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Searches for new resonances in two-body invariant mass distributions are performed using an
unsupervised anomaly detection technique in events produced in 𝑝𝑝 collisions at a center-of-
mass energy of 13 TeV recorded by the ATLAS detector at the LHC. Studies are conducted
in data containing at least one isolated lepton. An autoencoder network is trained with 1%
randomly selected collision events and anomalous regions are then defined which contain
events with high reconstruction losses from the decoder. Nine invariant mass distributions are
inspected which contain pairs of one light jet (or one 𝑏-jet) and one lepton (𝑒, 𝜇), photon, or
a second light jet (𝑏-jet). No significant deviation from the background-only hypothesis is
observed after applying the event-based anomaly detection technique. The 95% confidence
level upper limits on contributions from generic Gaussian signals are reported for the studied
invariant mass distributions. The widths of the signals range between 0% and 15% of the
resonance mass and masses range from 0.3 TeV to 7 TeV. The obtained model-independent
limits are shown to have a strong potential to exclude generic heavy states with complex
decays.
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Searches for new physics phenomena beyond those described by the Standard Model (SM) require advanced
techniques to devise selections that involve a large number of variables characterizing collision events.
Furthermore, limited understanding of how new physics manifests itself has been an inspiration for
designing model-independent searches [1]. In traditional methods, event selections are optimized to target
specific signal signatures beyond the SM (BSM) and to maximize their separation from SM background
processes. Alternatively, event selection criteria can be relaxed to target wider signatures, but this reduces
the ability to suppress background.

Machine learning (ML) anomaly-detection methods [2–12] open a new way to study the collision events.
One such approach uses an autoencoder (AE) [13–16], a neural network architecture that is commonly
used with unsupervised learning. The AE is trained using predominantly SM background events and is
applied to identify collision events that display kinematic properties different from those of SM events.
Previously, ATLAS used a weakly supervised learning technique for massive dijet final states [17] and
unsupervised machine learning method to identify anomalous jets to search for BSM resonances decaying
into a Higgs boson and a generic new boson [18].

This note presents a generic search for resonances in various two-body final states using an anomaly
detection method on the event topology. Events are triggered by an isolated lepton to reduce contamination
from QCD multi-jet events. The two-body final states consist of jet+𝑌 , where the jet can be a light jet
or a 𝑏-jet while 𝑌 can be a lepton (electron or muon), a photon, or another jet or 𝑏-jet. The highest-𝑝𝑇
candidate for each kind of final-state object is used, except for the case of final states with two light jets
(𝑏-jets), where both the leading and subleading light jets (𝑏-jets) are considered. Triggering on the lepton
allows to study invariant mass distributions lower than 1 TeV, which would be otherwise difficult to model
due to trigger threshold effects if the jet triggers were used [19].

The data corresponds to 140 fb−1 of 𝑝𝑝 collisions at
√
𝑠 = 13 TeV collected by the ATLAS experiment

at the Large Hadron Collider (LHC). The ATLAS detector [20] is a multipurpose particle detector with
cylindrical geometry.1 It consists of an inner tracking detector (ID) surrounded by a superconducting
solenoid, sampling electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer with three
toroidal superconducting magnets, providing a near 4𝜋 coverage in solid angle. A two-level trigger system
is used to select events for storage. Events used in this analysis were selected online by single-electron or
single-muon triggers [21–23]. An extensive software suite [24] is used in the reconstruction and analysis
of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the
experiment.

The interaction vertex with the highest sum of the squared transverse momenta (𝑝2
T) of all associated tracks

with 𝑝T > 500 MeV is selected as the primary vertex [25]. Electrons are reconstructed from energy clusters
in the EM calorimeter that match a reconstructed track [26]. Muons are reconstructed by combining a
track from the ID and one from the muon spectrometer [27]. Electrons (muons) must have 𝐸T > 20 GeV
(𝑝T > 20 GeV) and pseudorapidity |𝜂 | < 2.47 (|𝜂 | < 2.5), excluding the region of 1.37 < |𝜂 | < 1.52
for electrons. To ensure that selected leptons originate from the primary vertex, their tracks must have
|𝑑0/𝜎(𝑑0) | < 5(3) for electrons (muons) and |𝑧0/sin(𝜃) | < 0.5 mm for both lepton flavors. Here 𝑑0 and
𝜎(𝑑0) are the transverse impact parameter and its uncertainty, and 𝑧0 is the longitudinal impact parameter
along the beam line. Electrons must pass the “Tight” likelihood-based identification criterion defined in

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and
the 𝑧-axis along the beam pipe. The 𝑥-axis points to the centre of the LHC ring, and the 𝑦-axis points upward. Cylindrical
coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧–axis. The pseudorapidity is defined
in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). The distance between two objects in 𝜂–𝜙 space is Δ𝑅 =

√︁
(Δ𝜂)2 + (Δ𝜙)2.

