class.

To understand how to apply this theorem, we let X be a Calabi-Yau threefold, with κ

its triple intersection form

κ : H2(X,Z)×H2(X,Z)×H2(X,Z) → Z , (2.1)

and c2(TX) ∈ H2(X,Z) its second Chern class, naturally viewed as a map

c2 : H
2(X,Z) → Z . (2.2)

Then, in a lattice basis {Di} of H2(X,Z) ≃ Zh1,1
, we may express the data of κ and c2 as

a totally symmetric three-tensor κijk, and a linear form c2,i defined as

κijk =

∫

X

Di ∧Dj ∧Dk , c2,i =

∫

Di

c2(X). (2.3)

We refer to h1,1, h2,1, κ, and c2 collectively as the Wall data of X .

4There is also a minor discrepancy in the counts of favorable polytopes: in [11] the number of such
polytopes is quoted as 4,896 and 16,607 at h1,1 = 5 and 6, whereas we find 4,897 and 16,608, but our
counts of FRSTs agree exactly with those of [11].
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Now suppose that X,X ′ are two compact threefolds with the same Hodge numbers.

At this stage we do not require that X and X ′ are simply connected and have torsion-free

homology. We say that X and X ′ are Wall-equivalent if there exists an integral change of

basis Λ ∈ GL(h1,1,Z) such that

κ′
i′j′k′ = Λi

i′Λ
j
j′Λ

k
k′κijk, c′2,i′ = Λi

i′c2,i , (2.4)

where (κijk, c2,i) and (κ′
ijk, c

′
2,i) denote the triple intersection forms and second Chern

classes of X and X ′, respectively, given in some arbitrary integral bases. Importantly,

we require the basis transformation matrix Λ to be invertible over the integers, so its

determinant must be ±1.

Wall’s theorem implies that if two compact, simply connected, torsion-free threefolds

X , X ′ are Wall-equivalent, then they are topologically equivalent; specifically, they are

both homeomorphic and diffeomorpic. One of the main results of this work is an exact

count of the equivalence classes of Wall data for all Calabi-Yau threefold hypersurfaces

with h1,1 ≤ 5 obtained from the Kreuzer-Skarke list, shown in Table 1.

2.1 Invariants of Wall data

Much of the progress to date in proving equivalences between threefolds has centered

around brute force searches for a basis transformation Λ as in (2.4), e.g., by searching over

matrices Λ ∈ GL(h1,1,Z) whose entries are bounded above by some parameter as in [8,10].

This approach rapidly becomes expensive, and we will proceed in a different manner.

An easy way to determine whether a threefold with Wall data (κ, c2) is Wall-inequivalent

to a threefold with Wall data (κ′, c′2) is to compute invariants of the Wall data; if any such

invariants differ, then the threefolds are inequivalent. In this section we will introduce the

invariants used in our analysis, which will be defined in terms of κ and c2, as well as the

rank-four tensor Hijkl defined in [13] as

Hijkl = −2 (κijkc2,l + cyclic permutations) . (2.5)

2.1.1 Divisibility invariants

Perhaps the simplest invariants are divisibility invariants, defined in terms of the numerical

entries of κ and c2. The gcd of an integer vector is invariant under the action of GL(n,Z),
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and so

d0 := gcd(c2) (2.6)

is invariant under the change of basis used in Eq. (2.4).

Similarly, [13] defines a series of seven divisibility invariants from the entries of the

higher-rank tensors, three from κ and four from H . In any basis for H4(X), these are

defined as5

d1 := gcd (κijk) (2.7a)

d2 := gcd (κiij , 2κijk) (2.7b)

d3 := gcd([κiii, 3 (κiij ± κijj) , 6κijk] (2.7c)

d4 := gcd (Hijkl) (2.7d)

d5 := gcd (Hiijk, 2Hijkl) (2.7e)

d6 := gcd [Hiiij , 3 (Hiijk ±Hijjk) , 6Hijkl] (2.7f)

d7 := gcd [Hiiii, 2 (2Hiiij ± 3Hiijj ± 2Hijjj) , 12 (Hiijk ±Hijjk ±Hijkk) , 24Hijkl] , (2.7g)

where indices are not summed over.

These invariants obey a hierarchical pattern of divisibility: d1 divides d2, d2 divides

d3, and so on; however, d0 need not divide the others. We thus have a vector d of eight

integers that must be the same in any two threefolds that are topologically equivalent.

2.1.2 Arithmetic invariants

The zero locus of any finite set of homogeneous polynomials defines a (possibly singular)

projective variety; if the coefficients of the polynomials are rational numbers, then these

will be varieties defined over Q, which in slightly nonstandard terminology we refer to as

rational varieties. Accordingly, because the entries of κijk and c2 are integers, we can define

projective hypersurfaces in QPh1,1−1 in terms of a vector xi of formal variables6 as7

(a) The cubic surface K defined by the equation

κijk x
ixjxk = 0 ⊂ QPh1,1−1 . (2.8)

5The formula for d7 is misprinted in [13]; we have corrected it here.
6We will not distinguish between raised and lowered indices for these formal variables.
7Throughout this section, calligraphic font will be used to denote varieties.
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(b) The codimension-two surface I defined by the intersection of K with the hyperplane

c2,i x
i = 0 ⊂ QPh1,1−1 , i.e., the set of points simultaneously satisfying

c2,i x
i = κijk x

ixjxk = 0 ⊂ QPh1,1−1 . (2.9)

(c) The quartic surface H defined by the equation

Hijkl x
ixjxkxl = 0 ⊂ QPh1,1−1 . (2.10)

A basic invariant constructed from these varieties is their smoothness. A variety V

defined by the vanishing of polynomials fi is said to be singular if there exists a point on V

such that the Jacobian matrix J = ∂jfi has rank smaller than the codimension of V, and

is called smooth otherwise. For any particular threefold, the varieties K and I may or may

not be smooth; however, whenever I is non-empty, and so in particular for all threefolds

with h1,1 > 2, the variety H is necessarily singular. This can be seen from the fact that

the defining polynomial Hijklx
ixjxkxl factorizes

Hijklx
ixjxkxl = −8

(
κijkx

ixjxk
) (

c2,lx
l
)
. (2.11)

The varieties I, K, and H are rational varieties, i.e. their defining polynomials have

integer coefficients. Moreover, the change of basis in Eq. (2.4) defines an isomorphism

at the level of rational varieties.8 Thus, the varieties K, I, and H are themselves Wall

invariants. It is fruitful to study these varieties through the lens of arithmetic geometry,

which allows us to define further invariants.9

Let us begin by briefly reviewing the basic context of arithmetic geometry; more details

can be found in e.g. [18–20]. Consider a rational variety V ⊂ Pn−1. From this variety, we

can can build an infinite number of related varieties, one defined over each finite field.

Recall that, for each prime number p, Z/pZ defines a finite field Fp, where addition and

multiplication are taken in Z and then reduced modulo p. For instance, in F3 we have 2+1 =

0 and 2×2 = 1 since 3 and 4 are congruent to 0 and 1 modulo 3, respectively. By reducing

8The converse, however, is not necessarily true. Two threefolds with isomorphic associated varieties
K, I, and H need not in general be Wall-equivalent, because change of basis matrices in GL(h1,1,Q) are
sufficient for isomorphism in the category of rational varieties but not for Wall equivalence. We will shortly
encounter an example where this distinction is important.

9For more on arithmetic geometry, and in particular point counts, in the context of string compactifi-
cations, see e.g. [14–17].
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the coefficients of the defining polynomial of V modulo p and then restricting its variables

to only take values in Fp, we can build a variety Vp over Fp. For instance, the rational

variety x3
1+3x3

2+4x3
3−5x1x2x3 = 0 becomes, when reduced over F3, x

3
1+x3

3+x1x2x3 = 0.

We are now in a position to define our first arithmetic invariants, namely bad primes.

