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Abstract

In this work we suggest a scheme for the calculation of vertex corrections for mesons
coupled to co;rlposite nucleons and make application to the estimation of the magnitude of the
chiral (scalar) field in nuclear matter. Previously, we have considered vertex corrections for the
coupling of mesons to quarks. However, replacing the quarks by (composite) nucleons creates
a number of problems for the analysis. We follow the suggestion that the excitation of
antinucleon states is very strongly suppressed at meson-nucleon vertices and, therefore, we
evaluate our diagrams using on-mass-shell nucleons. With that approximation, we may use a
form for the pion-nucleon vertex function that was recently obtained in a lattice simulation of
QCD. Quite reasonable results are obtained for most diagrams; however, the method fails when
we attempt to calculate the part of the nucleon self-energy due to emission and absorption of
pions. That leads to the necessity of treating the nucleon wave function renormalization constant
in a phenomenological manner. We find that our results are generally satisfactory when we
calculate the sigma-nucleon coupling constant, Gy, Which has an empirical value of about 9.5
when m; = 550 MeV. (A simple estimate based upon the constituent quark model yields
G,y = 7.7.) If we accept the larger value of G,y , we can suggest that the entire scalar
field in nuclei can be identified as a chiral field in our model. That result is consistent with a
particular treatment of QCD sum rules in matter in which the four-quark condensates are kept
at their vacuum value. (Support for the last approximation has been presented in the literature.)
When we calculate the meson-nucleon vertex corrections, the results for the pion-nucleon sigma
term, oy, and for Gy depend upon a parameter, «, that characterizes the quark wave function

of the nucleon. If we use the value of that parameter found in our earlier work on a covariant



soliton model of the nucleon, we find that oy = 53.1 MeV and G,y = 9.75. (These values
correspond to the use of a Euclidean momentum-space cutoff of Ap = 0.90 GeV in the
Nambu—Jona.-Lasinio model. That model provides the basis for our analysis.) While our
results are somewhat model-dependent, we attempt to remove some of the model dependence
by using the Feynman-Hellman theorem in conjunction with a sigma-dominance model to
calculate oy and G,py. The results obtained in this manner are generally consistent with the

results obtained in more detailed calculations.



I. Introduction

There are several reasons to believe that some portion of the large scalar fields in nuclei
found in Dira‘c phenomenology [1], in the Walecka model [2] and in Relativistic-Brueckner-
Hartree-Fock (RBHF) theory [3] are chiral fields. For example, there is the model-independent
relation that relates the gq condensate in matter to that in vacuum. To first order in the density,

pN» We have [4]

<qq> o
B R IR R0 (1.1)
<qq > e f_fmi

where oy is the pion-nucleon sigma term (oy = 45 + 8 MeV) and f, is the pion decay
constant (f, = 93 MeV). Equation (1.1) implies a reduction of the condensate value of about
34% in nuclear matter. If one performs a bosonization of the Nambu—Jona-Lasinio (NJL)
model one obtains a relation between the scalar field so introduced and the value of

g g 5],

S I0qw) . (1.2)
Saqq

g(x) = -

Here, Gj is the coupling constant of the NJL model and g, ., is the coupling constant of the
scalar field to the quarks. (In the chiral limit g, . = &,44 = g.) Note that in the vacuum
o

vac = J» SO that, upon using the Goldberger-Treiman relation, m, = gf,, we see that Eq.

(1.2) relates the value of the constituent quark mass to the vacuum condensate,

Mg = _GS<(_1q>vac ’ (1.3)

where < qq> 40 = <uu+dd>, .



Using Eq. (1.2) and Eq. (1.1) we have

A (1.4)
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We may write o = f, + 7, where ¢ represents the fluctuation away from the vacuum value.

Thus
. ONP
§g=-N (1.5)
2
Jamy
which yields & = -36 MeV in nuclear matter if oy = 50 MeV. If we choose the sigma

coupling to the nucleon to be G yy = 10, as is typical of various boson-exchange models of the
nuclear force [6], one has for the scalar potential in matter, Us = - 360 MeV which is of the
order of magnitude of the scalar fields in the Walecka model [2] or in RBHF theory [3]. From
the study of the bosonization procedure it is clear that the sigma field is the chiral partner of the
pion [7].

The above discussion is suggestive. However, we wish to introduce more quantitative
considerations and study, with the context of a specific model, how much of the scalar field
found to be present in nuclei is a chiral field. To discuss this matter, we find it quite useful to
use a somewhat extended version of the NJL. model.