Transverse momentum is defined as 𝑝T = 𝑝 · sin 𝜃.
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Ref. [26], and the “FCTight” isolation requirement defined in Ref. [22]. Muons must pass the “Medium”
cut-based identification criterion and the particle-flow-based “PflowTight” isolation requirement [27].
Photons are reconstructed from energy deposits in the central EM calorimeter [28]. They must have
𝑝T > 20 GeV and pseudorapidity |𝜂 | < 2.37, excluding photons within 1.37 < |𝜂 | < 1.52. The “tight”
identification requirement and the “tight” isolation requirement are applied, both defined in Ref. [28]. Jets
are reconstructed using the anti-𝑘𝑡 algorithm [29, 30] with a radius parameter of 0.4, applied to tracks in
the ID and topological clusters [31] processed using a particle-flow algorithm [32]. To reduce the effect
from additional collisions in the same and nearby bunch crossings (pileup) [33], jets with 𝑝T < 60 GeV
and |𝜂 | < 2.4 must pass a jet-vertex-tagger requirement that corresponds to a selection efficiency for hard
scattered jets of 96% [34]. Jets containing a 𝑏-hadron (𝑏-jets) are identified using the 77% efficiency
working point of the DL1r 𝑏-tagging algorithm [35, 36]. Jets that fail the 𝑏-tagging criteria are identified
as light jets. An overlap-removal procedure detailed in Ref. [37] is applied to the selected objects.

The missing transverse momentum, with magnitude 𝐸miss
T , is calculated as the negative of the vector sum

of the transverse momenta of all reconstructed objects associated with the primary vertex. To account for
the soft hadronic activity, a term including tracks associated with the primary vertex, but not with any of
the reconstructed objects, is included in the 𝐸miss

T calculation [38].

Following the aforementioned object reconstruction, events are further selected by requiring at least
one lepton (𝑒 or 𝜇, denoted as ℓ) with 𝑝ℓT > 60 GeV, and at least one jet with 𝑝T > 30 GeV. A trigger
matching requirement [21] is applied in which the reconstructed lepton must lie within the vicinity of the
corresponding trigger-level object. Jets and 𝑏-jets are required to have a pseudorapidity of |𝜂 | < 2.4. This
step is denoted as preselection hereinafter. Nine invariant mass distributions are studied in this analysis.
The invariant mass distributions of 𝑚 𝑗 𝑗 and 𝑚𝑏𝑏 are reconstructed from the leading and sub-leading (𝑏-)jets
in each event; 𝑚 𝑗𝑏 is reconstructed from the leading jet and leading 𝑏-jet; 𝑚 𝑗𝑒 (𝑚𝑏𝑒), 𝑚 𝑗𝜇 (𝑚𝑏𝜇), and 𝑚 𝑗𝛾

(𝑚𝑏𝛾) are reconstructed from the leading (𝑏-)jet and leading electron, muon, or photon, respectively. An
event that contains multiple types of objects can contribute to multiple mass distributions.

Several Monte Carlo (MC) samples are simulated to verify the analysis procedure, although the anomaly
detection only relies on data samples. All SM samples, which are used to establish the background
modeling, are simulated using a detailed ATLAS detector simulation [39] based on Geant4 [40]. Samples
for the benchmark BSM signal processes are simulated using the ATLAS fast simulation framework [39].
Additional 𝑝𝑝 collisions generated using Pythia with the A3 set of tuned parameters [41] are overlaid to
simulate the effects of pileup that matches the multiplicity of additional collisions in data.