Let us take V to be smooth. When reduced modulo a prime p, the resulting variety Vp

can be singular even though V is smooth. In general, this can occur for only finitely many

primes, called the bad primes of V. As an example, consider the smooth rational variety

x3
1 + x3

2 + x3
3 = 0; when reduced over F3, this is a singular variety, as can be readily seen

by evaluating its derivatives at e.g. the point xi = (1, 2, 0), and so 3 is a bad prime for this

variety. The bad primes of K and I are thus invariants of the Wall data.10 We describe a

systematic way to compute the bad primes of any rational variety in the next subsection.

Each of the prime-order fields Fp defined above admits an infinite number of field

extensions Fps defined by adjoining the root of an irreducible order-s polynomial. Thus,

from F2 we can build F4, F8, and so on. In fact, these are the only finite fields. Moreover,

Fp embeds directly into each of these field extensions. Therefore, by simply declaring our

variables xi to now live in Fps rather than just Fp, we can build from each of the infinite

number of varieties over Fp constructed above an additional infinite tower of varieties, Vps.

Now let Vps be such a variety. There are only a finite number of points on Vps because

the variables appearing in the defining polynomial take values in Fps. We define the point

counts

#
(
V, ps

)
:= #

(
x ∈ FpsP

n−1
∣∣∣ x ∈ V

)
(2.12)

The #(V, ps) are extremely powerful invariants, and are a basic object of study in arith-

metic geometry. Applied to our set of varieties, we compute point counts on K and I. We

note that, although point counts are efficiently computable at small h1,1 and over finite

fields of small order, the computation becomes slow at large h1,1 and at large ps.

As an aside, we note some interesting simplifications that occur at h1,1 = 3. In this

case, κijkx
ixjxk is a cubic in three variables, and so, if K is smooth, then by the adjunction

formula K is a Calabi-Yau one-fold, i.e., an elliptic curve. It is a classical result that any

cubic elliptic curve admits an essentially unique representative in Weierstrass form, i.e., as

a choice of rational coefficients f, g in the defining polynomial

y2 = x3 + fx+ g. (2.13)

10Recall that H is singular for h1,1 > 2, and thus does not have bad primes as such.
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Two cubics are isomorphic as rational varieties if and only if they have the same Weierstrass

representative, so rather than computing e.g. point counts and bad primes, at h1,1 = 3

one could classify the potentially equivalent choices of κijk at fixed h2,1 by finding the

Weierstrass representatives of each of the polynomials κijkx
ixjxk. However, we again em-

phasize that two threefolds with the same K are not necessarily Wall-equivalent. For

instance, the cubics 8x3
1 + 8x3

2 + x3
3 = 0 and 64x3

1 + x3
2 + x3

3 = 0 both have Weierstrass

coefficients (f, g) = (0,−27648), but two threefolds with these cubics cannot be Wall-

equivalent, since the change of basis matrix that maps these cubics into each other, namely

Λ = diag(2, 1/2, 1), has rational entries.

2.1.3 Algebraic invariants

In addition to the arithmetic point of view, the varietiesK, I, and H are objects in classical

algebraic geometry. Consider any integer polynomial f , which in our applications will be

κijk x
ixjxk or Hijkl x

ixjxkxl. From the symmetric h1,1 × h1,1 matrix of second derivatives,

hij = ∂i∂jf , (2.14a)

we can construct the Hessian

h := det hij . (2.14b)

This is an integral polynomial, and so its integral content, i.e., the gcd of all of its coeffi-

cients, is invariant under change of basis. Similarly, if h factors, the shape of its factoriza-

tion, i.e., the number of factors of each degree, is an invariant. Thus, we have four Hessian

invariants, two each from the Hessians of the defining polynomials of K and H.

A richer set of invariants can be constructed from ideal-theoretic considerations. Begin

with the ring

R := Z[x1, . . . , xh1,1 ] (2.15)

of polynomials in the xi with integer coefficients. An ideal I of R is a subgroup of the

additive group of R that is closed under multiplication by elements of R: for example, the

subset of all polynomials such that each term includes at least one factor of x1. For any

ideal I of R, we can define its saturation Isat as the set of all polynomials that are in I

10



when multiplied by the xi to a sufficiently high power, i.e., we define

Isat :=
{
f ∈ R

∣∣fxN
i ∈ I ∀i for some N

}
. (2.16)

Isat is itself an ideal, and in particular contains I.

We will be largely concerned with ideals constructed from one of the varieties K, I,

and H described above, so let us be more specific. Consider a variety V defined by the

simultaneous vanishing of a finite set f1, · · · , fn of polynomials; since in all of our examples

the content of these polynomials is already included in the list of invariants, we are free to

divide by the content, so without loss of generality we will assume that these polynomials

fi have trivial content. We define the Jacobian ideal J(V) of V as the ideal generated by

the n polynomials and the order-n minors of the n× h1,1 matrix jai = ∂ifa, i.e.,

J(V) := 〈f1, · · · , fn,minorsn jai〉 . (2.17)

We will usually drop the V, and refer to the Jacobian ideal just as J for simplicity. We can

construct its saturation J sat as in equation (2.16). Recall that elements of J sat are graded

by their degree. Define the degree-d content of the singular locus Md to be the gcd of the

contents of all polynomials in J sat of degree less than or equal to d.

These invariants can be efficiently computed in terms of any generating set for J sat. It is

convenient to consider a Gröbner basis G(J sat) for J sat, which can be written schematically

as

G(J sat) = (gm, gm−1, · · · , g1, g0) , (2.18)

where gi stands for the set of degree-i polynomials in the Gröbner basis.

The degree-zero content of the singular locus, M0, is simply g0, and deserves special

attention.11 The variety V is smooth if and only if M0 is nonzero.12 Upon reducing V

over a finite field Fp, M0 itself gets reduced modulo p, and so the bad primes of a smooth

variety V are exactly those that divide M0. As an integer that encodes the bad primes of

a variety, M0 is reminiscent of the conductor N of an elliptic curve, as defined in e.g. [18].

Moving up in degree, the degree-one (or linear) content of the singular locus is given

11It is amusing to note that the integers M0 can be quite large; the largest we have encountered in our
dataset is 254754473628464286014940445745045420261589521392846806, which arises as the M0 invariant
of the I associated to a phase at h1,1 = 5.

12For more details on singular loci and Gröbner bases, we refer to [21].

11



Name Label Description Equation

Divisibility invariants (a) GCDs of combinations of κ & c2 (2.6), (2.7)

Point counts (b) Number of points on varieties over Fps (2.12)

Hessians (c) Content & shape of the Hessians (2.14)

Content of singular locus (d) Bad primes & generalizations thereof (2.20)

Table 2: A summary of the invariants of the Wall data used in the analysis. We will
reference these labels throughout the text to describe which invariants are used in which
stage of the analysis.

by

M1 = gcd
[
gcd (g1) ,M0]

]
, (2.19)

and it therefore divides M0. The linear content is thus most useful in cases where M0

vanishes, i.e., when V is singular. Similarly, M2 divides M1, and so on. Eventually these

invariants will stabilize: there is some maximum l such that Mk = 1 for all k ≥ l. In fact,

the Mk can be defined in terms of any generating set of J sat, such as J sat itself. Since J sat

contains J , and in particular contains the defining polynomials, which we have taken to

all have trivial content, the degree-d contents of the singular locus must stabilize to one no

later than the largest degree of the defining polynomial, but of course in any example they

may stabilize well before this. Thus, to any variety V, and in particular to the varieties K,

I, and H, we can associate the vector-valued content of the singular locus, M , defined as

M :=
(
M0,M1, · · · ,Mmax[deg(fa)]

)
. (2.20)

This completes the list of invariants of the Wall data used in our analysis. We summarize

these invariants in Table 2.
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2.1.4 Computing the invariants in an example

Let us work through the computation of these invariants in an example. Consider the

polytope whose vertices are given by the columns of the matrix




1 0 0 1 −5

0 1 1 0 −2

0 0 2 1 −3

0 0 0 2 −2




.