At the outset, we remark that there is no low-mass (physical) sigma meson. It is
necessary to understand how that can be true, since a (spacelike) sigma meson plays an
important role in nuclear physics. In a previous work we have discussed correlated two-pion

exchange in the nucleon-nucleon interaction [8]. It is well known that, for spacelike momentum



exchange (r = q2 < 0), correlated two-pion exchange may be represented by an effective
sigma meson of low mass (m, ~ 550 MeV) [9]. In our analysis of the quark-quark T matrices
of the NJL n‘lodeI we saw how the introduction of confinement moved the low-mass sigma
meson of that model to high energy (m, > 900 MeV) [10]. However, for spacelike momenta
of the sigma, the 7 matrices and other amplitudes behave as if a sigma meson with
m, = 540 MeV was present. In our analysis the exchanged system for q2 < 0 1s
predominantly of qq character and may be identified with the chiral partner of the pion [10].
With that interpretation, the mean scalar field in nuclei generated by spacelike sigma exchange
is a chiral mean field. The question that then arises as to the magnitude of this chiral field. For
example, we have asked how much of the mean scalar field in the Walecka model or in
Relativistic-Brueckner-Hartree-Fock theory is a chiral field. One way to answer that question
is to calculate the value of the sigma-nucleon coupling constant, Gy , using a model with
chiral symmetry such as the NJL model. In the following we will suggest a method for the
calculation of G,y making use of the NJL model. To that end we study the matrix element
< N|q(0)q(0)| N>, where g(0) and q(0) are quark operators and | N> is a state of a
nucleon. (See Fig. 1.) It is important that we distinguish <N | g(0)q(0) | N> from the
complete matrix element < N|g(0)q(0) | N> [11]. Here <N | 9(0)q(0) | N> is defined so
as not to contain the bubble string that represents the sigma. [See Fig. 1.] Thus, in the
Nambu—Jona-Lasinio model the value for < N|gq(0)q(0)|N> would be equal to
(1 - GSJS(O))‘1 < N|q@©)q(©0)| N>, where (1 - GSJS(O))‘1 = 2.9 represents the
enhancement of the matrix element found in a sigma-dominance model [11]. For example, in

Fig. 1a we show a leading contribution to < N| 7(0)q(0) | N > calculated in terms of the wave
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functions of a constituent quark model. (There, the filled circle denotes the operator q(0)g(0).)
In Fig. 1b we show corrections to the matrix element < N|¢g(0)g(0) | N > due to the insertion
of a string ‘ of the quark loops of the NJL model. In this manner we define
<N|q©0)q()| N>, which has the value given above. In this work we will calculate
corrections to what we have called < N|q(0)q(0) | N>, but we will not include the factor
(1 -GgJ S(O))'1 at first. Therefore, we will be calculating better approximations for
<N|qq|N>,, exclusive of the diagrams that form <N|qq|N>. If we know
<N|qq|N>y, we can calculate the sigma-nucleon coupling constant as
GoNN = 8ogq < N|q(0)q@©) | N>, where $5qq is the sigma-quark coupling constant. (In our
earlier work using the Nambu—Jona-Lasinio model we found g, .. = 2.58 andg, ., = 2.68
in one particular study [11].) An elementary estimate of < N|gq(0)g(0) | N> in a constituent
quark model would give a number somewhat less than 3. We will write the leading contribution
to <N|q@0)q()|N>, as 3(1 - a), where « is a correction due to the presence of small
components in the quark wave function. (For example, in a quark-diquark model of the nucleon
a = 2k, where « is the fraction of the wave function normalization integral that has its origin
in the small components of the wave function of relative motion of the quark and the diquark.)
If we use the estimate of 3(1- «) for <N|q(0)g(0) |N>0, we obtain Gy = 7.7, whichisa
good bit smaller than the empirical value of G _yy ~ 10 [6]. (We may be able to account for
this difference by including diagrams that involve the excitation of the delta. However, in this

work we consider only nucleon degrees of freedom, since there are a number of uncertainties
in the treatment of the delta. We hope to return to effects due to delta excitation in a future

work.)



The organization of our work is as follows. In Section II we describe the various
diagrams that represent vertex corrections in the calculation < N|q(©0)q(0) | N>,. In Section
I we provicie analytic expressions for these diagrams and in Section IV we discuss the
numerical results. In Section V we consider the calculation of the pion-nucleon sigma term, oy,
and attempt to achieve consistency with our calculation of G,y . In Section VI we use the
Feynman-Hellman theorem and a sigma-dominance model to calculate both oy and G, pyy-
Section VII contains some further discussion and conclusions. The Appendix contains some

further refinements of our calculations and what we believe to be our most accurate results.

II. Diagrammatic Analysis

The various comments made in the introduction are clarified if we consider a
diagrammatic analysis such as that of Fig. 2. These diagrams appearing there are similar to
those calculated in Ref. [11]; however, they now contain form factors for nucleons considered
as composite systems. In the upper part of Fig. 2 we show the matrix element
<N|q(0)q@0)|N>,. Recall that this element does not contain the enhancement factor,
(1 -GgJ S(O))‘l, of the sigma-dominance model. This factor is shown in Fig. 3 as a double
line. It represents the sum of loops in the NJL model, as may be seen by expanding
(1 - GSJS(O))‘1 in a power series. (See Ref. [11].)