Kinematic features of the final state objects in the preselected events are structured in a matrix called
rapidity-mass matrix (RMM) which is proposed as an input for machine learning [42]. The RMM was
tested for an anomaly detection method using MC event generators and demonstrated to produce a more
robust AE training than using four-momenta as an input [43]. The RMM is a square matrix employed
to represent a comprehensive picture of the event based on 𝐸miss

T , transverse energies, transverse masses,
Lorentz factors, two-particle invariant masses, and two-particle rapidity differences. In this analysis, the
final-state objects are reconstructed light jets, 𝑏-jets, muons, electrons, and photons. The maximum number
of light jets or 𝑏-jets considered is 10, while the maximum number of electrons, muons, and photons
considered is 5. The objects within each type are ordered by their transverse energy in descending order. If
the number of available objects for a particular type is less than the maximum limit, the remaining elements
in the corresponding row and column of the RMM are filled with zeros. This ensures that the input size is
the same for every event.
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By construction, all elements of the RMM are defined between 0 and 1, and most variables are Lorentz
invariant under boosts along the longitudinal axis. To reduce biases on the shapes of the jet+𝑌 invariant
mass spectra, the nine invariant mass variables are excluded from the RMM. The resulting input dimension
is 362 − 9 = 1287. The RMM matrix is then flattened to a 1-dimensional input vector before being fed into
the AE.

The AE is implemented using TensorFlow [44]. It is comprised of two sections, an encoder and a decoder.
The encoder compresses the input to a latent dimensional space, whereas the decoder takes the data in the
latent layer and decompresses it back to its original size. The network architecture for the encoder contains
two hidden layers, with 800 and 400 neurons respectively, and a latent layer of 200 neurons. The decoder
reverses the structure of the encoder, namely 400 and 800 neurons for the two hidden layers, with 1287
neurons for the output layer. The Leaky ReLU [45] activation function is applied to the output in all hidden
and output layers. Artificial anomalous events with different characteristics were created and used as input
to test the separation power of this architecture. The default AE has shown to outperform (convolutional)
variational AEs. Furthermore, the selected architecture has shown better separation between anomalous
and non-anomalous events than AE architectures with other numbers of neurons. To form the training
and validation datasets, 1% collision events are randomly selected after the preselection. They offer both
sufficient statistics and a good representation of typical collision events. The chance to find BSM signal
events in these datasets is considered to be negligible. Even if the training dataset is influenced by BSM
physics, such contributions would alter the distribution of the reconstruction loss of the AE and thus the
shape of the mass spectra but would not produce discernible bumps [43]. Therefore, the search for localized
enhancements in the invariant mass distributions should not be significantly affected.

The training and validation sets are randomly split using a 7:3 ratio. The optimizer Adam [46] is used to
train the network by minimizing the reconstruction loss of the training set, which is defined as the mean
squared error between the input and reconstructed values of the training set. The batch size is 100 and all
events in the training set are reshuffled in the beginning of every epoch. Training of the AE is monitored
on the reconstruction loss of the validation set, and terminated if this value does not decrease within 30
epochs. To avoid selecting the over-trained model, the training is repeated 50 times with different network
initialization and different random splits of the training and validation sets. The performance is found to be
stable and the model that gives median validation loss among these trials is used. The logarithm of the
reconstruction loss, log(Loss), is defined as the anomaly score for each event.

The distribution of the anomaly scores of the collision data is shown in Fig. 1. A peak is shown near log(Loss)
= −10.8 from the total of 166 055 597 events after preselection. As a comparison, several benchmark
BSM models, studied in Ref. [47, 48], are overlaid. These representative models are characterized by the
presence of an isolated lepton in the final states. A list of the models and their parameters is the following:
(1) charged Higgs production in association with a top quark, 𝑡𝑏𝐻+, with the mass of 𝐻+ between 0.4 TeV
and 2 TeV with a varying step size [49]; (2) a Kaluza–Klein gauge boson, 𝑊𝑘𝑘 , with the SM 𝑊 boson
and a radion that decays into two gluons, with the mass of 𝑊𝑘𝑘 running from 0.5 TeV to 6 TeV while the
mass difference of 𝑊𝑘𝑘 and the radion being 0.25 TeV [50]; (3) a model with composite SU(2)L fermion
doublets that breaks lepton-flavor universality (“composite lepton”), with the mass of the parent 𝑍 ′ boson
between 0.5–4 TeV, and various mass hypotheses of the composite lepton [51]; (4) the sequential standard
model (SSM) 𝑊 ′ → 𝑊𝑍 ′ → ℓ𝜈𝑞𝑞, with the mass of the 𝑊 ′ boson ranging from 0.7 TeV to 6.2 TeV with a
varying step size and the mass difference of the 𝑊 ′ and 𝑍 ′ bosons being 0.25 TeV [52]; (5) a simplified
dark-matter (DM) model, 𝑍 ′ → 𝑞𝑞 with an axial-vector mediator 𝑍 ′ boson whose mass ranges between
0.5–6 TeV with a varying step size, where one of the quarks radiates a 𝑊 boson which decays to ℓ𝜈 [53]. As
can be seen in Fig. 1, the anomaly scores of the BSM processes tend to be larger than those of the collision

