
TIF-UNIMI-2023-9, CERN-TH-2023-042

Determining probability density functions with adiabatic quantum computing

Matteo Robbiati,1, 2 Juan M. Cruz-Martinez,1 and Stefano Carrazza1, 2, 3

1CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.
2TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy.

3Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.

A reliable determination of probability density functions from data samples is still a relevant topic in

scientific applications. In this work we investigate the possibility of defining an algorithm for density

function estimation using adiabatic quantum computing. Starting from a sample of a one-dimensional

distribution, we define a classical-to-quantum data embedding procedure which maps the empirical cu-

mulative distribution function of the sample into time dependent Hamiltonian using adiabatic quantum

evolution. The obtained Hamiltonian is then projected into a quantum circuit using the time evolution

operator. Finally, the probability density function of the sample is obtained using quantum hardware

differentiation through the parameter shift rule algorithm. We present successful numerical results for

predefined known distributions and high-energy physics Monte Carlo simulation samples.

I. INTRODUCTION

The determination of the underlying probability density

function (PDF) of a given dataset is in general a chal-

lenging problem. In recent years several new approaches

based on classic deep learning models have been proposed

to tackle this fundamental problem. Some relevant ex-

amples are Variational Autoenconders [1, 2], Normalizing

Flows [3], Riemann-Theta Boltzmann machines [4–6] and

Generative Adversarial Networks [7].

Somewhat orthogonal to these developments, novel

quantum inspired machine learning architectures have been

introduced recently. The possibility to deploy success-

fully noisy intermediate-scale quantum (NISQ) comput-

ers [8] led to a growing interest in the development of a

novel research field identified as Quantum Machine Learn-

ing (QML) [9]. Quantum neural networks (QNN) and

parametrized quantum circuit [10–13], have been pro-

posed for pattern classification [14–16], data compres-

sion [17, 18], data regression [19, 20] and generative mod-

els [21–23]. However, when considering the problem of

PDF determination with QNN, even though models such

as the Style-qGAN [23] can successfully generate samples,

they cannot be utilized to determine a closed form expres-

sion for the underlying PDF. Furthermore, the training of

a simple QNN to match the underlying PDF is not a simple

and numerically stable option given the difficulty in defining

boundaries, normalization and positivity constraints.

In this work we present a methodology which removes

the training difficulties and constrains of QNNs by adopt-

ing an adiabatic quantum evolution strategy. In particular,

we first define a regression model based on adiabatic evo-

lution [24] which maps a generic one-dimensional function

defined in a predefined bounded range as the time evolu-

tion of the expected energy of the adiabatic Hamiltonian

as a function of time. This approach is sufficiently flexi-

ble to fit a large variety of functional forms and it can be

used to fit the empirical cumulative density function (CDF)

as a monotonic increasing function bounded in the inter-

val [0, 1]. After achieving an acceptable CDF regression,

the method projects the obtained Hamiltonian in a quan-

tum circuit representation using a Trotter-like decomposi-

tion [25] which predicts the trained function values. This

step opens the possibility to train and perform inference

of the regression model on circuit-based quantum devices

and therefore give us the possibility to extract the empiri-

cal PDF of the sample as the derivative of the circuit using

the Parameter Shift Rule (PSR) algorithm [26, 27].

The adiabatic computing algorithms has already been

proven useful in some QML studies [28–30].

The paper is organized as follows. In Sec. II we present

the technical details of the probability density function es-

timation using adiabatic quantum computing. The Sec. III

presents validation results for multiple examples. Finally,

in Sec. V we draw our conclusion and outlook.

II. METHODOLOGY

In this section we describe the procedure implemented

for the determination of probability density functions. The

algorithm is defined by two steps: the determination of

an empirical cumulative distribution function using adia-

batic quantum evolution as regression model, and subse-

quently, the determination of the probability density func-

tion through the trotter-like quantum circuit representation

obtained from the adiabatic Hamiltonian.

A. Model regression with adiabatic quantum evolution

Given a one-dimensional function, f (t), we build a re-

gression model by selecting an observable such that there

are two Hamiltonians, H0 and H1 for which the respective

energy ground states correspond to the two points between

ar
X

iv
:2

30
3.

