
A
TL

-S
O

FT
-P

R
O

C
-2

02
3-

02
4

12
Se

pt
em

be
r

20
23

Towards a new conditions data infrastructure in ATLAS1

Evgeny Alexandrov1, Luca Canali2, Davide Costanzo3,∗, Andrea Formica4,∗∗, Elizabeth2

J.Gallas5,∗∗∗, Mikhail Mineev1, Nurcan Ozturk6,∗∗∗∗, Shaun Roe2, Vakho Tsulaia7, and3

Marcelo Vogel64

1Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russia)5

2CERN, CH-1211 Geneva 23 (Switzerland)6

3Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom)7

4IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)8

5University of Oxford, Denys Wilkinson Bldg, Keble Rd, Oxford OX1 3RH (United Kingdom)9

6University of Texas at Arlington, 701 South Nedderman Drive, Arlington, TX 76019 (USA)10

7Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)11

Abstract. The ATLAS experiment is preparing a major change in the condi-12

tions data infrastructure in view of LHC Run 4. In this paper we describe the13

ongoing changes in the database architecture which have been implemented for14

Run 3, and describe the motivations and the on-going developments for the15

deployment of a new system (called CREST for Conditions Representational16

State Transfer, as a reference to REST architectures). The main goal is to set up17

a parallel infrastructure for full scale testing before the end of Run 3.18

1 Introduction19

The processing of ATLAS [1] event data necessitates the retrieval of a collection of auxiliary20

non-event data stored within database systems. This data, referred to as "conditions data,"21

generally exhibits variations over time and encompasses elements such as detector alignment,22

calibration, and configuration information. The complexity escalates due to the requirement23

of disseminating this information across the global ATLAS computing grid, along with the24

sheer multitude of concurrently operating processes on the grid. Each process demands a25

distinct set of conditions to advance.26

Our focus is directed towards the foundational database infrastructure, which underwent27

a redesign for ATLAS in Run 3. This redesign involved the consolidation of resources within28

the online Oracle cluster, coupled with the necessary developments to ensure secure access.29

This reorganization resulted in an architecture resembling the one the experiment is30

preparing for Run 4, known as the CREST project [2]. Here we expound upon the archi-31

tecture and the current development status of this project. The first significant milestone32

involves deploying a functional demonstrator by fall 2023, with the intention of testing seg-33

ments of data processing workflows using real conditions data migrated from the existing34

system.35

∗e-mail: davide.costanzo@cern.ch
∗∗e-mail: andrea.formica@cern.ch
∗∗∗e-mail: elizabeth.gallas@cern.ch
∗∗∗∗e-mail: nurcan.ozturk@cern.ch
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



2 Conditions Database infrastructure36

The infrastructure for managing and accessing condition data within ATLAS consists of the37

following components:38

• Database clusters: Oracle databases store the conditions data according to the LCG Condi-39

tions database infrastructure [3] which includes C++ and python methods within its COOL40

API for managing database content and for client read-only access. Over the years using41

this infrastructure, further methods have been developed on top of the COOL API to suit42

ATLAS-specific requirements.43

• Database read-only copies: Database replicas kept in sync with the source utilizing Oracle44

technologies which include Active Data Guard (ADG, the Oracle-provided technology for45

physical replication) and Golden Gate (an Oracle solution for logical replication of selected46

schemas).47

• Generic database access via a middle-tier server: This is achieved through the Frontier sys-48

tem [4] which mediates client data selection requests with the underlying database storage49

system. Benefits of this layer include the ability to monitor requests as well as to moderate50

intermittent spikes in load.51

• Web Proxy: To ensure efficient access and optimal resource utilization, a series of Squid52

proxies are deployed. These proxies screen the Frontier server and the database, filtering53

requests from individual clients (jobs) that are accessing condition data.54

2.1 Architecture before Run 355

The conditions data are organized in two different Oracle clusters, depending on their usage56

(online data taking and High Level Trigger processing, or any other "offline" workflow):57

1. Online Oracle cluster (named ATONR) on the ATLAS technical network, for condi-58

tions data to be consumed in real time workflows.59

2. Offline Oracle cluster (named ATLR) on the CERN GPN network, for conditions data60

to be consumed in offline workflows, from bulk processing to reprocessing and Monte61

Carlo simulation.62

Conditions that are primarily stored in the online cluster are additionally replicated using63

Golden Gate streaming technology to the offline cluster. Once in the offline cluster, these64

conditions can be accessed in read-only mode. The diagram 1 provides a simplified overview65

of the ATLAS Conditions Data infrastructure prior to Run 3.66

2.2 Architecture during Run 367

For Run 3 a major operation of databases consolidation has been prepared. Two main aspects68

were considered in this plan:69

• Oracle license model: the license model until 2023 was covering all Tier-1s Oracle nodes70

used by ATLAS to keep a copy (via Golden Gate) of the conditions data. After April 202371

a new license model was adopted by CERN IT, based on a "per-core" license for Oracle72

nodes.73

• ATLAS was the only client inside CERN of the Oracle Golden Gate replication technology:74

its usage was discouraged by CERN IT, considering the licensing costs, the additional load75

on the support team, and the redundancy with the other available replication technology:76