This polytope has a single FRST, which defines a toric variety whose anticanonical hy-

persurface is a threefold X with h1,1 = 3 and h2,1 = 43. We use the basis for H2(X,Z)

characterized by the rows of the GLSM charge matrix, given in this example by



−8 1 0 0 4 1 0 2

0 0 1 1 0 0 0 −2

−4 0 0 0 2 0 1 1


 , (2.21)

and use the dual basis for H2(X,Z).

In this basis, the non-vanishing independent triple intersection numbers of X are

κ123 = 1 , κ233 = −2 , κ133 = 2 , κ333 = −8 , (2.22)

and the second Chern class is given by

c2 = (12, 12, 4)⊤ . (2.23)

From these, one computes the divisibility invariants to be

di = (4, 1, 2, 2, 16, 16, 16, 64) . (2.24)

From the intersection numbers in Eq. 2.22, we find that

κijkx
ixjxk = 6x1x2x3 + 6x1x

2
3 − 6x2x

2
3 − 8x3

3. (2.25)
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The Hessian is

h = 432x1x2x3 + 432x1x
2
3 − 432x2x

2
3, (2.26)

so the Hessian content is 432. We consider the variety K defined by

3x1x2x3 + 3x1x
2
3 − 3x2x

2
3 − 4x3

3 ∈ QP2, (2.27)

where we have scaled out the integral content of κijkx
ixjxk. This variety is singular along

the locus x2 = x3 = 0, so we expect the integer content of the singular locus to vanish.

Indeed, a generating set for J sat is given by

(
x3
3, 3x1x2, 3x3

)
, (2.28)

so we find that the vector-valued content of the singular locus is given by

M = (0, 3, 3, 1) . (2.29)

Now let us compute the number of points on K over F2; we readily check that the points

in F3
2 satisfying the reduced defining polynomial

x1x2x3 + x1x
2
3 + x2x

2
3 = 0 (2.30)

are13

(x1, x2, x3) = (0, 0, 1), (1, 0, 0), (0, 1, 0) , and (1, 1, 0) , (2.31)

so we have

# (K, 2) = 4 . (2.32)

Similarly, one computes

# (K, 3) = 8 and # (K, 5) = 40 . (2.33)

The computation of invariants for I and H proceeds entirely analogously.

13The origin is always excluded from point counts because the origin is not a point in projective space.
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2.2 Mori cone invariants

One further set of invariants does not manifestly involve the Wall data, but will be very

useful in identifying (in)equivalent threefolds. LettingX be a smooth — but not necessarily

simply connected or torsion-free — threefold, we denote by M(X) ⊂ H2(X,R) its Mori

cone, generated by the effective curve classes in H2(X,Z).

In general, the Mori cone of a threefoldX can depend on the choice of complex structure

on X , i.e., it can enhance along certain loci of some non-zero codimension in the moduli

space of complex structures of X . In order to avoid this subtlety, we assume X has general

complex structure. Under this assumption, the Mori cone M(X) is itself an invariant of

X , i.e., it is entirely determined by the diffeomorphism class of X .

Given the Mori cone M(X), and denoting [C(α)] ∈ H2(X,Z), α = 1, . . . , l its extremal

primitive generators, one can compute the integer-valued genus zero GV invariants

Nα,k := n0
k·[C(α)] , k ∈ N . (2.34)

The set of GV sequences Nα,k is a powerful piece of data that allows comparing the dif-

feomorphism classes of pairs of threefolds to each other. Namely, given the Mori cones

M,M′, and sets of GV sequences N,N ′ associated to a pair of threefolds X and X ′, the

threefolds are topologically distinct if the sets of invariants N and N ′ do not agree.

If N and N ′ do agree, one only needs to consider any subset of h1,1 Mori cone generators

ofX that forms a basis, and enumerate all possible maps of these onto Mori cone generators

of X ′ that share matching GV sequences. The subset of such maps that have determinant

±1 gives a finite (and for the Hodge numbers considered in this paper, typically small)

set of candidate basis transformations Λ ∈ GL(h1,1,Z). If any of them satisfies (2.4) then

X ≃ X ′. Otherwise the threefolds reside in distinct diffeomorphism classes.

Computing the Mori cone of a threefold is in general difficult. However, Mori cones

can be determined, in principle, via a computation of GV invariants as in [7]. Namely, one

uses the fact that extremal rays of the Mori cone of a threefold X come with non-zero GV

sequences Nα,k, with the following exception.

Let [C] be a generator of M(X) such that an effective divisor [D] ∈ H2(X,Z) degener-

ates to a genus one curve worth of A1-singularities when taking the Kähler class of X to

lie on the facet of the Kähler cone that is dual to the cone over [C]. In this case, M-theory

compactified on X develops a non-abelian su(2) enhancement of its generic U(1)h
1,1

gauge

group, with a single massless hypermultiplet in the adjoint representation [22, 23]. The
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GV sequence of [C] is identically zero because the contribution to the index of the charged

BPS vector multiplet is canceled by the charged hypermultiplets.

However, giving a vacuum expectation value (vev) to the adjoint scalar in the su(2)

vector multiplet (the Coulomb branch) amounts to moving back into the interior of the

Kähler cone, breaking the gauge algebra back to its generic Cartan subalgebra. Likewise,

giving a vev to the adjoint hypermultiplet (the Higgs branch) breaks the gauge algebra

to the Cartan subalgebra. As the hypermultiplet moduli space is the complex structure

moduli space of X (plus Wilson line moduli of the M-theory three-form) the non-abelian

enhancement never occurs for general complex structure. Rather, along the special locus

in complex moduli space where the non-abelian enhancement can occur, a long vector

multiplet breaks into a BPS vector multiplet as well as a BPS hypermultiplet, that can

then become massless along a suitable locus in vector multiplet moduli space.

We thus conclude that the Mori cone of a threefold with general complex structure14 is

equal to the cone generated by all non-trivial GV sequences. The above conclusion, reached

by considering M-theory compactification on X , also follows from results of P.M.H. Wilson

(see the discussion at the beginning of Section 5 in [24] and also [25–27]). Specifically,

Wilson showed that a (smooth projective) threefold X of general complex structure does

not contain a quasi-ruled surface E over a smooth curve of genus g > 0 (that is, a surface

E ⊂ X that has a map E → C, which is a conic bundle, with C a smooth algebraic curve

of genus g ≥ 1). It follows that each extremal ray in the Mori cone of a threefold of general

complex structure always contains a curve with nonzero GV invariant.15

Thus, by computing GV invariants to sufficiently high degree, e.g. via the implemen-

tation of [28] in CYTools [29], following [30,31], one can compute Mori cones. However, in

practice one computes GV invariants to some specified cutoff degree, and some generators

of the Mori cone might lie at higher degree. Thus, one only finds an inner approximation

of the Mori cone. Nevertheless, given a pair of threefolds, one can compute their GV in-

variants to some chosen cutoff degrees and run the algorithm described above under the

assumption that the respective inner approximations of the Mori cones are exact. If in this

way one finds a basis transformation that satisfies (2.4), one has proven that the threefolds

lie in the same diffeomorphism class. Otherwise, the comparison is inconclusive.

In many cases, however, we can compute the exact Mori cone as follows: given a

14In Appendix B we present a pair of hypersurfaces X , X ′ that are Wall-equivalent, but that have
distinct Mori cones. We show that this seeming contradiction is resolved by the fact that only one of the
pair is general in complex structure moduli.