4



events, which are predominantly produced by the SM processes. The SSM and DM models tend to have
similar characteristics as the SM background under the event selection of this analysis, therefore yielding
lower anomaly scores. Although only one hypothetical mass is shown for each type of BSM models, it
was found that events with larger hypothetical masses lead to larger anomaly scores. Furthermore, three
anomaly regions (ARs) are chosen to maintain sensitivity to different BSM models. They are defined by
log(Loss) > −9.1, > −8.0, and > −6.5, respectively, as indicated by the vertical lines in Fig. 1. The labels
of the three ARs indicate the visible cross section of hypothetical processes yielding a number of events
equal to what observed in the data for an integrated luminosity of 140 fb−1. It was checked that the anomaly
score distributions in each data-taking year are consistent, indicating that the AE training is robust against
different pileup conditions and triggering criteria.
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Figure 1: Distributions of the anomaly score from the AE for data and five benchmark BSM models. Their legends,
from top to bottom, are: (1) charged Higgs production 𝑡𝑏𝐻+ in association with a top quark; (2) a Kaluza–Klein
gauge boson, 𝑊𝑘𝑘 , with the SM 𝑊 boson and a radion 𝜙; (3) a 𝑍 ′ boson decaying to a composite lepton 𝐸 with a
mass of 0.5 TeV; (4) the sequential standard model 𝑊 ′ → 𝑊𝑍 ′ → ℓ𝜈𝑞𝑞; (5) a simplified dark-matter model with
an axial-vector mediator 𝑍 ′ boson. The BSM predictions represent the expected number of events at 140 fb−1 at
around 2 TeV of the heavy particles (𝐻+, 𝑊𝑘𝑘 , 𝑍 ′, 𝑊 ′ and 𝑍 ′, respectively). The histograms of the BSM models are
smoothed to avoid fluctuations due to low MC statistics. The vertical lines indicate the three anomaly regions (ARs).
The labels of the three ARs indicate the visible cross section of hypothetical processes yielding a number of events
equal to what observed in the data for an integrated luminosity of 140 fb−1. The AE is applied on preselected events
without any requirements on invariant mass distributions.

The nine invariant mass spectra in each anomaly region are examined to search for any localized excesses
above the background hypothesis. The distributions are binned with increasing bin widths from 16 GeV to
150 GeV over the range of 0.3 to 8 TeV to reflect the jet energy resolution of the ATLAS detector. Similar
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to the previous ATLAS searches based on the single-lepton requirement [47, 48], the following analytic
function is used to describe the shape of the smoothly falling background:

𝑓 (𝑥) = 𝑝1(1 − 𝑥) 𝑝2𝑥𝑝3+𝑝4 ln 𝑥+𝑝5 ln2 𝑥 , (1)

where 𝑥 ≡ 𝑚/
√
𝑠 and 𝑝𝑖 are free parameters.

To avoid any possible bias, the analysis was developed without looking at the signal mass distributions in
the data (blinded). To verify that Eq. (1) can describe the background shape separately for each of the
nine invariant mass distributions, fits are performed on the SM background. This background is estimated
from the MC simulation samples, which are composed of 𝑊+jets, 𝑡𝑡 and single-top processes, and a
“loose electron” control sample from data that represents the QCD multi-jet events. Each event in the
control sample must contain a leading electron that satisfies the “Loose” identification criteria [26] and
fails the “Tight” identification criteria while also passing the anomaly region selections. This ensures the
orthogonality of the control sample with the signal sample. The fit results show that Eq. (1) can describe
the shape of the nine invariant mass distributions in the anomaly regions, with the 𝜒2/ndf values ranging
between 0.7 and 1.9. The distributions of the fit residuals are consistent with the normal distribution. More
complex fit functions do not improve this description. These studies do not take into account systematic
variations in the SM simulations.