Oracle Data Guard.77



Subsequently, the ATLAS Database and Metadata (ADAM) team made the decision to shift78

real data conditions workflows from the offline to the online cluster in order to phase out the79

need for the Golden Gate replication. The architecture that was implemented is depicted in80

figure 2. A few major alterations in the architecture were required to eliminate the Oracle81

Golden Gate replication (from the online cluster to the offline cluster and Tier-1s): the cen-82

tralization of all real data conditions into the Oracle ATONR cluster and the establishment of83

an intermediary service (called COOL-Proxy) designed to manage user requests for the stor-84

age of new conditions data. In this freshly devised infrastructure, all conditions data situated85

outside the online ATLAS network (ATCN) can be accessed solely through read-only (ADG)86

replicas of the ATONR nodes.87

Figure 1. Conditions Data system architecture before Run 3; the red arrows depict data copies using
the Oracle Golden Gate technology.

Figure 2. Conditions Data system architecture for Run 3; the COOL-proxy is accessible from CERN
General Public Network (GPN).

This novel architecture brings about the ability to optimize Oracle licensing costs.88

Through the consolidation of all conditions data usage within the online cluster (ATONR),89

a distinct and dedicated environment for all data processing workflows is established. This90

separation prevents the mingling of conditions usage with other applications, as the ATLR91

cluster supports a wide array of applications ranging from detector construction to authorship92



and metadata. Additionally, this approach has led to a reduction in Oracle administration93

burden and associated expenses for Tier-1s.94

To ensure secure access to the ATONR cluster from the CERN GPN network, we devised95

an intermediary server that acts as a custom proxy system. This system, known as COOL-96

Proxy, is intended for use by experts responsible for uploading new conditions data. Notably,97

the COOL-Proxy system employs the new CERN SSO authentication mechanism. Condi-98

tions data experts are linked to specific e-groups, and a token mechanism is utilized to grant99

them writing privileges solely within the Oracle schema corresponding to the e-group(s) to100

which they belong.101

On the hardware front, enhancements were made to the online cluster, involving the ad-102

dition of an extra node. This improved configuration ensures extra capacity to critical online103

system to process all new conditions upload workflows, while maintaining the same load on104

the rest of the online environment as experienced during Run 2. Moreover, this extra node105

improves the available redundancy in case of cluster node failures.106

3 CREST: a Conditions Database infrastructure after Run 3107

The system implemented during Run 3 closely resembles the architecture that is being tested108

for the ATLAS runs commencing from Run 4. The new initiative for managing conditions109

data is named CREST, originating as a progression from the CMS conditions database. It in-110

herits fundamental concepts for the data model and the design of relational tables from its pre-111

decessor. The development of the CREST system also benefited from discussions within the112

HEP Software Foundation [5] working group on cross-experiment conditions data manage-113

ment systems [6]. The intention behind CREST is to replace the existing COOL conditions114

database in satisfying the conditions data requests of all offline data processing and Monte115

Carlo simulations from Athena [7] jobs (Athena is the the ATLAS software framework for116

event processing). This comprehensive system is composed of several integral components:117

• Relational Database: Data in the CREST database is stored in relational tables utilizing a118

straightforward schema. Conditions data payloads are stored within the database as Large119

Objects (LOBs) and referenced through unique keys stored as related metadata in CREST.120

In-depth information regarding the data model can be found in references [2] and [8].121

• A REST API for the conditions data management system, accompanied by an implemented122

web server and corresponding client libraries.123

• A web proxy system designed to offer a caching layer, thereby diminishing the utilization124

of the web server and database by clients (Athena jobs).125

While the architecture closely mirrors that of Run 3, there are notable improvements (refer126

to figure 3). Apart from a significant simplification in the data model, resulting in a substantial127

reduction in the number of tables, the CREST system introduces a REST API for conditions128

data management. This innovation entirely decouples client code from the underlying storage129

implementation. Consequently, clients are no longer obligated to understand how the storage130

system is internally structured.131

The most significant distinction lies in the capability to maximize the utilization of the132

caching layer by establishing a clear demarcation between metadata, such as the validity133

intervals for each individual conditions data payload, and the conditions payload itself. This134

segregation is achieved at the level of the REST API definition through access to identical135

conditions data sets via a unique key.136

To grasp the benefits of such a data model design, we can examine the current utilization137

of database servers in both ATLAS and CMS. We assume that both experiments possess a138

comparable amount of conditions data.139



Figure 3. Conditions Data: comparison between present and proposed architectures.