Returning to Fig. 2, we see in Fig. 2a a schematic representation of the calculation of
< N|qq | N>, ina constituent quark model. As noted before, we will denote the value of this
diagram as 3(1 - «), where « accounts for the relativistic nature of the quark wave function of

the nucleon. (Sometimes it will be useful to write this factor as F(0) (1 - @) with F(0) = 3.)
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In Fig. 2b we have two wavy lines that represent pions. There is a quark loop at the top
of the diagram and at the bottom we see two pion-nucleon vertex form factors. These form

factors will be written as

2 2
Fout) = 22 M @.1)
x 2 2
A -k

so that the entire vertex is ig, yyYs 7Fy (k?) for on-mass-shell nucleons. In keeping with the
comments made above, we put the intermediate nucleon on-mass-shell. Since the external
nucleons are also on mass shell, the form factor is the one usually defined. (From a recent
lattice simulation of QCD, we have A, = 0.75 + 0.14 [12].)

In Fig. 2¢c, we have another correction which contains a factor of 3(1 - «). [See Fig.
la.] The diagram of Fig. 2c may be calculated by forming a derivative, as we will discuss
shortly. Alternatively, we may consider finite momentum transfer and place either intermediate
nucleons on mass shell, thus, generating two diagrams. Then the ¢ — 0 limit may be taken for
the sum of the two diagrams.

The result obtained for the diagram in Fig. 2d also contains a factor of 3(1 - ). The
rest of the diagram may be calculated as in Ref. [11]. Here the wavy lines are pions and the
double line is a sum of quark loops. It is often useful to introduce a sigma propagator. The

following relation that appears in a momentum-space bosonization of the NJL. model [5],

2
Gs  _ 8sq@
1 -GsJs(q?) (12—"102(42)

(2.2)

b

is quite useful in passing between diagrams written in terms of the quark loops and those



containing the sigma propagator. For (12 = 0 we may write

2
) Gs . 804q (2.3)
1 -Ggls@®  q*-m]

where m, = 0.540 GeV, g, = 2.58, Gg = 7.91 GeV™ and J(0) = 0.0826 GeV? [13].
The value of the diagram of Fig. 2d is 3(1 - a)KS(O)gqu/mg, where Kg(0) is the
diagrammatic element appearing between the filled circle at the upper part of the figure and the
sigma propagator represented here by a double line. From a previous analysis [13] we have
K¢(0) = 0.0083 GeVz, so that the result for the diagram in Fig. 2d is 3(1 - «)(0.20). The
calculation of the diagram of Fig. 2d is the most reliable of our results, since we do not have
to decide how to treat an intermediate nucleon that could, in principle, go off mass shell.

The two diagrams of Fig. 2e may be called wave function renormalization diagrams in
analogy to the corresponding analysis of vertex corrections in QED. Here the perturbative
analysis fails since, if we write the nucleon self-energy as L(p) = /i(pz) + B(pz) (p-my), we
calculate B(m}%,) ~ —2.7 which is at least an order-of-magnitude too large. For example, the
strength at the nucleon pole is Z = (1 - B) 1 5o that we expect the value of B to be in the range
-0.1to-0.2. The larger value of B obtained here represents a defect of the model. However,
the other diagrams yield quite sensible results and we present those results here, while using a
phenomenological value for B(mi,).

To simplify our discussion, we will now write F(0)(1 - &) instead of 3(1 - @) and define
a number of integrals. The evaluation of the diagram of Fig. 2b will yield J,, the evaluation
of Fig. 2c will yield F(0)(1 - a)J,, and the evaluation of Fig. 2d will yield FO)(1 - a)J,;.

The contribution of Fig. 2e will be denoted F(0)(1 - «)B and we will put B = - 0.2, since we

- 10 -



have not been able to calculate a sensible value for B using perturbation theory. Note that the
corresponding calculation for the quark self-energy yields a useful result, B ~ -0.15 [11].
However, in .that case the pion-quark coupling constant (g,., = 2.68) is about four times
smaller than the pion-nucleon coupling constant. That feature leads to reasonable results for the
quark self-energy. In the case of the nucleon, it appears that we obtain sensible results for
three-point functions, such as form factors, while the results are unsatisfactory when we
calculate a two-point function, such as the self-energy, in perturbation theory. The large value
obtained for B (and for A) suggests that the various calculations might be more correct if

performed at the quark level. That is a quite formidable task and we do not attempt such a

calculation in this work.

III. Calculation of Various Diagrams

In this section we provide expressions for the diagrams of Fig. 2. First we consider Fig.
2b. The integral J,, is defined to be

2 2
T T

4 A
d k4 H(kz) |

2m) (2 -m>+ie? | N2 -k?

|

where we have included a factor, H(k?), originally defined in Ref. [11]. That factor represents

- 23
Jp = 18NNt J

(3.1)

Tr 1

p+my
X — 175 — Y
2 p-k-my+ie

2my

the quark loop integral at the top of the diagram. We had
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d*l
Qn)*

HKkY = —2i3g3qu TrlysS(HS(DysSU- BT (3.2)

Further, I, = 6 is an isospin factor and ()\,2r - mi)/ ()\fr - k?) is the pion-nucleon form factor
with A, = 0.8 GeV. Note that the ractor (B +my)/2my arises from averaging over the
nucleon spin. (The external nucleon is on mass-shell so that p2 = m,%,.)

