
A
TL

-S
O

FT
-P

R
O

C
-2

02
3-

04
1

21
Se

pt
em

be
r

20
23

1 

 

Evolution of the ATLAS CREST conditions DB project 

E.Alexandrova, A.Formicab, M.Mineeva,1, N.Ozturkc, S.Roed,  

V.Tsulaiae, M.Vogelc 
a Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia 

b Université Paris-Saclay, CEA/Saclay IRFU, 91191 Gif-sur-Yvette, IRFU/CEA, France 

c University of Texas at Arlington, 01 South Nedderman Drive, Arlington, TX 76019, USA 

d CERN, CH - 1211 Geneva 23, Switzerland 

 e Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA 

The CREST project is a new realization of the conditions DB with the REST API and JSON support 
for the ATLAS experiment at the LHC. This project simplifies the conditions data structure and optimizes 
data access. CREST development requires not only the client C++ library (CrestApi) but also the various 
tools for testing software and validating data. A command line client enables a quick access to the stored 
data. A set of the utilities was used to make a dump of the data from CREST to the file system and to test 
the client library and the CREST server using dummy data. Now CREST software is being tested using the 
real conditions data converted with the COOL to CREST converter. The Athena code (ATLAS event 
processing software framework) was modified to operate with the new conditions data source.  

INTRODUCTION 

This article is focused on the CREST evolution aspects and considers new features 
in the CREST project [1]. This project is a new database for Conditions data with REST 
interface (CREST) and JSON support for the ATLAS detector [2] at the Large Hadron 
Collider (LHC) at CERN. The CREST prototype was described in detail in [3]. 
Conditions data are non-event data, such as detector calibration and alignment data, 
electrical and environmental measurements such as voltages, currents, pressures, 
temperatures, information about the run and data acquisition configuration, LHC beam 
information, trigger configuration, detector status data, used to describe the detector 
status, and constitute an essential ingredient for the processing of physics data, in order 
to reconstruct events optimally and exploit the full potential of the detector. The project 
was started for several reasons. The COOL and CORAL packages are used today for the 
ATLAS conditions data [4]. The long term maintenance and evolution for the COOL API 
and CORAL software were a concern. Some workflows have issues with poor caching 
efficiency of the retrieved conditions data. COOL lacks built-in support for managing 
global tags, which are important for labeling and organizing data. It is important to note 
that this article does not cover all aspects of CREST development. CREST DB 
infrastructure was also discussed in Ref [5]. 

 

 

                                                 

1 E-mail: mineev@jinr.ru 
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license 



2 

 

CREST DATA MODEL  

The CREST data model consists of five tables which contain metadata and 
payload data. Conditions data are stored in the payload table. Values are consumed as an 
aggregated set (typically a header and some parameter container(s)). Conditions metadata 
are organized in three tables: the tables for IOVs (Intervals Of Validity), tags, global tags 
(plus one table used essentially for mapping between tags and global tags). IOV has a 
time parameter - the start time (time can be represented as a timestamp or a run number, 
etc.). Each IOV also has a reference to the payload in the form of an sha256 hash. The 
tag is a label to group a set of IOVs. The CREST tags correspond to the COOL 
tags/folders. Several tags can be grouped together with a global tag. A tag can be 
associated to many global tags. 

CREST SERVER 

The data on the CREST server is accessed using HTTP requests via a REST API. 
The request and response bodies are formatted in JSON. The CREST server is based on 
standard Java technologies (JEE, Spring) and specifications (JAX-RS, JPA). It can be 
deployed in the same Tomcat server as Frontier or as a standalone service (using standard 
Java web servers like undertow, jetty, …). The CREST server is compatible with multiple 
DB technologies (e.g. Oracle, PostgreSQL). During the past year, the CREST server API 
was revised. The main changes are: the duplicated endpoints were removed and the 
request syntax was simplified.  The authorization in CREST will be based on OAuth2 
technology [6]. A developer’s version of the server with the OAuth2 support was 
deployed, using CERN SSO for authentication and authorization. 

CREST C++ CLIENT LIBRARY (CrestApi) 

CrestApi is a C++ client library for the CREST server (the data can also be stored 
on the local file storage). It stores, reads (and updates) the data on the CREST server.  
CrestApi uses the NLohmann JSON library to operate with the data in JSON format and 
the CURL library to send the HTTP requests.  Some new methods were added, for 
example the methods to create IOVs, to remove a tag from the global tag etc. OAuth2 
authentication support was added in the CrestApi developer’s version (currently only a 
prototype, with limited capabilities). 

