
Challenges and opportunities integrating LLAMA

into AdePT

Bernhard Manfred Gruber 1,3,4,5, Guilherme Amadio 1 and
Stephan Hageböck 2

1 EP-SFT, CERN, Geneva, Switzerland
2 IT, CERN, Geneva, Switzerland
3 Center for Advanced Systems Understanding (CASUS), Saxony, Germany
4 Helmholz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
5 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany

E-mail: bernhard.manfred.gruber@cern.ch

Abstract. Particle transport simulations are a cornerstone of high-energy physics (HEP),
constituting a substantial part of the computing workload performed in HEP. To boost the
simulation throughput and energy efficiency, GPUs as accelerators have been explored in recent
years, further driven by the increasing use of GPUs on HPCs. The Accelerated demonstrator
of electromagnetic Particle Transport (AdePT) is an advanced prototype for offloading the
simulation of electromagnetic showers in Geant4 to GPUs, and still undergoes continuous
development and optimization. Improving memory layout and data access is vital to use
modern, massively parallel GPU hardware efficiently, contributing to the challenge of migrating
traditional CPU based data structures to GPUs in AdePT. The low-level abstraction of
memory access (LLAMA) is a C++ library that provides a zero-runtime-overhead data structure
abstraction layer, focusing on multidimensional arrays of nested, structured data. It provides a
framework for defining and switching custom memory mappings at compile time to define data
layouts and instrument data access, making LLAMA an ideal tool to tackle the memory-related
optimization challenges in AdePT. Our contribution shares insights gained with LLAMA when
instrumenting data access inside AdePT, complementing traditional GPU profiler outputs. We
demonstrate traces of read/write counts to data structure elements as well as memory heatmaps.
The acquired knowledge allowed for subsequent data layout optimizations.

1. Introduction
Particle transport simulations consume a substantial part of the computing resources in HEP:
11-24% projected for 2031 by ATLAS [1], 15% projected for 2031 by CMS [2], 74.3% used in 2021
and 75% projected for 2024 by LHCb [3, 4], and around 70% used in 2015 for ALICE[5, p.30],
summarized in [6]. With the rise of accelerators, notably GPGPUs, new methods are in active
development to boost simulation throughput and energy efficiency over classical and established
simulation frameworks like Geant4 [7, 8, 9]. The Accelerated demonstrator of electromagnetic
Particle Transport (AdePT) is a recent C++/CUDA prototype for offloading electromagnetic
transport simulations to GPUs1 [10]. It uses VecGeom [11] for handling geometry and
G4HepEm [12] for the electromagnetic physics implementation. AdePT can run standalone,

1 AdePT is developed on GitHub: https://github.com/apt-sim/AdePT

ar
X

iv
:2

30
2.

08
25

2v
1

 [
he

p-
ex

]
 1

6
Fe

b
20

23

https://orcid.org/0000-0001-7848-1690
https://orcid.org/0000-0002-2102-7945
https://orcid.org/0000-0001-9359-2196
https://github.com/apt-sim/AdePT

2
1
5
4

track #0
track #1
track #2
track #3
track #4
track #5
track #6
track #7

5
6
1
2

active next
4

7

5
#

(a) Sparse single buffer

track #0
track #1
track #2
track #3
track #4
track #5
track #6
track #7

active next
4 5
#

track #0
track #1
track #2
track #3
track #4
track #5
track #6
track #7

(b) Dense double buffer

Figure 1: The AdePT track data structure. Tracks are either saved linearly in an array using
index queues (a) or can be kept dense using using two arrays without index queues (b).

or via a fast simulation hook in Geant4. Initial profiling of AdePT revealed that simulations
are mostly bound by memory access and diverging code paths. Independently, the low-level
abstraction of memory access (LLAMA) has been developed as an answer to the continuously
increasing memory-gap [13]: Programs are increasingly memory-bound, so adapting the data
layout for each target architecture is crucial. LLAMA separates the algorithmic view of data from
its mapping to device memory, allowing different memory layouts to be chosen without touching
the algorithm. Given the capabilities of LLAMA, we concluded that the library provides an ideal
toolbox to investigate AdePT’s memory-related bottlenecks. Furthermore, AdePT provides an
ideal application to test LLAMA’s capabilities for memory layout instrumentation, analysis, and
optimization. In this work, we present our findings when integrating LLAMA into AdePT.