In evaluating Eq. (3.1) we use g, v = 12.7. We take the intermediate nucleon of

momentum p - k to be on mass shell. That restriction is achieved by the replacement

—k+

L _prtrew (3.3)
p-k-my (p - k) - my + e

D[0_10_p (T_T

I (p° -« “EN /‘))(p—k+mN) | 5.4)
2EN(p- k)
or
_>-(27ri)_La<*>(p0-kO-EN(E-E)) l"_‘i”ﬂ} , (3.5)
Ex(p- k) 2my

We now turn to a calculation of the diagram of Fig. 2c. In this case we write the result

as F(0)(1 - )J ., where we recall that F(0) = 3. We have
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3 2 d*k 1 Ny -m;
JC = ICl gTNNj 2 4 2 2 ) 2 2
QZm)" k*-m_ +ie | N, -k (3.6)
Tr 1 1 prmy
X — ’YS - - T 'YS ’
2 p-k-my~iec p-k-my+ie 2my
where I, = 3 is an isospin factor. One way to evaluate the integral is to note that
9 I . ! 3.7)
B Pp-k-B+ie  (p-k-p+ie)
Then
2§ 3¢ d% Tr 1 p+my)
J.=1
c cgquNaB j(27r)4 3 ‘:75[p-k—ﬁ+ie] sl Ity
, (3.8)
2 2
o | P 1
No-k2 | kP -mlie
Note that
- - _4m? (3.9)
Trlys(p-k+Nys(p+my)] = dmy, +4k - p +d4Nmy,
At this point we use Eq. (3.5) and alsn make the replacement
: - 1 (3.10)
K2-mieic 2000 k% -w(E) i '

The motivation for the last step lies in the fact that the nucleon goes forward in time when it is

on mass shell and the structure of the diagram leads to the observation that the pion also goes
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forward in time. Therefore, we choose the appropriate part of the pion propagator in Eq.

(3.10). Finally, we obtain

5 2

2
J = _g2 I _B_J' dk My )‘w—mw
© TSR] m? Eg(p- B | A2 -2

(3.11)

L { ! } -} sk - p - 46my

20(8) | k- w(®) 8my,

where Eg(p-%) = [(p-k)*~ 8212 and k° = Ex(P) - Eg(p-k). (It is particularly easy
to evaluate the integral in the nucleon rest frame where p =0.) Asa final step one takes the
limit 8 — my,.

We now consider Fig. 2d. The value of this diagram is defined to be F(0) (1 - a)J,

where

Jy = KS(O)_GE_ , (3.12)
g2

- KS(O) U‘;‘l ) (313)
m

[4)

As noted above, the amplitude Kg(0) has been obtained in previous work. We had
K(0) = 0.0083 GeV? [13]. Thus, we find J; = 0.20, as was noted previously.

Finally, we turn to the calculation of Fig. 2e. To that end we write the nucleon self-

energy as
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L(p) = Ap*) - BeH (B-my) . (3.14)

For our analysis we need B(m,%,), since the contribution of the two diagrams in Fig. 2e is

F(0) (1 - ) B(m%). In order to calculate B. we write

Tr[PE()] L2 ra% o
dmy 4my 27" k -m_+ie | N -k 6.15)
X Tr|p :
VS E-myie
where Ip = 3 is an isospin factor. Note that
Tr(p(-p+k+my] = —4my+4p - k . (3.16)

Again, placing the intermediate nucleon on mass shell, we have

B - 13(—i)gz J d% 1 1
I NN — —
4m} T Qm)* 20(k) | kO - w(F) +ie

’ 2

T

X

2

N -m _ -
u [~ 4my = 4p + K] (=2m) — = 6 [p° - k° - Ey(p- D]
N, —k? 2EM(p - k)

(3.17)

In the nucleon rest frame, we may write
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5

: No-ma? —
B = _IBgerN(vr w) J|k|2d|kl 1

872 my w (K)YEn(k)
‘ (3.18)
1 e 2
X — [kOmN—mN] ,
k0 - w (k) +ie )\fr_kZ
where k% = my -E v(%). Evaluation of this expression yields B = -2.7 which indicates a

breakdown of perturbation theory in the calculation of the nucleon self-energy. Because of this

we choose a phenomenological value for B of B = - 0.2.

1V. Numerical Results

In the boson-exchange model the phenomenological value of the sigma-nucleon coupling
constant, g 3 NN/ 4T, varies from 8.07 to 8.80 [6]. We note, however, that at the sigma-nucleon
vertices one includes a form factor, (Ai - m;')/ (Ai - qz), in the boson-exchange model.
Therefore, it is useful to define the effective value of the coupling constant at g% = 0 using the

relation

2 2 2 2
Gy _ genN | A~ 4.1)
4T 47 A2 '

o

Equation (4.1) yields values of G,y in the range 9.31 < Gy < 9.73,if A; = 2.0 GeV and
m, = 550 MeV [6]. We choose G,yy = 9.50 as the empirical value of the sigma-nucleon

coupling constant, keeping in mind the uncertainty in that value.
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Gathering up the various corrections in the calculation of <N | qq | N>, we have
‘< N|qq|N> =F(0)(1—a)[1+__1_”_+J +J;+B] . 4.2)
’ FO)(I-a) ¢
Inserting the calculated values, J, = 0.378, J_. = 0.525, J, = 0.20 and taking B = -0.20,
we have