15Likewise, for general complex structure the Weyl flops of genus g > 1 described in [7] become ordinary
flops, and the hyperextended Kähler cone becomes simply the extended Kähler cone.
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threefold X realized as a hypersurface in a toric ambient fourfold V (see the discussion in

§3), the inclusion

X →֒ V , (2.35)

induces a natural inclusion of curve classes M(V ) ⊂ M(X). Thus, the Mori cone of the

ambient variety provides an outer approximation of the Mori cone of the hypersurface.

By considering embeddings of the same threefold into distinct toric fourfolds16 VI , I =

1, . . . , NV , one can find better outer approximations of the Mori cone via the intersection

M∩(X) :=

NV⋂

I=1

M(VI) . (2.36)

Crucially, if the generators ofM∩(X) have non-zero GV sequences, thenM(X) ≡ M∩(X).

Given a threefold X whose Mori cone can be determined in this manner, one can

conclusively compare it with all other threefolds X̂ for which the subset of generators of

M∩(X̂) hosting non-trivial GV sequences, together with the second Chern class c2(TX̂),

span all of H2(X̂,R). In this case, one can again simply go through all possible ways that

map these curve classes to counterparts of X that share the same GV data.

3 Equivalence classes of toric phases

In this section, we describe our results for the classification of toric hypersurface threefolds,

both simply connected and non-simply connected. The logic of our analysis is laid out in

Figure 1.

We construct Calabi-Yau threefolds as hypersurfaces in toric varieties following Batyrev’s

procedure [4].17 To this end, we pick a dual pair (∆◦,∆) of four-dimensional reflexive poly-

topes from the Kreuzer-Skarke database [5]. Then let T be a fine, regular, star triangulation

(FRST) of ∆◦. The latter defines a fan for a toric variety in which a smooth threefold is

obtained as the generic anticanonical hypersurface.

To count inequivalent toric threefolds, we first fix an h1,1 and collect the full set of poly-

topes from the Kreuzer-Skarke list [5] with this Hodge number. We then generate the list

16One way of getting distinct VI that give the same hypersurfaceX is to consider toric fans induced from
distinct fine, regular and star triangulations of a reflexive polytope that agree along two-faces. Moreover,
whenever we find equivalences between threefold hypersurfaces, say by comparing GV invariants, we may
add new Mori cone information to the intersection formula (2.36).

17For more details, see the reviews in e.g. [6, 32].
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1 2 3 4 5 6 7

FRST classes

easy invariants

1 2 3 4 5 6 7

find basis transformation

1 2 3 4 5 6 7

hard invariants

1 2 3 4 5 6 7

Figure 1: A flowchart of our analysis for toric phases. Everything inside a rectangle is
provably inequivalent to everything inside a different rectangle, and all phases within a
blue oval are equivalent to each other.

of triangulations of each polytope. For any given polytope ∆◦, the full set of FRSTs is in

general massively redundant: for FRSTs of four-dimensional reflexive polytopes, the triple

intersection numbers and second Chern class depend only on the induced triangulations

of two-faces. Hence, according to Wall’s theorem, two FRSTs of ∆◦ that have identical

restrictions to two-faces yield topologically equivalent threefold hypersurfaces (see [33] for

recent work on generating such FRSTs). Moreover, if ∆◦ is invariant under any automor-

phisms, these produce a further redundancy: the associated action on the triangulations

leads to trivial identifications of the corresponding threefolds. We therefore work with

FRST classes, by which we mean sets of FRSTs that have identical restrictions to two-

faces, up to the action of an automorphism of the polytope. Counts of FRSTs and FRST

classes are given in Table 1 for h1,1 ≤ 5 and in Table 3 for h1,1 = 6, 7. From each FRST

class, we construct a single threefold and compute its Wall data, i.e., its triple intersection

numbers and second Chern class; these can be found efficiently with the CYTools software

package [29].

In this way we obtain a large list of threefolds at fixed h1,1, and we aim to determine

which of these threefolds are Wall-equivalent. Before attempting to prove equivalence
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between classes of Wall data, we first attempt to rule out the existence of such equivalences.

As described above, we do this by computing invariants of the Wall data. We first sort the

collection of threefolds into classes based on the invariants specified in Table 2. Elements

of distinct classes are necessarily inequivalent, and so the remaining task amounts to a

pairwise comparison among threefolds with the same sets of Wall invariants.

We begin by computing “easy” invariants, such as h2,1, the divisibility invariants, and

point counts over finite fields of small prime order. Additionally, for toric hypersurface

threefolds, we can sometimes provably construct their exact Mori cones, as explained in

§2.2; in such cases, invariants such as the number of Mori generators and their GV invari-

ants are also used. These invariants allow us to separate our list of threefolds into provably

mutually inequivalent sets S, each of which contains a number of potentially equivalent

threefolds.

Next, we attempt to find basis transformations between members of each set S. We

compile a list of candidate basis transformations by analyzing the generators of the Mori

cone, as explained in §2.2. For instance, all generators with the same GV invariant must be

mapped into each other. In this way, we can usually, but not always, find change of basis

matrices between pairs of equivalent threefolds. We reiterate that, although GV invariants

are used to guess the basis transformations, if an appropriate transformation is found, then

the equivalence is proven.

At this stage, inside each set S we have constructed classes C of threefolds that are

provably equivalent to each other; these classes are denoted by blue dashed lines in Figure

1. What remains to do is to separate or merge the classes inside each set, which we refer

to as indeterminate classes.

Actually, for the completed classifications presented in this paper, i.e., for toric three-

folds with h1,1 ≤ 5, at this stage all equivalences have been found, and what remains to

do is just to prove that all indeterminate classes are in fact inequivalent. The simplest

way to do so is to compute computationally-intensive invariants of the Wall data, such as

the Hessians, point counts over prime-power fields, and the vector-valued content of the

singular locus.

Even once all of the invariants listed in Table 2 are computed, it is still sometimes

possible that there are classes that cannot be separated.18 This usually occurs when there

exists a change of basis matrix in GL(n,Q) rather than GL(n,Z) that maps the triple

intersection numbers and Chern classes into each other. In this case, the two classes must

18In our analysis, this happened only for h1,1 ≥ 5.
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h1,1 # polys # FRSTs # FRST classes # CYs

6 16,608 584,281 74,503 54,025 ≤ # ≤ 54,141

7 48,221 5,990,333 467,283 337,620 ≤ # ≤ 467,283

Table 3: A summary of bounds for favorable threefold hypersurfaces in toric varieties at
h1,1 = 6, 7. In this table, all the numbers shown — of polytopes, FRSTs, FRST classes,
and topological equivalence classes of threefolds (denoted ‘CYs’) — refer to counts from
favorable polytopes. For FRST classes at h1,1 = 6, the invariants used, in the notation of
Table 2, were (a), (b) up to F23, (c), and (d), as well as M∩ invariants. For h1,1 = 7, the
lower bound was derived using invariants (a), (b) up to F7, and the content of the Hessian
for κx3.

be analyzed by hand, in a manner explained in Appendix A.

We performed the analysis described above for all favorable and non-favorable polytopes

with 1 ≤ h1,1 ≤ 5. We found that there are 9444 equivalence classes of Wall data of the

resulting toric threefolds. Among these classes, 9434 have π1 = 0, and have vanishing

torsion in homology, and so Wall’s theorem applies directly. We have therefore obtained the

exact numbers of topological equivalence classes of simply connected threefold hypersurfaces

with 1 ≤ h1,1 ≤ 5; see Table 1.

We now turn to threefolds that have π1 6= 0. We find that the number of equivalence

classes of Wall data is 1, 2, 3, 3, and 1 at h1,1 = 1, 2, 3, 4, and 5, respectively. All of these

phases arise from triangulations of the 16 polytopes in the Batyrev-Kreuzer subset of the

Kreuzer-Skarke list [12]. If we were equipped with a generalization of Wall’s theorem estab-

lishing that non-simply connected threefolds with equivalent Wall data are homeomorphic,

then the above numbers would be the numbers of topologically inequivalent Calabi-Yau

threefold hypersurfaces with π1 6= 0.