2. AdePT’s track data structure
The main data structure in AdePT is the list of active particle tracks. By default, this is a sparse
array of track structures, which is allocated once per particle type such as electrons, positrons
and photons. In addition to this track array, two lists of integers are required for managing the
track slots of the current and subsequent transport iteration. This version of the data structure
is referred to as “sparse single buffer” throughout this paper and is visualized in figure 1a.

As part of this work, a new data structure has been developed. Per particle type, it is
comprised of two dense arrays of track structures, one for the currently active particles and one
for the particles active in the next iteration. Separate lists of slots are thus obsolete. This version
of the data structure is called “dense double buffer” throughout this paper, and is visualized in
figure 1b.

3. LLAMA integration
For easy integration and convenience, LLAMA offers a single, amalgamated header file. After
integrating, the following code transformations were implemented, sketched in figure 2: The
AdePT track data structure, a C++ struct, was formulated as a type list using the LLAMA
record and field constructs. Member functions of the track were converted to free functions, and
functions with tracks as arguments or return values were converted to templates. Instances and
references to tracks and their data members were replaced with LLAMA constructs or deduced
types (using auto). Access to a data member of a track needed to be expressed as call with
a tag type. Pointers to CUDA memory became LLAMA views. Finally, to increase accuracy

struct Track {

// ...

Vector3D<Precision> pos;

NavStateIndex navState;

__device__ void InitAsSecondary(

const Track &parent) {

// ...

this->pos = parent.pos;

this->navState = parent.navState;

}

};

struct Pos {}; struct NavState {}; // ...

using Track = llama::Record<

// ...

llama::Field<Pos, Vector3D<Precision>>,

llama::Field<NavState, NavStateIndex>>;

template <typename SecondaryTrack>

__device__ void InitAsSecondary(

SecondaryTrack &&track,

const Vector3D<Precision> &parentPos,

const NavStateIndex &parentNavState) {

// ...

track(Pos{}) = parentPos;

track(NavState{}) = parentNavState;

}

Figure 2: The AdePT track data structure before and after the LLAMA integration.

Blob: 0

0 RngState

0 RngState 0 Energy 0 NumIALeft.0 0 NumIALeft.1 0 NumIALeft.2 0 InitialRange 0 DynamicRangeFactor

0 TlimitMin 0 Pos 0 Dir 0 NavState

0 NavState 1 RngState

1 RngState 1 Energy 1 NumIALeft.0 1 NumIALeft.1 1 NumIALeft.2 1 InitialRange

1 DynamicRangeFactor 1 TlimitMin 1 Pos 1 Dir

1 NavState 2 RngState

2 RngState 2 Energy 2 NumIALeft.0 2 NumIALeft.1 2 NumIALeft.2

2 InitialRange 2 DynamicRangeFactor 2 TlimitMin 2 Pos 2 Dir

2 Dir 2 NavState 3 RngState

3 RngState 3 Energy 3 NumIALeft.0 3 NumIALeft.1

3 NumIALeft.2 3 InitialRange 3 DynamicRangeFactor 3 TlimitMin 3 Pos 3 Dir

3 Dir 3 NavState 4 RngState

4 RngState 4 Energy 4 NumIALeft.0

4 NumIALeft.1 4 NumIALeft.2 4 InitialRange 4 DynamicRangeFactor 4 TlimitMin 4 Pos

4 Dir 4 NavState 5 RngState

5 RngState 5 Energy

5 NumIALeft.0 5 NumIALeft.1 5 NumIALeft.2 5 InitialRange 5 DynamicRangeFactor 5 TlimitMin 5 Pos

5 Pos 5 Dir 5 NavState 6 RngState

6 RngState

6 Energy 6 NumIALeft.0 6 NumIALeft.1 6 NumIALeft.2 6 InitialRange 6 DynamicRangeFactor 6 TlimitMin 6 Pos

6 Pos 6 Dir 6 NavState 7 RngState

7 RngState

7 RngState 7 Energy 7 NumIALeft.0 7 NumIALeft.1 7 NumIALeft.2 7 InitialRange 7 DynamicRangeFactor 7 TlimitMin

7 Pos 7 Dir 7 NavState

Figure 3: AdePT’s default track layout, visualized by LLAMA. Memory is laid out left-to-right
and wraps after 64 bytes. The boxes are colored by LLAMA field and labeled by array index
and field name.

in LLAMA’s Trace mapping, the existing CUDA kernels were refactored to tolerate the use of
proxy references2 to LLAMA-managed tracks.