0.378

<N|qq|N>, = FO)(1 -a)[1+m

+0.5251 , (4.3)

since our choice for B cancels J,;. Now, if we put @ = 0.1, we have <N|gq|N>g, = 4.50
and with o = 0.2, we have <N|qq|N>, =4.04. Thus, with g, =2.58 [11],
G,ny = (2.58)<N|qq|N>, = 11.6 for « = 0.1 and G py = 10.4 for a = 0.2. [See
Table 1.] For the boson-exchange model of nuclear forces, we have taken G,y = 9.50 as an
average value [6]. Since we use m_ = 0.540 GeV, while m = 0.550 is used in the boson-
exchange model, we infer that, in this case, the empirical value of the coupling constant adjusted
for the slightly different sigma mass, is G,yy = 9.30. Our value, when o = 0.25, is
G,ny = 9.83, which is close to the empirical value noted above. If we take this result at face

vaiue, we would conclude that the entire scalar field in nuclei is a chiral field. Note that the

scalar potential in nuclei is then

2
G
Us = ~—oy (4.4)
md
- -373MeV (4.5)

in a Hartree approximation, if G yy = 9.30, m, = 0.540 GeV and py = (0.108 GeV)>. The
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value Ug = -373 MeV is fairly close to the empirical value of the (Lorentz) scalar potential
in nuclei [1,2] and the theoretical value obtained for nuclear matter using RBHF theory [3].
(In the calculations reported in this section we used the parameters of the NJL model that

are calculated with a Euclidean momc::tum-space cutoff of Ay = 1.0 GeV.)

V. The Pion-Nucleon Sigma Term
In this section we investigate whether we can achieve consistency in our calculations of

G,y With the value of the pion-nucleon sigma term, oy. We recall that

oy = mo <N|qq|N> é.D

q

where < N|gqq|N> = <N|uu-+ dd | N> in our notation. Here, mg is the average current
quark mass. Theoretical analysis yields oy = 45 + 8 MeV [14].

In the last section we used Az = 1.0 GeV. We also find it useful to use consider a
somewhat smaller value for Az. We now use the results given in Table 1 of Ref. [11] for
Ap = 0.90 GeV: my = 6.6 MeV, g, =297, m, =295 MeV, g.,, =3.10, and
[1-GgJ S(O)]'l = 2.38. [See Table 3.] If we recalculate J, with the new parameters, we find
J, = 0.452. Note that J, does not change when we change Ag. Further, we will assume that

J; is again cancelled by B. Thus, our new result for Az = 0.90 GeV is

<NIGaIN>g = 31 -a)[ 1+ 22

) +0.5257] . (5.2)

Now, if « = 04, we find <N|qq|N>, =3.20. [See Table 2.]  With

<N|qq|N> =[1-GgJ{0)] ' <N|qq|N>,, we have <N|gq|N> = 7.62 and also
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G,ny = 9.50, which is close to the empirical value. Further, Eq. (2.1) yields
oy = 50.3 MeV. if we use the parameters for Ap = 0.90 GeV.

Our cﬁculation for A = 900 MeV gives satisfactory values for oy and G, yy; however,
our value of & = 0.4 appears to be rather large. (It corresponds to a 20% contribution to the
quark wave function normalization from smail components or other relativistic effects.)
Therefore, we discuss another approach to this problem that is less dependent upon our

calculation of vertex corrections. For example, let us again consider the two equations,
0 - 0 - —
oy = m, <N|qq|N> =m,[l-GgJs0)] L< N|gq|N>,

and G,y = 8yqq <N qq|N>,. These relations allow us to write G,y in terms of oy in

our sigma-dominance model,

oN

Gonn = 8agg—g 11 = GsIsO] (5.3)
m
q

If we again use the values for Ay 900 MeV in Table 3 and put oy = 50 MeV, we have
G,ny = 945 and < N|qq|N>, = 3.18. Note that this analysis is independent of the choice

of « and also suggests that the value of < N|qq|N > is rather close to the nonrelativistic

value of <N|qq|N>, = 3.

VI. Use of the Feynman-Hellman Theorem in the Calculation of oy and G,y

If the Lagrangian contains a term of the form - mg (u@x)uR) + E(x)d(x)) , We may obtain
avalue for <N|qq|N> = <N|uu+ dd|N> by the following scheme. We write m, for
the constituent quark mass, so that the gap equation is
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4
dh pe_ 1 6.1)
(27,.)4 k—mq+ze

m —m0+iGnn
9  q Sij

We next assume that. to a good approximation, my = 3m,. (For example, with

A = 900 MeV, we have m, = 295 MeV from Table 3.) Now my = <N|H|N>, so that

am am
N=3__9 | (6.2)
amo am°
q q
= <N|qq|N> |, (6.3)

where we have made use of the Feynmann-Hellman theorem [15]. From Eq. (6.1) we have