Figure 4. Frontier/Squid usage in ATLAS and CMS.

We have extracted the volumes of data retrieved from Oracle ("Fetches") and from the140

Squid system ("Total") for both the ATLAS and CMS experiments, utilizing official monitor-141

ing plots. These figures are presented in table 1. Additionally, the yearly (single day average)142

graph is displayed in figure 4. The considerable variability observed in the case of ATLAS143

suggests a less optimal utilization of the caching system, likely stemming from the manner144

in which clients request the necessary data. A more comprehensive investigation into the145

underlying causes of these inefficiencies has been conducted within ATLAS, leveraging the146

logging data from the Frontier servers [9].147

Table 1. ATLAS and CMS Frontier/Squid monitoring.

Experiment Type Fetches (MB/s) Total (MB/s) Ratio
ATLAS Year Avg 1.5 5.1 30%
ATLAS Year Max 17 31 54%
CMS Year Avg 0.25 1.35 20%
CMS Year Max 1 5.8 17%



4 CREST architecture148

The CREST system follows a multi-tier model architecture. In this arrangement, the back-149

end remains a relational database that employs a concise collection of tables to oversee the150

management of conditions data metadata and payloads. Simultaneously, a web server is151

fashioned as the front-end. This web server actualizes a REST API, abstracting the direct152

interaction with the database. A collection of client libraries has been prepared to facilitate153

the utilization of the REST API from various programming languages. Notably, a C++ client154

has been meticulously developed for usage from Athena clients. The existing state of the155

system is elaborated upon in this section.156

4.1 CREST REST API157

The REST API is documented using OpenAPI specifications [10] in a YAML format. This158

API essentially outlines the URL paths made accessible through the CREST server, as well159

as the data objects exchanged between the server and the client (JSON is employed for data160

transmitted via HTTP). Opting for a standardized set of specifications for API description161

offers the advantage of being compatible with a diverse range of tools, enabling the gener-162

ation of code for both server stubs and clients across various programming languages and163

frameworks.164

The API description encompasses a comprehensive array of metadata elements essential165

for conditions data management, including tags, intervals of validity (IOVs), and global tags.166

Remarkably, these metadata components exhibit high similarity between the current ATLAS167

system (COOL) and the CMS data model.168

4.2 CREST server169

The CREST server is constructed using established Java technologies [11], specifically rely-170

ing on specifications like JAX-RS and JPA, alongside the Spring Boot [12] framework.171

The description of the REST API via OpenAPI facilitates the generation of server stubs172

within the Jersey framework [13], employing standard generation tools [14].173

The robust support and seamless interoperability within the Java ecosystem contribute to174

the stability of the server code over time. This ecosystem’s flexibility allows for effortless175

transitions between various sets of implementation libraries. For instance, a switch between176

web servers such as Tomcat [15] and Undertow [16] can be accomplished through a simple177

adjustment in the CREST server’s build file, without necessitating internal code alterations.178

Utilizing JPA implementations, such as Hibernate [17], for standardized database access179

provides the advantage of concise object-relational mapping syntax, while still retaining the180

option for deeper optimization of specific queries.181

The project’s source code (for the server and the related libraries) is hosted on GitLab at182

CERN 1.183

4.3 CREST client libraries and tools184

Interactions with the CREST server occur through utilization of the REST API. The official185

client takes the form of a C++ implementation, and it is integrated into Athena conditions186

data services.187

To assess the functionality of the current software for a specific subsystem, we can carry188

out trials by migrating the conditions data for that given subsystem into the CREST database.189

1https://gitlab.cern.ch/crest-db



To facilitate this migration from the existing COOL DB, a dedicated tool has been crafted.190

This converter tool can be configured to selectively copy "tags" from COOL to CREST. This191

operation involves employing the COOL API for reading and the CREST C++ client for192

data insertion via the CREST server into Oracle. The tool also provides a set of logging193

information, offering the added benefits of profiling and debugging the copying process.194

Figure 5. CREST deployment and test infrastructure

4.4 CREST deployment and test infrastructure195

To assess the functionality of the CREST system, we have employed a cloud-based deploy-196

ment approach. A range of distinct CREST servers, each employing different underlying197

schemes, are accessible to developers and Athena testers. This setup allows us to experiment198

with various database platforms, including Oracle and Postgres, ensuring that the server code199

remains well separated from the specifics of the underlying storage technology. A depiction200

of this deployment scheme is presented in figure 5.201

As of now, the official deployment resides in a Kubernetes [18] cluster, utilizing machines202

within the CERN openstack infrastructure. This cluster also serves to deploy a caching sys-203

tem that relies on Varnish. This caching system plays a crucial role in validating the architec-204

ture during our initial large-scale tests.205

ATLAS has laid out plans to introduce a demonstrator for CREST utilization by the con-206

clusion of 2023. This demonstrator is set to undergo testing within the High-Level Trigger207