An immediate benefit of a data structure expressed with LLAMA is that LLAMA can
visualize the data layout, as shown in figure 3 for the default sparse single buffer. The integration
of LLAMA increased the compilation time for an incremental build of the benchmark executable
by 27% (one .cpp and three .cu files) and required 178 insertions and 226 deletions on the 1336
lines of benchmark code (as counted by the cloc utility, excluding external libraries).

4. Memory layout benchmark
To benchmark the data structures and memory layouts we use AdePT’s example19 and the
TestEm3 geometry. 10 GeV of highly energetic electrons are injected by a particle gun into
50 alternating box-shaped layers of absorber and gap material. The simulation computes the
development of an electromagnetic shower and the energy deposit in the detector’s layers.

2 A proxy-reference in C++ is a user-defined type that acts like a language-built-in reference.

 3

 3.5

 4

 4.5

 5

 5.5

 6

Single sparse buffer Two dense buffers

R
un

ti
m

e
[s

]

Baseline
LLAMA AoS

LLAMA AoSoA2

LLAMA AoSoA4
LLAMA AoSoA8

LLAMA AoSoA16

LLAMA AoSoA32
LLAMA AoSoA64

LLAMA SoA

Figure 4: Runtime comparison between the single sparse and double dense buffer data structures
using various LLAMA layouts. The reported numbers are the averages of 5 runs each.

This test scenario provides a realistic compute workload, since it runs a complete physics
implementation, with a simple geometry, since there is ongoing R&D to improve the geometry
code in VecGeom. All presented benchmarks3 were compiled on a machine running CentOS
Stream 8 with GCC 11 and CUDA 11.7 and run on an NVIDIA V100S4. We used AdePT from
GitHub (git commit 449222d), VecCore 0.8.0, VecGeom 1.1.20 and Geant4 11.1.0. The following
command line was used to run a benchmark:

$ example19 -particles 10000 -batch 5000 -gunpos -220,0,0 -gundir 1,0,0 \

-gdml_file testEm3.gdml

Figure 4 shows the measured runtimes. The baseline is the unmodified example19 (single
sparse buffer). Switching it to LLAMA AoS, which expresses the same data layout, incurs a
small overhead of 2.4%. Although LLAMA claims to have zero abstraction overhead, in our case
the compiler failed to fully optimize all abstractions away, resulting in a different allocation of
registers. Progressing towards the SoA layout via multiple AoSoA versions using different lane
counts5 increases the runtime. For the double dense buffer, the reverse effect was observed, with
the AoS being the slower layout and runtime decreasing towards the SoA layout. The fastest
runtime was measured with the AoSoA64 layout. It is worth noting that by using LLAMA the
memory layout can be changed with a single line of code, which allowed us fast and flexible
experimentation with different memory layouts.

5. Memory access instrumentation
To better understand the benchmark results and the impact of memory layouts, we used
LLAMA’s instrumentation mappings. Detailed information is available in LLAMA’s most recent
publication[14]. Using LLAMA’s lightweight Trace6 mapping we counted the accesses to each
field of the electrons buffer. These results are shown in figure 5. Except for the InitialRange
field, all other fields are almost uniformly read. The write counts are less equally distributed and
focus more on NumIALeft.0-2, InitialRange, DynamicRangeFactor and TlimitMin. For those

3 Benchmarks are available on GitHub: https://github.com/apt-sim/AdePT_LLAMA_ACAT22
4 5120 CUDA cores, 80 SMs, 1597MHz clock speed, 8.2 TFLOPS in double precision, 32 GB HBM2/ECC memory
and 1124 GB/S memory bandwidth
5 In an AoSoAn layout, a record with the fields (A,B,C) and n = 2 is laid out as AABBCCAABBCC etc.
6 The Trace mapping was renamed to FieldAccessCount in more recent versions of LLAMA.

https://github.com/apt-sim/AdePT_LLAMA_ACAT22

 0

 1

 2

 3

 4

 5

 6

RngS
tat

e
Ener

gy

Num
IALeft.

