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There is growing interest in viable quantum theories with PT -symmetric non-Hermitian
Hamiltonians, but a formulation of transition matrix elements consistent with positivity and
perturbative unitarity has so far proved elusive. This Letter provides such a formulation, which
relies crucially on the ability to span the state space in such a way that the interaction and energy
eigenstates are orthonormal with respect to the same positive-definite inner product. We mention
possible applications to the oscillations of mesons and neutrinos.
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Non-Hermitian quantum field theories [1] offer the pos-
sibility of constructing viable extensions of the Standard
Model of particle physics, and there has been significant
progress in understanding them, including the formula-
tion of spontaneous symmetry breaking, the Goldstone
theorem and the Englert-Brout-Higgs mechanism [2–4].
However, a satisfactory description of the oscillations be-
tween states that can arise when the diagonal bases of
the interaction terms and mass terms of a quantum field
theory are misaligned, which has applications to quark
and neutrino flavour physics, has so far proved elusive. In
a misaligned situation, an interaction eigenstate can be
decomposed in terms of a superposition of energy eigen-
states. Since each of the energy eigenstates evolves with
a different phase, the interaction eigenstate is not station-
ary, and there is a non-zero probability of measuring a
different interaction eigenstate at some later time. The
dynamics of such oscillations are well studied for Hermi-
tian quantum theories, and have been applied with great
success to the phenomena of flavour oscillations in particle
physics, such as meson mixing and neutrino oscillations
(see, e.g., Ref. [5]).

However, studies of oscillation phenomena in non-
Hermitian quantum theories remain unsatisfactory, de-
spite the fact that the viability of non-Hermitian quan-
tum theories is well established in the presence of some
antilinear symmetry of the Hamiltonian Ĥ. Examples
include PT (parity-time-reversal)-symmetric quantum
theories [1], wherein [Ĥ,PT ] = 0, and the more general
class of pseudo-Hermitian quantum theories [6]. The prob-
lem lies in the following observation: Whilst unitarity is
guaranteed in, e.g., PT -symmetric theories, due to the
existence of an additional discrete symmetry of the Hamil-

tonian [7], existing analyses have arrived at individual
transition probabilities that can be negative or larger than
unity [8, 9].

Motivated by the desire to construct viable non-
Hermitian extensions of the Standard Model, we consider
here a simple and well-studied quantum field-theoretic
model comprising two complex scalar fields φ1 and φ2 (in-
troduced in Ref. [10]) that can be arranged in a complex
doublet Φ = (φ1, φ2), which mix via a non-Hermitian mass
matrix M 6= M†. However, our analysis holds for any two-
state system with a non-Hermitian but PT -symmetric
Hamiltonian, as considered, e.g., in Refs. [9].

The Lagrangian density for the scalar field theory is

L = ∂αΦ̃†∂αΦ− Φ̃†M2Φ , (1)

where ∂α is a spacetime derivative and the squared mass
matrix is

M2 =

[
m2

1 µ2

−µ2 m2
2

]
6= (M2)† . (2)

The formulation in Eq. (1) of the dynamics in terms of
the tilde-conjugate doublet Φ̃† 6= Φ† (where † denotes
Hermitian conjugation), first introduced in Ref. [8], is nec-
essary for the mutual consistency of the Euler-Lagrange
equations obtained directly by varying this Lagrangian.

The squared mass eigenvalues

m2
± =

1

2
(m2

1 +m2
2)± 1

2

√
(m2

1 −m2
2)2 − 4µ4 (3)

are real, so long as the argument of the square root is
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positive, and the corresponding eigenvectors are

e+ = N

[
η

−1 +
√

1− η2

]
, (4a)

e− = N

[
−1 +

√
1− η2

η

]
, (4b)

where the normalisation factor N is defined below and

η ≡ 2µ2

|m2
1 −m2

2|
. (5)

The parameter η must be less than or equal to unity
for the eigenvalues to be real. At η = 1, the eigenvalues
merge, corresponding to an exceptional point at which the
mass matrix becomes defective. Such exceptional points
are novel features of non-Hermitian quantum theories
and we will see that, in the context of flavour oscilla-
tions, the exceptional point is that at which the transition
probabilities saturate for finite values of the Lagrangian
parameters, in stark contrast to the Hermitian case.