2
4 4 2
M4 |+ 4iGgnon [LX L d’k "M omg . (6.4)
0 ¢ 17 12 2 1)t (12 2.2 0
q q q
This leads to the result
3G Az 3 2 A2 m2 !
- +3m +
<N|gg|N> =3J1-2S A2 | ZE 74| -3mim | 24 (6.5)
. 2 2 q 2
2 AE+mq mg

From Table 3 we see that we may use Agp =900 MeV, mg = 6.6 MeV
and Gg = 10.6 GeV 2, With those parameters, we have <N|gq|N> =7.10.
Thus, oy = mg <N|qq|N> = 46.9 MeV. Now we use the relation
<N|gq|N> =[1-GgJsO1 ' <N|gq|N>, to obtain <N|qq|N>, =3.00,

which in turn yields G ny = 85450 <N|qq|N>( = 8.91.
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A similar analysis for Ag = 1.0 GeV yields oy = 51.8 MeV and G,y = 8.38.
To obtain these values we have used mg =355 MeV,mq = (0.260 GeV
and [1 - GSjS(O)] = 0.346 and, as an intermediate step, we found that
<N|qq|N>, = 3.25.

We note that the values obtained when Ap = 900 MeV may be preferred, since the
relation my = 3m, is more closely satisfied than when Ag = 1.0 GeV. The values obtained
in this section (o) = 46.9 MeV and G,y = 8.91, for example) are sufficiently close to the
values obtained by our other methods so as to provide increased confidence in the entire
procedure. (See Tables 3 and 4.)

It is of interest to note that Eq. (6.5) may also be written as
<N|qq |_N> = 3[1 - GSJS(O)]_l. This result has a simple interpretation. The value of
<N|qq|N> is given as three times the single-quark value. The factor of
[1-GgJ S(O)]'l provides the enhancement of the single-quark value which would otherwise be
1. The simple relation, <N|qq |N> = 3[1-GgJg (0)]71, is consistent with the values given
in Table 4 for Ag = 900 MeV. However, the value of 1 - G¢Jg(0) given forAg = 1.0 GeV
in Table 3 has been modified slightly from the value originally listed in Table | of Ref. [11].
Here, the value given in Table 3 should more properly be written as the value of 1 - st s,
where J 5(0) includes some features of confinement in its evaluation [13]. Therefore, one cannot
check the calculation of <N|gq|N> made at Ag = 1.0 GeV by using the formula

<N|gqq|N> =3[l -G4J5(0)]! and the values given in Table 3 for Ay = 1.0 GeV.

From our discussion we see that the use of Egs. (6.2) and (6.3) corresponds to a

simplified calculation that does not contain the full range of effects considered in this work.
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Therefore, we place more reliance upon our detailed calculation of vertex corrections. [See the

Appendix.]

VII. Discussion

In our earlier discussion we remarked that the value of « = 0.4 appeared somewhat
large, since it gave x = 0.2 as the fraction of the normalization integral due to small components
of the quark wave function of the nucleon. However, we have made some calculations of
nucleon properties using a covariant solition model some year ago [16]. There, we found that
x = 0.18, which corresponds to « = 0.36. Further, in our model the axial coupling constant

had the value

5 4
0, = 21 - , (7.1)
‘A 3( 3K)

so that with x = 0.18, we found g, = 1.27, which is very close to the experimental value of
g4 = 1.25. In addition, our wave functions gave very good values for the neutron and proton
magnetic moments and the electromagnetic form factors [16]. Therefore, we will take o = 0.36
as the preferred value of that parameter. We record the results obtained when o = 0.36 in
Table 3. For example, we find <N|qq|N>, =338, <N|qq|N> =8.04,
oy = 53.1 MeV, and G,y = 10.0, when Agp = 0.9 GeV. Itis of some interest to note that
the use of the value of o found previously [16] yields a value of Gy that is close to the

phenomenological value, G,yy = 9.5. (Further refinements of these calculations are presented

in the Appendix.)
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In this work we have attempted to calculate the sigma-nucleon coupling constant, G yy »
using the NJL model. We found that a reasonable result could be obtained if we used a
phenomenoloéical value for the constant B that appears in the expression for the nucleon self-
energy. We have also seen that our results for G yy could be made consistent with a
successful calculation of the pion-nucleon sigma term. [See Table 3 and the Appendix.] We
were motivated in this effort by the observation that G,y was somewhat less than 7.7 in the
simplest analysis. We thought that larger values of G yy might be found if we considered a
number of corrections to the sigma-nucleon vertex. Aside from the problems associated with
the calculation of B, our results indicated that the empirical value of G,y = 9.5 could be
obtained. (See the Appendix.) That is consistent with the identification of the entire scalar field
in nuclei (or nuclear matter) as a chiral field.

