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Abstract. In recent years, advanced and complex analysis workflows have
gained increasing importance in the ATLAS experiment at CERN, one of the
large scientific experiments at LHC. Support for such workflows has allowed
users to exploit remote computing resources and service providers distributed
worldwide, overcoming limitations on local resources and services. The
spectrum of computing options keeps increasing across the Worldwide LHC
Computing Grid (WLCG), volunteer computing, high-performance computing,
commercial clouds, and emerging service levels like Platform-as-a-Service
(PaaS), Container-as-a-Service (CaaS) and Function-as-a-Service (FaaS), each
one providing new advantages and constraints. Users can significantly benefit
from these providers, but at the same time, it is cumbersome to deal with
multiple providers, even in a single analysis workflow with fine-grained
requirements coming from their applications’ nature and characteristics. In this
paper, we will first highlight issues in geographically-distributed heterogeneous
computing, such as the insulation of users from the complexities of dealing
with remote providers, smart workload routing, complex resource provisioning,
seamless execution of advanced workflows, workflow description, pseudo-
interactive analysis, and integration of PaaS, CaaS, and FaaS providers. We will
also outline solutions developed in ATLAS with the Production and Distributed
Analysis (PanDA) system and future challenges for LHC Run4.

1 Introduction

In recent years, the ATLAS experiment [1], one of the large scientific experiments at LHC
[2], has placed increasing importance on advanced and complex analysis workflows. These
workflows have proven invaluable in overcoming limitations on local resources and services
by enabling users to leverage remote computing resources and service providers distributed
worldwide. The spectrum of computing options available in ATLAS has also expanded
significantly, encompassing the Worldwide LHC Computing Grid (WLCG) [3], volunteer
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computing, high-performance computing (HPC), commercial clouds, and emerging service
levels such as Platform-as-a-Service (PaaS), Container-as-a-Service (CaaS), and Function-
as-a-Service (FaaS). Each resource and service offers unique advantages and constraints, and
users can benefit significantly from utilizing them. However, working with diverse resource
and service providers spread across different locations can be difficult, especially when trying
to incorporate specific detailed requirements into an analysis workflow that aligns with the
unique nature and characteristics of their applications.

Figure 1. A simple linear workflow involving multiple providers, generating Monte-Carlo (MC)
samples with a Machine Learning-based (ML-based) detector simulation.

Figure 1 shows a simple linear workflow involving multiple providers, generating Monte-
Carlo (MC) samples with a Machine Learning-based (ML-based) detector simulation. The
workflow comprises three tasks:

1. In the first task, training datasets are produced on WLCG.
2. The second task involves training an ML model using the training datasets.
3. Finally, the third task executes MC production utilizing the ML model again on the

WLGC grid.
Each task presents different resource and service requirements. The first and third tasks are
traditional High Energy Physics (HEP) workloads, which are CPU/IO intensive and highly
compatible with the resources provided by WLCG. On the other hand, the workload in the
second task necessitates extensive matrix multiplication and convolution, making it suitable
for GPU resources available in HPC, commercial cloud, or PaaS/FaaS environments.

We present various challenges associated with geographically-distributed heterogeneous
computing, including
◦ insulating users from the complexities of managing remote resources and services,
◦ smart workload routing,
◦ complex resource provisioning,
◦ seamless execution of advanced workflows,
◦ workflow description,
◦ pseudo-interactive analysis, and
◦ integration of PaaS, FaaS and CaaS providers.

We also outline the solutions developed in ATLAS, with the Production and Distributed
Analysis (PanDA) system [4] both in the present and in preparation for LHC Run4.

2 Challenges in distributed heterogeneous computing

2.1 Insulating users from details of remote resources and services

The goal is to insulate users from the complexities of dealing with various remote resources
and services, while maintaining transparency and diagnostic capabilities.



Figure 2. A centralized approach to insulate users from the complexities of dealing with various remote
resources and services, combining a central workload pool with delegated resource access.

The PanDA system combines a central workload pool with delegated resource access,
as shown in Figure 2. Users submit their workflows to the central workload pool, which
then decomposes them into individual tasks. This decomposition enables efficient and fine-
grained processing, optimizing the overall execution of the workflows. Delegated resource
managers access remote resources and services on behalf of users, utilizing either common
credentials or users’ own credentials. When workload schedulers in the remote provider
allow external access, the delegated resource managers establish interaction with them over
the Wide Area Network (WAN) utilizing the specific protocol or access method for each
provider. However, in cases where the workload schedulers forbid external access, the
delegated resource managers access the providers’ Local Area Network (LAN) by logging in
through gateway services like sshd and Jupyter Hub, enabling interaction with the schedulers
in the LAN environment. By delegating resource and service access, users are relieved from
the complexities associated with direct resource and service management, allowing focus on
their analysis.