Since the squared mass matrix is not Hermitian, it
is diagonalised by a similarity (rather than orthogonal)
transformation, and its eigenvectors are not orthogonal
with respect to the usual Hermitian scalar product (the
Dirac inner product). Nevertheless, there exists in the
regime where the eigenvalues are real an orthogonal inner
product, which has been described at length in the existing
literature, both in the case of non-Hermitian quantum
mechanics (see, e.g, Refs. [1, 6, 7, 11]) and non-Hermitian
quantum field theory (see Ref. [8] for the present scalar
theory and Ref. [12] for a related Dirac fermion theory).
Positive norms are obtained with respect to the so-called
C′PT inner product, where the transformation C′ (not
to be confused with charge conjugation in the case of
quantum field theory, see Ref. [8]) is an additional discrete
symmetry of the Hamiltonian, i.e., [Ĥ, C′] = 0, and this
symmetry ensures unitarity [7].

The eigenvectors e+ and e− are orthogonal with respect
to the PT inner product

e‡±e± = e†±Pe± = ±1 , e‡±e∓ = 0 , (6)

where ‡ ≡ PT ◦ T, with T denoting matrix transposition,
and we have fixed the normalisation [8]

N =
[
2
(
η2 − 1 +

√
1− η2

)]−1/2
. (7)

This normalisation diverges in the Hermitian limit η → 0,
but the normalised eigenvectors themselves remain well
defined. In addition, we have introduced the parity matrix

P =

[
1 0
0 −1

]
, P 2 = I , (8)

which satisfies PM2P = (M2)†. The eigenvector e− has

negative PT norm, but its C′PT norm is positive:

e§±e± = e†±C
′Pe± = 1 , e§±e∓ = 0 , (9)

where § ≡ C′PT ◦ T and

C ′ =
1√

1− η2

[
1 −η
η −1

]
(C ′)2 = I , (10)

and we have used (C ′ · P )T = C ′ · P (see Ref. [8]).

In order to calculate the transition and survival prob-
abilities of the flavour states, we introduce a two-
dimensional state space spanned by the eigenvectors e+
and e−. These are related to the flavour kets |φi,~p(t, ~x)〉
by the similarity transformation that diagonalises the
squared mass matrix, and we obtain

|φ1,~p(x)〉 = cosh(θ) ξ+,~p(x) e+ + sinh(θ) ξ−,~p(x) e− ,

(11a)

|φ2,~p(x)〉 = cosh(θ) ξ−,~p(x) e− + sinh(θ) ξ+,~p(x) e+ ,

(11b)

where θ = 1
2arctanh(η), such that

cosh(θ) =
1√
2

(
1 +

1√
1− η2

)1/2

, (12a)

sinh(θ) =
1√
2

η√
1− η2

(
1 +

1√
1− η2

)−1/2
. (12b)

The eigenfunctions ξ±,~p(x) satisfy the classical equations
of motion (� +m2

±)ξ± = 0 (� ≡ ∂α∂α), with solutions

ξ±,~p(x) = exp(iω±t+ i~p · ~x) , (13)

where ω± =
√
~p 2 +m2

±. Hereafter, for simplicity, we will
consider only the zero-momentum modes with ~p = ~0. At
t = 0, the flavour states then reduce to

|φ1(0)〉 =

[
1
0

]
, |φ2(0)〉 =

[
0
1

]
, (14)

as we would expect.

The flavour-conjugate states (see Ref. [8]) can be ex-
pressed in the form

〈φ̃1(t)| = cosh(θ) ξ∗+(t) e§+ − sinh(θ) ξ∗−(t) e§− , (15a)

〈φ̃2(t)| = cosh(θ) ξ∗−(t) e§− − sinh(θ) ξ∗+(t) e§+ . (15b)

We emphasise the change of sign sinh(θ) → − sinh(θ)
relative to the states in Eq. (11). These states satisfy

〈φ̃i(t)|φj(t)〉 = δij , (16)

and, at t = 0, the conjugate states reduce to

〈φ̃1(0)| =
[
1 0

]
, 〈φ̃2(0)| =

[
0 1

]
. (17)
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The latter are, in fact, the Hermitian-conjugate flavour
states, as identified in Ref. [8] [see Eq. (50) therein]. Thus,
the flavour states are orthogonal with respect to the Dirac
inner product (constructed via Hermitian conjugation) at
t = 0, but cease to be so for any t 6= 0. As a result (see the
Appendix), attempts to construct transition probabilities
using the Dirac inner product necessarily lead to the
violation of time-translation invariance.