11
34

6v
2

 [
qu

an
t-

ph
]

 2
3

Ju
n

20
23

2

which we want to train the function. In this manuscript, for

simplicity, we set H0 = X and H1 = Z the non interacting

Pauli matrices.

Therefore, we interpret the regression problem as the

procedure of building a time dependent Hamiltonian H(t),

such that its ground state energy at each instant t is

〈H(t)〉 = f (t), (1)

where f (t) is the target function usually defined in a

bounded interval t ∈ [0, T]. Furthermore, using the quan-

tum adiabatic evolution notation

H(t) =
[
1− s(t; θ)

]
H0 + s(t; θ)H1, (2)

with s(t; θ) the scheduling function which depends on a

set of variational parameters θ. The problem is then re-

duced to finding the right set of parameters θ such that

the adiabatic evolution of the state |ψ(t)〉 from t = 0 to

t = T follows exactly the target function f (t). Note that

the choice of the functional form for the scheduling func-

tion s(t, θ) is fundamental to guarantee flexibility or the

monotonicity of the target function.

B. Learning empirical cumulative density functions

The method presented above matches the requirements

for a cumulative density function determination. The pro-

cedure follows a standard classical machine learning strat-

egy: at first, we generate a sample of random variables {x}
following a chosen distribution and we calculate the empir-

ical CDF of the sample {f }. Then, we select Ntrain data

elements such that their values match some of the evolu-

tion times controlled by the scheduling function. Each pair

of (xj , fj) points are mapped into (τj , Ej), where τ and E

represent two generic values of the evolution time and the

energy of our target observable evaluated at the evolved

state at τ = t/T

We define a mean-squared error loss function J for esti-

mating the quality of the fit:

J =
1

Ntrain

Ntrain∑
j=1

(
fj − Ej(θ)

)2
, (3)

where Ej depends on the parameters through the schedul-

ing function. In order to obtain a monotonic increasing re-

gression function for the CDF determination, we can also

add to J a penalty term for each pair of estimations fj , fj+1
proportional to ∆f . One can make the penalty term re-

dundant by choosing a scheduling function which preserves

monotonicity.

In Fig. 1 an example of this procedure is shown using

quantum simulation on classical hardware with the Qibo

framework [31–35]. Starting from a prior toy analytic

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QAML example
cdf
Not trained evolution
Trained evolution
Training points

FIG. 1. Example of initial and final state of the algorithm. The
Ntrain blue points are the training set selected from a gaussian
mixture sample, whose empirical CDF is represented by the black
line. The random initialization of the adiabatic evolution leads
to the initial sequence of energies (yellow line). After a training
time, the evolution is closer to the training set (red line).

CDF (black curve), data points are extracted in the in-

terval x ∈ [0, 1]. The adiabatic regression model, defined

in Sec. II A is drawn before training (yellow curve) and after

a successful training (red curve). We perform the training

of the model by optimizing the set of parameters involved

into the scheduling s(t; θ), defined as the following poly-

nomial of degree p:

s(t; θ) =
1

η

p∑
i=1

θix
i , with η =

p∑
i=1

θi . (4)

by using the CMA-ES optimizer [36]. In the example shown

in (Fig. 1) we set p = 12, but the polynomial degree can

be chosen depending on the complexity of the function

one wants to fit. The Eq.(4) is an example of possible

choices (one can also choose classical or quantum Neu-

ral Network); in particular, every scheduling function such

that s(t = 0) = 0 and s(t = 1) = 1 can be used for per-

forming an adiabatic evolution with Qibo. Note that other

optimization algorithms may also work, including gradient-

based strategies.

C. Probability function from quantum circuits

1. A circuit for all times

The procedure presented in the previous paragraphs can

be interpreted as the evolution product of a series of Hamil-

tonians corresponding to the adiabatic Hamiltonian con-

figuration at fixed evolution time τ = t/T , discretized

according to dτ , the time step of the adiabatic evolution.