That result is also consistent with recent work on QCD sum rules in matter [17]. If these
sum rules are used to calculate the nucleon self-energy in matter, the simplest version of the
formalism yields results in accord with Dirac phenomenology if the four-quark condensates
remain close to their value in vacuum [18). (Some justification for keeping the four quark
condensates at their vacuum value may be found in Ref. [19].) The result of the most
elementary analysis for the nucleon self-energy is given in terms of the Borel mass, Mp, and

the gq and qTq condensates. The (Lorentz) vector part of the self-energy was found to be [18]

641>
Ly = 2 <qlq>, | (1.2)

3M;,
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= —TPN ) (73)

where we have used < qTq >, = (3/2)py. (Here the notation is such that < qTq >, is the
average value of uu or d¥d in nuclear matter and py is the baryon density of nuclear matter.)
For typical values of Mg(Mp ~ 1 GeV), Ly is seen to be quite large and positive. The scalar

self-energy, g, is added to the nucleon mass, my, to yield the mass in matter, m ; , where

. 81—
my = —__2<qq>‘O . (7.4)
Mp

(Here <qq >, is equal to either <uu>, or < dd > .) Further, one has

47 ONPN
g = - 2L 20 (1.5)
and
1) g
2= (7.6)
14 8mq
= -1 . (7.7)

(We recall that mg is the average current quark mass.) From Eq. (7.4), we have

£o= -406 MeV, if oy=45MeV, Mp=1GeV, m, =55MeV and

(0.108 GeV ) .

PN
It is seen from this elementary analysis that the scalar self-energy is directly related to

the change of the condensate <gq> from the vacuum value, <qq >, to its value in
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matter, < qq > ,- Proceeding in this manner, one obtains

NN (7.8)
W mety

which is analogous to the equation quoted earlier,

ONP
o _{,_OnPN (7.9
i 2.2
vac mrfr

If this simple analysis is correct, we may infer that the entire scalar field in nuclei is
related to &, which is an order parameter describing the deviation of < gq> , from the vacuum

value,

G - -
5=—__S[<qq>p—<qq> (7.10)

C

\’IIC]

We have reviewed these elementary results, since they indicate that the identification of
the entire scalar field in nuclei and in nuclear matter as a chiral field is not unreasonable. It is
worth noting that the simple relations presented here for I and Iy are largely unchanged if
condensates of higher dimension are included in the analysis, as long as the four-quark
condensates remain near their vacuum value [17,19].

In summary, we note that the analysis of QCD sum rules in matter suggests that the
scalar self-energy of the nucleon represents a chiral field related to the partial restoration of
chiral symmetry in matter [7]. While there are a number of uncertainties in our analysis, such
as the neglect of effects of the excitation of the delta and the use of a phenomenological value

for the wave function renormalization constant, the various calculations we have made of
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G,y £0 in the direction of supporting the identification of the scalar field in nuclei with a
chiral field. (Some refinements of our calculations are given in the Appendix.) Further
confidence in.the overall picture is achieved by application of the Feynmann-Hellman theorem.
(See Table 4.) The result based upon this theorem is given in Eq. (6.5) and implies a
calculation which is similar to that given in Ref. [11], except that the various corrections to

meson-quark vertices considered in that reference do not appear in the analysis presented in

Section VI.
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Appendix
In this appendix we consider some refinements of the bosonization procedure for the NJL

model. For example, at one-loop order one has [5]

2
GS - goqq

1 - GoJs(q? 2 _m?
sIs(@)  q°-m,

(AD)

bl

which is written here for g = 0, so that the g* dependence of 85qq and m, may be
neglected. Introduction of coupling to the two-pion continuum modifies that relation somewhat
[13]:

- U . Swa (A2)

1 - GgJs(q?) - GsKs(@®) ¢ -m?

(More generally, we should also replace m, by ri, in Eq. (A2). However, to avoid rescaling
the sigma mass in our calculations, we ascribe the entire effect of the introduction of
K S(qz) to an increase in g, ...) Here K (q%) is the diagrammatic element that appears in Fig.

2d. We can calculate g . in the limit q2 - 0. Thus, we have

~2

- Os _ Soaq (A3)

Note that g,,, is greater than g, ., since J5(0) and K 5(0) are both positive. The enhanced
value of g, 49 relative to g, .. represents a small enhancement of the sigma field due to (virtual)
coupling to the two-pion continuum.

Consider the situation for Ap = 1.0 GeV, where Jg(0) = 0.0826 GevV? and

K(0) = 0.0088 GeV?. [See Table 3.] We find 8sq9 = 2.89 (instead of g, ., = 2.58) upon
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using Eq. (A3) with m, = 540 MeV. If we then write G,y = gaqq<N|5q |N>,, we
have G,y = 9.57, when we use the preferred value of & = 0.36. (See Section VIL.)

The s;1me procedure may be used for Ag = 0.90 GeV, where Gg = 10.6 GeV 2,
K(0) = 0.0097 GeV? and Jg(0) = 0.0547 GeV?. In this case we find g,,, = 3.41 and
infer Gy = 11.48. However, for comparison to the phenomenological value we should scale
our result with m_. Thus, G;%N = (11.48)(0.550/0.592) = 10.7, where we have used the
phenomenological value of m, = 550 MeV [6] and the value of m, given in Table 3 for
Ap = 0.90 GeV. Scaling the value calculated above for Ap = 1.0 GeV, we have

G;{W = (9.57)(0.550/0.540) = 9.75. Thus, we have the results

eff
G v = 10.7
at Ap = 1.0 GeV
oy = 52.4 MeV
and
eff
G,aN = 9.75
at AE = 0.90 GeV

oy = 53.1 MeV

These results are fairly close to the empirical value of Gy = 9.5 that corresponds to the use
of m, = 550 MeV in applications of the boson-exchange model [6]. (Recall that the empirical

values of G py lie in the range: 9.32 < G yy < 9.73. See Eq. (4.1) and Ref. [6].)
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Table 1.

