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Abstract
We report a measurement of the branching fraction of inclusive semileptonicB meson decaysB →

Xc`ν` in Υ (4S) → BB̄ data recorded by the Belle II experiment at the SuperKEKB asymmetric-

energy e+e− collider and corresponding to 62.8 fb−1 of integrated luminosity. Only a charged

lepton (electon or muon) is reconstructed and the signal yield is determined from a fit to the

lepton momentum distribution in the center-of-mass frame of the colliding beams. Averaging the

result in the electron and muon channels, we find B(B → Xc`ν`) = (9.75±0.03(stat)±0.47(sys))%.
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1. INTRODUCTION

The magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) [1, 2] matrix element |Vcb|
squared determines the transition rate of b into c quarks. The precise knowledge of this
fundamental parameter of the Standard Model (SM) [3] is crucial for the ongoing precision
B physics programme at the Belle II experiment and elsewhere. The CKM element |Vcb| is
measured from semileptonic B meson decays B → Xc`ν`, where Xc is a hadronic system
with charm, ` is a light charged lepton (electron or muon) and ν is the associated neutrino.
These determinations can be inclusive, i.e., sensitive to all Xc`ν` final states within a given
region of phase space, or exclusive, i.e., based only on a single b → c semileptonic mode
such as B → D∗`ν or B → D`ν. Pursuing both approaches is important as the two avenues
involve different theoretical and experimental uncertainties and consistency between both
is a powerful consistency check of our understanding. However, inclusive and exclusive
measurements of |Vcb| have been at odds for many years now, an issue which is often referred
to as the inclusive vs. exclusive problem [4].

In this paper we describe a measurement of the inclusive semileptonic branching ratio
based on the Belle II data collected in the years 2019 and 2020 equivalent to 62.8 fb−1.
The paper is organized as follows: Sect. 2 describes the collision data and simulated data
samples used in this analysis. Sect. 3 introduces our experimental procedure. Finally, Sect. 4
contains all results and the analysis of systematic uncertainties.

2. THE BELLE II DETECTOR AND DATA SAMPLE

The Belle II detector [5] operates at the SuperKEKB asymmetric-energy electron-positron
collider [6], located at the KEK laboratory in Tsukuba, Japan. The detector consists of
several nested detector subsystems arranged around the beam pipe in a cylindrical geometry.
The innermost subsystem is the vertex detector, which includes two layers of silicon pixel
detectors and four outer layers of silicon strip detectors. Currently, the second pixel layer is
installed in only a small part of the solid angle, while the remaining vertex detector layers are
fully installed. Most of the tracking volume consists of a helium and ethane-based small-cell
drift chamber (CDC). Outside the drift chamber, a Cherenkov-light imaging and time-of-
propagation detector provides charged-particle identification in the barrel region. In the
forward endcap, this function is provided by a proximity-focusing, ring-imaging Cherenkov
detector with an aerogel radiator. Further out is the ECL electromagnetic calorimeter,
consisting of a barrel and two endcap sections made of CsI(Tl) crystals. A uniform 1.5 T
magnetic field is provided by a superconducting solenoid situated outside the calorimeter.
Multiple layers of scintillators and resistive plate chambers, located between the magnetic
flux-return iron plates, constitute the KL and muon identification system (KLM).

The data used in this analysis were collected between March 2019 and July 2020 and
correspond to 62.8 fb−1 of integrated luminosity on the Υ (4S) resonance (10.58 GeV) and
9.2 fb−1 of integrated luminosity below the Υ (4S) resonance (10.52 GeV), referred to as off-
resonance data. Collected data sample contains NBB̄ = (68.21± 0.06(stat)± 0.75(sys))×106

Υ (4S)→ BB̄ events as determined from a fit to event-shape variables [7]. In addition, we use
Monte Carlo (MC) simulated events equivalent to 200 fb−1 throughout this analysis. These
include a sample of Υ (4S) → BB̄ events in which B mesons decay generically, generated
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with EvtGen [8] and a sample of continuum e+e− → qq̄ events (q = u, d, s, c) simulated with
KKMC [9], interfaced with PYTHIA [10]. The BB̄ sample includes semileptonic B meson
decays B → X`ν, where X can be a hadronic system with and without charm. The latter is
modeled by a mixture of exclusive modes (Xu can either be charged or neutral π, ρ, ω or η)
and an inclusive model [11]. Full detector simulation based on GEANT4 [12] is applied to
MC events. The lepton reconstruction efficiencies and the hadron misidentification rates in
simulation are adjusted to match the real performance of the Belle II lepton identification
system.

