ATL-SOFT-PROC-2023-032
19 September 2023

@

The ATLAS Event Picking Service and its evolution

E.I. Alexandrov*!, I N. Alexandrov®, D. Barberis®, L. Canali®,
E. Cherepanova®, E.J. Gallas®, S. Gonzalez de la HoZ', F.V. Prokoshin®,
G. Rybking, J. Salt Cairols’, J. Sanchez', M. Villaplana Perez, A.V.

Yakoviev®

@ Joint Institute for Nuclear Research, Dubna, Russia
b Universita di Genova and INFN Genova, Italy
°CERN, Geneva, Switzerland
4 University of Amsterdam and NIKHEF, Amsterdam, Netherlands
*University of Oxford, Oxford, UK
fnstituto de Fisica Corpuscular IFIC, Valencia, Spain

gUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

The Eventlndex is the complete catalogue of all ATLAS real and simulated events, keeping the
references to all permanent files that contain a given event in any processing stage; its implementation has
been substantially revised in advance of LHC Run 3 to be able to scale to the higher production rates. The
Event Picking Server automates the procedure of finding the locations of large numbers of events,
extracting and collecting them into separate files. It supports different formats of events and has an elastic
workflow for different input data. The convenient graphical interface of the Event Picking Server is
integrated with ATLAS SSO. The monitoring system controls the performance of all parts of the service.

Eventlndex — 93TO MOJHBIA KaTajlor BceX pEalbHBIX W CcMoAenupoBaHHBIX coObITHH ATLAS,
BKJIFOYAIOLIMH CCBHUIKM Ha BCE IOCTOSHHBIE (ailiibl, cojepiKalue JaHHOe cOObITHEe Ha Jro0OM JTare
00pabotku. Ero peamusarmst Obuia cyiiecTBeHHO nepecMorpena mepenq Run 3 LHC, ans toro, 4roOs
COXpaHATh BBICOKYIO MPOM3BOAWTEIBHOCTh PA0OTHI IPU YBEJIMUYEHUH NMOTOKOB JaHHBIX. CepBep cOopa
COOBITHI aBTOMATH3MPYET MPOLEAYpY MOUCKa Habopa COOBITHI, MX M3BJICUYEHHS U cOOpa B OTICIbHBIC
¢aiinel. OH moanep)kuBaeT pasnnuHble (Gopmatel cOOBITHMII M MMeeT THOKMI paboumii mpomecc A
pasNMUYHBIX BXOAHBIX JaHHBIX. YHOOHBIN Tpadmueckmii uHTepdeiic cepBepa BbIOOpa COOBITHIA
uaTerpupoBad ¢ ATLAS SSO. Cructema MOHUTOpPHHTa KOHTPOIHPYET pabOTy BCEX YacTeH cepBHCa.

INTRODUCTION

Every year the ATLAS experiment [1] produces several billion event records in raw
and other formats. The data are spread among hundreds of computing Grid sites around
the world. The EventIndex system [2] catalogues all ATLAS events and provides a set of
tools to search and retrieve information about single events or on event groups, following
user selections. The main goal of EventIndex is to enable ATLAS members to search for
and retrieve one or more individual events from the tens of millions of data files, in order
to perform detailed checks, or more refined analyses. The first prototype of EventIndex
was deployed in 2015. The core data storage system was reimplemented during 2021 and
deployed in 2022 for the start of LHC Run 3.

laleksand@jinr.ru
Copyright CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

i

CERN Loader Query Query
Trigger Counter Service CLI Service GUI

-

—> Object Store T
! ActiveMQ
> server Hadoop

: i ¥ ¥
I

Supervisor Monitoring System

Producer
transformation

Datafile | |(Elinfofile —

Tier-0 or Grid job

Figure 1. Architecture of the EventIlndex system as implemented for LHC Run 3.

Figure 1 shows a schema of the architecture and its components, as implemented for
LHC Run 3. The system must be able to scale to eventually store trillions of event records,
stand ingestion rates in excess of 10 kHz and react to queries in times that are independent
of the volume of stored data. Details of core parts are described in [3].

Sometimes physics analyses require massive event picking to select a set of
interesting events from the wealth of ATLAS data and reprocess them with enhanced
algorithms or save additional variables that can help downstream analysis steps. The
EventIndex can help with it, but it requires a lot of time in manual mode. The main goal
of the Event Picking Service is to perform all these actions automatically.

ARCHITECTURE OF EVENT PICKING SERVICE

The architecture of the Event Picking Service is shown in Figure 2. The service
consists of two parts: a web server and a daemon, which are independent and interact
using the database. The client generates a request to the server using a form embedded in
an HTML page. The client receives an identifier for its request, which can be used to
obtain information about the request. The web server keeps a new request in the database.
The daemon monitors the database for a new request. When it encounters a new one, it
starts executing the tasks for that request according to the workflow taken from the
database. The input and output data, logs and results of all tasks are placed in the database.
All this data can be viewed by the user or administrator using the web server. After all
tasks corresponding to the workflow are completed, or critical errors are received during
their execution, the daemon flags the request as finished in the database. The web server
monitors the database for these flags and sends a message to the user (or administrator)
about the results of the request. More details of Web Server or Daemon can be found in
[4]. The new version of the Event Picking Service has a Monitoring component.