(HLT) workflow. This choice stems from the fact that online workflows, such as the HLT,208

impose more demanding requirements in terms of caching. Notably, conditions data like lu-209

minosity and beam-spot need to be refreshed regularly, sometimes even at the granularity of210

each luminosity block 2.211

5 Conclusions212

We have detailed the modifications made to the ATLAS conditions data management infras-213

tructure in preparation for the Run 3 data acquisition phase. These adjustments are geared214

towards readying both the experiment and conditions data users for an enhanced architecture215

set to be employed in the upcoming data acquisition (during Run 4). Additionally, we have216

2A luminosity block is defined as a period with stable luminosity (generally about one minute in duration).



elucidated the novel architecture known as the CREST project and highlighted its distinctions217

from the current system. We have emphasized the core differences and enhancements that the218

new architecture aims to tackle.219

References220

[1] ATLAS Collaboration, JINST 3, S08003 (2008), https://dx.doi.org/10.1088/221

1748-0221/3/08/S08003222

[2] P.J. Laycock, D. Dykstra, A. Formica, G. Govi, A. Pfeiffer, S. Roe, R. Sipos, Journal of223

Physics: Conference Series 1085, 032040 (2018), https://dx.doi.org/10.1088/224

1742-6596/1085/3/032040225

[3] A. Valassi, R. Basset, M. Clemencic, G. Pucciani, S.A. Schmidt, M. Wache, COOL,226

LCG conditions database for the LHC experiments: Development and deployment sta-227

tus, in IEEE Nuclear Science Symposium Conference Record, 2008. NSS ’08 (2008),228

pp. 3021–3028229

[4] D. Dykstra, J. Phys.: Conf. Ser. 331, 042008 (2011), http://iopscience.iop.org/230

1742-6596/331/4/042008231

[5] HEP Software Foundation, https://hepsoftwarefoundation.org/232

[6] M. Bracko, M. Clemencic, D. Dykstra, A. Formica, G. Govi, M. Jouvin, D. Lange,233

P. Laycock, L. Wood, TBD (2019), https://www.osti.gov/biblio/1527431234

[7] G.A. Stewart, et al., J.Phys.Conf.Ser. 762, 012024 (2016), https://iopscience.235

iop.org/article/10.1088/1742-6596/762/1/012024236

[8] L. Rinaldi, A. Formica, E.J. Gallas, N. Ozturk, S. Roe, EPJ Web Conf. 214, 04052237

(2019), https://doi.org/10.1051/epjconf/201921404052238

[9] A. Formica, N. Ozturk, M. Si Amer, J.L. Bahilo, E.J. Gallas, I. Vukotic, EPJ Web Conf.239

245, 04032 (2020), https://doi.org/10.1051/epjconf/202024504032240

[10] OpenAPI v3.1.0, https://spec.openapis.org/oas/latest.html241

[11] Java EE 8, https://javaee.github.io/javaee-spec/242

[12] Spring Boot documentation, https://docs.spring.io/spring-boot/docs/243

current/reference/htmlsingle/244

[13] Jersey 2 JAX-RS API implementation, https://eclipse-ee4j.github.io/jersey245

[14] OpenApi tools and code generation, https://github.com/OpenAPITools/246

openapi-generator247

[15] Tomcat Web server, https://tomcat.apache.org/248

[16] Undertow Web server, https://undertow.io/249

[17] Hibernate ORM library, https://hibernate.org250

[18] Kubernetes, https://kubernetes.io251

https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1742-6596/1085/3/032040
https://dx.doi.org/10.1088/1742-6596/1085/3/032040
https://dx.doi.org/10.1088/1742-6596/1085/3/032040
http://iopscience.iop.org/1742-6596/331/4/042008
http://iopscience.iop.org/1742-6596/331/4/042008
http://iopscience.iop.org/1742-6596/331/4/042008
https://hepsoftwarefoundation.org/
https://www.osti.gov/biblio/1527431
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
https://doi.org/10.1051/epjconf/201921404052
https://doi.org/10.1051/epjconf/202024504032
https://spec.openapis.org/oas/latest.html
https://javaee.github.io/javaee-spec/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://eclipse-ee4j.github.io/jersey
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://tomcat.apache.org/
https://undertow.io/
https://hibernate.org
https://kubernetes.io

	Introduction
	Conditions Database infrastructure
	Architecture before Run 3
	Architecture during Run 3

	CREST: a Conditions Database infrastructure after Run 3
	CREST architecture
	CREST REST API
	CREST server
	CREST client libraries and tools
	CREST deployment and test infrastructure

	Conclusions