The established functional form of the background hypothesis is then applied to data in the anomaly
regions. The likelihood fits of the data with Eq. (1) are performed to determine the free parameters and are
shown in Figure 2 for the 10 pb AR. The data are well described by the fit with the 𝜒2/ndf values ranging
between 0.64 and 1.19 for all nine mass spectra. The lower panels show the fit significances, calculated as
(𝑑𝑖 − 𝑓𝑖)/𝛿𝑖, where 𝑑𝑖 is the data yield, 𝑓𝑖 is the fit value, and 𝛿𝑖 is the uncertainty of data in the 𝑖-th bin.
The distributions of the significances are found to be consistent with the normal distributions.

Each invariant mass spectrum is independently analyzed using the BumpHunter algorithm [54] to look for
localized excesses without assumptions on BSM signal shapes. The uncertainty of the background shape is
taken into account by using an alternative function that replaces the term 𝑝5 ln2 𝑥 with 𝑝5/

√
𝑥 in Eq. (1).

The algorithm searches for statistically significant deviations after taking into account the look-elsewhere
effect [55] and the uncertainty of the background shape. Among the nine invariant mass distributions
in the 10 pb AR, BumpHunter reports the largest deviation in the 𝑚 𝑗𝜇 spectrum near 4.8 TeV and the
second largest deviation near 1.2 TeV, as shown in Fig. 2. Their statistical significances with systematic
uncertainties will be discussed later.

The searches for localized excesses are also performed in the nine invariant mass distributions for 1 pb and
0.1 pb ARs. No significant excesses were found. The 4.8 TeV region of the 𝑚 𝑗𝜇 mass does not show the
deviation from the background hypothesis of the same strength as that observed for the 10 pb AR.

The anomaly region selection is expected to improve the discovery potentials for BSM models. Figure 3
shows the improvements of the discovery sensitivity in the five benchmark BSM models at the 10 pb
AR. The improvement is defined as Δ𝑍 = ((𝑍AE/𝑍) − 1) × 100%, where 𝑍AE is the discovery sensitivity
in the anomaly region and 𝑍 is that before any cut on the anomaly score. The discovery sensitivity is
defined as 𝑍 =

√︃
2
(
(𝑠 + 𝑏) ln

(
1 + 𝑠

𝑏

)
− 𝑠

)
[56], where 𝑠 is the number of signal events and 𝑏 the number

of background events calculated from the fit of Eq. (1) to the data. Both are counted under the bulk of
the reconstructed signal shape within ±1 Root Mean Square around the mean value. The results show that
the application of the AE trained on data improves the discovery sensitivity for most of the benchmark
BSM models and the mass points. The BSM hypotheses that do not show improvements in the sensitivity
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Figure 2: Invariant mass distributions of 𝑗 + 𝑌 for 𝑚 𝑗𝑌 > 0.3 TeV in the 10 pb AR along with the fit from Eq. (1).
The fits are represented by the lines, while the associated statistical uncertainties are indicated by the shaded bands.
The lower panels show the bin-by-bin significances of deviations from the fit, calculated as (𝑑𝑖 − 𝑓𝑖)/𝛿𝑖 , where 𝑑𝑖 is
the data yield, 𝑓𝑖 is the fit value, and 𝛿𝑖 is the uncertainty of data in the 𝑖-th bin.

correspond to models with a low mass of hypothetical particles or models with the number of reconstructed
objects and the kinematic variables in the RMM that are closer to the SM events.

