
A
TL

-S
O

FT
-P

R
O

C
-2

02
3-

01
6

31
A

ug
us

t2
02

3

Extending Rucio with modern cloud storage support

Martin Barisits1, Robert Barnsley2, Fernando Harald Barreiro Megino3, Johannes
Elmsheuser4, Mario Lassnig∗1, Mihai Patrascoiu1, James Perry5, Cedric Serfon4, Alba Ven-
drell Moya1, and Tobias Wegner1

1European Organization for Nuclear Research (CERN), Geneva, Switzerland
2Square Kilometre Array Observatory (SKAO), Cheshire, UK
3University of Texas at Austin (UTA), Austin TX, USA
4Brookhaven National Laboratory (BNL), Upton NY, USA
5University of Edinburgh, Edinburgh, UK

Abstract. Rucio is a software framework designed to facilitate scientific col-
laborations in efficiently organising, managing, and accessing extensive vol-
umes of data through customizable policies. The framework enables data dis-
tribution across globally distributed locations and heterogeneous data centres,
integrating various storage and network technologies into a unified federated
entity. Rucio offers advanced features like distributed data recovery and adap-
tive replication, and it exhibits high scalability, modularity, and extensibility.
Originally developed to meet the requirements of the high-energy physics ex-
periment ATLAS, Rucio has been continuously expanded to support LHC
experiments and diverse scientific communities. Recent R&D projects
within these communities have evaluated the integration of both private and
commercially-provided cloud storage systems, leading to the development of
additional functionalities for seamless integration within Rucio. Furthermore,
the underlying systems, FTS and GFAL/Davix, have been extended to cater to
specific use cases.
This contribution focuses on the technical aspects of this work, particularly the
challenges encountered in building a generic interface for self-hosted cloud stor-
age, such as MinIO or CEPH S3 Gateway, and established providers like Google
Cloud Storage and Amazon Simple Storage Service. Additionally, the integra-
tion of decentralised clouds like SEAL is explored. Key aspects, including au-
thentication and authorisation, direct and remote access, throughput and cost
estimation, are highlighted, along with shared experiences in daily operations.

1 Introduction

In recent years, substantial efforts have been devoted to the integration of the Rucio data
management system [1] with different cloud storage solutions. This integration has paved the
way for new possibilities and considerations in the realm of scientific cloud computing.

When discussing clouds in this context, it is essential to keep two angles in mind:
The technical angle encompasses various aspects related to cloud storage, including access

∗Contact: Mario.Lassnig@cern.ch
Copyright 2023 European Organization for Nuclear Research (CERN), CC-BY-4.0 licence.



tools, transfer protocols, monitoring mechanisms, authentication and authorisation processes
(AAI), accounting and billing procedures, and the underlying storage infrastructure. The or-
ganisational angle involves considerations such as whether the storage solution is deployed
on-site or off-site, whether it follows a centralised or distributed architecture, whether it is
built on open-source or closed-source software, and whether it is utilised as a public ser-
vice within an institute or laboratory, or acquired as a commercial service. Additionally, the
method of contribution, either in-kind or as a paid service, plays a role in shaping the overall
cloud storage environment.

Navigating the intricacies of cloud storage can be challenging, and various scenarios ex-
emplify the diversity and complexity involved. For example, various plausible scenarios ex-
ist already today: a self-hosted MinIO S3 server[2] deployed on a CERN data centre virtual
machine (VM) that utilises a centrally managed CephFS volume[3]; a WebDAV portal facili-
tating access to a self-hosted NextCloud instance[4] hosted by a commercial provider, which,
in turn, is connected to free-tier AWS S3 storage[5]; or an experiment collaborates with a
commercial cloud provider receiving complimentary storage with S3v4 protocol support[6].
The distinction of cloud storage versus grid storage thus quickly becomes difficult.

From the perspective of Rucio, cloud storage is then simply defined as storage that ne-
cessitates URL-based signatures for access and management, given a predefined signature
algorithm and the association secret key sharing mechanism. For exampling, when plac-
ing CephFS on top of RADOS (Reliable Autonomic Distributed Object Store)[7], it requires
some form of storage system on top, akin to a grid-style storage model. In contrast, adopting
the Ceph Object Gateway S3 API [8] on top of RADOS represents a cloud storage configura-
tion, as it is characterised by its compatibility with the S3 protocol and associated necessity
to use URL-based signatures.

