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Longitudinally strong focusing lattice for Compton–ring gamma sources
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Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense
sources of polarized hard photons which, via pair production, can be used to generate polarized
positron beams. Dynamics of electron bunches circulating in a storage ring and interacting with
high-power laser pulses is studied both analytically and by simulation. Common features and
differences in the behavior of bunches interacting with an extremely high power laser pulse and
with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton
gamma rings are presented.

I. INTRODUCTION. BOTTLE-NECKS.

Compton rings must be able to keep circulating intense
electron bunches with a large spread of energy of individ-
ual particles. At the same time effective generation of the
high energy photon beams demands the bunch length as
short as possible.
One of the ways to solve this problem is to employ a

lattice with extremely low momentum compaction factor
(LMC) (see [1] and the bibliography therein). Another
known way is to make use of the longitudinal strong fo-
cusing lattice (LSF) with a sufficiently high momentum
compaction factor and a high RF voltage (see [2] and the
bibliography therein). The idea of LSF consists in modu-
lation of the bunch length over ring’s circumference such
that the minimal length realized at the interaction point
(IP) (naturally, the maximum is at the RF cavity).
a. To maximize yield one has to compress the bunch

both transversally and (at non head-on collisions) longi-
tudinally.
b. Energy spread in Compton sources is the main

draw-back:

• Longitudinal one may be cured with a high rf volt-
age and/or a low momentum compaction lattice;

• Transversal chromaticity together with the spread
leads to unstable motion of circulating particles

c. Bunch length is also important for the Compton
rings: it should be as short as possible at the collision
point (cp) to provide the maximal yield and as long as
possible beyond cp to mitigate deteriorating interactions
with the environment (walls and joints of the vacuum
chamber, etc.).
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One of the way to reach proper modulation of the
bunch length is employment of the strong longitudinal
focusing scheme [2] (also see [3], [4]).

The essence of the idea of double chicane scheme is
following: In the low momentum compaction scheme the
‘transparent’ insertion with high momentum compaction
(and high RF voltage as well) is introduced. We will refer
to this scheme as the longitudinal low–β insertion (LLBI)
in analog to the colliders (transversal) low–β insertions.
A scheme of LLBI is presented in Fig. 1, a (näıve) prin-
ciple of operation depicted in Fig. 2.
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FIG. 1. Scheme of the longitudinal low–β insertion. RF
denotes radio–frequency cavities, M the rectangular bending
magnets, IP the interaction point(s)
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FIG. 2. Transformation of bunch’s longitudinal phase por-
trait. 1, 5 outside of LLBI, 2 at the first RF output, 3 at IP,
4 at the second RF input
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The principle of LLBI operation is as follows. A long
bunch with a small energy spread enters the RF cavity
where the particles in the head of the bunch have been
decelerated while those in the tail accelerated. Since the
pass length in the chicane formed from the rectangular
magnets decreases with energy, the bunch reaches IP with
the minimal length. The second chicane and RF cavity,
symmetric to the first, restores the initial particle distri-
bution.
In principle, the double chicane scheme represents the

high–disperse ring with a single rf cavity where the bunch
length undergoes modulation such that minimal length
attained at the mid–drift, the maximal at the mid–cavity,
[2]. Formally LLBI reminds this scheme with the rf cavity
divided into the two and the entire ring except for chi-
canes and cp placed within the rf halves. Orientation of
the bunch phase portrait 1,5 in Fig.2 takes place over the
rgular part of ring’s orbit (in [2] – only in the mid-cavity
position).

II. MODEL OF LONGITUDINAL BEAM

DYNAMICS IN COMPTON RINGS

In the model, a particle is being tracked on the phase
space with the coordinate axes: phase φ relative to zero
voltage in the rf cavity, and deviation of the reduced
energy from the synchronous, p = δγ/γs. Reduced time
τ is counted in units of turns of the particle over the
ring: τ = tβc/L (L is the length of the orbit, β ≡ v/c
the reduced velocity of the synchronous particle).
Transformations of the coordinates in the lattice ele-

ments reads:

• drift

φf = φi + κτdrpi ,

pf = pi ; (1)

• rf cavity

φf = φi ,

pf = pi − URF sinφi ; (2)

• collision point

φf = φi ,

pf = pi [1− bζ(2 + pi)]− bζ . (3)

Here the following definitions accepted:

κ = 2πhη ;

b = 2(1 + cosϕ)γsElas/E0 ;

URF = eV/(γsE0) ,

with h the harmonic number (ratio of the orbit length to
rf wavelength); τdr ratio of the drift length to the orbit
length; V rf voltage amplitude; η the momentum com-
paction factor; ζ ratio of the energy of scattered (Comp-
ton) photon to its maximal value.