Values of <N|qq|N>, and G,y calculated for various values of o are

shown. Here g,., = 2.58 and Ag = 1.0 GeV [11]. (See Eq. (4.3) and
Table 3.)

o <N'aq|N>0 GUNN

0.0 4.95 12.8

0.1 4.50 11.6

0.2 4.04 10.4

0.3 3.58 9.23

0.4 3.12 8.05

Table 2. Values of <N|qq|N>, and G,y calculated for various values of « are
shown. Here 85qq = 2.97 and Ag = 0.9 GeV [11]. (See Eq. (5.2) and
Table 3.)
a <N|qq N>, Gonn
0.0 5.03 14.9
0.1 4.57 13.57
0.2 3.93 11.7
0.3 3.65 10.9
0.4 3.20 9.50
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Table 3. Parameters of the NJL model for two values of Ag [11]. Also shown are various
integrals defined in the text as well as values of oy and G, py . (The values
given for A = 1000 MeV differ somewhat from those in Ref. [11].) Further

' refinements of these calculations are given in the Appendix.

Ag 900 MeV 1000 MeV
mg 6.6 MeV 5.5 MeV
Gs 10.6 GeV2 7.91 GeV?
8oaq 2.97 2.58
8raq 3.10 2.68
[1-GgJg(0)]! 2.38 2.88
mg 295 MeV 260 MeV
m, 592 MeV 540 MeV
Ty 0.452 0.378
J, 0.525 0.525
Jy 0.24 0.20
K4(0) 0.0097 GeV? 0.0088 GeV?
B -0.24 - 0.20
oy 53.1 MeV (o = 0.36) 56.7 MeV (a = 0.30)
50.3 MeV (a = 0.40) 52.4 Mev (o = 0.36)
G,y 10.0 (@ = 0.36) 9.23 (« = 0.30)
9.50 (a = 0.40) 8.54 (o = 0.36)
<N|qq|N> 8.04 (a« = 0.36) 10.3 (a = 0.30)
7.62 (o = 0.40) 9.53 (a = 0.36)
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Table 4. Values of oy, Goyy » <N|qq|N>,and <N|qq|N> obtained by use of
the Feynman-Hellman theorem.

Ag = 900 MeV Ap = 1000 MeV
oN 46.9 MeV 51.7 Mev
G, NN 8.91 8.38
<N|qq|N>, 3.00 3.25
<N|qq|N> 7.10 9.39
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Fig. 1

Fig. 2

(a)

()

(@
(b)

(©)
(d)

Figure Captions

Here the triple lines denote on-mass-shell nucleons, the single lines denote quarks

and the filled circle denotes the action of the operator ¢q. The open circles
represent the vertex amplitude for the nucleon to go into three constituent quarks.
Here we consider corrections to the process in (a). The gg operator is now
measured at the end of a string of quark loops, yielding an enhancement factor
for the diagram in (a) of (1 -GgJ S(O))_1 = 2.88, if the Euclidean cutoff for the
momentum-space integrals is Ag = 1.0 GeV. [See Table 3.]

Here the uppermost figure serves to define < N| qq | N>, and the remaining
figures describe a number of corrections that supplement the contribution of Fig.
2(a). The open circles at the end of the various nucleon lines are pion-nucleon
vertex functions and the wavy lines represent pions. The nucleons in these
diagrams are on-mass-shell.

This diagram is given a value of F(0)(1 - «) with F(0) = 3.

This figure represents the integral J,. The quark loop that forms the upper part
of this figure gives rise to an integral which was calculated in Ref. [11].

This diagram contributes F(0)(1 - a)J, to the value of <N|qq |N>,.

This diagram contributes F(0)(1 - a)J; to the value of <N|qq|N>,.
The upper part of the figure defines K¢(0) which was calculated in Ref. [13].
The double line may be taken to be either a sigma propagator or a sum
of quark loops. One may use either representation, since
Gs/[1 -GgJg(0)]

2 2. ) . ) .
= 84q q/m , isarelation obtained ina bosonization procedure.
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Fig. 3

(e)

The sum of the two diagrams shown contributes BF(0)(1 - «) to the calculation

of <N|gqq|N>,. Inour work B is taken to be a phenomenological parameter.

The matrix element < N|gqgq | N> is related to <N|gq|N>, in a sigma-
dominance model. Here the double line denotes a series of quark loops
and the operator gq (filled circle) is measured at the end of the loop string,
as shown in the figure. The resulting relation is

<N|gq|N> =[1-GgJs(0)] ' <N|qq|N>,. (See caption of Fig. 2d.)
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