Each of these Hamiltonians can be associated to a local

time evolution operator U(τn) which evolves |ψ(τn−1)〉 to

3

|ψ(τn)〉. More generally, we can obtain any state |ψ(τn)〉
by sequentially applying n operators:

|ψ(τn)〉 =

n∏
j=0

U(τj) |ψ(τ0)〉 = C(τn) |ψ(τ0)〉 (5)

where we write the product from n to zero to represent the

order of application of the operators on the initial quantum

state. Any sequence of unitary operator is itself an unitary

operator, which we call Cn = C(τn) and which evolves the

initial state |ψ(τ0)〉 to any point τn = ndτ .

In order to compute the state at any value of t outside

of the discrete time steps of the adiabatic evolution τ it is

necessary to take the continuous limit. We start by con-

sidering one of the intermediate elements of the product:

Uj = e idτĤj with Ĥj =

(
sj 1− sj

1− sj −sj

)
, (6)

where sj is the value of the scheduling at evolution time

τj = jdτ . This instantaneous form of the adiabatic hamil-

tonian operator can be diagonalized as D̂j using a matrix

Pj such that:

Ĥj = PjD̂jP
−1
j , (7)

with

Pj = Λj

(
1

sj−λ
1−sj

λj−sj
1−sj 1

)
, D̂j =

(
λj 0

0 −λj

)
, (8)

and Λj the appropriate (τ dependent) normalization con-

stant. The absolute value of the eigenvalues of the Hamil-

tonian is λj =
√

2s2j − 2sj + 1.

We now use this decomposition to write Cn in terms of

the diagonal form of the Hamiltonian:

Cn =

n∏
j=0

Pje
idτD̂jP−1j . (9)

If we now take the limit dτ → 0, we have that Ĥj →
Ĥj−1 and thus Pj → Pj−1. Thus adjacent elements in the

sequence tend to the identity: P−1j Pj−1 → I. On this way,

the Eq. (9) simplifies to:

Cn = Pn exp

i
n∑
j=0

D̂jdτ

P−10 . (10)

Furthermore, in the limit of dτ → 0 the sum in the above

equation becomes an integration in dτ with extremes τ = 0

and τ = τn. With the final expression for C evaluated at

any time t being:

C(t) = Pt exp

{
i

∫ t/T

0

D̂jdτ

}
P−10 , (11)

where we now indicate with Pt and P0 the diagonalization

matrices corresponding respectively to the last and the first

evolution operators we must apply to H0’s ground state in

order to obtain the evolved state at time t.

2. Circuit representation

Let us implement the unitary operator C(t), which al-

lows us to prepare a state in the ground state of H0 at

t = 0 and evolve it to any t, using a gate decomposition

which is useful for calculating the derivatives of the circuit

with respect to its variational parameters. To that end we

write C(t) in terms of rotations Ry , Rz . Since any unitary

operator U ∈ SU(2) can be written as a combination of

three rotations [37] we choose:

U ≡ Rz(φ)Rx(θ)Rz(ψ), (12)

where the three angles (φ, θ, ψ) can be computed as func-

tion of the matrix element of the operator C:
φ = π/2− arg(c01)− arg(c00)

θ = −2 arccos(|c00|)
ψ = arg(c01)− π/2− arg(c00).

(13)

The matrix elements c00 and c01 depend on the values

of the scheduling s and the eigenvalues (λ) of the Hamil-

tonian evaluated at a time t:

c0j =
1− s

s
√
λ(λ− s)

{
cos I

(
1 + (−1)j

λ− s
1− s

)
+ i sin I

(
1− (−1)j

λ− s
1− s

)}
, (14)

with I =

∫ t

0

λ(τ)dτ , s = s(t) and λ = λ(t).

Note that the construction of the circuit is completely

independent of the choice of scheduling function s(t).

3. From the CDF to the PDF

The circuit representation of the operator C(t) allows

us to reconstruct our original target function f (x) by ap-

plying the circuit to a state prepared at |ψ(0)〉 and then

measuring the desired observable, which in our case is a

non-interacting Pauli Ẑ. Since with qibo we translate all

the operations into a circuit representation, the expecta-

tion value of Ẑ is evaluated by executing the circuit Nshots
times and then by calculating the probability of occurrence

of the state |0〉. This expectation value is then used as

estimation of the target function f (x).

As previously said, our example case has been that in

which the target function f (x) correspond to the empirical

CDF of some arbitrary distribution.