Keep Alive Request
Atlas

Monitoring

Administrator

QE Send Mail

Web Server

Database

-Input form
-Monitoring

. —

Client

Rucio Eventindex Panda

Figure 2. Architecture of the Event Picking Service.
MONITORING

The monitoring of the Event Picking Service is done according to the same principle
as the monitoring of other Event Index components [5]. Both main elements of the Event
Picking Service (Web Server and Daemon) send monitoring data to the database every
five minutes. The scheduler uses a cron utility for periodically running jobs (a Python
script) at fixed times. The Python script reads data from the database, checks the time of
this data and inserts it into the InfluxDB database. The viewer part uses Grafana facilities
for visualization (see Figure 3).

88 Eventindex Monitoring / ATLAS El Event Picking Service ¢ =3 [B @ Olast2zdyys v Q@ T v =

64x > 2022-86-13 20:00:00 available
a3 2x > 2822-86-13 19:38:00 degraded
118x > 2822-86-12 14:00:00 available

250 2% > 2022-86-12 13:30:00 degraded
6x > 20822-86-12 12:00:00 available
2
1.50
0.500
06/12 16:00 06/13 00:00 06/13 08:00 06/13 16:00 06/14 00:00 06/14 08:00
== Requests Count Active requests

Services info

> 28622-86-14 11:38:00 Daemon status:0k, request count:8. Web Interface status:0k, actiive requests:@

3 2022-86-13 20:00:00 Daemon status:0k, time stamp too old:2 days 20:35:35, request count:1. Web Interface status:Ok, actiive requests:3(87,86,99]

> 2022-86-13 19:30:00 Daemon status:0k, time stamp too old:2 days 20:28:47, request count:1. Web Interface status:Ok, actiive requests:3[87,86,99]

» 2022-86-13 19:80:00 Daemon status:Ok, time stamp too old:2 days 19:57:41, request count:1. Web Interface status:Ok, actiive requests:3[87,86,99]

3 2822-86-13 16:00:00 Daemon status:0Ok time stamp too old:2 days, 16:47:85.363169, request count:1. Web Interface status:Ok time stamp too old:2 days, 16:47:85.363169
> 2622-86-12 23:€0:0@ Daemon status:Ok time stamp too old:1 day, 23:57:20.833757

request count:l. Web Interface status:Ok time stamp too old:1 day, 23:57:20.833757
> 2822-86-12 21:00:00 Daemon status:Ok time stamp too old:1 day, 21:44:48.694408,

request count:1. Web Interface status:Ok time stamp too old:1 day, 21:44:48.694408
> 2822-86-12 13:30:00 Daemon status:0k time stamp too old:1 day, 14:34:55.653799, request count:1

Figure 3. Monitoring of the Event Picking Service.
WORKFLOW

The Event Picking Service is not intended for solving one specific task, but for a
whole type of event picking. To solve a specific problem, chains of tasks are created.

Chains can be different for different types of tasks. They are defined in the database, so
that you can update or add any chain without changing the common part of the code.
Figure 4 presents the current workflow of the Event Picking Service. It has two types of
chain. One is the common way. The first step is to sort and split the events by run. Then
it starts in parallel mode the following task: get GUIDs, get Dataset name, run main task
in PanDA, check results and set metadata in Rucio. Another useful workflow is the restart
request, where an earlier event picking job has returned errors for a few run/event pairs,
and the goal is to complete the original job by running the original workflow, but only on
the error-inducing events. The need for this type of workflow became apparent during
operations, where sometimes only a small part of a task temporarily gave errors.

Web Web
Server Server

New Job 1 4.[Job 2 | > Send Mail
request , J

parallel chains i

Daemon

il A4 + v
B EventIndex EventIndex
RunNumber RunNumber
Prepare EventNumber EventNumber
input Split by GUID GUID
Run
¥ ¥

EventIndex Eventlndex

GetDatasetName] [GetDatasetName

Restart ergors
and warnifgs

Common way

Rucio

Rucio

setMetadata setMetadata

Figure 4. Workflow of the Event Picking Service.
RESULTS

Table 1. Time of work of different requests

Request Number of events Version Time
manual 3 months
= WW UK 1.0.0 2 weeks
vy > WW 136K Beta version 3 months
B. > Bc 16K 1.2.37 84h
7 -> TauTau 11K 1.2.37 40h

At present 3 different types of analyses use the Event Picking Service. The first type of
analyses (yy -> WW) was done few years ago and used the old versions of service. It
required weeks to finish all requests (see table 1). The second and third type of analyses

were started several months ago. They used the updated version and the completion time
was only hours.

CONCLUSIONS

A production version of the Event Picking Service has been developed. The
monitoring part is implemented and working. The service has separate workflows to
restart on problematic run/event pairs. The production version substantially reduces the
time required for work completion.

REFERENCES
1. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider

// JINST — 2008 — 3 S08003.

2. Barberis D. et al., The ATLAS Eventlndex: A BigData Catalogue for All ATLAS
Experiment Events // Comput.Softw.Big Sci. — 2023 — V' 7.

3. Barberis D. et al., The ATLAS Eventindex Using the HBase/Phoenix Storage
Solution // CEUR Workshop Proceedings — 2021 — V. 3041 — P. 17-25.

4. Alexandrov E., Alexandrov 1., Barberis D., Prokoshin F., Yakovlev A., Development
of the ATLAS Event Picking Server // CEUR Workshop Proceedings — 2021 — V.
3041 — P. 223-228.

5. Alexandrov E., Kazymov A., Prokoshin F., BigData tools for the monitoring of the
ATLAS Eventlndex // CEUR Workshop Proceedings — 2018 — V.2267 — P. 91-94.