CREST COMMAND LINE CLIENT (crestCmd) AND UTILITIES 

 The CREST command line client (crestCmd) is a tool for a quick access to the 
data on the CREST server, written to simplify the development of the other CREST 
project components. Some new commands were added here, for example to get the size 
of the IOV list for a selected tag, as well as commands to get the version number of the 
CREST server and CREST client (CrestApi version) etc. For the CREST server 
validation, it is necessary to have some additional tools for quick server testing. The tag 
creation utility is used to create “dummy” test data: a tag, a tag meta info (this object 
contains the COOL channel list), IOVs with payloads. The payloads are generated 
randomly and the payload size can be set by the user. The crestExport utility can make a 
data dump which corresponds to a selected tag (the tag, the tag meta info, the IOVs with 



3 

 

payloads) from the CREST server to the local file storage. The crestImport utility reads 
the tag data from the local file storage and writes them to the CREST server. The 
crestCopy utility creates a tag copy on the CREST server. The tag removing command 
was added in crestCmd, but sometimes it is necessary to remove a global tag with all its 
tags. The removeTagList utility can do this. All these utilities and crestCmd are included 
in the crest_cmd package and are available on the CREST git repository. 

COOL TO CREST CONVERTER 

To simplify the task of reading data from COOL, it was decided to use the existing 
IDatabase interface of the COOL package. The implementation of this interface for 
CREST made it possible to use the AtlCoolCopy utility, specifying CREST as the output 
base. AtlCoolCopy is part of the standalone version of the ATLAS software. The source 
data can be filtered by folder, tag and IOV range. The COOLR API (a REST service 
dedicated to retrieval of COOL data via HTTP) is used to convert the data associated with 
the selected global tag. This utility can be used via a python client. One of its features is 
to get information in JSON format about all folders associated with a given global tag. 
The general scheme for converting all data associated with the selected global tag is 
shown in Figure 1.  

 

Fig. 1: Schema for converting all data from a global tag. 

Using COOLR, we get data about the global tag in JSON format. The JSON contains a 
list of directories with additional parameters, such as local tags, the name of the database 
in which this information is stored, and so on. This information is required by 
AtlCoolCopy to read data from COOL. The JSON data is processed by a python script 
(launcher), then the conversion of all folders from the resulting list is started sequentially. 
Data about the global tag associated with the current tag is passed via AtlCoolCopy to the 
CREST plugin, which sends it to the CREST server, along with other metadata. The 
conversion will end after all folders from the list have been converted. 

 



4 

 

CREST AND ATHENA 

 One of the main tasks for the CREST project is to modify the ATLAS event 
processing software framework (Athena) [7] to make it work with the CREST data. The 
software adaptation began with the algorithms (defined in JobOption files, which are 
Athena tasks written in python) for the LAr and Tile calorimeters. The COOL to CREST 
converter is used for data migration for the ATLAS subsystems. The main changes were 
done in the IOVDbSvc package. Athena users need only small changes in their code to 
use CREST data (see Figure 2). 

 

Fig. 2. The IOVDbSvc parameters in the JobOption. 

It is necessary to specify the data source (with the Source parameter) and to set a 
global tag name (with GlobalTag). There are additional parameters. It is possible to 
change the CREST server URL with a port number and to make a CREST data dump on 
the file storage. The CREST data are dumped in the local file storage in the same directory 
where the JobOption was started. The CrestApi library is used to make this dump. 

CONCLUSION 

The CREST project has evolved with its components and the related Athena 
software in the past year. The CREST server API was optimized. The COOL to CREST 
data converter was rewritten to operate with the global tags. The new commands were 
added in the command line client for CREST software testing. The conditions data in the 
CREST format were successfully used with the offline data processing algorithms from 
the LAr and Tile subsystems. While testing and validation continue with other subsystems 
CREST shows already a well-developed system to be fully deployed for the Run 4 of the 
ATLAS experiment at the LHC. 

REFERENCES 

1. L.Rinaldi et al., Conditions evolution of an experiment in mid-life, without the 
crisis (in ATLAS) // EPJ Web Conf., Volume 214, 04052, 2019. 

2. ATLAS Collaboration, JINST 3, S08003 (2008), 
https://jinst.sissa.it/LHC/ATLAS/chtt.pdf (accessed 19.09.2023) 

3. A.Formica et al., The Development of a New Conditions Database Prototype for 
ATLAS Run 3 within the CREST Project // CEUR Workshop Proceedings, 
ISSN:1613-0073, Vol. 3041, p. 86-90, 2021. 



5 

 

4. R.Trentadue et al., LCG Persistency Framework (CORAL,COOL, POOL): status 
and outlook in 2012 // J. Phys. Conf. Ser. 396 053067, 2012. 

5. D.Costanzo et al., Towards a new conditions data infrastructure // to appear in the 
proceedings of CHEP 2023, Norfolk, Virginia USA, May 8-12, 2023, to be 
published in EPJC Web of Conferences, ATL-SOFT-PROC-2023-024 
https://cds.cern.ch/record/2870121 (accessed 14.09.2023). 

6. OAuth 2.0 // Available at: https://oauth.net/2/ (accessed 10.08.2023). 

7. ATLAS Collaboration. (2019). Athena (22.0.1). Zenodo. 
https://doi.org/10.5281/zenodo.2641997 (accessed 19.09.2023) 