4

By imposing monotonicity and pinning the initial and

final points we ensure that its first derivative correspond

to the PDF of the same distribution.

For a 1D distribution we have then:

df (t)

dt
=

d

dt
〈ψ0|C(t)†ẐC(t)|ψ0〉 . (15)

In the context of quantum computing, we can take ad-

vantage of what is usually known as Parameter Shift Rule

(PSR) [26, 38] which allows us to take the derivative of an

observable (such as Eq. (15)) by simply evaluating the cir-

cuit and shifting the parameters with respect to which we

are taking the derivative. We are using specifically choice

presented in Ref. [26] for circuits based on rotations. Note

that in this case we have limited ourselves to gates in which

the parameter appears only once, but more complicated

forms can also be utilized [39].

With this we arrive to the final formula of the PDF in

terms of the original circuit:

PDF(t) = PSR
[
〈ψ0|C(t)†ẐC(t)|ψ0〉

]
. (16)

In the following we “closure test” these techniques by

drawing samples from a known distribution, building the

circuit and reconstructing the original probability function.

III. VALIDATION

A. Sampling known distributions

In order to validate and test the procedure, we select

a number of known prior distributions. For each cases,

we generate a representative sample of dimension Nsample
and fit the resulting empirical CDF using the approach de-

scribed in Sec. II A. We can then derive the PDF and com-

pare results to the prior distribution. We repeat this exer-

cise twice for every example by using quantum simulation

on classical hardware with exact state-vector representa-

tion and with shots measurements.

In these examples the algorithm is set to stop once a

given Jcut threshold of target precision is reached and the

domain of the target variable is rescaled to be between

0 and 1 so that the interpretation of the observable as a

CDF is direct. This is of course just a choice and the same

techniques could be used to train functions defined in any

arbitrary domain. In all cases the adiabatic evolution is run

for T = 50s and with a time-step dt = 0.1. We define the

scheduling function a as a polynomial with p parameters

following the ansatz in Eq. 4.

We start by drawing samples from the Gamma distribu-

tion, defined as

ρ(x ;α, β) =
βxα−1eβx

Γ(α)
, (17)

with α = 10 and β = 0.5. We draw Nsamples = 5·104 points

and train the scheduling function until a target precision of

Jcut = 10−5 is reached.

The results of the training can be seen in the first row

and left column of Fig. 2 where we plot the true CDF

together with both the exact and realistic simulation and

an histogram with the data used for the training. In the

second row and left column of Fig. 2 we show the PDF ob-

tained by taking the derivative of the circuit and compare

to the original distribution from which the original points

were sampled from. We also show the effect of modi-

fying the number of shots (i.e., the number of times we

measure the qubit before accepting the results). In both

these figures we show the exact results (i.e., following the

formula from Eq. (17)) in black and the exact simulation

using state vectors in blue. In red instead, we show the re-

sults considering realistic circuits (where the collapse of the

states is simulated by a classical sampling from the state

vector). The error bands plots in the second row of Fig. 2

are computed by taking all realizations of the measurement

and computing the standard deviation for each point in t.

We plot two different choices (Nshots = {2 · 104, 2 · 105})
for the number of shots in order to show how the result

improves with the increased statistics.

In order to validate with a more complicated example we

also sample from a Gaussian mixture defined as:

ρ(x ; ~µ, ~σ) = 0.6N (x ;µ1, σ1) + 0.4N (x ;µ2, σ2), (18)

with ~µ = (−10, 5) and ~σ = (5, 5). From this distribution

we take Nsample = 5 · 105 points to generate the training

sample.

In the right column of Fig. 2 we repeat the same study.

The fit performs slightly worse due to the more compli-

cated nature of the target function, the hardware already

limits the level of precision that can be achieved.

In both these cases we train the adiabatic evolution as

implemented in qibo [34, 35, 40, 41]. While the parameter

optimization is made by means of a CMA-ES [36] genetic

algorithm. The final Hamiltonian is then transformed into

a circuit as explained in section II C 1.

In order to produce the plots we perform two esti-

mations. During simulation we can apply the circuit

exactly to the ground state of H0 at every point in

t such that we can show an “exact” (although ideal

and nonphysical) situation. The more realistic result

instead is estimated by running the same circuit several

time simulating the actual randomness of a quantum

device. This is implemented in Qibo through the method

AbstractHamiltonian.expectation from samples.

which can perform a realistic simulation.