Both data and simulated events are analysed with Belle II analysis software framework
(BASF2) [13]. Hadronic events are selected and backgrounds coming from quantum elec-
trodynamic processes (low multiplicity events) are reduced by requiring more than three
charged tracks in a single event, the total energy of the reconstructed charged and neutral
particles above 4 GeV and a ratio R2 of the second to the zeroth Fox-Wolfram moment
below 0.4 [14].

3. EXPERIMENTAL PROCEDURE

3.1. Reconstruction

We require charged particle tracks to originate from the interaction point (IP): The
distance of closest approach between each track and the interaction point is required to be
less than 2 cm along the z direction (parallel to the beams) and less than 0.5 cm in the
transverse r − φ plane. We further require charged particles to be within acceptance of the
central drift chamber (CDC) and to have transverse momentum above 100 MeV/c.

In the next step, we identify charged lepton candidates (electrons or muons). The parti-
cle’s center-of-mass (c.m.) momentum p∗` must lie in the range between 0.4 and 2.5 GeV/c.
Electrons are identified based on their energy and shower shape in the ECL calorimeter.
Muons are identified using information from the instrumented return yoke KLM. We re-
quire the lepton candidates to have momenta in the laboratory frame within the range of
p` ∈ [0.4, 2.5] GeV/c and polar angle θe ∈ [0.22, 2.71] rad for electrons and θµ ∈ [0.4, 2.6] rad
for muons. We veto charged leptons from J/ψ decays or from photon conversion. Each lepton
candidate is combined with an oppositely charged particle and two regions of invariant mass
M(`+`−) are excluded – the interval [3.0, 3.14] GeV/c2 for electrons and [3.04, 3.14] GeV/c2

for muons. Photon conversions to an electron pair are vetoed by rejecting electron positron
pairs with an invariant mass below 0.14 GeV. We also reject events with more than one
lepton candidate.

We exclude events where the missing momentum is not consistent with the presence
of a single neutrino from the semileptonic B decay. In particular we impose the event-
level selections on the following three properties: missing mass (magnitude of the missing
four-momentum) is required to be M2

miss < 3 GeV2, the polar angle of the missing three-
momentum has to lie within θmiss ∈ [0.3, 2.6] rad and the absolute value of the total event
charge is restricted to |

∑
i qi| < 3.

The MC samples are scaled to the data luminosity and split up into the following com-
ponents: B → Xc`ν` signal, B → Xu`ν` background, the events where the lepton candidate
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is misidentified (referred to as fakes or fake leptons), b→ c/c̄→ ` (secondary leptons), and
other BB̄ background (the lepton candidate does not belong in any of these categories).
The lepton identification at Belle II is described in [15].

3.2. Signal extraction

We extract the amount of B → Xc`ν` signal and background by performing a fit to the
binned c.m. lepton momentum distribution, separately in the electron and in the muon sam-
ples. We use a maximum likelihood technique using Poisson statistics of both real and MC
simulated data [16]. The following components are freely floated in this fit: the b→ c signal,
BB̄ backgrounds (including b→ u, fake and secondary leptons and other BB̄ backgrounds)
and the continuum background. The shape in p∗` of the signal and BB̄ backgrounds com-
ponents are obtained from MC simulation, while the shape of the continuum background is
modeled by off-resonance collision data equivalent to 9.2 fb−1, taken at the c.m. energy of
10.52 GeV.