An important observation is that the conjugate states
in Eq. (15) do not coincide with the C′PT -conjugates of
the flavour states, which are instead given by

〈φC
′PT

1 (t)| = cosh(θ) ξ∗+(t) e§+ + sinh(θ) ξ∗−(t) e§− ,

(18a)

〈φC
′PT

2 (t)| = cosh(θ) ξ∗−(t) e§− + sinh(θ) ξ∗+(t) e§+ .

(18b)

These do not, however, provide an orthogonal basis with
respect to C′PT :

〈φC
′PT
i (t)|φj(t)〉 =

{
cosh(2θ), i = j

sinh(2θ), i 6= j.
(19)

At t = 0, the states in Eq. (18) reduce to

〈φC
′PT

1 (0)| = 1√
1− η2

[
1 η

]
, (20a)

〈φC
′PT

2 (0)| = 1√
1− η2

[
η 1

]
, (20b)

and we see that the C′PT -conjugates of the flavour states
do not have a direct interpretation as flavour states.

However, the choice of basis {|φ1〉 , |φ2〉} is not unique.
Since the Hamiltonian is C′-symmetric (i.e., C ′TM2C ′T =
M2), we can also span the state space with {|φ1〉 , |φC

′

2 〉}
(or, equivalently, {|φC′1 〉 , |φ2〉}). Remarkably, this choice
allows us to construct an orthonormal flavour basis with
respect to C′PT , with

〈φC
′PT

1 (t)|φ1(t)〉 = 1 , 〈φPT2 (t)|φC
′

2 (t)〉 = 1 , (21a)

〈φC
′PT

1 (t)|φC
′

2 (t)〉 = 0 , 〈φPT2 (t)|φ1(t)〉 = 0, (21b)

where we have adjusted the normalisations of all of the
flavour states by a factor of

√
sech(2θ). Crucially, with

this choice of basis, the flavour and mass eigenstates are
orthonormal with respect to the same positive-definite
inner product. Notice that the norms of the flavour states
are with respect to C′PT , but the inner product between
different flavour states is, in fact, the PT inner product,
since, e.g., 〈φPT2 (t)|φ1(t)〉 = (|φC′2 (t)〉)§ |φ1(t)〉.

Spanning the state space in this way, our initial density
operators are

ρ̂1(t0) = |φ1(t0)〉 〈φC
′PT

1 (t0)| , (22a)

ρ̂2(t0) = |φC
′

2 (t0)〉 〈φPT2 (t0)| , (22b)

and the final-state projection operators are

π̂1(t) = |φ1(t)〉 〈φC
′PT

1 (t)| , (23a)

π̂2(t) = |φC
′

2 (t)〉 〈φPT2 (t)| . (23b)

The transition and survival probabilities are calculated
as Pi→j(t, t0) = trρ̂i(t0)π̂j(t), and we obtain

P1(2)→1(2)(t, t0) = 1− η2 sin2 [∆ω∆t/2] , (24a)

P1(2)→2(1)(t, t0) = η2 sin2 [∆ω∆t/2] , (24b)

where ∆ω ≡ ω1−ω2 and ∆t ≡ t− t0. These probabilities
are consistent with positivity, unitarity, perturbative uni-
tarity (in that they are finite for all η ∈ [0, 1]) and respect
time-translation invariance (cf. the Appendix).

We note, however, that these are not the analytic contin-
uations via µ4 → −µ4 of the corresponding probabilities
for the model with Hermitian mass mixing given by taking

M2 → M2
Herm =

[
m2

1 µ2

µ2 m2
2

]
, Φ̃† → Φ† , (25)

in Eq. (1). The transition probabilities for this Hermitian
model are given by

PHerm
1(2)→2(1)(t, t0) =

η2

1 + η2
sin2 [∆ω∆t/2] . (26)

Whereas the Hermitian case saturates for η → ±∞, the
non-Hermitian probabilities saturate at the exceptional
point η → ±1 (µ2 = ±(m2

1 −m2
2)/2) (see Fig. 1a). More-

over, the masses become degenerate at this exceptional
point, but they diverge in the Hermitian case, with the
lower squared mass becoming negative for sufficiently large
mixing, signalling a tachyonic instability (see Fig. 1b).
Note that the analytic continuation µ4 → −µ4 of the Her-
mitian result in Eq. (26) (as reported in Ref. [8]) would be
negative, with a modulus exceeding unity for η > 1/

√
2.