When calculating the derivatives of the rotation angles

with respect to t, which we call ∂tθ, some critical points of

instability are found. For those t’s the value of the deriva-

tive of the angle increase exponentially; in the case of the

5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
F

CDF estimation - (x) = (x; 10, 0.5)

Data
Exact simulation
Realistic Nshots = 2 105

True law

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

CDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

Data
Exact simulation
Realistic Nshots = 2 105

True law

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

FIG. 2. Top row: comparisons between the true CDF and the result of training an adiabatic hamiltonian to follow the CDF from the
sampled distribution. The exact CDF is represented by a discontinuous black line while the simulated circuit results are represented
by a blue (realistic) and red (ideal) continuous lines. In grey an arbitrary binning of the data that has been used to train the circuit.
Bottom row: comparison between the original PDF and the result of the derivative of the trained circuit. Once again the true result
is represented by a discontinuous black, the data histogram is shown in grey and the exact simulation of the circuit is represented as
a red continuous line. As regarding the realistic simulations, we show two different continuous lines, corresponding to different values
of shots used for evaluating the expectation value of the target observable. In particular, we show in orange and blue the results
obtained executing the circuit respectively Nshots = 2 · 104 and Nshots = 2 · 105 times. All af these results are shown in the form of a
ratio between the target true law and the QML estimations in the lowest part of the figures. While representing the PDFs, only one
realistic simulation is drawn (Nshots = 2 · 105). All the realistic simulations curves are represented together with a 1σ confidence belt
calculated using Nruns = 20 experiments.

exact simulation, the value of the PSR for the same points

is very close to zero and this balances the divergence of

∂tθ. On contrary, when dealing with the realistic simu-

lations, the PSR value is estimated through the mean of

Nshots realizations and it can be possible that it is not close

to zero enough to balance the high values of the angles. In

order to avoid a numerical instability for tj (which leads to

a few high peaks of the estimated PDFs), we smooth the

realistic function by removing the outlier using the values

registered for the neighbours of tj .

B. Density estimation using LHC data sampled from the

Style-qGAN model

While in the previous case we were training the circuit

using a sampling from a known distribution, we know move

to the more complex case of learning an unknown distri-

bution. We consider the particle physics process involving

top and anti-top quark pair production (pp → tt̄). While

one could train directly by using the output of an event

generator in our test case the data sampling is obtained

from a separated circuit by using a style-based quantum

GAN (Style-qGAN) [42].

The Style-qGAN has been trained with 105 events for

pp → tt̄ production at a center of mass of
√
s = 13

TeV for the LHC configuration. For simplicity we limit the

simulation at Leading Order in the strong coupling. The

fit is done by training the model to the distributions of the

rapidity y and the logarithms of the Mandelstam variables

− log (−t) and − log s.

In Fig. 3 we show the results for the training of the circuit

(the CDF on the top row) and its derivative (the PDF on

the bottom row), following the same conventions as in the

previous section.

In Table I we summarize the obtained results for all ex-

6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
F

CDF estimation - y in pp tt decay

Data
qGAN data
Exact simulation
Realistic Nshots = 2 105

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

CDF estimation - s in pp tt decay

Data
qGAN data
Exact simulation
Realistic Nshots = 2 105

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

CDF estimation - t in pp tt decay

Data
qGAN data
Exact simulation
Realistic Nshots = 2 105

0.0

0.5

1.0

1.5

2.0 Target values
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - y in pp tt decay

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Target values
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - s in pp tt decay