It is necessary to combine all BB̄ background contributions into a single fit component
because they have similar shapes in p∗` and the fit would otherwise have difficulties to dis-
tinguish them. However, we vary the relative amounts of these background components
when evaluating the systematic uncertainty related to the background and repeat the fit
with altered compositions of the background.

Fig. 1 shows the c.m. frame electron and muon momentum distributions after the fit. Ta-
ble I gives the yields of the various components and their respective uncertainties determined
by the fit.

FIG. 1. C.m. frame electron (left) and muon (right) momentum distributions after the fit. See

text for more details.

11



TABLE I. Yields in the electron and muon samples. Note that the b → u, fake and secondary

leptons and other BB̄ background components are combined in a single fit component and that

they are split up here for better understanding. See text for more details.

Yield Electron mode Muon mode

Signal (1.932± 0.006)× 106 (1.501± 0.007)× 106

b→ u background (53.4± 0.4)× 103 (52± 1)× 103

Fake leptons (1.258± 0.009)× 106 (3.15± 0.07)× 106

Secondaries (1.324± 0.009)× 106 (0.89± 0.02)× 106

Other BB̄ background (5.42± 0.04)× 103 (4.33± 0.09)× 103

Continuum (5.51± 0.02)× 106 (7.35± 0.09)× 106

Sum (10.08± 0.03)× 106 (13.0± 0.1)× 106

4. RESULTS AND SYSTEMATIC UNCERTAINTIES

4.1. Inclusive semileptonic branching fraction

In this section we determine the inclusive branching fraction of semileptonic decays B →
Xc`ν` where B is a state with the average lifetime of B+ and B0, τ = (τ(B+) + τ(B0))/2 =
(1.579±0.004) ps [17]. As spectator effects in semileptonic decays are known to be small [18,
19], we assume a common semileptonic width

Γs.l. =
B(B+ → Xc`ν`)

τ(B+)
=
B(B0 → Xc`ν`)

τ(B0)
=
B(B → Xc`ν`)

τ
, (1)

and calculate the inclusive semileptonic branching fraction as

B(B → Xc`ν`) =
N `

sigτ

2NBB̄

(
f+ε`(B+)τ(B+) + f0ε`(B0)τ(B0)

) , (2)

where N `
sig is the fitted number of signal events in the respective sample, NBB̄ is the total

number of BB̄ pairs in the data sample and ε`(B) is the signal selection efficiency in the
respective sample. The factor of two accounts for the fact that both B mesons in the
Υ (4S) event can contribute to the signal. The factors τ(B+/B0) are the mean lifetimes of
the mesons and the f+/0 are the production fractions of the two B species at the Υ (4S).
We determine them from f+/f0 = 1.058 ± 0.024 [17] to be f+ = 0.514 ± 0.006 and f0 =
0.486± 0.006.

The signal selection efficiencies were determined from MC simulation for the B+ and B0

events separately. The electron mode efficiencies after all applied selections are εe(B+) =
15.76% and εe(B0) = 12.40%. The muon mode has somewhat lower signal selection efficien-
cies of εµ(B+) = 12.99% and εµ(B0) = 10.03%.

From this equation we obtain the following branching fractions in the electron and muon
samples. The uncertainty is statistical only, i.e., corresponds to the uncertainty in the fitted
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signal fraction.

B(B → Xceνe) = (9.97± 0.03(stat))% , (3)

B(B → Xcµνµ) = (9.47± 0.05(stat))% . (4)

4.2. Systematic Uncertainties

The main contribution is model uncertainty in the B → Xc`ν` signal and in the BB̄ back-
ground component. The B → Xc`ν` modelling uncertainty in Monte Carlo was determined
in the following way: At first, the inclusive signal sample was split into 30 separate decay
modes. The branching fraction of the mode under consideration was varied by ±1σ of the
current average branching fraction, taken from the Particle Data Group [17]. The whole
sample was then fitted again and the number of signal events was obtained from the fit. The
systematic uncertainty was calculated for each decay mode from the difference between max-
imal and minimal yield, and the true signal yield from Table I. The full modeling uncertainty
is calculated by adding the separate contributions in quadrature.