We note that the prepotential in type IIA string theory compactified on a threefold

X is determined by the Wall data of X . Thus, given any two Wall-equivalent threefolds

X and X ′, whether simply connected or not, type IIA compactifications on X and X ′

yield the same two-derivative effective theory for the vector multiplets. It therefore seems

plausible to us, on physical grounds, that Wall’s theorem can be generalized to threefolds

with π1 6= 0.

Furthermore, we emphasize that in every case we have found of a pair (X,X ′) of Calabi-

Yau threefold hypersurfaces with equivalent Wall data, the fundamental groups are also

isomorphic, i.e., π1(X) ≃ π1(X
′). Thus, these pairs are diffeomorphic if and only if a)

their universal covers (X̂, X̂ ′) are diffeomorphic, and b) the freely acting symmetry groups
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(G,G′) relating

X = X̂/G , X ′ = X̂ ′/G′ , (3.1)

are mapped into each other under the isomorphism induced from X̂ ≃ X̂ ′. We have

shown that the first condition a) is satisfied for all pairs of non-simply connected pairs of

Calabi-Yau threefold hypersurfaces in the Kreuzer-Skarke list, while we leave checking b)

for future work.

At h1,1 = 6, 7 there are no longer any threefolds with π1 6= 0, or with torsion in homol-

ogy, so to count topological equivalence classes it is sufficient to count equivalence classes

of Wall data. However, our approach becomes more expensive. For h1,1 = 6, we included

only threefolds obtained from triangulations of favorable polytopes. We computed both

upper and lower bounds on the number of threefolds, but did not obtain the exact number.

Finally, at h1,1 = 7 we again considered only threefolds obtained from triangulations of

favorable polytopes, but we performed only a partial analysis in which inexpensive invari-

ants were computed and no attempt was made to find basis transformations. We therefore

computed a lower bound on the number of threefolds, but did not obtain an upper bound

more constraining than that given by the number of classes of FRSTs. Our final results

for h1,1 ≤ 5 are laid out in Table 1, and those for h1,1 = 6, 7 appear in Table 3.

4 Equivalence classes of non-toric phases

In this section we consider a broader class of threefolds that we term non-toric phases.

By this we mean Calabi-Yau threefolds that are related by flops to toric phases, i.e., to

Calabi-Yau threefold hypersurfaces in toric varieties defined by FRSTs of polytopes in the

Kreuzer-Skarke list, but are themselves not necessarily Wall-equivalent to any such toric

phase.

Below we obtain counts of non-toric phases in the birational equivalence classes [X ]br

with X any of the hypersurfaces in the Kreuzer-Skarke database with h1,1 = 2 or 3. Unlike

the counts of toric phases in the rest of the paper, the counts of non-toric phases given

here are provisional, in a specific sense that we will explain after introducing our method.

First, we recall that all threefold hypersurfaces in toric fourfolds defined by FRSTs of

a fixed reflexive polytope ∆◦ are birationally equivalent. One may relate any pair of such

threefolds via a series of flop transitions, inherited from a series of bistellar flips from one

FRST to the next. Across any elementary such flop transition, a set of exceptional P1s

in the same homology class [C] shrinks to a set of conifold points, which get blown up by
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introducing another set of exceptional P1s in the class −[C]. For flop transitions inherited

from bistellar flips, one may describe the vanishing curves as a complete intersection of a

pair of prime toric divisors — associated with an edge of the triangulation interior to a

two-face — with the hypersurface, and we will refer to such flops simply as toric flops. As

conifold singularities lie at finite distance in Kähler moduli space, all threefolds in the same

birational equivalence class share a common moduli space of Kähler structures, called the

extended Kähler cone K.

We now combine the Kähler cones KX inherited from the toric fourfolds V constructed

from the set of all FRSTs T of a fixed polytope ∆◦ and define

K∪ :=
⋃

T (∆◦)

KX . (4.1)

We thus obtain a sub-cone of the extended Kähler cone K, i.e.,

K∪ ⊆ K .

The full extended Kähler cone K, however, may in general contain chambers given by

Kähler cones of threefolds that cannot be realized via a series of toric flops from any toric

phase. Rather, such threefolds are obtained via a series of flops, some of which are not

toric. We will call such flops non-toric flops, and, by slight abuse of language, call the

resulting threefolds non-toric phases.

In [7], an algorithm was presented to determine all members of a birational equivalence

class [X ]br by enumerating all flops (toric and non-toric), using the set of GV invariants

of any representative X . We will utilize a version of this algorithm to construct, for each

threefold hypersurface X with h1,1 = 2 in the Kreuzer-Skarke database, a set of threefolds

in [X ]br. Granting certain assumptions that we detail below, the sets we find are complete,

i.e., in each case we construct all members of [X ]br.

To explain the required steps, we start by recalling the set of boundary phenomena

associated with a facet of the Kähler cone KX of a threefold X . Assuming general complex

structure, the following possibilities arise [25, 34]19 (see also [7]):

(a) A flop transition leads into another chamber of the extended Kähler cone of [X ]br.

(b) A holomorphic divisor D degenerates into a rational curve.

19Cases (a), (b), and (c) are referred to as limits of type I, III0, and II, respectively, in [25].
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(c) A holomorphic divisor D degenerates into an isolated point.

(d) The threefold degenerates into a lower-dimensional variety.

Facets of the Kähler cone KX of types (b),(c), and (d) are also facets of the extended

Kähler cone, while case (a) only occurs on facets of KX that are not facets of the extended

Kähler cone.

The first three limits arise at finite distance in moduli space, while the fourth one lies at

infinite distance. Importantly, in all cases an effective curve C shrinks, and by inspecting

the physical phenomena that arise upon compactification of M-theory on X [7] one finds

that the genus-zero GV invariant n0
[C] is non-vanishing in all cases, as rigorously shown

in [24].20

As a consequence, by computing GV invariants21 of a threefold X to sufficiently high

degree, one can compute the Mori cone MX , as explained in §2.2. By taking the dual of

MX one computes the Kähler cone KX . Denoting the primitive generators of the Mori

cone by [C(α)], as in §2.2, one can determine which of the four phenomena listed above

occur along the facet of KX dual to [C(α)].

First, one checks whether the facet is of type (d): denoting by φα the map

H2(X,R) → R , [D] 7→

∫

X

[D] ∧ [C(α)] , (4.2)

an infinite distance limit (d) occurs whenever the triple intersection form κ vanishes when

restricted to the kernel of φα, because precisely in this case the Calabi-Yau volume vanishes

along the corresponding facet of the Kähler cone.

Otherwise, one proceeds to check if the facet is of type (c). For this we consider the

Hessian of the cubic polynomial f = κabct
atbtc. If the Hessian vanishes along the kernel of

φα, then a divisor shrinks to a point, i.e., we have a limit of type (c) [24].

The remaining two options, (a) and (b), are distinguished by the sequence of GV

invariants Nα,k along multiples of [C(α)], cf. equation (2.34). For a flop transition (a), all

GV invariants Nα,k are non-negative, and vanish for all k > 6, but often already vanish for

smaller k [35, 36], while for a limit of type (b) we have

Nα,k = (2l,−2, 0, . . .) or Nα,k = (−2, 0, . . .) , (4.3)

20Note that the subtle case discussed in [7], where a holomorphic divisor degenerates to a higher genus
Riemann surface, does not arise for general complex structure [24].

21Efficient computation of GV invariants of hypersurfaces in toric varieties is possible in CYTools, using
the implementation [28] of the classic construction [30, 31].
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for some integer l ≥ 0.

Given the above classification, we can construct the extended Kähler cone by succes-

sively continuing past Kähler cone facets of type (a), i.e., going through every possible flop.