III. LINEAR MODEL. ANALYSIS.

Let us restrict our consideration to a linear case,
sinφ ≈ φ, without Compton interactions, b = 0.

A. Small azimuthal variations.

With small azimuthal variations over turn, |φf −φi| =
δ ≪ 1, |pf−pi| = ǫ≪ 1: low rf voltage and small momen-
tum compaction factor, Eqs. (1) and (2) are connected
to Hamilton function

H = κp2/2 + URF cosφ , (4)

which represents mathematical pendulum with frequency
of small oscillations Ω2 ≈ URF /κ.

B. Large azimuthal variations. Single cavity.

With a high–dispersion drift and single rf cavity, strong
longitudinal focusing pattern is realized, see [3–6].
In this case, longitudinal motion can be treated sim-

ilar to transverse motion in strong–focusing lattice of
FOF/OFO type. Transformation of (φ, p) vector de-
scribed by (1), (2) can be represented by matrices

Mdrift =

(

1 κ
0 1

)

, Mrf =

(

1 0
−U 1

)

. (5)

Let us write the full–turn cycle matrix as consisted of
two half–drifts (τ = 1/2+1/2) and two halves of rf cavity
(U/2 + U/2)

Mmin = Mdrift/2 ·MU/2 ·MU/2 ·Mdrift/2 ; (6)

Mmax = MU/2 ·Mdrift/2 ·Mdrift/2 ·MU/2 . (7)

From any of these matrices, one can get the stability
boundaries

|TrM| = |2− κU | ≤ 2 , (8)

Thus, the stable motion can exist if

0 ≤ κU ≤ 4 . (9)

The left limit corresponds to very weak focusing (zero
frequency of the synchrotron oscillations), the right one
to very strong focusing (complete synchrotron oscillation
lasts two turns).
In general, in non-uniform azimuthal focusing ampli-

tude of synchrotron oscillations (and the bunch length)
vary along the orbit. Modulation of the amplitude –
squared ratio of minimal amplitude (in the center of the
drift) to maximal one (in the median section of rf cavity)
– equal to ratio of the matrix elements

modulation =
M

(min)
12

M
(max)
12

= 1−
κU

4
. (10)

As expected, minimal modulation takes place for the
weak focusing (0← κU), it is rose to full modulation at
the right boundary of stability (κU → 4).
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FIG. 3. Stability region (red and blue curves) and lines of
equal modulation (green).

C. Large azimuthal variations. Two cavities.

Making use similar procedure, we treat a lattice com-
prising two rf cavities separated with two drifts. The
drifts may possess different chromaticity (phase slip fac-
tors κ1,2). This scheme represents OFOFO or OFODO
pattern of focusing depending on rf cavities in-phase or
in inverted phases.
Most promising case is of identical phased cavities,

U = V , (OFOFO type). Trace of the cyclic matrix is

TrMfof = 2− 2(κ1 + κ2)U + κ1κ2U
2 , (11)

and stability region is symmetric with respect to κ1+κ2.
Designate k = κ1U and q = κ2U , we get the stability
region limited with

−
2q

2− q
≤k ≤ 2 ; −

2k

2− k
≤q ≤ 2 . (12)

The stability region is limited from top-right with
straight lines (right angle) q = 2, k = 2, and hyper-
bola kq − 2(k + q) = 0 from left-bottom. With one of
the parameters (k, q)→ −∞, the interval of stability for
another becomes narrower as 2 − 4/q ≤ k ≤ 2, p → −∞
(see Fig.3).
The M12 element of the cyclic matrix at symmetric

point – center of the κ1 drift (equal to β sinµ) – reads

M12(τ = κ1/2) =
1

4
(2−κ1U)[2(κ1+κ2)−κ1κ2U ] . (13)