0.0

0.5

1.0

1.5

2.0

2.5 Target values
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - t in pp tt decay

FIG. 3. The top row shows the CDF of the three HEP samples. In each figure, the histogram of the data is shown in gray, the
CDF obtained by exact state vector simulation is shown in red, and the same result is shown in blue but considering realistic circuits
executed Nshots = 2 · 105 times. The bottom row shows the PDF of three sampled HEP distributions. They are divided into two
parts: above, in grey the histogram of the sample used to perform the fit in which we impose Nmbins = 34 (this is the lowest number
of bins thanks to which we can represent well the right side of the s and t distributions), and the curves representing the PDF of the
sample: in red the law extracted via QML using exact state vector simulation on Ntimes = 500 times equally distributed between 0

and 1, and in blue the law obtained with the same approach but simulating a realistic circuit in which we calculate the expected value
of the target observable by executing the circuit Nshots = 2 ·105 times. Below, we show the ratio between the histogram values of the
PDF and our simulated results: the red line corresponds to the exact simulation, the orange and blue lines respectively correspond to
realistic simulations in which we set Nshots = 2 · 104 and Nshots = 2 · 105. All the realistic simulations curves are represented together
with a 1σ confidence belt calculated using Nruns = 20 experiments.

Fit function Nsample p Jf Nratio χ2

Gamma 5 · 104 25 2.9 · 10−6 31 2.2 · 10−4

Gaussian mix 2 · 105 30 2.75 · 10−5 31 4.39 · 10−3

t 5 · 104 20 2.1 · 10−6 34 3.4 · 10−4

s 5 · 104 20 7.9 · 10−6 34 1.20 · 10−3

y 5 · 104 8 3.7 · 10−6 34 1.45 · 10−3

TABLE I. Summary. Nshots = 5 · 104.

amples tested in this section. For each model we describe

the final configuration and quality of the obtained model

by calculating the following test statistics:

χ2 =

Ntrain∑
i=0

(ŷi − yi)2

yi
, (19)

where ŷi correspond to the estimated values and yi the

target ones. and the target ones.

In summary, the achieve level of quality is satisfac-

tory for all tested distributions. We also observe that

Nshots = 2·105 shots provides sufficient statistics to achieve

a precision in the range of 4-10% (see ratio plots in the

bottom part of Fig. 2 and Fig. 3). The precision range

quoted is calculated by taking the measurements which

are farthest from the central value in order to give an idea

of the worst-case-scenario of the estimation. The range

doesn’t account for the regions in which the distribution

is very small and where outliers can generate big relative

errors.

IV. HARDWARE

We use a 5-qubits superconducting chip hosted in the

Quantum Research Centre (QRC) of the Technology In-

novation Institute (TII) for testing the algorithm on the

hardware. We calculate the predictions for the values of

the CDF using the best parameters obtained through the

training with the shot-noise simulation whose results are

presented in Tab. I. We take into account the Gamma dis-

tribution defined in Eq. (17) and we do not apply error

mitigation techniques to the hardware, in order to explore

the potentialities of the bare chips.

We consider Ndata = 25 points equally distributed in

the target range [0, 1] and for each of these we perform

Nruns = 10 predictions executing Nshots = 1000 times the

circuit on the quantum hardware. Using these data, we

calculate the final predictors and their uncertaintes as mean

and standard deviation over the Nruns results. We also

calculate as test statistics K the average ratio between

predictions and labels. We repeat this procedure for each

7

Qubit ID assignment fidelity K

0 0.926 3.0

1 0.886 10.2

2 0.953 6.8

3 0.952 4.8

4 0.707 15.5

TABLE II. Calculated average ratios ŷ /y in comparison with the
registered assignment fidelities of the five chips.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NISQ predictions of the 5 qubits device without mitigation
qubit 0
qubit 1
qubit 2
qubit 3
qubit 4
target

FIG. 4. Nruns = 10 predictions are performed for Ndata = 25

points in the target range [0, 1] using each qubit of a 5-qubits
device hosted in the QRC.

of the five qubit of the device. The results are shown in

Fig. 4 and are in agreement with Tab. II, where we report

the assignment fidelities [43] of the qubits.

In this part of the work we aim to study how the CDF

predictions deteriorate if performed on hardware and what

is the impact of detuning the qubits’ fidelities.

The quantum hardware control is performed using

Qibolab [40] and the qubits are characterized and cali-

brated executing the Qibocal’s routines [41, 44].