All our key results are illustrated in Fig. 1, where in
the upper panel we see explicitly that the survival and
transition probabilities have very different dependences
on η and the phase ϑ = ∆ω∆t/2 in the Hermitian and
non-Hermitian models, and in the lower panel we see
differences in the mass eigenstates as functions of η for
(m2

1−m2
2)/(m2

1+m2
2) = 0.5. These results are in principle

directly applicable to the analysis of meson mixing, specif-
ically in the K0 − K̄0, D0 − D̄0 and B0

d,s − B̄0
d,s systems

(see, e.g., Ref. [5]). However, phenomenological studies of
these systems lie beyond the scope of this Letter.

The potential relevance of PT -symmetric extensions
of the Dirac Lagrangian to neutrino oscillations was first
identified in Ref. [13] (see also the later works [14–16]).
We expect the results of this Letter to carry over to the
case of fermion mixing, but leave this to future work,
together with the generalisation to the three-flavour case.

In summary, the results of this Letter place the
treatment of non-Hermitian flavour mixing matrices on
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(a) Oscillation probabilities for the Hermitian (topmost two
planes, PHerm

i→j ) and non-Hermitian (bottommost two planes,
PPTi→j) models as a function of η and the phase ϑ ≡ ∆ω∆t/2.
The legend is ordered from topmost to bottommost planes.

(b) Squared eigenmasses of the Hermitian (m2
±Herm)

and non-Hermitian (m2
±PT ) models divided by

m2
1 +m2

2 versus η for (m2
1 −m2

2)/(m2
1 +m2

2) = 0.5.

FIG. 1. Comparison of the transition and survival probabilities
(a) and squared eigenmasses (b) for the Hermitian and non-
Hermitian models as a function of the parameter η. For the
Hermitian case, the mass eigenvalues diverge for large η, with
the lower eigenvalue crossing zero and becoming negative at
a value of η2 = (m2

1 + m2
2)2/(m2

1 − m2
2)2 − 1. This occurs

before the transition and survival probabilities saturate. For
the non-Hermitian case, the mass eigenvalues merge at the
exceptional point η = 1, at which the probabilities saturate.

a firm footing, laying the foundation for a consistent
treatment of flavour oscillations and CP violation in
non-Hermitian extensions of the quark and lepton
sectors of the Standard Model of particle physics.
We re-emphasise that the construction of transition
probabilities for the two-state, PT -symmetric model
described here, with results that are distinct from those
in Hermitian theories in their dependences on the model
parameters, is in principle experimentally testable.
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APPENDIX

We briefly illustrate in this Appendix the violation of
time-translation invariance that results if one attempts
to construct transition probabilities with respect to the
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Dirac inner product. The Dirac-conjugate states

〈φ1(t)| = cosh(θ) ξ∗+(t) e†+ + sinh(θ) ξ∗−(t) e†− , (27a)

〈φ2(t)| = cosh(θ) ξ∗−(t) e†− + sinh(θ) ξ∗+(t) e†+ , (27b)

lead to time-dependent norms

〈φ1(t)|φ1(t)〉 = 〈φ2(t)|φ2(t)〉 =
1− η2 cos(∆ωt)

1− η2
.

(28)
The Dirac norm traces out a cardioid as shown in Fig. 2,
wherein we have defined r(ϑ) = [1− η2 cos(ϑ)]/(1− η2).
The flavour states are orthogonal with respect to the
Dirac inner product only at t = 0:

〈φ1(t)|φ2(t)〉 = 〈φ2(t)|φ1(t)〉∗ =
η

1− η2

×
[
1− cos(∆ωt)− i

√
1− η2 sin(∆ωt)

]
, (29)

and the violation of time-translation invariance is made
manifest by any adjustment of the normalisation of the
states, e.g., by defining |φ̄i(t)〉 ≡ |φi(t)〉 /

√
〈φi(t)|φi(t)〉.
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