From (13) it follows the ratio of the magnitudes of
enveloping function in mid-drifts:

ξ ≡
M12(τ = κ1/2)

M12(τ = κ2/2)
=

2− κ1U

2− κ2U
=

2− k

2− q
. (14)

Combining (11) and (10), we can derive the stability
extend for the given modulation ξ:

0 ≤ 2− q ≤ 2
/

√

ξ , 0 ≤ 2− k ≤ 2
√

ξ . (15)

a. Stability region limited by sinusoidal rf From (14)
with account (12) it may follow that to get maximal mod-
ulation of the bunch length one must put k . 2 and
q → −∞ if the bunch survives in a narrow stable region.
But actually, sinusoidal rf voltage (2) puts the limits on
the parameters. Really, maximal kick induced by the
cavity at φ = ±π/2 should cause phase change ∆φ ≤ π.
Therefore

pf = −pi ; ∆φmax = π ;

|p|max = U/2 ; |κU | = |k| ≤ 2π . (16)

There is a more serious consequence from this esti-
mation: comparing the stable interval of strong focus-
ing (16) with that of weak focusing from (4), one can
see the weak focusing island of stability, −π ≤ φ ≤ π,
is two times wider than the strong focusing one (16),
−π/2 ≤ φ ≤ π/2.

IV. SIMULATIONS

a. Phase trajectories were simulated for a case of
absence both synchrotron damping and Compton inter-
actions. With two-cavity lattice, phase trajectories were
registered at the collision point (in between chicanes and
at the opposite point (middle of the drift). In Fig.4,
there presented are the phase trajectories at CP and at
mid drift, for the initial deviations of simulated particles
resembling the linear motion (small initial deviation) and
the nonlinear one (large deviation).
As it seen from the trajectories, amplitude of the en-

velope of phase oscillation at CP is much smaller then at
mid-drift, for the envelope of energy deviation opposite
situation holds. It worth to mention that modulation of
the phase oscillations envelope in the simulation shows
fairly good agreement with the theoretical prediction,

φ
(max)
cp

φ
(max)
md

=

√

2− k

2− q
≈ 0.122 .

With increasing impact of nonlinearity, the modula-
tion decreased (see Fig.4 the bottom panel, modulation
approx0.25), trajectories become nonelliptic.
The nonlinear trajectories are presented in Fig.5 for

the case of the same signs of the phase slip value.
Each trajectory represents two–loop trace (for the sin-

gle particle!), orientation inverse to the case of opposite
signs.

A. Simulation of CLIC-like ring

Simulation of a Compton ring dedicated for genera-
tion of polarized gammas in continual regime show ad-
vantages of the two–chicane scheme with opposite signs
of the phase slip factors and q ≈ −k. Simulation revealed
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FIG. 4. Phase trajectories in the case 2 − k = 0.062 , q =
−2.22 (red color at CP, blue at mid drift). The top graph
presents small initial deviation, the bottom one large devia-
tions.
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FIG. 5. Phase trajectories in the case sign k = sign q (blue
color at CP, red at mid drift).

stability of the scheme (no losses) and high yield of gam-
mas as compared with the scheme with sign q = sign k,

q ≪ k, see [PosiPol 09].
In Fig.6 and Fig.7 the mean squared bunch length and

momentum spread are plotted.
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FIG. 6. Mean squared bunch phase length vs. time.
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FIG. 7. Mean squared energy spread vs. time.

B. For further consideration: Compensation of

sinφ nonlinearity by κ3p
3 momentum compaction

nonlinearity

V. SUMMARY AND OUTLOOK

The single-particle dynamics of electron bunches in
Compton gamma sources has been studied analytically
and in simulations. The analytical estimates for the
steady-state bunch parameters are in good agreement
with those obtained from the simulations.
Our study suggests that the interaction of the elec-

trons with the laser photons do not significantly affect
the transverse degrees of freedom. The ‘bottleneck’ is
the longitudinal dynamics: the ring’s energy acceptance
should be unusually large.
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