Due to the absence of any significant resonant signals, upper limits on the cross section times acceptance,
efficiency, and branching ratio are set for Gaussian-shaped signals using the CLs method [57]. The effects
of systematic uncertainties associated with luminosity, jet energy scale, jet energy resolution, and object
identification/reconstruction are included in the signal. These object related uncertainties are derived from
the SSM simulated signals. The uncertainty stemming from the choice of background fit function is taken
from the comparison of Eq. (1) with the alternative background shape. An uncertainty to estimate the fit
bias, computed using the spurious-signal method described in Ref. [58], is included. The dominant source
of systematic uncertainty is the spurious signal uncertainty which leads to a degradation of the upper limits
by approximately 10%. The stochastic fluctuations in the AE training also cause an uncertainty if the AE
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Figure 3: The values of Δ𝑍 for the discovery sensitivity, as defined in the text, as a function of the invariant mass
𝑚. The nine invariant mass distributions are calculated in the 10 pb AR. The positive values in percentage indicate
improvements in sensitivity. The two horizontal dashed lines at 100% and 200% are guides for the eye. The five
benchmark BSM models are: (1) charged Higgs production 𝑡𝑏𝐻+ in association with a top quark; (2) a Kaluza–Klein
gauge boson, 𝑊𝑘𝑘 , with the SM 𝑊 boson and a radion 𝜙; (3) a 𝑍 ′ boson decaying to a composite lepton 𝐸 . (4) the
sequential standard model 𝑊 ′ → 𝑊𝑍 ′ → ℓ𝜈𝑞𝑞; (5) a simplified dark-matter model with an axial-vector mediator
𝑍 ′ boson. The multiple markers shown for the composite-lepton model at fixed values of mass correspond to the
variation of the composite lepton (𝐸) mass between 0.25 and 3.5 TeV. The center positions of the markers are set to
the masses of the corresponding heavy particles.

is retrained. It can cause an increase of the observed limits by 4% on average. This uncertainty is not
included in the limits.

Upper limits at 95% confidence level (CL) on the production cross section of resonant signals with intrinsic
width of 0% or 15% of the hypothetical mass in the 10 pb AR are presented in Figure 4. For the 0% width,
the Gaussian signals have widths consistent with the experimental resolutions. The limits are weaker for the
15% resonance width as the signals are spread over more bins. The local significance of a signal with the
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width of 0% for 𝑚 𝑗𝜇 = 4.8 TeV, where the largest deviation was detected by BumpHunter, is found to be
2.9 standard deviations (2.9𝜎) using the asymptotic formulae. A more stringent (“HighPT”) identification
criterion on muons [27] removes the event near 𝑚 𝑗𝜇 = 8 TeV, but it does not reduce the significance of the
excess at 4.8 TeV. The local significance at around 𝑚 𝑗𝜇 = 1.2 TeV is 2.8𝜎.

The presented limits are more competitive than the limits on Gaussian signals presented in Ref. [47] which
used the same preselected events. For example, the limits for the 𝑚 𝑗 𝑗 below 1 TeV reported in this analysis
show about a factor of 2–3 improvement compared to the results in Ref. [47]. The search sensitivity is
comparable at high masses. Many BSM models with complex final states are expected to have high AE
acceptances. For example, the five benchmark BSM models discussed in Fig. 3 have an AE acceptance
above 80% on average for the 𝑚 𝑗 𝑗 invariant mass distributions around 0.5 TeV for the 10 pb AR. The
trained AE rejects about 90% of data for the same region of 𝑚 𝑗 𝑗 . This shows a potential to exclude heavy
BSM particles with high AE acceptance.

In conclusion, model-independent searches for new phenomena in two-body invariant mass distributions
are performed using an unsupervised anomaly detection technique with 140 fb−1 of 𝑝𝑝 collision events
at

√
𝑠 = 13 TeV recorded by the ATLAS detector. Events are preseleted to contain at least one lepton

with 𝑝ℓT > 60 GeV and at least one jet with 𝑝T > 30 GeV. An unsupervised machine learning algorithm
based on the AE architecture is trained with randomly selected 1% preselected collision events, without
targeting any specific BSM signal. Three anomaly regions are defined using the reconstruction loss of
the AE. Nine two-body invariant mass spectra, 𝑚 𝑗𝑌 , are studied, where 𝑗 stands for a light jet or a 𝑏-jet,
and 𝑌 is a second light jet or 𝑏-jet, a lepton, or a photon. No evidence of significant excesses is observed.
The maximum excess reported by BumpHunter is near 4.8 TeV in the 𝑚 𝑗𝜇 distribution for the 10 pb AR.
Assuming a resonance with a width of 0%, the local significance of this excess is 2.9𝜎.