V. CONCLUSION

In this work we presented a methodology for the deter-

mination of probability density functions using adiabatic

quantum computing. We first define a mechanism to

use adiabatic evolution as a regression model for the fit

of empirical cumulative density function which are repre-

sented by the Trotterization of the adiabatic Hamiltonian

in terms of a quantum circuit. The PDF is then calcu-

lated by applying the Parameter Shift Rule to the obtained

circuit. This methods allows the usage for training and

inference of quantum devices designed for annealing and

circuit-based technologies. The numerical results obtained

and presented in Sec. III show successful applications of

the methodology for predefined PDFs and empirical distri-

butions obtained from high-energy particle physics observ-

ables. The results obtained on superconducting devices

and presented in Sec. IV are promising: with a good cal-

ibration of the chips, CDFs can be fitted even without

mitigation techniques.

All numerical results have been obtained with Qibo

framework [45], and are publicly available in [46]. Fur-

ther possible developments include the generalization of

this method for the simultaneous determination of multi-

dimensional PDF distributions, the deployment of the full

training procedure on quantum devices and the possibil-

ity to use quantum annealing for the optimization of the

regressing model parameters. A direct extension of the

method presented in this manuscript can be applied to

multi-dimensional PDFs depending on Identically Indipen-

dend Distributed (IID) variables. In this case the presented

algorithm can be indipendently executed on a number of

qubits equal to the number of variables.

ACKNOWLEDGMENTS

This project is supported by CERN’s Quantum Technol-

ogy Initiative (QTI). MR is supported by CERN doctoral

program. SC thanks the TH hospitality during the elabo-

ration of this manuscript.

[1] D. P. Kingma and M. Welling, Auto-encoding variational

bayes (2013).

[2] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic

backpropagation and approximate inference in deep gener-

ative models (2014).

[3] D. J. Rezende and S. Mohamed, Variational inference with

normalizing flows (2015).

[4] D. Krefl, S. Carrazza, B. Haghighat, and J. Kahlen, Neu-

rocomputing 388, 334 (2020).

[5] S. Carrazza and D. Krefl, Computer Physics Communica-

tions 256, 107464 (2020).

[6] A. Pasquale, D. Krefl, S. Carrazza, and F. Nielsen, Prod-

uct jacobi-theta boltzmann machines with score matching

(2023), arXiv:2303.05910 [stat.ML].

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

Generative adversarial networks (2014).

[8] J. Preskill, Quantum 2, 79 (2018).

https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1401.4082
https://doi.org/10.48550/ARXIV.1401.4082
https://doi.org/10.48550/ARXIV.1401.4082
https://doi.org/10.48550/ARXIV.1505.05770
https://doi.org/10.48550/ARXIV.1505.05770
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.011
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.011
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107464
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107464
https://arxiv.org/abs/2303.05910
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.22331/q-2018-08-06-79

8

[9] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,

N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).

[10] M. Larocca, N. Ju, D. Garćıa-Mart́ın, P. J. Coles, and

M. Cerezo, Theory of overparametrization in quantum

neural networks (2021).

[11] M. Schuld, R. Sweke, and J. J. Meyer, Phys. Rev. A 103,

032430 (2021).

[12] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quan-

tum Science and Technology 4, 043001 (2019).

[13] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Advanced

Quantum Technologies 2, 1900070 (2019).

[14] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,

A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567,

209 (2019).

[15] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Phys.

Rev. A 101, 032308 (2020).

[16] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.

Latorre, Quantum 4, 226 (2020).

[17] J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum

Science and Technology 2, 045001 (2017).

[18] A. Pepper, N. Tischler, and G. J. Pryde, Phys. Rev. Lett.

122, 060501 (2019).

[19] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, and

S. Carrazza, Phys. Rev. D 103, 034027 (2021).

[20] M. Robbiati, S. Efthymiou, A. Pasquale, and S. Carrazza,

A quantum analytical adam descent through parameter

shift rule using qibo (2022), arXiv:2210.10787 [quant-ph].

[21] P.-L. Dallaire-Demers and N. Killoran, Phys. Rev. A 98,

012324 (2018).

[22] S. Lloyd and C. Weedbrook, Phys. Rev. Lett. 121, 040502

(2018).

[23] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M.

Grabowska, and S. Carrazza, Quantum 6, 777 (2022).

[24] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quan-

tum computation by adiabatic evolution (2000).

[25] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana,

U. Schollwöck, and C. Hubig, Annals of Physics 411,

167998 (2019).