This ongoing integration between Rucio and cloud storage technologies is expected to
have profound implications for the management and accessibility of data in diverse scientific
and computational domains. By facilitating seamless interactions with cloud storage envi-
ronments, Rucio opens up new avenues for data storage, sharing, and analysis, enhancing the
capabilities of research institutions and scientific communities.

2 Rucio credential mechanism

When dealing with namespace operations, such as listing replicas of data stored in Rucio, and
storage operations, like uploading and downloading data from storage, the process involves
generating URL signatures at the time of executing the command. Each URL signature is
one-time use only and allows a particular operation to interact with a particular file. These
URL signatures are produced server-side by Rucio, eliminating the need to deploy secrets to
the Rucio clients.

To enable this functionality, certain requirements in the Rucio deployment must be
met: The associated account must possess schema permission perm_get_signed_url
and a specific account attribute sign_url. The Rucio Storage Element (RSE), which
represents the actual storage resource definition, must have several configurations ap-
plied: The storage access scheme must be set to https to ensure secure communi-
cation using this well-known protocol; The protocol implementation utilised should be
rucio.rse.protocols.gfal.NoRename, since cloud storage typically does not allow file
renames which breaks the typical safe atomic upload mechanism from Rucio; Specific at-
tributes must be defined for the RSEs, including sign_url with allowed values of s3,
gcs, or swift, indicating compatibility with corresponding interfaces; as well as addi-
tional mandatory attributes like verify_checksum=False since cloud storage typically



does not do checksum verification, the s3_url_style=path to indicate support for mul-
tiple cloud storage endpoints on single nodes, and skip_upload_stat=True as well as
strict_copy=True to skip grid-style storage checks.

For the credential secrets configuration, there are two mechanisms: For S3 and
SWIFT-compatible interfaces, e.g., MinIO, Amazon, Ceph S3 Gateway, an entry in the
rse-account.cfg Rucio configuration file is required to establish the necessary credentials
for the server-side generation of the URL signatures. For Google Cloud Storage[9] compat-
ibility, the system necessitates the use of the Google-native JSON credential file obtained
from the Google Cloud Console[10]. This file contains the essential credentials required by
the Google SDK to calculate the URL signatures.

By adhering to these configurations and ensuring the presence of the appropriate creden-
tials, Rucio can facilitate secure and efficient data operations with various storage interfaces,
and is easily extensible for upcoming cloud providers.

3 FTS credential mechanism

When adding Rucio replication rules for Third-Party-Copy (TPC) of files between data
centres, the generation of URL signatures must be delegated to the File Transfer Service
(FTS)[11]. The duration for which transfer jobs will remain in the FTS queue is uncertain,
making it imperative to implement time-limited URL signatures for enhanced security and
only generate the signature at the time when it is actually needed.

Furthermore, there is no standardised or universal method for third-party-copying be-
tween different cloud storage providers. The TPC process may vary depending on the spe-
cific combination of cloud storage services involved, but always requires an active party in
the copy process which cannot be done by passive cloud storage implementations.

Regarding credential configuration in FTS, there are three components to configure:

1)Secrets Configuration: The credentials required for TPC need to be in-
serted into the FTS configuration. This typically involves accessing the
fts-host:8446/config/cloud_storage endpoint and inserting the necessary
credentials in a specific format.

2)GFAL Configuration: The GFAL (Grid File Access Library)[12] configuration, accessible
via fts-host:8449/fts3/ftsmon/config/gfal2, cannot be directly edited by users or
administrators. Instead, it must be configured and set by the FTS administrators, ensuring
secure and proper handling of the GFAL settings.

3)HTTP Configuration: Similarly, the HTTP plugin configuration, accessible via
fts-host:8449/fts3/ftsmon/config/http_plugin.so, cannot be directly modi-
fied. The FTS administrators are responsible for configuring this plugin to ensure seamless
HTTP-based interactions within the FTS environment.

By adhering to these credential and configuration guidelines, the FTS system can facil-
itate secure and efficient third-party data transfers while maintaining the necessary security
measures and adhering to the specific requirements of cloud storage providers involved in
the TPC process. The involvement of FTS and the delegation of URL signature generation
enhance the robustness and security of the overall data transfer workflow.