Across a flop transition, the triple intersection form and the second Chern class transform

as

κ → κ− n0
[C] · [C]⊗ [C]⊗ [C] , c2 → c2 + 2n0

[C] · [C] , (4.4)

while the GV invariants also transform in a simple way [7].

Therefore, given the GV invariants, computed to sufficiently high degree, of a three-

fold hypersurface, one may successively identify flop transitions, and compute Mori cones,

intersection numbers, and Chern classes of all chambers in the extended Kähler cone.

As an aside, by systematically collecting all divisor classes that shrink along facets of

type II, III0 and along facets at infinite distance in moduli space, one computes the effective

cone (at general points in moduli space) of the birational equivalence class [X ]br [37].

A potential subtlety in executing this algorithm arises when the number of chambers in

the extended Kähler cone is infinite. Assuming finiteness of the number of diffeomorphism

classes of threefolds, as conjectured e.g. in [38], there must exist a fundamental domain

inside K containing a finite number of chambers minimally representing the set of diffeo-

morphism classes contained in [X ]br. For the purposes of counting inequivalent threefolds,

finding this fundamental domain is sufficient.

In practice, we will find the fundamental domain as follows: for any facet of a Kähler

cone of type (a), we compute the dimension of the cokernel

coker
(
κ|ker(φα)×ker(φα)

)
, (4.5)

where we view the triple intersection form as a map κ : H2(X,R)×H2(X,R) → H2(X,R).

If the dimension of the cokernel is equal to one, there exists a unique, up to scale, divisor

class [Dα] ∈ H2(X,R) such that
∫
X
J ∧ J ∧ [Dα] = 0 for all Kähler classes on the facet

of the Kähler cone dual to [Cα]. This allows defining a natural (Coxeter) reflection map

Λ : H2(X,R) → H2(X,R) defined via

Λα = I− 2
[Dα]⊗ [Cα]

〈[Dα], [Cα]〉
, (4.6)

that maps points in KX to points beyond the flop facet. Often, in such a case, the Wall
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data of X and its flopped phase turn out to be related by Λ, viewed as a linear change of

basis transformation [39], and are thus in the same diffeomorphism class (provided they

are simply connected and have torsion-free homology). A flop of this kind has been termed

a symmetric flop in [40]. Passing through all flops that are not symmetric flops, we always

find a finite number of chambers22 in K, in which case these represent all diffeomorphism

classes in [X ]br.

Even following the above scheme, a crucial subtlety remains: it is in general hard to

assess how many GV invariants have to be computed before the exact set of Kähler cones

can be inferred. This subtlety is discussed in detail in [7]. Here, we take the following

practical, though somewhat ad-hoc, approach:

• We start with a threefold hypersurface X . We compute GV invariants using the

degree method of [28], where the cutoff degree is chosen to yield at least Nmin points

in the Mori cone.

• We initiate the algorithm explained above.

• Along any extremal ray of a candidate Mori cone, we compute GV invariants up to a

minimal multiple dmin of the primitive generator [C], using the past light cone method

of [28]. If the candidate ray was not an extremal ray of the true Mori cone to begin

with, this frequently reveals the missing generators. If a new generator is revealed,

we repeat this step, until the result is stable.

We perform these steps for all (favorable) 4d reflexive polytopes of fixed h1,1 = 1, 2 —

for each polytope ∆ choosing X to be the Calabi-Yau hypersurface in the toric fourfold

defined via the Delaunay triangulation of ∆. We then use our knowledge of the Mori cone

to enumerate all diffeomorphism classes.

In order to assess whether or not enough GV invariants have been computed to correctly

identify all Calabi-Yau threefolds, and their exact Mori cones, we compare the results of

this classification (at fixed h1,1) for increasing values of the ad-hoc parameters (Nmin, dmin).

If our results remain stable beyond some threshold of these parameters, we deem the results

robust.

Assuming the above algorithm yields the exact Mori cones of all threefolds in the

birational classes of threefold hypersurfaces of a given h1,1, we can compute topological

22All examples known to us of extended Kähler cones with infinitely many chambers arise via infinite
sequences of symmetric flops. However, we are not aware of a proof that flops that are not symmetric flops
cannot produce infinitely many chambers.
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h1,1 #(CY cl.) #(toric CY cl.) #(non-toric CY cl.) #(bir. equiv. cl.)

2 35 29 6 29

Table 4: Results of computation of non-toric phases with h1,1 = 2. We display the number
of classes of Wall data identified, the number of such classes with a representative realized
as a threefold hypersurface in a toric fourfold, the number of classes without such a repre-
sentative, and the total number of birational equivalence classes.

equivalence classes of threefolds, just as we did in §3 for toric threefolds. We first classify

according to invariants defined in §2.1, and finally compare the Mori cones of each pair in

the same equivalence class of invariants computed as in §2.2.

At h1,1 = 2 we start with Nmin = 100 and dmin = 3. We find that the resulting

count of Calabi-Yau threefolds and their topological data is stable against increasing these

parameters to Nmin = 10, 000 and dmin = 10. The corresponding results appear in Table 4.

These counts are provisional only in the sense that they rely on our computation of GV

invariants having high enough degree so that the Mori cones we obtained are correct.

In contrast, at h1,1 = 3, while we consistently find that the number of Kähler cone

chambers is 515, we have not reached a stable answer for the Mori cones of the outermost

non-toric phases, and we therefore leave the full classification of these for future work.

5 Conclusions

In this work we have made progress in classifying and counting inequivalent Calabi-Yau

threefolds constructed from the Kreuzer-Skarke list.

Wall’s theorem specifies topological data, which we called Wall data, such that two

simply connected threefolds X and X ′ are diffeomorphic if and only if they have equivalent

Wall data. Computing the Wall data is straightforward, but to determine whether the

Wall data for X and X ′ are equivalent one generally has to perform a nontrivial integral

change of basis relating H2(X,Z) to H2(X
′,Z). Finding such a transformation, or showing

that none exists, is a priori computationally intensive.

Our approach was to minimize the number of necessary comparisons by first classifying

threefolds in terms of arithmetic and algebraic invariants of the Wall data. As one example,

the triple intersection numbers determine a cubic surface K := κijkx
ixjxk = 0, which is a

variety defined over Q, and the point counts on K over finite fields Fp and Fps (with p a

prime number, and s a positive integer) are invariants of the Wall data. The full set of
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Analysis h1,1 Invariants used Summary Results

Toric favorable 1 ≤ h1,1 ≤ 5 (a)-(d) + M∩ Table 1 exact counts

Toric favorable h1,1 = 6 (a)-(d) + M∩ Table 3 upper & lower bounds

Toric favorable h1,1 = 7 (a)-(c) Table 3 upper & lower bounds

Toric non-favorable 1 ≤ h1,1 ≤ 5 (a)-(d) Table 1 exact counts

Non-toric h1,1 = 2 (a)-(d) Table 4 provisional counts

Table 5: The various subanalyses presented in this paper. For each analysis, we describe the
invariants used, following the notation in Table 2, and give a reference to the appropriate
summary table.

invariants we considered is listed in Table 2.

Using these invariants, we identified equivalent and inequivalent threefolds. That is, we

were able to identify pairs of equivalent threefolds, exhibiting basis transformations through

which their Wall data were demonstrably identical, and also inequivalent threefolds, for

which we proved that no such transformation exists. Our analysis proceeded in several

phases, depending on the type of threefold being considered. The different subanalyses,

and the Wall invariants used in each, are summarized in Table 5.23

For simply connected Calabi-Yau threefold hypersurfaces with h1,1 ≤ 5, the above

methods sufficed for us to give a complete classification and an exact count, as shown in

Table 1. For h1,1 = 6 and 7 we obtained bounds on the numbers of favorable threefolds:

see Table 3.

For non-simply connected threefolds, Wall’s theorem as stated in [1] does not apply.