0

Num
IALeft.

1

Num
IALeft.

2

Ini
tial

Rang
e

Dyna
micR

ang
eFa

cto
r

Tlim
itM

in Pos Dir

NavS
tat

e

10
8

ac
ce

ss
 c

ou
nt

read
write

Figure 5: Access counts per track field on the electrons buffer as measured by the LLAMA Trace
mapping.

fields, the number of writes is also higher than the number of reads, which is suspicious and
requires further investigation.

Furthermore, LLAMA can create a heatmap counting the number of accesses per byte on
various buffers, see figure 6. Because this instrumentation has a high memory overhead, we
had to reduce the memory footprint of the simulation significantly by only injecting 25 particles
in 5 batches (-particles 25 -batch 5). We observe, that the access is generally distributed
rather randomly. The electrons buffer is fully, the photons buffer halfway and the positrons
buffer almost not utilized.

Figure 7 shows a closeup of the AoS layouts for the electron, positron and photon sparse
single buffers. The heatmaps show that early-created electrons are accessed very frequently,
unlike electrons produced later in the simulation. A few electron fields are colder than the others
and may be good candidates to split off to a different memory region. Positrons are accessed
more evenly across the array. The photon random number generator state is accessed very
infrequently in comparison to electrons and positrons. This is confirmed by the implementation
since photon physics requires far less random numbers. The second-to-last field (direction) of
electrons and positrons is hotter than for photons. Some photon fields are barely accessed at all
(InitialRange, DynamicRangeFactor, TlimitTime). The maximum access count is significantly
different, with electrons being accessed more than 2.5 times as often as positrons and more than
7 times as often as photons. There is tail padding in all buffers, which we have already seen in
the memory layout visualization in figure 3. Figure 8 shows a closeup of the AoS layouts for
the electron, photon and positron double dense buffers. Compared to the single sparse buffers
in figure 7, the double dense buffers exhibit a far more uniform access pattern.

The row sizes of the heatmaps can be chosen to study different properties. Using the size of
a single track emphasizes how the fields of a record are accessed. Choosing a relevant hardware
size, such as the cache-line size or memory bus width, gives insight into how the data maps to
hardware.

To inspect the usage of whole track slots in the buffers, additional heatmaps were generated
using an AoS layout with the size of a track as heatmap granularity. For the single sparse
electrons buffer, almost the entire buffer is required to provide track slots, but the slots are
barely used except for the first 5. For the double dense buffers, track slot utilization is dominant
at the front of the buffer, keeping hot data much closer together. As an added benefit, far less
track slots are used in total (2044 vs. 45509 slots) allowing much bigger simulations to be run.

Sparse AoS electrons Sparse SoA electrons

Sparse AoS positrons Sparse SoA positrons

Sparse AoS photons Sparse SoA photons

Figure 6: LLAMA heatmaps for the single sparse buffer. One row shows 20 tracks.

6. Summary and conclusions
We successfully integrated LLAMA into AdePT, which allowed us to experiment with different
memory layouts easily and fast. With the AoSoA64 double dense buffer we were able to find
a memory layout improving upon the status quo. We showed that the SoA layout is not a
silver bullet and requires a dense access pattern – memory layout and access pattern must fit
together. The AoS layout works substantially better with sparse and random access. AoSoA
layouts with various blocking factors balance between AoS and SoA. All of these could be tested
in an afternoon after LLAMA was integrated into AdePT.

LLAMA’s memory access visualization gave us useful insights for future research. Even
though all particle types use the same data structure, the different access patterns may warrant
different memory layouts. Individualizing, splitting and regrouping parts of the data structure
could improve AdePT’s performance. A separation of hot and cold data would be a first step.
The heatmaps and data layout visualizations also proved useful for studying how the data
structure design affects padding, coalescing and mapping to cache lines.