4 Commercial clouds: Google

Google Cloud Storage has been a subject of long-term research and development (R&D)
within the ATLAS[13] project[14], aimed at evaluating the feasibility of using a cloud en-
vironment as a grid site. This endeavour involved overcoming various challenges, such as



integrating X.509 certificates, the predominant authentication mechanism in grid computing,
into commercial cloud services.

To facilitate this integration, local administrators at the grid sites were instrumental in
supporting the deployment during the development of the proper solution. In particular, a
CERN-provided host certificate had to be injected into a dedicated next-generation Google
Load Balancer[15], enabling secure communication and access to resources for the clients.

As part of the effort to accommodate ATLAS’ Tier-1 storage requirements, custom proxy
rules were devised, supporting the typical DATADISK and SCRATCHDISK areas. However,
this proxy did not perform as expected in the Google Load Balancer, as it was not properly
replying with the necessary host certificate. This was necessitating a return to the legacy
Google Load Balancer with an even more complex and complicated setup.

Despite the initial challenges, the project has achieved stability since then, with jobs
successfully running on Google Compute Engine[16]. This results in that ATLAS computing
tasks are effectively being executed within the Google Cloud environment, with both data and
compute in the cloud, as well as a similar approach with data on the grid and compute in the
cloud, giving flexibility to the experiment.

To optimise space occupancy within the cloud storage system, a greedy deletion model
has been adopted. This approach ensures that resources are released efficiently, as it pri-
oritises the removal of data that is no longer needed or has reached its expiration, freeing
up space for new data. This is important for cost control, as unused data at rest still incurs
charges. This is a crucial difference when compared to typical grid sites.

In conclusion, the ATLAS R&D project has made significant progress in evaluating
Google Cloud Storage as a grid site. By collaborating with administrators and addressing
technical challenges, the project has succeeded in establishing a stable computing environ-
ment on Google Compute Engine. Additionally, the adoption of a greedy deletion model
further enhances resource utilisation within the cloud storage infrastructure. This ongoing
research and development hold promise for future endeavours of cloud integration, which are
currently already in the planning stages.

5 Commercial clouds: SEAL

SEAL Storage Technology[17] is a distributed cloud storage solution that leverages the In-
terplanetary File System (IPFS)[18] and Filecoin (FIL)[19] to provide reliable and scalable
storage capabilities. As part of a long-term R&D project, SEAL has generously offered 10PB
of storage to the ATLAS Experiment. To ensure data integrity and long-term archival, SEAL
employs a cryptographic sealing process that securely packages and stores data, safeguarding
it for extended archival on the Filecoin network. Thus Rucio itself does not need to have any
integration or interaction with the Filecoin network.

In terms of integration with Rucio, the collaboration has been exceptionally seamless. Ru-
cio’s standard URL signature mechanism has been effectively integrated with SEAL’s cloud
storage, facilitating secure and authenticated access to stored data using the widely-adopted
S3 cloud access protocol. Similar to the approach taken with Google Cloud Storage, SEAL
administrators injected a CERN-provided host certificate into their load balancer to enable
secure interactions between Rucio and the SEAL storage infrastructure.

Recognising the significance of cloud support in Rucio and the success of the integration
with SEAL Storage Technology, SEAL is actively investing in further advancements. They
are funding a full-time development position dedicated to enhancing cloud support within the
Rucio ecosystem via the University of Michigan. This commitment underscores the impor-
tance of continuous improvement and the potential for future innovations in data manage-
ment and commercial cloud partners. The collaboration between Rucio and SEAL Storage



Technology demonstrates promising developments, as this work was specifically designed to
provide a robust and generic cloud integration without any vendor lock-in.

6 Commercial clouds: Amazon

In the context of our ongoing discussion about various cloud storage technologies and their
integration with the ATLAS Experiment, the experience with Amazon Web Services (AWS)
presented unique challenges.

Initially, the integration with AWS seemed straightforward, and it functioned smoothly
for a significant period, thanks to the accidental use of DigiCert[20] host certificates by AWS.
However, the situation took a complicated turn when Amazon transitioned to using its custom
Certificate Authority (CA) for managing security certificates.

Within the ATLAS Experiment, the FRESNO US Tier-3 had invested significantly in an
R&D project on the AWS infrastructure. Nevertheless, setting up the integration with the new
custom CA proved to be a daunting task, marked by numerous trials and errors.

The process of achieving a successful integration with the updated AWS environment
spanned over six months of dedicated effort. As a result of this persistent endeavour, a concise
and valuable document was produced, summarising the key insights, findings, and solutions
discovered during this challenging period.