There are only 16 polytopes in the Kreuzer-Skarke list that yield non-simply connected

threefolds, and for these cases we computed the Wall data, as well as the other invariants

mentioned above. The number of such classes with equivalent Wall data is 1, 2, 3, 3, and

1 at h1,1 = 1, 2, 3, 4, and 5, respectively.

Finally, we extended our methods to non-toric phases. Using the algorithm laid out

in §4, we constructed an ensemble of threefolds that are related to toric phases by flops

that are not bistellar flips. This ensemble is provisionally complete, in the sense that we

repeated the computation of GV invariants at successively larger scales until the result

was stable for multiple iterations. Within this set of threefolds, we identified topological

equivalence classes using the same method used for the toric phases. The results of this

23For favorable toric phases with h1,1 ≤ 4, we obtained the counts of inequivalent threefolds with two
independent pipelines, one with and one without the M∩ invariants, with perfect agreement.
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classification can be found in Table 4.

We close with several questions for further work:

• Is there a single invariant that characterizes whether two phases are topologically

equivalent? Here we used an ensemble of topological invariants, but one might hope

that, as is the case for e.g. Riemann surfaces, that there exists a unique invariant

sufficiently powerful that it suffices to reproduce our analysis.

• Given the Wall data of a threefold, is there an invariant that characterizes whether

or not this data can be realized in a toric hypersurface?

• Here we have studied the arithmetic geometry of the rational varieties associated

to threefolds by their Wall data. Does the arithmetic of the Wall data have any

relationship to the arithmetic of the underlying threefolds? For instance, recall that,

at h1,1 = 3, the cubic variety K is an elliptic curve if it is smooth; of the 186 phases at

h1,1 = 3, 60 of the associated cubic varieties are smooth elliptic curves with complex

multiplication. Complex multiplication has appeared in the context of certain highly

symmetric string compactifications, in e.g. [41]. Do the phases whose cubic varieties

have complex multiplication enjoy any special properties?

• We found that for toric phases at h1,1 = 5, the number of diffeomorphism classes is

≈ 32% smaller than the number of FRST classes. How does this proportion change

at larger h1,1?

• How numerous are non-toric phases in comparison to toric phases at large h1,1?

• It was shown in [6] that an upper bound for the number of FRST classes of polytopes

in the Kreuzer-Skarke list is dominated by FRSTs of a single polytope, which has

Hodge numbers h1,1 = 491, h2,1 = 11. How many of these FRST classes give in-

equivalent phases? Is the total number of inequivalent toric hypersurface phases also

dominated by triangulations of this polytope? For progress in enumerating FRST

classes of this polytope and their associated toric phases, see [42].
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A Excluding basis transformations

Let X and X ′ be threefolds with the same Hodge numbers, denoting h1,1(X) by n, and

denoting by c2, c
′

2 their second Chern classes, which are linear forms. Similarly, let κ, κ′

be the cubic intersection forms for X,X ′.

We wish to either find, or show non-existence of, an n×n integer matrix Λ with deter-

minant 1 or -1, which maps c2 to c′2 and κ to κ′ (by means of equation (2.4)). We can do

this using Gröbner bases and Macaulay2 [43] by creating an ansatz (method of undeter-

mined coefficients). We consider an n× n matrix with indeterminate entries, and consider

the set of linear and cubic equations on these n2 variables, arising from the constraints in

(2.4). For h1,1 = 3, this works extremely well, but for h1,1 = 4 and h1,1 = 5 the Gröbner

basis computations take a very long time.

To handle h1,1 = 4 and h1,1 = 5, we consider the determinants h, h′ of the Hessian

matrices of κ, κ′. Each irreducible primitive (i.e., integer content one) factor of hmust map,

up to a sign, to the irreducible factors of h′ of the same degree. If there are linear forms,

this gives extra linear equations for the entries of Λ, further reducing the dimensionality of

the ansatz. Similarly, if the cubic equation κijk x
ixjxk = 0 has singular points away from

the origin, then these must be mapped to each other. This gives a finite number of possible

candidate maps between the respective sets of singular points. For each such candidate, one

gets an even further constrained ansatz for Λ. If for all such candidates there is no integer

solution Λ satisfying all the constraints, then the two threefolds are inequivalent. This

reasoning works for checking inequivalence for all favorable toric threefolds with h1,1 = 4

and h1,1 = 5. In the latter case, in seven out of the 8016 favorable classes we rely on factors

of the Hessian or singular points to prove inequivalence.

Another problem we encounter at h1,1 ≥ 3 is to determine whether favorable threefolds
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can be equivalent to non-favorable threefolds. Let us take h1,1 = 5 as an example. The

invariants we use break up the 134 non-favorable threefolds into 91 different sets, together

with 77 favorable threefolds that might be equivalent to some of these. Many such pairs

have factors of the Hessian and/or singular points, and we find matrices that determine

equivalence as explained above. However, there are a few cases where the Hessian does not

factor and there are no singular points, and in this last extremity we resort to a brute force

method. There are 252 possible integer vectors of length 5, with entries 0, 1, -1, that can

be columns of an invertible integer 5× 5 matrix G. We iterate through these, setting two

of the columns of G to be two of the 252 possibilities, and using the resulting ansatz on

the remaining 15 variables. Each time, we get an ideal in 15 variables, and we decompose

this into irreducible components using Macaulay2 [43]. In this way, we find a map showing

equivalence, in at most a few seconds per case. In particular, we find that in many cases

there are equivalences between favorable and non-favorable threefolds.

B A curious pair of diffeomorphic threefolds

In this appendix we consider a pair of Calabi-Yau threefolds X and X ′ that arise as

hypersurfaces in toric fourfolds V and V ′ respectively. We show thatX andX ′ have distinct

Kähler, Mori and effective cones, but are nonetheless Wall-equivalent and hence in the same

diffeomorphism class! As we will explain, the resolution of this seeming contradiction is

that X ′ is general in complex structure moduli, but X is not.

B.1 A Calabi-Yau threefold hypersurface X

First we define the toric variety V . Let ∆ ⊂ NR := N ⊗ R — with N ≃ Z4 — be the

reflexive four dimensional lattice polytope with points

(
0 p1 · · · p8

)
=




0 1 −4 0 0 −2 0 −2 −1

0 0 −2 0 1 0 0 −1 0

0 0 0 0 0 −1 1 0 0

0 0 −1 1 0 0 0 0 0




. (B.1)

Let Σ be the normal fan of ∆ (ignoring the point p8 interior to a facet of ∆). We set

Vs := P∆ and partially desingularize V → Vs via a fine, regular and star triangulation

(FRST). It turns out that ∆ has two inequivalent FRSTs, T1 and T2, but their induced
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triangulations of the two-faces of ∆ are equivalent. We will denote the two resulting toric

varieties as V1 and V2. We denote their respective Kähler cones by K1 and K2.

We let X be a generic Calabi-Yau hypersurface of V1. Importantly, by varying the

coefficients of the general anti-canonical polynomial in V1 (and V2) one parameterizes only

a codimension-one sub-manifold of the complex structure moduli space of the resulting

Calabi-Yau threefolds, so these surfaces are not general.

Along the intersection of Kähler cones K1 ∩ K2 the hypersurface X remains smooth

because the resulting singular curve in V1,2 does not intersect X . Hence the Kähler cone

of X contains the union of the Kähler cones of the two ambient varieties:

KX ⊃ K∪ := K1 ∪ (K1 ∩ K2) ∪ K2 . (B.2)

We define M∩ as the cone dual of K∪, and we have MX ⊂ M∩.