The decay form factors affect the shape of the Monte Carlo template in center-of-mass
(c.m.) momentum p∗` . The form factor uncertainty is estimated by assuming the Caprini,
Lellouch and Neubert (CLN) parameterization [20] for the B → D∗`ν` and B → D`ν` decays
and varying the form factor parameters within their ranges of uncertainty [4].

To estimate the uncertainty in the BB̄ background, we vary all four contributions (b→
u, secondary leptons, fake leptons and others) by 5%, which roughly corresponds to the
difference between pre-fit and post-fit yields of the background. We determine uncertainties
in the same way as for the B → Xc`ν` model. Furthermore, we constrain continuum
background to the ratio between on- and off-resonance data of 62.8 fb−1/9.2 fb−1, allowing
it to float only within the uncertainty of the luminosity measurement (later referred to as
‘fixed’ continuum ratio). The uncertainty assigned to the continuum background is the
difference between yields with ‘fixed’ and fully floating fraction in the fit. Details on the
determination of the background model uncertainty are collected in Table II.

TABLE II. Determination of the background model uncertainty. The table shows the change in

fitted signal yield when varying individual background components by ±5%.

Electron mode Muon mode

Varying background Nsig,0.95 Nsig,1.05 σrel [%] Nsig,0.95 Nsig,1.05 σrel [%]

b→ u 1934639 1928820 0.15 1505782 1509395 0.12

Fake leptons 1930435 1928590 0.05 1519457 1511576 0.26

Secondaries 1927430 1934593 0.19 1506999 1508290 0.04

Others 1932781 1932126 0.02 1508798 1503859 0.16

Continuum data (‘fixed’ ratio) 1925908 0.34 1457793 2.91

Other components are uncertainties related to tracking, to the counting of BB̄ events
and to lepton identification. The uncertainty related to lepton identification is estimated
by generating 200 variations of the simulated events with lepton identification efficiency
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and misidentification rates chosen randomly within their respective uncertainties. For each
variation, the number of signal events (Nsig,i) is calculated. The mean value and the standard
deviation of the distribution of the obtained yields Nsig,i are used to determine the lepton
identification uncertainty.

A tracking uncertainty of 0.69% is applied to the only charged particle that is recon-
structed. The uncertainty from limited MC sample size in the reconstruction efficiency ε`(B)
is at the sub-permille level and therefore negligible. Table III summarizes our estimate of the
systematic uncertainty in the electron and muon samples. The different components of sys-
tematic uncertainty are added in quadrature and the overall relative systematic uncertainties
are found to be 3.77% and 4.79% for the electron and muon modes, respectively.

TABLE III. Estimated relative systematic uncertainty on the B → Xc`ν` branching fraction mea-

surement in the two modes.

Relative uncertainty [%]

Contribution Electron mode Muon mode

Tracking 0.69 0.69

NBB̄ 1.1 1.1

Lepton ID corrections 1.64 2.33

f0/f+, B lifetime 1.2 1.2

B → Xc`ν` branching fractions 2.65 2.15

B → Xc`ν` form factors 1.11 1.11

BB̄ background model 0.24 0.34

Off-resonance data model 0.34 2.91

Sum 3.77 4.79

5. CONCLUSION

We have measured the inclusive B → Xc`ν` branching ratio in a Belle II sample cor-
responding to 62.8 fb−1 of integrated luminosity. The preliminary results for both lepton
modes are

B(B → Xceνe) = (9.97± 0.03(stat)± 0.38(sys))% , (5)

B(B → Xcµνµ) = (9.47± 0.05(stat)± 0.45(sys))% . (6)

The combined branching fraction is determined as the weighted mean. We conservatively
assume electron and muon systematic uncertainties to be fully correlated and use the (larger)
muon systematic uncertainty for the combined result. The average semileptonic branching
fraction B → Xc`ν` (where ` can be either an electron or a muon) is thus found to be

B(B → Xc`ν`) = (9.75± 0.03(stat)± 0.47(sys))%. (7)
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