This experience highlights the complexities involved in integrating cloud storage services,
particularly when changes in security mechanisms and certificate management are introduced
by cloud providers like Amazon. It also underscores the importance of thorough testing,
troubleshooting, and documentation to ensure the successful integration and continued func-
tionality of cloud storage solutions for Rucio. Such valuable lessons serve as a basis for
enhancing future cloud storage integration efforts.

7 ROOT IO

In scenarios involving interactive analysis and other stream processing cases, remote reads
play a crucial role in accessing data stored in cloud storage systems. When using cloud
storage, the path returned from the rucio list-replicas operation can often be directly
fed into the widely used TFile::Open() C++ function from the ROOT IO toolkit[21] in
physics analysis software, simplifying the process of opening and accessing remote files.

However, it’s important to be aware that the S3 protocol, used by Amazon Web Services
(AWS) and many others, does not support multi-range byte requests which are necessary
for efficient TFile operations. To overcome this limitation, AWS requires the use of their
CloudFront Content Delivery Network (CDN), which provides a translation layer capable of
handling multi-range requests.

On the other hand, cloud storage providers like Google Cloud Storage or MinIO do not
have such a built-in translation layer for multi-range requests. To work around this absence,
a simple solution is to emulate multi-range requests through the Davix library. This can be
achieved by appending specific URL options to the TFile::Open() function call, emulating
the behaviour of actual multi-range requests, by serialising parallel accesses and thus sacrific-
ing IO throughput. The options appended include multirange=false&nconnections=XX,
where the number of connections should be suitable scaled to the client usage. This
workaround may vary depending on the client used for data access, as different clients may
have different configurations and requirements. Therefore, a one-size-fits-all approach is not
applicable in this context.

To address this issue more systematically, it was worth considering modifications to Ru-
cio’s behaviour. One potential approach is to have Rucio include the necessary URL options



when replying with the list of replicas. This could involve providing a hint to the list-replicas
operation, such as "–nr-connections-for-direct-io=30" or a similar solution, allow-
ing Rucio to specify the appropriate configuration at runtime to use during remote reads. This
was preferable to some communities using Rucio. For ATLAS, a server-side approach was
chosen, to limit the possibilities of clients causing disturbing scenarios on the storage and
network, and to reduce the potential cost implications of repeated failed reads.

By investigating and implementing such specific cloud enhancements, Rucio can facili-
tate a more seamless and efficient data access experience in interactive analysis and stream
processing scenarios, regardless of the cloud storage provider being used.

8 Future work

The current configuration and setup of cloud storage integration in the project have evolved
organically through ongoing Cloud R&D projects and requires refactoring. While the existing
setup has served as a foundation, it is apparent that a complete overhaul is needed, particularly
with regard to the naming of attributes and the overall complexity of the implementation.

In preparation for a production-level integration, several essential features have been iden-
tified as necessary improvements. Firstly, the access control mechanism requires refinement
to allow for more fine-grained control, as the current setup only supports an all-or-nothing
approach. Secondly, a smarter peering mechanism is needed, considering the trade-offs be-
tween static multi-hop distance configurations and dynamic cloud regions. Introducing the
concept of cloud regions is deemed crucial for enhanced flexibility and resource optimisation,
also including different regional cost.

Security considerations have also come to the forefront. The current dependency on
X.509 certificates with the DNS-injection workaround is insufficient for comprehensive secu-
rity. To improve security practices, leveraging cloud providers’ support for OpenID/OAuth2
flows is deemed advantageous and can be supported by general token migration efforts in
grid computing. Additionally, implementing mechanisms for throughput and cost control is
necessary to prevent unrestricted access to cloud resources. As of now, the design phase for
these has only just started.

The integration process is further expected to benefit from bucket-copy transfer tools,
which would facilitate direct transfers between cloud-based storage buckets without the need
to involve the File Transfer Service (FTS). A potential cloud boosting option was also pro-
posed, allowing dynamic allocation of currency by involved institutes or science groups for
extra throughput or storage as required, providing greater flexibility in resource utilisation
and accelerated scientific results.