[26] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Physical

Review A 98, 10.1103/physreva.98.032309 (2018).

[27] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-

loran, Phys. Rev. A 99, 032331 (2019).

[28] K. L. Pudenz and D. A. Lidar, Quantum Information Pro-

cessing 12, 2027 (2012).

[29] P. Date and T. Potok, Scientific Reports 11,

10.1038/s41598-021-01445-6 (2021).

[30] N. Ma, W. Chu, and J. Gong, Adiabatic quantum learning

(2023), arXiv:2303.01023 [quant-ph].

[31] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,

A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez, J. I.

Latorre, and S. Carrazza, Quantum Science and Technol-

ogy 7, 015018 (2021).

[32] S. Efthymiou, M. Lazzarin, A. Pasquale, and S. Carrazza,

Quantum 6, 814 (2022).

[33] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale,

Journal of Physics: Conference Series 2438, 012148

(2023).

[34] S. Efthymiou et al., qiboteam/qibo: Qibo 0.1.12 (2023).

[35] S. Efthymiou, S. Carrazza, A. Pasquale, M. Lazzarin, and

A. Sopena, qiboteam/qibojit: qibojit 0.0.7 (2023).

[36] N. Hansen, CoRR abs/1604.00772 (2016), 1604.00772.

[37] S. Bertini, S. L. Cacciatori, and B. L. Cerchiai, Journal of

Mathematical Physics 47, 043510 (2006).

[38] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-

loran, Physical Review A 99, 10.1103/physreva.99.032331

(2019).

[39] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, Quan-

tum 6, 677 (2022).

[40] S. Efthymiou et al., qiboteam/qibolab: Qibolab 0.0.2

(2023).

[41] A. Pasquale et al., qiboteam/qibocal: Qibocal 0.0.1

(2023).

[42] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M.

Grabowska, and S. Carrazza, Quantum 6, 777 (2022).

[43] Y. Y. Gao, M. A. Rol, S. Touzard, and C. Wang, A prac-

tical guide for building superconducting quantum devices

(2021), arXiv:2106.06173 [quant-ph].

[44] A. Pasquale, S. Efthymiou, S. Ramos-Calderer, J. Wilkens,

I. Roth, and S. Carrazza, Towards an open-source frame-

work to perform quantum calibration and characterization

(2023), arXiv:2303.10397 [quant-ph].

[45] https://github.com/qiboteam/qibo.

[46] https://github.com/qiboteam/adiabatic-fit.

https://doi.org/10.1038/nature23474
https://doi.org/10.48550/ARXIV.2109.11676
https://doi.org/10.48550/ARXIV.2109.11676
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1103/PhysRevD.103.034027
https://arxiv.org/abs/2210.10787
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.22331/q-2022-08-17-777
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://doi.org/https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1007/s11128-012-0506-4
https://doi.org/10.1007/s11128-012-0506-4
https://doi.org/10.1038/s41598-021-01445-6
https://arxiv.org/abs/2303.01023
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.22331/q-2022-09-22-814
https://doi.org/10.1088/1742-6596/2438/1/012148
https://doi.org/10.1088/1742-6596/2438/1/012148
https://doi.org/10.5281/zenodo.7736837
https://doi.org/10.5281/zenodo.7606063
http://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.1063/1.2190898
https://doi.org/10.1063/1.2190898
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.5281/zenodo.7748527
https://doi.org/10.5281/zenodo.7662185
https://doi.org/10.22331/q-2022-08-17-777
https://arxiv.org/abs/2106.06173
https://arxiv.org/abs/2303.10397
https://github.com/qiboteam/qibo
https://github.com/qiboteam/adiabatic-fit

	Determining probability density functions with adiabatic quantum computing
	Abstract
	I Introduction
	II Methodology
	A Model regression with adiabatic quantum evolution
	B Learning empirical cumulative density functions
	C Probability function from quantum circuits
	1 A circuit for all times
	2 Circuit representation
	3 From the CDF to the PDF

	III Validation
	A Sampling known distributions
	B Density estimation using LHC data sampled from the Style-qGAN model

	IV Hardware
	V Conclusion
	 Acknowledgments
	 References