The compile time increase and small overhead caused by LLAMA’s abstractions is greatly

Sparse electrons Sparse positrons Sparse photons

Figure 7: Magnified heatmaps for the single sparse buffer AoS layouts. One row is one track.

Dense electrons Dense positrons Dense photons

Figure 8: Magnified heatmaps for the double dense buffer AoS layouts. One row is one track.

offset by the gained flexibility and instrumentation capabilities, although the necessary code
changes are invasive. With LLAMA integrated, we have great tools to our aid for subsequent
performance optimization.

Acknowledgments
This work has been sponsored by the Wolfgang Gentner Programme of the German Federal
Ministry of Education and Research (grant no. 13E18CHA). The primary author would like to
thank Verena Gruber for proof-reading and commentary.

References
[1] ATLAS Collaboration 2022 ATLAS Software and Computing HL-LHC Roadmap Tech. rep. CERN Geneva

URL http://cds.cern.ch/record/2802918

[2] CMS Offline Software and Computing 2022 CMS Phase-2 Computing Model: Update Document Tech. rep.
CERN Geneva URL https://cds.cern.ch/record/2815292

[3] Bozzi C 2022 LHCb Computing Resource usage in 2021 Tech. rep. CERN Geneva URL https://cds.cern.

ch/record/2802075

[4] Bozzi C 2022 LHCb Computing Resources: preliminary 2024 requests Tech. rep. CERN Geneva URL
https://cds.cern.ch/record/2825515

[5] Buncic P, Krzewicki M and Vande Vyvre P 2015 Technical Design Report for the Upgrade of the Online-
Offline Computing System Tech. rep. CERN URL https://cds.cern.ch/record/2011297

[6] Bandieramonte M 2020 Requirements from HEP experiments HSF WLCG Virtual Workshop URL https:

//indico.cern.ch/event/941278/contributions/4084944/

[7] Agostinelli S et al. 2003 Geant4—a simulation toolkit Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250–303 ISSN 0168-9002
URL https://www.sciencedirect.com/science/article/pii/S0168900203013688

[8] Allison J et al. 2006 Geant4 developments and applications IEEE Transactions on Nuclear Science 53 270–
278

[9] Allison J et al. 2016 Recent developments in Geant4 Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835 186–225 ISSN 0168-9002
URL https://www.sciencedirect.com/science/article/pii/S0168900216306957

[10] Amadio G et al. 2022 Offloading electromagnetic shower transport to GPUs 20th International Workshop
on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2021) URL https:

//arxiv.org/abs/2209.15445

[11] Apostolakis J, Brun R, Carminati F, Gheata A and Wenzel S 2014 Vectorising the detector geometry to
optimise particle transport Journal of Physics: Conference Series 513 052038 URL https://dx.doi.

org/10.1088/1742-6596/513/5/052038

[12] Novak M, Hahnfeld J, Morgan B and Hageboeck S 2022 The G4HepEm R&D project https://github.com/
mnovak42/g4hepem

[13] Gruber B M, Amadio G, Blomer J, Matthes A, Widera R and Bussmann M 2022 LLAMA: The low-
level abstraction for memory access Software: Practice and Experience 53 115–141 URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/spe.3077

[14] Gruber B M 2023 Updates on the Low-Level Abstraction of Memory Access 21st International Workshop on
Advanced Computing and Analysis Techniques in Physics Research (ACAT 2022)

http://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2802075
https://cds.cern.ch/record/2802075
https://cds.cern.ch/record/2825515
https://cds.cern.ch/record/2011297
https://indico.cern.ch/event/941278/contributions/4084944/
https://indico.cern.ch/event/941278/contributions/4084944/
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900216306957
https://arxiv.org/abs/2209.15445
https://arxiv.org/abs/2209.15445
https://dx.doi.org/10.1088/1742-6596/513/5/052038
https://dx.doi.org/10.1088/1742-6596/513/5/052038
https://github.com/mnovak42/g4hepem
https://github.com/mnovak42/g4hepem
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3077
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3077