The approach offers further advantages in addition to the user’s insulation: Fair-share and
priorities are centrally managed among users, which ensures equitable resource allocation
and fairness across multiple users. Also, workloads can be routed intelligently using a central
knowledge of resource and service characteristics, such as performance, availability, and cost,
as well as fine-grained requirements of tasks.

2.2 Smart workload routing

Tasks should be assigned to resources and services by considering their requirements and
specifications. The aim is to achieve an optimal assignment so that each task is matched with
the most appropriate resources and services based on their specific needs, capabilities, and
characteristics, maximizing efficiency and effectiveness in the overall workflow execution.

The workflow description incorporates specific requirements for each task to define its
needs precisely. The system utilizes a matching algorithm to select providers that align with
the specified resource and service requirements. This selection process takes into account
published and real-time information about providers, such as hardware specifications, service
descriptions, current slot availability, data locality, allocation status, costs, electricity prices,
and carbon footprint.

One caveat is users may inadvertently specify incorrect resource requirements, e.g.
overestimating or underestimating RAM requirements. This issue is addressed through a



two-phased dynamic correction of the requirements: In the initial phase, a small subset of the
task is executed to assess the actual resource usage. Based on the resource usage observed
during this phase, the system dynamically corrects the requirements before processing the
remaining subset.

2.3 Complex resource provisioning

Figure 3. A resource provisioning scheme for elastic distributed ML training on Amazon EKS.

Complex resource provisioning is necessary to support emerging workloads. Figure 3
shows a resource provisioning scheme for elastic distributed ML training on Amazon EKS
[5]. This scheme involves launching a hybrid cluster with both CPU and GPU instances
to facilitate elastic training with Horovod [6]. The hybrid cluster comprises a head pod
running on an on-demand CPU-only instance, while the worker pods are deployed on spot
GPU instances. The utilization of spot instances for worker pods is advantageous due to their
cost-effectiveness compared to on-demand instances.

During a training session, the head pod remains persistent, while worker pods may
come and go based on the availability of GPU instances in the spot market. Consequently,
the number of GPU pods in the cluster is subject to change. Horovod allows the cluster
to dynamically scale up or down the number of workers without requiring a restart or
resume from checkpoints stored in durable storage. This flexibility enables complex resource
provisioning and contributes to cost-saving measures.

2.4 Workflow description

As discussed earlier, it is crucial to accurately describe each task’s resource and service
requirements. However, describing complex workflows is not straightforward for several



reasons. For instance, there is no common language that spans across ML training on HPC,
MC production on WLCG, and analysis on a cloud-based analysis platform. Each task
may involve different software applications, making it difficult to establish a standardized
framework. Furthermore, a sophisticated language syntax is required to uniformly specify
resource and service requirements that can be translated into diverse hardware specifications
and service descriptions across various providers. Exposing provider-specific terminology
and formats to users should be avoided. In addition, users need to explicitly specify
parallelizable or critical sections within the workflow and define the relationships among
tasks, unless the tasks are embarrassingly parallel and can be described declaratively.

Two languages are supported, offering intuitive interfaces and standardized approaches to
simplify the description of complex workflows. Users can describe workflows using directed
acyclic graphs with either YAML+CWL [7] or Python+Snakemake [8]. These languages
provide a structured syntax capturing the dependencies and relationships between tasks in the
workflow. A graphical user interface (GUI) is being developed to make users’ lives easier.
The GUI will provide a friendly interface that abstracts away the technical complexities,
enabling users to interact with and manage the workflows more easily.

2.5 Seamless execution of advanced workflows

Active Learning (AL) [9] employs iterative regression on limit setting to increase analysis
efficiency. It deviates from the traditional method of a brute-force grid/random search.
Instead, it incorporates a search session consisting of multiple iterations. In each iteration,
the search space for the next iteration is defined based on the results obtained from previous
iterations. This iterative process allows for a more focused exploration of the parameter
space, homing in on regions of interest.