Consideration of data lifetime and the associated cloud Quality of Service (QoS) costs
are crucial factors for efficient cloud storage management. Studying cloud storage caching
through theoretical R&D simulations, as demonstrated in Tobias Wegner’s PhD work[22],
offers valuable insights into optimising data access and retrieval processes. As Wegner has
shown, temporary cloud bursting presents a promising approach to improve typical science
workflows that require tape recalls. By achieving more than 15% reduction in job times,
this approach showcases the potential of cloud bursting to enhance overall performance in
data-intensive operations.

In conclusion, while the existing cloud storage integration has laid the groundwork, a
comprehensive revision and enhancement of the configuration and features are required for a
seamless and efficient production-level integration. Addressing issues related to access con-
trol, security, throughput, cost control, and data lifetime considerations will contribute to op-
timising cloud storage utilisation and resource management within Rucio. Theoretical R&D
studies and the exploration of innovative approaches like temporary cloud bursting provide



valuable insights for further advancing the project’s scientific data management capabilities
in the cloud.

References

[1] M. Barisits et al., Rucio - Scientific data management, Comput. Softw. Big Sci. 3 (2019)
no.1, 11

[2] MinIO: High Performance Object Storage, https://min.io/
[3] CephFS: Ceph File System, https://docs.ceph.com/en/latest/cephfs/
[4] NextCloud: Online collaboration platform, https://nextcloud.com/
[5] Amazon Web Services, https://aws.amazon.com/
[6] S3 Protocol Version 4, https://docs.aws.amazon.com/AmazonS3/latest/API/
[7] Reliable Autonomic Distributed Object Store (RADOS),

https://docs.ceph.com/en/reef/rados/api/librados-intro/
[8] Ceph Object Gateway S3 API, https://docs.ceph.com/en/latest/radosgw/s3/
[9] Google Cloud Storage, https://cloud.google.com/storage
[10] Google Cloud Console, https://console.cloud.google.com/
[11] E. Karavakis et al., FTS improvements for LHC Run-3 and beyond, EPJ Web Conf. 245

04016 (2020)
[12] Grid File Access Library, https://gitlab.cern.ch/dmc/gfal2
[13] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,

JINST 3 S08003 (2008)
[14] F. Barreiro et al., Accelerating science: the usage of commercial clouds in ATLAS dis-

tributed computing Proc. CHEP Conf. (2023) - in these proceedings
[15] Google Cloud Load Balancer, https://cloud.google.com/load-balancing
[16] Google Compute Engine, https://cloud.google.com/compute
[17] SEAL Storage Technology, Decentralized Cloud Storage, https://www.sealstorage.io/
[18] D. Trautwein et al., Design and evaluation of IPFS: a storage layer for the decentralized

web, SIGCOMM ’22: Proceedings of the ACM SIGCOMM 2022 ConferenceAugust 2022
[19] Protocol Labs, Filecoin: A decentralized storage network, White paper, 2017
[20] DigiCert Certification Authority, https://www.digicert.com/
[21] I. Antcheva et al., ROOT: A C++ framework for petabyte data storage, statistical anal-

ysis and visualization, Comput.Phys.Commun. 182 (2011) 1384-1385
[22] T. Wegner et al., Simulation and Evaluation of Cloud Storage Caching for Data Inten-

sive Science, Comput.Softw.Big Sci. 6 (2022) 1, 5

http://dx.doi.org/10.1007/s41781-019-0026-3
http://dx.doi.org/10.1007/s41781-019-0026-3
https://min.io/
https://docs.ceph.com/en/latest/cephfs/
https://nextcloud.com/
https://aws.amazon.com/
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.ceph.com/en/reef/rados/api/librados-intro/
https://docs.ceph.com/en/latest/radosgw/s3/
https://cloud.google.com/storage
https://console.cloud.google.com/
http://dx.doi.org/10.1051/epjconf/202024504016
http://dx.doi.org/10.1051/epjconf/202024504016
https://gitlab.cern.ch/dmc/gfal2
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://cloud.google.com/load-balancing
https://cloud.google.com/compute
https://www.sealstorage.io/
https://dl.acm.org/doi/10.1145/3544216.3544232
https://whitepaper.io/coin/filecoin
https://www.digicert.com/
https://doi.org/10.1016/j.cpc.2011.02.008
https://doi.org/10.1007/s41781-021-00076-w

	Introduction
	Rucio credential mechanism
	FTS credential mechanism
	Commercial clouds: Google
	Commercial clouds: SEAL
	Commercial clouds: Amazon
	ROOT IO
	Future work