The discovery sensitivity shows large improvement after the anomaly region selection, which is illustrated
using several benchmark BSM models in the 10 pb AR. The analysis sets 95% CL upper limits on
contributions from generic Gaussian signals to the studied invariant-masses distributions in this AR. The
reported model-independent limits have a stronger potential to exclude generic heavy states with complex
decaying final states, compared to the limits without anomaly region selections.
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Figure 4: The 95% CL upper limits on the cross section times acceptance (𝐴), efficiency (𝜖), and branching ratio
(𝐵) for Gaussian-shaped signals with various signal widths. The limits are calculated for events with at least one
lepton with 𝑝ℓT > 60 GeV in the 10 pb AR anomaly region. Two width hypotheses are shown: 𝜎𝑋/𝑚𝑋 = 0 and
𝜎𝑋/𝑚𝑋 = 0.15. In both cases, the detector resolution on jets is included in the simulation of signal samples. The
±1𝜎 and ±2𝜎 bands are shown for 𝜎𝑋/𝑚𝑋 = 0 signals. Mass points are spaced 5% apart from their preceding point,
starting from 0.3 TeV.
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Figure 5: A schematic representation of the autoencoder architecture used for training and selection of the three
anomaly regions. The input 𝑥𝑖 and the output 𝑥𝑖 are RMM values.
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from top to bottom, are: (1) charged Higgs production 𝑡𝑏𝐻+ in association with a top quark, with the 𝐻+ mass of
2 TeV; (2) a 6 TeV Kaluza–Klein gauge boson, 𝑊𝑘𝑘 , with the SM 𝑊 boson and a radion 𝜙; (3) a 4 TeV 𝑍 ′ boson
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with the 𝑊 ′ mass of 6.2 TeV and the 𝑍 ′ mass of 6 TeV; (5) a simplified dark-matter model with an axial-vector
mediator 𝑍 ′ boson with a mass of 6 TeV. The histograms of the BSM models are smoothed to avoid fluctuations
due to low MC statistics. The vertical lines indicate the three anomaly regions (ARs). The labels of the three ARs
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Figure 7: Invariant mass distributions of 𝑗 + 𝑌 for 𝑚 𝑗𝑌 > 0.3 TeV after preselection along with the fit from Eq. (1).
The fit is represented by red lines, and the associated uncertainties are indicated by yellow bands. The lower panels
show the bin-by-bin significances of deviations from the fit, calculated as (𝑑𝑖 − 𝑓𝑖)/𝛿𝑖 , where 𝑑𝑖 is the data yield, 𝑓𝑖
is the fit value, and 𝛿𝑖 is the uncertainty of data in the 𝑖-th bin.
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Figure 8: Distributions of the anomaly score for data and several anomaly scenarios. The example BSM model
(shown with the dashed blue lines) is the sequential standard model 𝑊 ′ → 𝑊𝑍 ′ → ℓ𝜈𝑞𝑞. The mass of 𝑊 ′ is set
to 2.2 TeV and the mass of the 𝑍 ′ is set to 2 TeV. This model leads to the final state of one lepton, two jets, and
small missing transverse energy that is similar to the SM backgrounds. The other histograms represent events from
the same model with some modifications to represent anomalous events: (1) “Anomaly 1” is the case where all
jets beyond the second jet are artificially replaced with photons; (2) “Anomaly 2” is the case where all jets beyond
the second jet are artificially replaced with 𝑏-jets; (3) “Anomaly 3” is the case of low-multiplicity events where
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Figure 9: A display of an event with the reconstructed invariant mass of 𝑚 𝑗𝜇 = 4.72 TeV (Run Number: 310634,
Event Number 295535084). It is recorded by ATLAS on 14th October 2016 with LHC stable beams at a 𝑝𝑝 collision
energy of 13 TeV. This event belongs to the group of eight events with 𝑚 𝑗𝜇 > 4.7 TeV contributing to the largest
deviation from the background hypothesis in the 10 pb AR. The top-left panel presents a transverse (𝑥–𝑦 plane)
view of the event. The gray cones represent jets and the red lines represent muons. The green arrow indicates a
missing transverse energy (𝐸miss

T ) of 256 GeV . The red line closest to MET represents a muon with 𝑝T = 430 GeV.
The jet shown on the left side of the display forms the mass of 𝑚 𝑗𝜇 = 4.72 TeV. Other jets with 𝑝T > 20 GeV and
muons with 𝑝

𝜇

T > 60 GeV are also displayed. The top-right panel shows the distribution of energy deposited in the
calorimeters in the 𝜂–𝜙 plane, where muons are marked in red and jets in yellow. The bottom panel displays the
event in the longitudinal (𝑧–𝑦 plane) perspective.
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