Next, we define a basis {[Ca]}3a=1 of H2(X,Z) ≃ H2(V,Z) via a basis of linear relations

among the points not interior to facets (p1, . . . , p7),

Q =



2 0 0 0 1 1 0

2 0 0 1 0 0 1

2 1 1 1 0 0 −1


 , (B.3)

encoding the intersection pairing Qa
i := Ca ∩ Di with Di, i = 1, . . . , 7, the prime toric

divisors. We denote by {[Ha]}3a=1 the dual basis of H2(X,Z) ≃ H2(V,Z). In this basis,

the only non-vanishing triple intersection number is

κ123 :=

∫

X

[H1] ∧ [H2] ∧ [H3] = 2 , (B.4)

and the second Chern class is given by the curve class

~c =



24

24

24


 , ca :=

∫

X

c2(TX) ∧ [Ha] . (B.5)
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The extremal generators of the cone M∩ are

[Ĉ1] := [C1] =



1

0

0


 , [Ĉ2] := [C2] =



0

1

0


 , [Ĉ3] := −[C2] + [C3] =




0

−1

1


 . (B.6)

Expanding the Kähler form of X as J =
∑3

a=1 t
a[Ha] the cone K∪ is defined by the linear

constraints

t1 > 0 , t2 > 0 , t3 > t2 . (B.7)

The Calabi-Yau volume is computed as

Vol(X) =
1

6
κabct

atbtc = 2t1t2t3 , (B.8)

and therefore Vol(X) → 0 as t1 → 0 and also as t2 → 0. As a consequence, these facets

of K∪ are also facets of the Kähler cone of X . This can also be seen from the fact that

the dual generators of M∩ are proportional to effective curve classes in X that can be

represented as complete intersection curves

2[Ĉ1] = [D̂3 ∩ D̂4 ∩X ] , 2[Ĉ2] = [D̂2 ∩ D̂5 ∩X ] . (B.9)

Along the third facet, where t2 = t3, the Calabi-Yau volume remains finite, but the prime

toric divisor D7 := D̂7 ∩ X degenerates into a curve of genus one. Indeed, its volume is

computed by

Vol(D7) =
1

2
Qa

7κabct
btc = 2t1(t3 − t2) = 2t1 · Vol(Ĉ3) , (B.10)

and thus vanishes linearly as Vol(Ĉ3) → 0. This is in accordance with [24–27] because

the Calabi-Yau hypersurfaces constructed above are not general in their complex struc-

ture moduli. One thus expects that the class [D7] ceases to be effective under a general

deformation of complex structure. We will confirm this explicitly.

The curve class [Ĉ3] is likewise proportional to the class of an effective complete inter-

section curve

2[Ĉ3] = [D̂5 ∩ D̂7 ∩X ] . (B.11)

The shrinking divisor D7 arises from the point p6 interior to a one-face of ∆. Setting x7 = 0

we may set x4 = 1, as x4x7 is in the Stanley-Reisner ideal of the toric ambient variety.

Thus we obtain a toric description of the divisor D7 as a hypersurface of bi-degree (4, 0)
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in the toric variety with scaling relations



x2 x3 x1 x5 x6

0 0 2 1 1

1 1 0 0 0


 , (B.12)

which identifies D7 as a quartic curve in weighted projective space P[2,1,1] times a P1 with

homogeneous coordinates [x2 : x3]. The fiber is an elliptic curve, and hence D7 = T 2 × P1.

The complete intersection D̂5 ∩ D̂7 ∩X is a set of two distinct points inside the T 2 factor,

and hence the class [Ĉ3] is in the same class as the P1 factor in D7. In particular, as claimed

above, the divisor D7 degenerates into a singular curve of genus one.

In summary, we learn that KX ≡ K∪ and MX ≡ M∩ are smooth and simplicial cones.

Along two of the facets of KX the Calabi-Yau volume degenerates, while on a third facet

the prime toric divisor D7 shrinks to a genus one curve. Compactifying M-theory on X ,

along the facet where D7 shrinks, one finds a non-abelian su(2) enhancement of the gauge

algebra with the field content of N = 4 Yang-Mills. The Z2 Weyl group of the Yang-Mills

theory is generated by

w = I− 2
[Ĉ3]⊗ [D7]

〈Ĉ3, D7〉
=



1 0 0

0 0 1

0 1 0


 , (B.13)

acting on H2(X). Notably, it maps [Ĉ3] to minus itself and its conjugate action on H2(X)

maps [D7] to minus itself.

Finally, we reiterate that due to a theorem by Wilson [25], the existence of the divisor

D7 — a (trivial) P1 fibration over a genus one curve — implies that our hypersurface X is

not general, i.e., its embedding into the toric variety V forces the complex structure onto a

special sub-locus. Indeed, we have h2,1(X) = 115, while the number of monomial sections

of the anti-canonical line bundle minus the dimension of the algebraic torus action on V

and minus one for overall scaling is equal to 114.
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B.2 A Calabi-Yau threefold hypersurface X ′

Next, we follow analogous steps to construct X ′ ⊂ V ′.24 The polytope ∆′ ⊂ NR has lattice

points

(
0 p′1 · · · p′8

)
=




0 1 −2 −2 −2 0 0 0 −1

0 0 −1 0 0 0 0 1 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 1 0 0 0




, (B.14)

and p′8 is interior to a facet of ∆′. There are three inequivalent FRSTs of ∆′ (excluding

p′8), and again all of them agree on two-faces. Thus again, we can construct an inner

approximation K′

∪
of the Kähler cone KX′ of the Calabi-Yau threefold X ′, with

K′

∪
⊂ KX′ and M′

∩
⊃ MX′ . (B.15)

A suitable basis of H2(X
′,Z) is defined by the rows of

Q′ =



2 0 1 0 0 1 0

2 1 0 0 0 0 1

2 0 0 1 1 0 0


 . (B.16)

In this basis we compute the intersection numbers and second Chern class, and find the

same result as in our previous example in §B.1:

κ′

123 :=

∫

X′

[H ′

1] ∧ [H ′

2] ∧ [H ′

3] = 2 , (B.17)

and

~c′ =



24

24

24


 , c′a :=

∫

X′

c2(TX
′) ∧ [H ′

a] . (B.18)

As both X and X ′ are simply connected, and have torsion-free homology, Wall’s theorem

implies that there exists a (generally not holomorphic) diffeomorphism

ϕ : X → X ′ . (B.19)

24Primed quantities in this section refer to the Calabi-Yau threefold X ′ as opposed to the threefold X

of the previous section.
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However, the generators of M′
∩ are now given by the basis elements, i.e.

[Ĉ′1] := [C′1] =



1

0

0


 , [Ĉ′2] := [C′2] =



0

1

0


 , [Ĉ′3] := [C′3] =



0

0

1


 , (B.20)

and we will see momentarily that all three classes are proportional to the classes of complete

intersection curves. We have

2[Ĉ′1] = [D̂′

2 ∩ D̂′

4 ∩X ′] , 2[Ĉ′2] = [D̂′

3 ∩ D̂′

4 ∩X ′] , 2[Ĉ′3] = [D̂′

2 ∩ D̂′

7 ∩X ′] , (B.21)

and the Calabi-Yau volume vanishes along all three facets of K′

∪
. We also note that the

polytope ∆′ has a symmetry that induces a Z2 symmetry on H2(X
′) that takes the same

form as the Weyl symmetry generator in the example in §B.1.

The crucial difference between this hypersurface X ′, and the hypersurface X con-

structed in §B.1, is that X ′ is general in complex structure moduli, in the sense that all of

complex structure moduli space of X ′ is swept out by varying the coefficients of the anti-

canonical polynomial. Indeed, as required by Wilson’s theorem [25], for general moduli the

divisor class ϕ∗([D7]) ⊂ X ′ is not effective. Similarly, the generator [Ĉ3] of the Mori cone

MX does not map to an effective curve class under ϕ∗ for general moduli.

Finally, we note that the isomorphism mapping even-dimensional (co)homology groups

of our two examples X and X ′ into each other maps the Kähler cone of X ′ into the union

of the Kähler cone of X with its image under the Weyl group (B.13).
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