Figure 4. The dark-Z search [10, 11] workflow comprises parallel execution of production pipelines on
the WLGC grid, calculation of confidence limits on REANA [12], and definition of the search space for
the next iteration.

This approach is implemented as a single workflow with multiple loops, encompassing
various tasks distributed across different resource and service providers. The transitions
between providers are fully automated, requiring no human intervention. The AL-based
analysis is specifically applied to the mono-Hbb exclusion limit reinterpretation [13], dark-Z
search [10, 11], and heavy Higgs analysis [11] in the ATLAS experiment. By leveraging
AL techniques, these analyses aim to enhance the efficiency and effectiveness of the search.
Figure 4 shows the workflow for the dark-Z search, which comprises parallel execution
of production pipelines on the WLGC grid, calculation of confidence limits on REANA



[12], and definition of the search space for the next iteration. The intelligent Data Delivery
Service (iDDS) [14] is a workflow execution engine playing a crucial role in executing such
complex workflows. iDDS utilizes workflow descriptions and dependencies to orchestrate
the execution of tasks, ensuring proper sequencing and orchestration.

2.6 Pseudo-interactive analysis

Making distributed analysis more interactive has emerged as a significant focus within the
ATLAS community. Interactivity is a system’s ability to respond promptly to user actions,
which involves more than just an interactive user interface. Users may feel a lack of
interactivity when combining an interactive user interface with a slow processing backend.
For instance, the overall user experience could be hindered when running a large payload
synchronously on a sluggish backend through an interactive Jupyter notebook. In this context,
the response time of the processing backend holds greater importance. The primary resources
utilized by ATLAS are provided through WLCG. These resources operate asynchronously
and hold inherent processing latencies, making it challenging to achieve interactivity on top
of them.

A pseudo-interactive system is currently under development in PanDA, to achieve a
reasonable response time and provide an interactive user experience for processing complex
workflows, while still leveraging asynchronous resources distributed geographically. This
system incorporates smart workload routing to minimize processing latencies in various
processing resources. Additionally, it encompasses an interactive user interface, and real-
time streaming of the system and workload logging to keep users updated.

The pseudo-interactive system is a centralized one-stop service that enables the utilization
of diverse providers and features all the advantages described earlier, such as users’ insulation
from the complexities of remote providers, central accounting, fair share, and portability.
However, there are certain disadvantages to consider. Primarily, remote resources typically
exhibit larger latencies compared to local resources, which could imply an unavoidable
ceiling of system performance. Moreover, the development efforts involved in creating a
sophisticated interface and monitoring are amplified due to the lack of direct access to the
underlying computing resources. Nevertheless, the development of the pseudo-interactive
system is actively addressing those issues.

2.7 PaaS, FaaS, and CaaS integration

PaaS and FaaS have their strengths and limitations. While they may lack versatility, they offer
significant computational power for suitable workloads, such as those in the AI/ML field.

Figure 5 shows the integration scheme of PaaS, FaaS, and CaaS into the PanDA system,
highlighting the use of funcX [15] as an example. funcX is a high-performance FaaS system
to orchestrate scientific workloads across diverse resources. A user submits a workflow
comprising two tasks: a HEP data production task and an AI/ML task with Parsl [16].
funcX acts as a gateway to interface with a HPC center, enabling seamless routing of
Parsl-based payloads to the underlying resources. The integration employs two plugins to
facilitate communication and coordination with relevant resources. One plugin establishes
a connection with WLCG, while the other is responsible for interacting with funcX. This
integration ensures a cohesive and efficient execution of tasks in the workflow, streamlining
the overall computational process.



Figure 5. PassS, FaaS and CaaS integration scheme. funcX is used as an example.

3 Conclusions

The overarching objective of distributed heterogeneous computing is to streamline users’
workflows by harnessing the available large-scale resources. This necessitates abstracting
the complexities associated with geographically distributed resources and services, while
providing transparency, diagnostics, and a near-real-time interactive interface. The landscape
of resource and service providers is diverse, as are the emerging workflows. Supporting all
possible combinations of resources, services, and workflows poses a significant challenge.

However, progress in this domain is fueled by real-world use cases, which the PanDA
system and its development programs are addressing. While many issues have been
addressed, numerous challenges remain. Ongoing efforts are dedicated to broadening the
scope of user applications and expanding the range of supported resources and services both
in the present and in preparation for LHC Run4.
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